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A B S T R A C T

In this paper, a new multiscale macro-element formulation for the steel–concrete interface modeling is
proposed. This element allows for the representation of the behavior of steel and the interface zone surrounding
it. It can also model the interfacial bond stresses in between. Compared to conventional interface models of the
literature, which employ separate mesh elements for the steel and the interface, utilizing a macro-element to
model both components simplifies the creation of a reinforced concrete structure mesh. Moreover, the macro-
element equilibrium is solved using a sub-structuring method that aims to reduce the computational cost. At the
global level, it is considered as a four-node element linked to two-dimensional and three-dimensional concrete
elements. At the local level, an assembly of multiple three-node bar elements with bond stresses is performed.
An inner mesh discretization is therefore possible at the local level independently of the global level. The
coupling between the two modeling scales is done using a static condensation technique. The formulation of
the macro-element is presented in this paper. A selection of numerical examples is provided. The presented
applications demonstrate the robustness of the proposed interface model and its capacity to reproduce the
experimental behavior of reinforced concrete structural elements.
1. Introduction

The robust characterization of the mechanical behavior for re-
inforced concrete structures when external loads beyond the design
level are applied can be a complex goal to achieve since different
types of non-linearities can be involved. In fact, to ensure a numerical
robustness of the non-linear approaches used for reinforced concrete
structures modeling, it is mandatory to consider the different energy
dissipation sources: viscous dissipation, numerical dissipation related
to the time integration scheme, and especially the material dissipation.
The interaction between concrete and steel reinforcement that occurs
at the steel–concrete interface contributes to the material dissipation
part. Indeed, the functioning of reinforced concrete relies on the stress
transfer between steel and concrete through the interface between
both materials. As soon as the first cracks appear in concrete, the
steel–concrete interface transmits the internal loads to the steel. The
consideration of this steel–concrete interface in numerical modeling has
therefore a significant influence on the realistic representation of the
cracking process in reinforced concrete structures [1]. According to [2],
the energy dissipation along the steel–concrete interface may account
for up to 15% of the total material energy dissipation.

Several numerical models are proposed in the literature within dif-
ferent frameworks to describe the interface between steel and concrete.
A large variety of models define specific finite elements that link steel

∗ Corresponding author at: Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSN-EXP/SES/LMAPS, B.P. 17 - 92262 Fontenay-aux-Roses Cedex, France.
E-mail address: maryamtrad100@hotmail.com (M. Trad).

and concrete elements (spring elements [3,4], two-dimensional (2D)
and three-dimensional (3D) elements [5,6], and joint elements [7–11]).
The interface behavior is considered as internal stresses between steel
and concrete in other methodological frameworks [12,13]. A kinematic
enhancement with the X-FEM method is considered in [14] as an
alternative approach. It is important to note that these various models
are most often incorporated in fine and detailed 2D and 3D analyses, to
improve the prediction of the local and global behavior of a structural
element. A description of the steel–concrete interface at the scale of
an industrial building is challenging and highly time consuming while
considering these approaches.

More recent works are proposed in order to consider the interface
behavior for large-scaled structures, such as homogenization techniques
of the steel, the interface, and the concrete behaviors [15]. In parallel,
kinematic enhancement approaches within fiber reinforced concrete
elements [16,17] are proposed. Nevertheless, using homogenization
techniques of reinforced concrete modeling may be challenging to
provide a detailed localized description of the concrete cracking around
the steel reinforcement [18,19]. In parallel, even though fiber elements
make it possible to study large-scaled structures with a relatively short
calculation time, full 3D simulations provide more refined and exact
results with respect to fiber elements [20].
https://doi.org/10.1016/j.istruc.2024.107137
Received 24 September 2023; Received in revised form 8 June 2024; Accepted 20
vailable online 4 September 2024 
352-0124/© 2024 The Authors. Published by Elsevier Ltd on behalf of Institution o
 http://creativecommons.org/licenses/by/4.0/ ). 
August 2024

f Structural Engineers. This is an open access article under the CC BY license 

https://www.elsevier.com/locate/structures
https://www.elsevier.com/locate/structures
mailto:maryamtrad100@hotmail.com
https://doi.org/10.1016/j.istruc.2024.107137
https://doi.org/10.1016/j.istruc.2024.107137
http://crossmark.crossref.org/dialog/?doi=10.1016/j.istruc.2024.107137&domain=pdf
http://creativecommons.org/licenses/by/4.0/


M. Trad et al.

2

t

W

B
t

S

E
t
i

Structures 68 (2024) 107137 
Fig. 1. Concept of studying a reinforced concrete structure with the macro-element
approach.

The main objective of this work is to address the challenges of
the existing interface models of the literature by improving the way
the steel–concrete interface is modeled in the context of finite element
computations, for large-scale structures. Moreover, multiscale modeling
strategies have proven their numerical efficiency for a large variety of
applications such as concrete damage [21] and steel–concrete compos-
ite components [22–24]. For these reasons, a multiscale macro-element
formulation with internal degrees of freedom has been adopted. The
element formulation is initially considered in [25] to represent a rigid-
inclusion embedded in a soil volume. The formulation of [25] is devel-
oped further here and enriched so it can be used for the steel–concrete
interface modeling. This element represents the behavior of steel, an in-
terface zone surrounding the steel bar, and concrete–steel bond stresses.
Hence, the reinforced concrete structure geometry is discretized into
concrete elements and macro-elements. The steel and the interface
behavior are considered at the level of the macro-elements.

This work is proposed in the framework of 2D and 3D reinforced
concrete models, where distinct constitutive laws are used for steel and
concrete. It presents an alternative interface modeling approach of the
coupling elements method of [26] where the construction of the finite
elements mesh may be challenging since it needs the identification
of the finite elements crossed by steel bars to be defined as coupling
elements.

This paper is organized as follows. Section 2 recalls the principles
of the finite elements resolution using the macro-element. Section 3
presents model applications for pull-out tests, a reinforced concrete tie
rod test, a beam-end test, and two beam bending test examples. The
numerical behavior of the macro-element formulation is compared to
some existing interface models. Indeed, a higher robustness is consid-
ered for the macro-element model. The paper ends with conclusions
and perspectives in Section 4.

2. Theoretical background

In a 2D or 3D framework, with a perfect steel–concrete bond,
one can mesh the reinforced concrete structure with 2D/3D concrete
elements and 1D steel elements. The interest of this work is to model
the interface behavior in a non-intrusive way with respect to perfect
bond simulations. For that, 1D macro-elements that represent steel
and interface behaviors with bond stresses (see Fig. 1) are defined
instead of 1D steel elements. Unlike coupling elements methods that
require identifying and replacing concrete elements intersected by
steel bars with coupling elements [26], this macro-element technique
eliminates the need for such identification steps, providing a practical
and non-intrusive way to simulate bond behavior.

Two scales are considered when using the macro-element formu-
lation: a global scale of the whole structure, and a local scale at the
level of the macro-element. Two complementary Newton–Raphson res-
olution algorithms are adopted at the two distinct levels. The boundary
value problems are here detailed for the global and the local levels. The
link between the two levels is ensured by means of a static condensation

technique that is also presented in this section. 𝑃

2 
Fig. 2. 𝛺 domain.

2.1. Global boundary value problem

The global boundary value problem consists in considering a solid
body that occupies a volume 𝛺 ⊂ R𝑛 (with 𝑛 = 1, 2, 3 the problem’s
dimension and ⊂ the proper subset symbol). 𝜕𝛺 ⊂ R𝑛 is the boundary
of 𝛺. Density forces 𝐟 are applied to 𝛺. 𝜕𝛺 is composed of two
complementary parts 𝜕𝛺𝑓 ⊂ 𝜕𝛺 and 𝜕𝛺𝑢 ⊂ 𝜕𝛺. Surface forces t are
applied to 𝜕𝛺𝑓 , and displacement values 𝑼𝒅 are imposed along 𝜕𝛺𝑢(see
Fig. 2).

2.1.1. Strong formulation
Under the small perturbations assumption, solving the boundary

value problem consists in finding the admissible displacement field 𝑼
and the statically admissible stress tensor 𝝈 at a position x such that:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∇.𝝈 + 𝐟 = 0 ∀x ∈ 𝛺 ∶ Equilibrium equations
𝝈 =  (𝜺) ∀x ∈ 𝛺 ∶ Stress–strain (constitutive) equations
𝜺 = ∇𝑠𝑼 ∀x ∈ 𝛺 ∶ Strain–displacement (kinematic) equations
𝝈nf = t ∀x ∈ 𝜕𝛺𝑓 ∶ Neumann boundary conditions
𝑼 = 𝑼𝒅 ∀x ∈ 𝜕𝛺𝑢 ∶ Dirichlet boundary conditions

(1)

Where:

• ∇𝑠: is the symmetric part of the gradient operator ∇.
• nf: is a normal vector to 𝜕𝛺𝑓 .
•  : is a constitutive relationship.
• ∀: is the universal quantification symbol.
• ∈: is the set membership symbol.

.1.2. Weak formulation
The virtual power principle leads to the variational formulation of

he problem which is formulated as follows:

∫𝛺
𝜺∗ ∶ 𝝈𝑑𝑉 = ∫𝛺

𝑼∗𝑇 f𝑑𝑉 + ∫𝜕𝛺𝑓

𝑼∗𝑇 t𝑑𝑆 + ∫𝜕𝛺𝑢

𝑼∗𝑇
𝒅 (𝝈nu)𝑑𝑆 (2)

here:

• 𝑼∗: is a virtual degrees of freedom field, equal to 𝑼∗
𝒅 along 𝜕𝛺𝑢.

• nu: is a normal vector to 𝜕𝛺𝑢.
• 𝑇 : is the transpose operator.

y choosing 𝑼∗ as a kinematically admissible displacement field equal
o zero along 𝜕𝛺𝑢, Eq. (2) can be rewritten as follows:

∫𝛺
𝜺∗ ∶ 𝝈𝑑V = ∫𝛺

𝑼∗𝑇 𝒇𝑑V + ∫𝜕𝛺𝑓

𝑼∗𝑇 𝒕𝑑𝑆 (3)

uch as:

• ∫𝛺 𝜺∗ ∶ 𝝈𝑑V: is the virtual power of all the internal forces.
• ∫𝛺 𝒇𝑼∗𝑑V + ∫𝜕𝛺𝑓

𝒕𝑼∗𝑑𝑆: is the virtual power of the external
forces.

q. (3) states the principle of virtual power where the power 𝑃 ∗
𝑒𝑥𝑡 of

he external forces applied to a system is equal to the power 𝑃 ∗
𝑖𝑛𝑡 of its

nternal forces:
∗ ∗

𝑖𝑛𝑡 = 𝑃𝑒𝑥𝑡 (4)
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2.1.3. Discretization
A finite elements discretization of 𝛺 is considered. 𝛺 is discretized

nto N𝑒 elements 𝛺𝑒. 𝜕𝛺 is then divided into N𝛺𝑒
parts called 𝜕𝛺𝑒.

t is important to note here that when studying a reinforced concrete
tructure, 𝛺𝑒 can be either a concrete element 𝛺𝑒𝑐 or a macro-element
𝑒𝑚 that represents steel and steel–concrete interface, such that 𝛺𝑒 =

𝛺𝑒𝑐 ∪ 𝛺𝑒𝑚 and 𝛺𝑒𝑐 ∩ 𝛺𝑒𝑚 = ∅. ∪ and ∩ are the union and the
ntersection operators. ∅ stands for the empty set. For concrete el-
ments, the displacement 𝑼 𝒊 of a point 𝑖 located inside an element
an be deduced from the nodal displacement field 𝑼 according to the
ollowing equation:

𝒊 = 𝑵𝑼 (5)

here:

• 𝑵 is the matrix holding the set of interpolation functions at-
tributed to the finite elements used to construct the mesh.

• 𝑼 is the vector of all the degrees of freedom of the mesh nodes.

he strain field 𝜺 is derived from the generalized displacements field 𝑼
s follows:

= ∇𝒔𝑼 𝒊 = 𝑩𝑼 (6)

here 𝑩 denotes the strain–displacement matrix, holding the set of
he first derivatives of the shape functions 𝑵 , and ∇𝑠 stands for the
ymmetric part of the gradient operator.

The virtual internal forces power is a combination of two con-
ributions 𝑃 ∗

𝑖𝑛𝑡𝑐 and 𝑃 ∗
𝑖𝑛𝑡𝑚 for concrete-type and macro-element-type

lements. Hence, the expression of the total power of internal forces
∗
𝑖𝑛𝑡 is expressed as follows:

∗
𝑖𝑛𝑡 = 𝑃 ∗

𝑖𝑛𝑡𝑐 + 𝑃 ∗
𝑖𝑛𝑡𝑚 (7)

he virtual power principle of Eq. (4) can be expressed as follows:
∗𝑇𝑭 𝒊𝒏𝒕(𝑼 ) = 𝑼∗𝑇𝑭 𝒆𝒙𝒕 ∀𝑼∗ (8)

he internal forces vector 𝑭 𝒊𝒏𝒕 is a combination of the internal forces
f concrete-type and macro-element-type elements:

𝒊𝒏𝒕 = 𝗔
𝑁𝑒
𝑒=1

[

∫𝛺𝑒𝑐

𝑩𝑇 𝝈(𝜺)𝑑V ∪ 𝒇 𝒃

]

(9)

here the symbol 𝗔 denotes the assembly operator, and 𝝈 is the
oncrete stress tensor that depends of the strain 𝜺. The expression of
(𝜺) is given by the concrete constitutive law. The vector 𝑭 𝒆𝒙𝒕 of the
xternal forces is expressed as:

𝑒𝑥𝑡 = 𝗔
𝑁𝑒
𝑒=1 ∫𝛺𝑒

f𝑑V + 𝗔
𝑁𝛺𝑒
𝑒=1 ∫𝜕𝛺𝑒

t𝑑S (10)

o solve Eq. (8) (after discretization in time) a classical Newton Raph-
on algorithm can be used. The linearization of the internal forces
ector 𝑭 𝒊𝒏𝒕(𝑼 ) of Eq. (8) gives:

𝑭 𝒊𝒏𝒕 = 𝒌𝒅𝑼 (11)

here:

=
𝜕𝑭 𝒊𝒏𝒕
𝜕𝑼

= 𝗔
𝑁𝑒
𝑒=1

[

∫𝛺𝑒𝑐

𝑩𝑇𝑪𝑩𝑑V ∪ 𝒌𝒆𝒎

]

(12)

𝑼 is the vector of the incremental values of the total degrees of
reedom of the studied structure and 𝒅𝑭 𝒊𝒏𝒕 is the incremental internal
orces vector. 𝑪 is the concrete constitutive law matrix. 𝒌 is the stiffness
atrix of the studied structure. ∫𝛺𝑒𝑐

𝑩𝑇𝑪𝑩𝑑V is an elementary stiffness
atrix of a concrete element, and 𝒌𝒆𝒎 is an elementary stiffness matrix

of a macro-element. The calculation of 𝒌𝒆𝒎 requires a local equilib-
ium at the level of the macro-element, which is detailed in the next
ubsection.

Imposed displacements along 𝜕𝛺𝑢 can be expressed as follows:
𝑼 = 𝑼𝒅 (13)

3 
Fig. 3. Interaction between the steel and concrete interface domains through internal
stresses 𝜏𝑖𝑛𝑡.

Where 𝑳 is the matrix of blocking, and 𝑼𝒅 is the vector of the imposed
values of all the degrees of freedom. The finite elements problem
consists in resolving both Eqs. (11) and (13). For that, the well-
known double Lagrange multipliers method can be used to enforce the
Dirichlet boundary conditions [27], as shown in Appendix A.

2.2. Local boundary value problem

Each macro-element is an assembly of multiple biphasic elements.
The formulation of one biphasic element is studied here in the first
place.

2.2.1. Study of a biphasic element
Let 𝐻 be the length of the element. (E𝑠, S𝑠) and (E𝑖, S𝑖) are the

Young’s modulus and the cross-sections for the steel bar and the inter-
face domains respectively. Two independent virtual longitudinal strain
fields, 𝜀∗𝑠 and 𝜀∗𝑖 , are associated to the steel and to the interface. The
friction stress at the interface is considered as an external contribution
as follows:

𝜏𝑖
(

𝑦𝑠 − 𝑦𝑖
)

= −𝜏𝑠
(

𝑦𝑠 − 𝑦𝑖
)

(14)

Where 𝜏𝑖 is the bond stress applied on the interface, while 𝜏𝑠 is ap-
plied on the steel. The friction is a linear or a nonlinear function of
the differential displacement

(

𝑦𝑠 − 𝑦𝑖
)

. 𝑦𝑠 and 𝑦𝑖 are the longitudinal
displacements along the steel and the interface zones, respectively.
Additional external forces may be considered, and the associated virtual
power is here denoted 𝑃 ∗

𝑒𝑥𝑡(see Fig. 3).
The principal of virtual power is then expressed as:

∫

𝐻

0

(

𝜀∗𝑠𝜎𝑠(𝜀𝑠)S𝑠 + 𝜀∗𝑖 E𝑖𝜀𝑖S𝑖
)

𝑑𝑥 + ∫

𝐻

0

(

𝑦∗𝑠 − 𝑦∗𝑖
)

𝜏𝑖
(

𝑦𝑠 − 𝑦𝑖
)

P𝑑𝑥 = 𝑃 ∗
𝑒𝑥𝑡

(15)

Where P is the steel bar perimeter. It is important to state here that
in the current version of the macro-element model, and in the sake of
simplicity, a linear constitutive law is associated to the interface zone.
The interface nonlinearities are concentrated at the level of the friction
stresses between the two distinct zones that can have a nonlinear
evolution with respect to the steel-interface slip. For this reason, the
stress at the interface, denoted 𝜎𝑖, is expressed in Eq. (31) as E𝑖𝜀𝑖 (a
linear function). However, considering a nonlinear constitutive law for
the interface zone remains possible. On the other hand, steel can have
a linear or a nonlinear behavior depending on the studied structure and
the applied loads. For that, the steel stress 𝜎𝑠 is a function of the steel
strain 𝜀𝑠 defined by the steel constitutive law.

The first term of Eq. (31) defines the virtual internal power as:

𝑃 ∗
𝑖𝑛𝑡 = ∫

𝐻

0

(

𝜀∗𝑠𝜎𝑠(𝜀𝑠)S𝑠 + 𝜀∗𝑖 E𝑖𝜀𝑖S𝑖
)

𝑑𝑥 + ∫

𝐻

0

(

𝑦∗𝑠 − 𝑦∗𝑖
)

𝜏𝑖
(

𝑦𝑠 − 𝑦𝑖
)

P𝑑𝑥

(16)

2.2.2. Discretization
Eq. (32) can be discretized. Three-node bar elements are chosen
for the discretization. It is important to note that this choice imposes
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that the external forces should be along the macro-element direction.
However, it is possible to set a more complex formulation in which
beam elements are used instead of bar elements, so density forces can
be applied between the steel and the interface parts of the biphasic
element perpendicularly to its direction. The current version of the
macro-element focuses on the longitudinal steel–concrete behavior.
No normal degrees of freedom are defined for the inner nodes of
macro-elements. The longitudinal displacements along the steel and the
interface zone are deduced respectively as:
{

𝑦𝑠(𝑥) = 𝑵(𝑥)𝒖𝑠
𝑦𝑖(𝑥) = 𝑵(𝑥)𝒖𝑖

(17)

𝑠 and 𝒖𝑖 are the steel and the interface nodal longitudinal displace-
ents. Here are the nodes positions for a three-node bar element:
𝑛𝑜𝑑𝑒𝑠 = {0;𝐻∕2;𝐻}; for 𝑥 ∈ [0 ∶ 𝐻]. The matrix of interpolation
unctions 𝑵 is expressed as:

=
[

1
2

(

4𝑥2
𝐻2 − 6𝑥

𝐻 + 2
)

− 4𝑥2
𝐻2 + 4𝑥

𝐻
2𝑥2
𝐻2 − 𝑥

𝐻

]

(18)

geometric transformation is used in order to simplify the 𝑵 matrix,
nd to express it in the reference space as a function of the variable

∈ [−1 ∶ 1]. The new variable 𝜉 is related to 𝑥 according to the
ollowing equation:

=
1 + 𝜉
2

𝐻 (19)

he matrix of shape functions 𝑵 expressed in terms of 𝜉 as follows:

=
[

1
2 𝜉(𝜉 − 1) 1 − 𝜉2 1

2 𝜉(𝜉 + 1)
]

(20)

The 𝑩 matrix of the derivatives of the interpolation functions is used
to calculate 𝜕𝑦𝑠

𝜕𝑥 and 𝜕𝑦𝑖
𝜕𝑥 with respect to 𝑢𝑠 and 𝑢𝑖. Thus:

𝑩 = 𝜕𝑵
𝜕𝜉

𝜕𝜉
𝜕𝑥

=
[

𝜉 − 1
2 −2𝜉 𝜉 + 1

2

] 2
𝐻

(21)

Therefore, Eq. (32) is expressed as follows:

𝑃 ∗
𝑖𝑛𝑡 =∫

𝐻

0
𝒖∗𝑇𝑠 𝑩𝑇 S𝑠𝜎𝑠(𝑩𝒖𝑠) + 𝒖∗𝑇𝑖 𝑩𝑇E𝑖S𝑖𝑩𝒖𝑖𝑑𝑥

+ ∫

𝐻

0

(

𝒖∗𝑖 − 𝒖∗𝑠
)𝑇 𝑵𝑇 𝜏𝑖

(

𝑦𝑖 − 𝑦𝑠
)

P𝑑𝑥
(22)

Since 𝒖∗𝑖 and 𝒖∗𝑠 are defined as two different independent virtual
displacement vectors, the internal forces field 𝒑𝒆𝒍 for one biphasic
element composed of two three-node bar elements representing the
steel and the interface domain with the internal friction stresses is
formulated as:

𝒑𝒆𝒍 =

[

∫ 𝐻
0 𝑩𝑇 S𝑠𝜎𝑠(𝑩𝒖𝑠)𝑑𝑥
∫ 𝐻
0 𝑩𝑇E𝑖S𝑖𝑩𝒖𝑖𝑑𝑥

+ ∫ 𝐻
0 −𝑵𝑇 𝜏𝑖

(

𝑦𝑖 − 𝑦𝑠
)

P𝑑𝑥
∫ 𝐻
0 𝑵𝑇 𝜏𝑖

(

𝑦𝑖 − 𝑦𝑠
)

P𝑑𝑥

]

(23)

On the other hand, the subtraction of the steel and the interface
displacements 𝑦𝑠(𝑥) and 𝑦𝑠(𝑥) (see Eq. (17)) gives:

𝑦𝑖 − 𝑦𝑠 =
[

−𝑵 𝑵
]

[

𝒖𝑠
𝒖𝑖

]

=
[

−𝑵 𝑵
]

𝒖𝒆𝒍 (24)

After introducing Eq. (24) into Eq. (23), the derivative of Eq. (23) with
respect to the elementary degrees of freedom vector 𝒖𝒆𝒍 returns:

𝜕𝒑𝒆𝒍

𝜕𝒖𝒆𝒍
=𝒌𝒆𝒍𝑏𝑝 = ∫

𝐻

0

[

𝑩𝑇𝐶𝑠S𝑠𝑩 0
0 𝑩𝑇E𝑖S𝑖𝑩

]

𝑑𝑥

+ ∫

𝐻

0

[

−𝑵𝑇

𝑵𝑇

]

𝜕𝜏𝑖
𝜕
(

𝑦𝑖 − 𝑦𝑠
)

[

−𝑵 𝑵
]

P𝑑𝑥
(25)

𝒌𝒆𝒍𝑏𝑝 is the elementary stiffness matrix of one biphasic element. 𝐶𝑠 is the
steel constitutive law matrix. 𝜕𝜏𝑖

𝜕(𝑦𝑖−𝑦𝑠)
is calculated due to the expression

of a steel-interface constitutive bond law which links the stress value
𝜏𝑖 to the steel–concrete slip 𝑦𝑠 − 𝑦𝑖. Pull-out tests are usually adopted
o characterize the relation between steel–concrete bond stress and the
orresponding slip. Several analytical expressions for constitutive bond
aws are proposed in the literature [3,4,13] [28–37]. The choice of the
ond law will be detailed and justified for each application example in
he next section.
4 
2.3. Coupling between the global and the local levels

The macro-element can be seen at different scales: a global and a
local one. At the global level, it is considered as a four-node element.
An inner discretization can be done at the local level. More precisely,
each macro-element is an assembly of a set of biphasic elements.

2.3.1. Connection between the macro-elements and the concrete elements
meshes

At the global level, 2D or 3D elements can be associated to con-
crete. Two distinct mesh configurations are possible: coincident or
non-coincident meshes for concrete and macro-elements (see Fig. 4). In
case of coincident meshes, at global level, both nodes of the interface
part of the macro and concrete elements are superimposed and thus
the displacements are considered equal. At local level, in the normal
direction of the macro-element, linear kinematic relations are imposed
so that the displacements of the steel nodes are equal to the displace-
ments of the interface nodes. In the longitudinal direction, however,
the steel nodes are free to move independently of the interface node
displacements. So the steel-interface slip can occur in the longitudinal
direction.

In case of a 3D simulation with non-coincident meshes, at global
level, the displacements of the interface nodes are linked to displace-
ments of the surrounding concrete nodes, denoted by the subscript
𝑐𝑖, with the shape functions 𝑁𝑖. When using eight-node elements for
concrete mesh these kinematic relations are defined such that:
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑢interface,𝑥 =
8
∑

𝑖=1
𝑁𝑖𝑢𝑐𝑖,𝑥

𝑢interface,𝑦 =
8
∑

𝑖=1
𝑁𝑖𝑢𝑐𝑖,𝑦

𝑢interface,𝑧 =
8
∑

𝑖=1
𝑁𝑖𝑢𝑐𝑖,𝑧

(26)

For 2D simulations where four-node elements constitute the con-
crete mesh, four shape functions 𝑁𝑖 are defined instead of defining
eight shape functions. Steel nodes displacements are similarly con-
nected to surrounding concrete nodes in the normal directions with
respect to the macro-element. No connections are imposed along the
longitudinal direction, so longitudinal interface-steel slip can occur.

One possible approach to introduce these displacements relations
is to enrich the matrix 𝒌𝒕𝒐𝒕 of Eq. (A.5) with new kinematic relations
(Eq. (26)) by applying the double Lagrange multipliers methodology.
This Lagrange method, even though it is widely used to add kinematic
relations to a finite elements resolution system, adds additional un-
knowns to be calculated (the Lagrange multipliers) [38]. Using this
approach is convenient when considering Dirichlet boundary condi-
tions (which are technically kinematic relations). In contrast, linking
steel and interface zones to concrete adds kinematic relations for all
the steel and the interface nodes. An alternative method is proposed
here to incorporate steel/interface-concrete kinematic relations in the
resolution. This approach based on a kinematic projection principle is
here described.

The kinematic projection methodology consists of classifying the
total degrees of freedom 𝑼 𝒕𝒐𝒕 (see Eq. (A.3) of Appendix A) into two
complementary vectors such as:

𝑼 𝒕𝒐𝒕 =
[

𝑼 𝒄 𝑼 𝒊
]𝑇 (27)

Where:

• 𝑼 𝒄 is the vector of the dependent degrees of freedom.
• 𝑼 𝒊 is the vector of the independent degrees of freedom.

The kinematic relations impose that the values of the displacements
of the steel and the interface nodes are dependent of the values of

the displacements of the surrounding concrete nodes, which allows to
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Fig. 4. Global and local levels.
efine 𝑼 𝒄 as the vector of the displacements of the interface nodes in
he three dimensions of the space and the displacements of the steel
odes in the normal directions with respect to the steel bars directions.

By deriving the kinematic relations equations, the vectors of the
ncremental values of the total degrees of freedom and the independent
nes can be linked with a kinematic projection matrix 𝑷 :

𝑼 𝒕𝒐𝒕 = 𝑷𝜹𝑼 𝒊 (28)

The projection matrix here 𝑷 holds the sets of the derivatives of
he kinematic relations. Multiplying Eq. (A.2) of Appendix A by the
ranspose of the vector 𝜹𝑼 𝒕𝒐𝒕 gives:

𝑼𝑇
𝒊 𝑷

𝑇𝑭 (𝑼 𝒕𝒐𝒕) = 𝛿𝑼𝑇
𝒊 𝑷

𝑇𝑭 𝒕𝒐𝒕 (29)

o,
𝑇𝑭 (𝑼 𝒕𝒐𝒕) = 𝑷 𝑇𝑭 𝒕𝒐𝒕 (30)

q. (30) is the equilibrium equation to be resolved. The residue 𝑅
ssociated with the equilibrium equation is defined as:

= 𝑷 𝑇𝑭 𝒕𝒐𝒕 − 𝑷 𝑇𝑭 (𝑼 𝒕𝒐𝒕) (31)

he iterative resolution of the global Newton Raphson algorithm aims
o minimize the value of the residue 𝑅. It incorporates the derivation
f the residue calculated as:

𝜕𝑹
𝜕𝑼𝒅𝒖𝒃𝑖

=
𝜕
(

𝑷 𝑇𝑭 𝒕𝒐𝒕
)

𝜕𝑼 𝒊
−

𝜕
(

𝑷 𝑇𝑭 (𝑼 𝒕𝒐𝒕)
)

𝜕𝑼 𝒊
(32)

he residue 𝑹 is derived with respect to 𝑼 𝒊. The advantage of this
inematic projection approach is that only 𝑼 𝒊 is calculated at each res-
lution iteration. 𝑈c is deduced using the kinematic relations. Eq. (32)
s developed as:

𝜕𝑹
𝜕𝑼 𝒊

= −
[

𝑷 𝑇 𝜕𝑭 (𝑼 𝒕𝒐𝒕)
𝜕𝑼 𝒕𝒐𝒕

𝜕𝑼 𝒕𝒐𝒕
𝜕𝑼 𝒊

]

(33)

nowing that the linear expressions of the used kinematic relations
mpose that 𝜕𝑷

𝜕𝑼 𝒊
is equal to zero. 𝜕𝑼 𝒕𝒐𝒕

𝜕𝑼 𝒊
is equal to the projection matrix

(see Eq. (A.1) of Appendix A), so:

𝜕𝑹
𝜕𝑼 𝒊

= −
[

𝑷 𝑇 𝜕𝑭 (𝑼 𝒕𝒐𝒕)
𝜕𝑼 𝒕𝒐𝒕

𝑷
]

(34)

𝜕𝑹
𝜕𝑼 𝒊

is the tangent operator of the nonlinear global Newton Raphson
resolution (where the Dirichlet boundary conditions and the kinematics
relations that link the steel/interface displacements to the concrete
nodes displacements are taken into account).
5 
Fig. 5 illustrates the way the study of a reinforced concrete structure
is designed.

The studied structure is discretized into two types of finite elements:
concrete elements and macro-elements. Each macro-element is locally
a set of assembled biphasic elements. One biphasic element is a combi-
nation of two three-node bar elements and shear interfacial stresses in
between. The two three nodes bars represent steel and interface zones.

It is important to highlight the advantage of the macro-element
methodology regarding the mesh construction. Indeed, in a 3D frame-
work, with a perfect bond steel–concrete behavior, the reinforced con-
crete structure geometry is discretized with 2D/3D concrete elements
and steel with 1D elements. The steel nodes are linked to concrete
nodes with kinematic relations. The interest of the macro-element
formulation is about modeling the interface behavior within this frame-
work in a non-intrusive way. For that, one defines macro-elements
instead of 1D steel elements. The main difference with respect to the
perfect bond case is about defining two nodes at each longitudinal
position of the steel bars (interface and steel nodes). These nodes have
the same coordinates at the initial configuration of the structure.

2.3.2. Inner resolution of the macro-element equilibrium
In the present work, the coupling between the two levels is done by

adopting a static condensation technique. The aim of this technique is
to decrease the total number of degrees of freedom to be computed
at the global scale. Indeed, in the global resolution, four degrees of
freedom are considered for each macro-element. These degrees rep-
resent the longitudinal displacements of the four outer nodes of the
inner local discretization. 𝒖𝑇𝒕𝒐𝒕 =

[

𝒖𝒓 𝒖𝒃
]𝑇 is the total degrees

of freedom vector of the biphasic elements constituting one macro-
element. 𝒓 and 𝒃 subscripts refer to internal and external degrees of
freedom. 𝒖𝒃 represents the degrees of freedom of the four outer nodes,
and 𝒖𝒓 is the internal degrees of freedom vector of the inner nodes.

The resistant forces vector 𝒇 𝒕𝒐𝒕 of a macro-element is an assembly of
the elementary internal forces vectors 𝒑𝒆𝒍 (see Eq. (23)). Let 𝒇 𝒓 be the
forces vector at the level of the inner nodes of a macro-element, and
𝒇 𝒃 be the forces at the level of the outer nodes (see Eq. (9)). Hence,
it is possible to define 𝒇 𝒕𝒐𝒕 such that 𝒇𝑇

𝒕𝒐𝒕 =
[

𝒇 𝒓 𝒇 𝒃
]𝑇 . The inner

resolution at the local level of the macro-element consists in resolving
the following equation:

𝒇 𝒓 = 0 (35)

Eq. (35) states the inner equilibrium at the level of the inner discretiza-
tion of the macro-element.
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Fig. 5. Reinforced concrete structure study.
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Let 𝒌𝒃𝒑 be the assembly of the elementary stiffness matrices 𝒌𝒆𝒍𝒃𝒑 of
iphasic elements constituting one macro-element (see Eq. (25)). It is
ossible to state that:

𝒇 𝒕𝒐𝒕 = 𝒌𝒃𝒑𝒅𝒖𝒕𝒐𝒕 (36)

here 𝒅𝒖𝒕𝒐𝒕 represents the vector of the incremental values of the total
egrees of freedom of the inner discretization of the macro-element.
𝒖𝑇𝒕𝒐𝒕 =

[

𝒅𝒖𝒓 𝒅𝒖𝒃
]𝑇 where 𝒅𝒖𝒓 and 𝒅𝒖𝒃 are the vectors of the

ncremental values of 𝒖𝒓 and 𝒖𝒃. According to these degrees of freedom
ubscripts 𝒓 and 𝒃 (internal and external degrees), the matrix 𝒌𝒃𝒑 is
omposed of four parts: 𝒌𝒓𝒓, 𝒌𝒓𝒃, 𝒌𝒃𝒓, and 𝒌𝒃𝒃. In order to calculate
he algorithmic tangent operator, it is necessary to differentiate 𝒇 𝒃
ccording to 𝒖𝒃. Hence, the differentiation of the internal efforts vector
𝒃 gives:

[

𝒌𝒃𝒃 𝒌𝒃𝒓
𝒌𝒓𝒃 𝒌𝒓𝒓

] [

𝒅𝒖𝒃
𝒅𝒖𝒓

]

=
[

𝒅𝒇 𝒃
0

]

(37)

static condensation provides a link between the incremental vectors
𝒖𝒃 and 𝒅𝒇 𝒃 as:
(

𝒌𝒃𝒃 − 𝒌𝒃𝒓𝒌−1𝒓𝒓 𝒌𝒓𝒃
)

𝒅𝒖𝒃 = 𝒅𝒇 𝒃 (38)

n a more condensed form, Eq. (38) is written as:

𝒆𝒎𝒅𝒖𝒃 = 𝒅𝒇 𝒃 (39)

here 𝒌𝒆𝒎 is the condensed elementary stiffness matrix of one macro-
lement (see Eq. (12)).

The independence between the mesh sizes at the local and the global
evel of the proposed approach makes it possible to refine the study at
he interface local level. Refining the mesh at the level of the macro-
lement has a slight numerical cost in comparison to refining the 3D
oncrete mesh. The local mesh density is a user choice. In addition,
he local discretization accelerates the global resolution of the studied
tructure equilibrium. This resolution acceleration is due to the sub-
tructuring resolution adopted methodology using a global and a local
esolution algorithms.

.4. Calibration of material parameters

In order to define the biphasic element, the behavior laws for the
teel and the interface zones have to be defined in addition to the

ond law that defines the bond stress. The steel behavior law can r

6 
able 1
ain calibration parameters of a biphasic element.
Parameter Description Unit

E𝑠 Steel Young’s modulus GPa
S𝑠 Steel bar section m2

E𝑖 Interface Young’s modulus GPa
S𝑖 Interface zone section m2

follow a linear law or an elastic–plastic law depending on the studied
structure. For structures where steel bars do not plastify, considering a
linear behavior law for steel is satisfactory. The bond laws relations and
parameters are usually identified based on pull-out experimental tests.
For the interface zone, and for the sake of simplicity, it is supposed
here to have the same material parameters as concrete. For the same
reason, a linear behavior law is considered for this zone. However,
changing the interface zone parameters and constitutive law remains
possible. If a nonlinear constitutive law is being considered for the
interface zone, the term E𝑖S𝑖𝑩𝒖𝑖 of Eq. (22) has to be replaced by
𝑖𝜎(𝑩𝒖𝑖) where 𝜎(𝑩𝒖𝑖) is the stress in the interface linked to the strain
𝒖𝑖 via the adopted nonlinear law. The thickness to be associated to the

nterface zone is a parameter of each biphasic element. This thickness
arameter has a physical interpretation since the experimental behavior
f the interface shows that a specific concrete zone around the steel
s mostly damaged, and this zone represents the interface. Sensitivity
tudies will be carried out in the next section to study the effect of
he interface thickness on the structural behavior of reinforced concrete
lements.

Table 1 recalls the main biphasic element parameters. Additional
arameters can be added to describe non-linear constitutive laws for
teel an interface zones. These parameters depend in this case on the
hosen constitutive laws. In addition, a nonlinear constitutive bond law
s usually used. The parameters of this bond law depend (in terms of
umber of parameters and physical interpretation of each parameter)
n the chosen bond law.

.5. Global resolution algorithm

The finite element resolution includes two Newton Raphson algo-

ithms: one at the global level of the whole studied structure, and
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another one at the local level of the macro-element. The global Algo-
rithm 1 is called for each time step 𝑛.

Algorithm 1 Global resolution algorithm
𝑼 𝒕𝒐𝒕𝑛+1 ← 𝑼 𝒕𝒐𝒕𝑛 (=0 for initial time step), see equation (A.3) for the
definition of 𝑼 𝒕𝒐𝒕
𝑐𝑜𝑛𝑣 ← 0
𝑘 ← 0
𝑼 tot 𝑘

= 𝑼 𝒕𝒐𝒕𝑛+1
while 𝑐𝑜𝑛𝑣 =0 do

Compute 𝑹𝒌 = 𝑭𝒕𝒐𝒕𝒏 − 𝑭𝒌

(

𝑼tot𝒌

)

(see equation (A.2)) . At this
step, the local algorithm 2 is called to calculate the contribution of
each macro-element in 𝑭𝒌 (represented by the vector 𝒇𝒃 in algorithm
2)

Compute 𝑼 𝒕𝒐𝒕𝑘+1 = 𝑼 𝒕𝒐𝒕𝑘 +
(

𝒌𝑡𝑜𝑡𝑘
)−1

𝑹𝑘 (see equation (A.5)) . At
this step, the local algorithm 2 is called to calculate the contribution
of each macro-element in 𝒌𝒕𝒐𝒕 (represented by the matrix 𝒌𝒆𝒎 in
algorithm 2)

Compute 𝑹𝒌+𝟏 = 𝑭𝒕𝒐𝒕𝒏 − 𝑭𝒌+𝟏

(

𝑼tot𝒌+𝟏

)

if 𝑹𝒌+𝟏 < 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 then
𝑐𝑜𝑛𝑣 ← 1
𝑼𝒕𝒐𝒕𝑛 = 𝑼𝒕𝒐𝒕𝒌+𝟏
else

𝑘 ← 𝑘 + 1
End if

End while

It is important to note that the global Algorithm 1 is a classical
ewton Raphson algorithm. When calculating the stiffness and the

nternal forces of the macro-elements, the local Algorithm 2 is used
which also has a classical Newton Raphson structure). In other terms,
he macro-element can be easily implemented in any finite elements
esolution code with no change in its structure.

.6. Local resolution algorithm

The local Algorithm 2 is at the level of each macro-element. 𝑘𝑖 is
the index used for the local iterations.

Algorithm 2 Local resolution algorithm
𝑐𝑜𝑛𝑣𝑖 ← 0
𝑘𝑖 ← 0
𝒖𝑇𝒕𝒐𝒕 =

[

𝒖𝒓 𝒖𝒃
]𝑇 . 𝒖𝒃 is given by the global algorithm. It remains

constant in this local one. 𝒖𝒓 is firstly estimated equal to its value for
the previous converged time step
while 𝑐𝑜𝑛𝑣𝑖 =0 do

Compute the elementary quantities 𝒑𝒆𝒍 and 𝜕𝒑𝒆𝒍
𝜕𝒖𝒆𝒍 for each biphasic

element of the macro element using equations (23) and (25)
Compute 𝒇𝒕𝒐𝒕 = 𝗔

𝑁𝑏𝑝
𝑒=1𝒑

𝒆𝒍 and 𝒌𝒃𝒑 = 𝗔
𝑁𝑏𝑝
𝑒𝑙=1

𝝏𝒑𝒆𝒍

𝝏𝒖𝒆𝒍
Compute 𝒇𝒓 = 𝒇𝒕𝒐𝒕𝒓
Compute 𝑹𝑘𝑖 = −𝒇𝒓
if 𝑹𝑘𝑖 < 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 then
𝑐𝑜𝑛𝑣𝑖 ← 1
Static condensation: 𝒌𝒆𝒎 = 𝒌𝒃𝒃 − 𝒌𝒃𝒓𝒌−𝟏𝒓𝒓 𝒌𝒓𝒃 (see equation (38))

and 𝒇𝒃 = 𝒇𝒕𝒐𝒕𝒃. 𝒌𝒆𝒎 and 𝒇𝒃 are the rigidity matrix and the internal
forces vector of the macro-element sent back to be used in the global
algorithm

else
𝒖𝒓𝒌𝒊+𝟏

= 𝒖𝒓𝒌𝒊 + 𝒌𝒓−1𝑹𝑘𝑖
𝑘𝑖 ← 𝑘𝑖 + 1

End if
End while
7 
Fig. 6. Normalized pull-out test.

3. Applications and results

The macro-element interface model is here adopted for three dis-
tinct application examples: a pull-out test, a tie-rod example, and a
beam test.

3.1. 1D pull-out test model

In this subsection, the pull-out experimental test of [13] is modeled
using macro-elements, as a validation test of the macro-element formu-
lation. For this 1D model, the macro-element model itself represents the
steel, the concrete, and the steel–concrete bond stresses. In other terms,
the interface part of the macro-element represents the whole concrete
volume. The loading configurations studied are monotonic and cyclic.

The test geometry is composed of a concrete cube crossed by a
single steel reinforcement bar. The translation of the concrete cube is
blocked by a metal plate. The specimen also rests on a Teflon support
to ensure a proper alignment between the steel bar and the direction
of the imposed displacement, thus preventing the reinforcement from
bending. The concrete–steel slip is measured by a first LVDT (Linear
Variable Differential Transformer) sensor located at one edge of the
reinforcement and a second LVDT sensor is located at the other edge of
the steel bar in order to access to a second relative displacement value
between steel and concrete. The contact length is equal to five times
the steel bar diameter which is denoted 𝑑𝑎. This contact length value is
ecommended in [39]. The adhesion value 𝜏 is supposed to be constant

along the steel bar and is estimated as follows:

𝜏 = 𝐹
𝑑𝑎𝐿𝜋

(40)

Where 𝐹 is the measured reaction and 𝐿 is the steel–concrete contact
length. The experimental bond law is defined as the evolution of the
calculated bond stress value 𝜏 with respect to the slip measured at the
unloaded edge of the steel bar (see Fig. 6).

3.1.1. Material properties
For this 1D model, linear elastic constitutive laws are considered for

steel and concrete (the interface zone of the macro-element here). There
is only one source of non-linearity in the problem, which arises from
the non-linear expression of the bond stress law at the steel–concrete
interface.

The bond law of [40] is here used (see Appendix B). This law was
initially proposed to model the bond–slip behavior of confined large-
diameter steel reinforcing bars. However, it can be used for the general
case of any bar diameter, and applied for confined or unconfined
bars, by calibrating its parameters in an appropriate manner. This
law is chosen for its simplicity. It can be applied for monotonic and
cyclic loading configurations, and is defined by three parameters: the
maximum bond strength 𝜏1, the slip 𝑔1 for which 𝜏1 is reached, and the
slip 𝑔3. For slip values bigger than 𝑔3 the total stress of the monotonic
version of the law remains constant. Table 2 sums up the material
properties used for the 1D pull-out model.

It has to be noted that the bond law parameters are chosen to best
describe the experimental bond law curve of [13] (see Fig. 7).
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Table 2
Material properties for the 1D pull-out model.

Parameter Description Value Unit

𝐸𝑐 Concrete Young’s modulus 28 GPa
𝐸𝑠 Steel Young’s modulus 200 GPa
𝜏1 Input parameter of the bond law (Fig. B.1(a)) 22.5 MPa
𝑔1 Input parameter of the bond law (Fig. B.1(a)) 1.45 mm
𝑔3 Input parameter of the bond law (Fig. B.1(a)) 10 mm

Fig. 7. Analytical and experimental adhesion laws.

Fig. 8. 1D pull-out model.

3.1.2. Finite elements mesh
The central part of the pull-out test where a bond contact links

steel and concrete is represented with a bond length equal to five times
the bar diameter. One macro-element represents the test. This macro-
element is discretized into three biphasic elements. Fig. 8 shows the
mesh and the boundary conditions. For this 1D example, the cross-
section of the interface part of the macro-element is taken equal to
the section of the concrete cube specimen of the pull-out test, which
is equal to 15𝑑𝑎 × 15𝑑𝑎, where 𝑑𝑎 refers to the steel bar diameter equal
to 12 mm.

3.1.3. Results
Figs. 9 and 10 illustrate the imposed displacement and the reaction

curves for monotonic and cyclic loads. Even though no experimental
result is given in [13] for cyclic pull-out tests, the law of [40] can
reproduce the cyclic behavior with no additional input parameters.
For the cyclic case boundary conditions are modified between the two
configurations of Fig. 11 every time the imposed displacement is equal
to zero.

3.1.4. Discussion
The reaction force curves show that the constitutive expression that

links the reaction force 𝐹 to the bond stress 𝜏 (Eq. (40)) is fulfilled.
The advantage of the inner discretization is that it allows to have

n access to internal variables such as the displacements of the internal
odes and the internal stresses in steel and concrete. For instance,
igs. 12 and 13 show the forces in the concrete and steel elements and
8 
the displacements of the inner and the outer concrete and steel nodes
and for all the time steps.

The 1D pull-out model is a simplified yet representative model of
the pull-out test. Nevertheless, this model does not represent a detailed
3D description of the test and does not show the distribution of the
damage in the concrete volume. Hence, a 3D pull-out model is studied
and presented in the next paragraph.

3.2. 3D pull-out test model

The pullout of test [13] modeled in Section 3.1 within a 1D con-
figuration is here modeled in a 3D one. For this 3D model, steel bar
elements, an interface zone with a certain thickness, and bond stresses,
and are attached to 3D cubic concrete elements.

In the previous 1D case study of Section 3.1, the thickness of the
interface was simply equal to the thickness of the concrete. On the
contrary, 3D volumetric elements are used here for concrete. This is
why the first step consists in a sensitivity analysis on the thickness value
of the interface part of the macro-element.

3.2.1. Material properties
The steel linear behavior law and the bond law are identical to the

ones used for the 1D pull-out model. Choosing a linear behavior for
steel is a convenient choice since the steel bar does not yield in the
experiment of [13]. For this 3D model, a regularized Mazars’ nonlinear
damage law is considered for concrete [41,42]. The used properties for
concrete are summarized in Table C.1.

3.2.2. Finite elements mesh
The mesh shown in Fig. 14(a) is chosen. Fig. 14(b) shows the

boundary conditions detailed on a side view of the mesh cross section
shown in Fig. 14(a). A displacement is imposed on an external steel
node of the macro-elements. Three macro-elements connect steel and
concrete. For this 3D simulation, no discretization has been done in
each macro-element. Interface and steel nodes of the macro-elements
have the exact same coordinates before the imposed displacement is
applied.

3.2.3. Results
Fig. 15 illustrates the reaction curves for a monotonic loading

scheme. A sensitivity study is performed with respect to the interface
thickness. Fig. 15(b) shows the reaction curves for different thickness
values. Changing this thickness slightly changes the initial stiffness of
the structure.

Fig. 16 shows a cyclic imposed displacement path and the corre-
sponding reaction curve, where the interface thickness is equal to the
steel bar diameter. Boundary conditions are successfully modified be-
tween the two configurations shown in Fig. 17 each time the direction
of the imposed displacement is changed.

The advantage of the 3D simulation with respect to the 1D one is the
capability to visualize the damage field in the concrete volume. Fig. 18
shows the distribution of the concrete damage field at different loading
states denoted A1, A2, and A3 (see Fig. 16) of the cyclic application.

3.2.4. Discussion
A change of the global stiffness of the specimen due to the change

of the interface thickness is expected since changing the thickness of
the interface changes its stiffness. At the global level of the structure,
this results in a slight change of the global initial stiffness. Among
the different tested thickness values for the monotonic case, a value
of 12 mm gives the closest curve to the curve resulting from the 1D
simulation. This value is equivalent to the diameter of the steel bar.
In addition, reaction curves are so close to each other and almost
identical for thickness values between 3 mm and 12 mm. The main

reason why for the 3D pull-out model no significant influence of the
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Fig. 9. Monotonic 1D pull-out; imposed displacement (a) and reaction (b).
Fig. 10. Cyclic 1D pull-out; imposed displacement (a) and reaction (b).
Fig. 11. Configurations (a) and (b) for the cyclic 1D pull-out model.
Fig. 12. Monotonic 1D pull-out; concrete (a) and steel (b) forces.
nterface thickness is observed on the reaction curve is that the applied
oad is a longitudinal one.

The concrete damage is localized in a specific zone around the
ulled steel bar. Indeed, for the 3D simulation, the nonlinearities are
ivided into two types: the nonlinearities of the interface model carried
9 
out by the macro-element, and the concrete damage. Hence, since an
important part of the total nonlinearities is considered at the interface
level, only a small concrete area surrounding the steel is damaged. This
result justifies the choice to consider a linear constitutive law for steel
and concrete in the 1D pull-out model. In other terms, the 1D pull-out
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Fig. 13. Monotonic 1D pull-out; concrete (a) and steel (b) nodes displacements.
Fig. 14. 3D pull-out test mesh (a) and (b) boundary conditions.
Fig. 15. Reaction curves (b) for the monotonic 3D pull-out model.
model can be considered as a sufficiently detailed and representative
model of the pull-out test.

3.3. Tie rod test: linear concrete behavior model

Tie-rod tests are usually studied in order to understand the influence
of the steel–concrete interface on the cracks distribution in concrete.
The experimental test of [43] is considered. This test was previously
studied in [10,11,13]. The aim of the tie-rod model here is to test the
10 
possibility to reproduce similar results using macro-elements to connect
steel and concrete.

The steel bar is tied at one end, and a horizontal displacement is
imposed at its other end. It has a diameter of 10 mm, while the concrete
has a cross-section of 0.1 × 0.1 m2 (see Fig. 19).

Here a linear behavior is considered for concrete, with the aim
of focusing the study on the consideration of a linear or non-linear
steel–concrete bond behavior. Hence, two interface behavior options
are tested: the first one with a perfect steel–concrete bond and the
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Fig. 16. Cyclic 3D pull-out; imposed displacement(a) and reaction (b).
Fig. 17. Configurations (a) and (b) for the cyclic 3D pull-out model.
Fig. 18. Damage fields for different points of the reaction curve of the 3D pull-out cyclic application.
Fig. 19. Presentation of the tie-rod test.
11 
second one considering a non-linear interface model. For a perfect
bond, the macro-element is not used but steel bar elements are per-
fectly connected to concrete elements with kinematic relations. On the
contrary, when the interface non-linearities are taken into account in
the simulation, the macro-element formulation is used.

3.3.1. Material properties
The concrete’s linear constitutive law is characterized by a Young’s

modulus of 30.4 GPa and a Poisson’s ratio of 0.22.
It is important to note that steel only yields at the end of the tie-

rod test. But since the interest here is to study the cracking phase of
concrete in order to assess the influence of the steel–concrete interface
on the cracking process, there is no need to define an elastic–plastic
law for steel. A linear behavior is here used for the steel bar. The steel
Young’s modulus is equal to 200 GPa.
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Fig. 20. Bond law.

The interface bond law is identical to the bond law used in [10]
hen modeling this tie-rod example. This law illustrated in Fig. 20.
he different slip-bond stress values indicated in Fig. 20 are linked with

inear expressions.

.3.2. Finite elements mesh
A major objective of this linear concrete simulation choice is to

ompare the results to the those of the same simulation done by [10].
his comparison allows to validate the representativity of the macro-
lement formulation. In other words, this comparison is done to test
he possibility to reproduce similar results by replacing the interface
odel of [10] with the macro-elements approach. Therefore, the mesh

s chosen identical to the one used in [10] for this type of simulations
linear behavior for concrete). It is generated to have 5 × 5 elements
n the concrete cross-section, and 58 elements along the tie-rod axis.

hen modeling a perfect steel–concrete bond, 58 steel elements are
sed along the contact length (equal to the total concrete length of
.15 m), and two additional steel elements are linked to the edges of the
irst 58 elements. When considering a nonlinear model for the interface,
8 macro-elements are used for the steel–concrete contact length. Two
teel bar elements are linked to the extremities of the steel part of the
acro-elements. The two mesh options are illustrated in Fig. 21.

.3.3. Results
The length of the two steel elements added outside the concrete

olume is not indicated in [10] although changing it slightly changes
he stiffness of the tie-rod specimen. The length of each one of these two
teel elements is here taken equal to 0.05 m. This value is deduced by
odeling the tie-rod with a linear behavior for concrete and a perfect

teel–concrete bond. The reaction–displacement curve is then plotted
nd the value of 0.05 m is chosen since it gives the same reaction curve
f [10], for the exact simulation option. When macro-elements are
sed to describe the non-linear behavior of the interface, each macro-
lement is discretized in two biphasic elements. The macro-element
ormulation is introduced while keeping the choice of a linear behavior
or concrete. Hence, for this case, the nonlinearity is only related to the
on-linear bond law (Fig. 20).

The convergence criterions are identical for this simulation and the
ne of [10]. The only difference between the two simulations is the way
he interface is modeled (here the macro-element approach is adopted
nd in [10] four-node elements connect steel and concrete). This al-
ows to compare the number of iterations needed for convergence
nd to assess the numerical efficiency of the two interface modeling
pproaches.

[10] provides the reaction curves when concrete is described by a
inear elastic constitutive law using the interface models of [10,13]
or the nonlinear interface simulation case. The models of [10,13]
 d

12 
have different formulations but are based on the same principle of
introducing bond stresses in a finite element reinforced concrete cal-
culation. So, it is expected to have the same reaction curve using the
models of [10,13] (see Fig. 22). Using the macro-element approach
gives a close but a slightly different reaction curve. The macro-element
formulation incorporates the behavior of the interface zone, which is
not the case for the models of [10,13]. For this reason, it is expected
not to have the same reaction curve using the macro-element approach
and the models of [10,13]. It is important to note that, as shown in
Fig. 22, changing the thickness of the interface zone of the macro-
element can slightly change the stiffness of the specimen. However, the
curves associated to different thickness values are close to each other
and almost identical.

The number of iterations needed for the convergence at each time
step is given in [10] for the simulation’s assumptions of a perfect
bond and nonlinear interface models of [10,13]. Choosing the same
number of the total time steps, the number of iterations of the different
simulations can be compared to the number of iterations using a macro-
element interface model. A 5 mm interface thickness is chosen for the
macro-element simulation for the comparison (Fig. 23).

3.3.4. Discussion
Fig. 23 demonstrates the numerical robustness of the macro-element

formulation with respect to the interface models of [10,13]. It can be
seen that the number of iterations at each time step is stable and does
not exceed 3 iterations. Table 3 sums up the total number of iterations
for the different simulations cases.

The ratio of the total number of iterations using the different inter-
face modeling methods to the total number of iterations with a perfect
bond is equal to 1.445 using the model of [13] and 1.495 using the
model of [10]. For the macro-element simulation, this ratio becomes
equal to 1.045 that is to say approximately 33% less.

The reason for which the usage of the macro-elements implies a
better numerical robustness is that a local algorithm is used to establish
the inner equilibrium at the level of each macro-element. The local al-
gorithm is called each time the stiffness matrix is calculated or updated,
and when calculating the internal forces. Here the macro-element local
algorithm is called 519 times:

• A first time when calculating the initial stiffness of the structure.
• 100 times at the beginning of each time step when updating the

stiffness matrix.
• 209 × 2 times at each iteration when updating the stiffness matrix

and when calculating the internal forces to estimate the residue.

The local iterations number is equal to one for the most of the times
the local algorithm is called. The maximum observed iterations number
is equal to three. The macro-elements are numbered from 1 to 58 in
an ascending order with respect to their longitudinal position. Fig. 24
shows the local iterations number for macro-elements 1, 30, and 40.

The local iterations are realized at the level of the macro-elements,
hich means that they are less costly than the global iterations at

he level of the whole structure. For this tie test, the computational
ime of one local iteration is around 1% of the computational time of
ne global iteration. Table 4 compares the computational time ratios
f the nonlinear interface simulations with respect to a perfect bond
imulation.

This example demonstrates the advantage of inner discretization
hat accelerates the convergence. However, the difference between the
omputational time of an inner iteration and a local one becomes more
mportant while modeling large scale structures since a global iteration
s at the level of the whole structure while a local one is at the level of
ne macro-element.

.4. Tie rod test: nonlinear concrete behavior model

The tie test of [43] is here modeled by considering the concrete

amage.
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Fig. 21. 3D mesh view (a) and (b) 2D mesh cut-section view-Linear concrete behavior simulations.
Fig. 22. Reaction curves for linear concrete simulations.
Table 3
Total number of iterations.
Interface model Perfect bond Model of [13] Model of [10] Macro-element

Total number of iterations 200 289 299 209
Table 4
Total computational time ratios.
Interface model Model of [13] Model of [10] Macro-element

Computational time ratio with respect to a
perfect bond simulation

3.4375 2.5 1.426
3.4.1. Material properties
A regularized Mazars’ damage law [41,42] is used for the nonlinear

concrete simulations. Concrete parameters are presented in Table C.1.
The steel linear behavior law and the interface bond law are identical
to the laws used for the linear concrete simulations.

3.4.2. Finite elements mesh
For the nonlinear concrete behavior simulations, the mesh is gen-

erated to have 3 × 3 elements in the concrete cross-section, and 35
elements along the tie-rod axis. Each macro-element is discretized into
5 biphasic elements, and a thickness of 2 mm is here used for the
interface. An aleatory strain-based damage threshold distribution is
considered for concrete elements (Fig. 25). This distribution follows an
average Gaussian law with a mean value equal to the ratio of the tensile
strength of the concrete to its Young’s modulus (value indicated in
Table C.1) and a coefficient of variation of 5%. An isotropic correlation
is used with a correlation length equal to the size of the concrete
13 
elements. The turning bands method is used to generate the damage
threshold distribution [44].

3.4.3. Results
Fig. 26 shows the reaction curves for the nonlinear concrete be-

havior simulations. The numbers one to five indicated in this figure
designate the successive apparition of the different concrete cracks for
the macro-element simulation.

By comparing the damage distributions of Fig. 27 (for a nonlinear
interface behavior simulation and a perfect bond simulation), one can
deduce that when introducing a nonlinear behavior at the interface,
a smaller number of cracks occurs in concrete, with a higher mean
distance between the different cracks.

An average concrete strain is experimentally calculated using the
relative displacement on a length equal to 1 m in the center of the tie-
rod [43] (see Fig. 28). Fig. 29 shows the evolution of the steel stress
at the end of the rod (ratio of the applied force to the steel section)
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Fig. 23. Iterations number with respect to the pseudotime.

Fig. 24. Local iterations number.

Fig. 25. Aleatory distribution of the damage threshold in the tie-rod specimen.

as a function of the average concrete strain. The experimental and
numerical curves are also compared in Fig. 29.

3.4.4. Discussion
When comparing the damage patterns of the two simulations (per-

fect bond and nonlinear interface using macro-elements) to the exper-
imental cracking pattern, one can deduce that modeling a nonlinear
14 
Fig. 26. Reaction curves for the nonlinear concrete behavior simulations.

interface behavior gives a better estimation of the experimental crack-
ing features. The mean value of the spacing between cracks is 16 cm
experimentally and 18 cm for the macro-element simulation, while it is
about 11.2 cm for the perfect bond simulation. From the experimental
side, the total number of cracks is 5. For the macro-element simulation
5 cracks are developed while for the perfect bond simulation the
development of total of 10 cracks is observed (Fig. 30).

The use of a non-linear bond model allows to observe steel stress
drops at the cracking moment (Fig. 29). The amplitude of these drops
is related, according to [43], to the experimental device. Since the
experimental device is not modeled here, it is not of interest to compare
the experimental–numerical drop amplitudes. The numerical curve is
judged to be a satisfactory representation of the experimental curve
(Fig. 29).

The main result of this tie-rod study revealed that a better repre-
sentation of the experimental concrete cracking pattern (in terms of
number of cracks and cracks spacing) is done when taking into account
the nonlinear behavior of the steel–concrete interface. In addition, this
application showed the numerical robustness of the macro-element
formulation and demonstrated the capability of the proposed approach
to reproduce the experimental behavior of the interface.

3.5. Beam-end test

Beam-end tests can be adopted as an alternative interface char-
acterization setup to the pull-out tests [45–48]. Unlike the pull-out
test where the concrete cube is in compression, the beam-end test
represents the bond condition in a beam. Concrete around the rebar
bond area is subjected to a constant shear force and a bending moment.
Moreover, the concrete cover in a pull-out test is usually higher than the
minimum cover in practical constructions (except the case where the
bar diameter is relatively small). The beam-end test of [48] is modeled
in the following.

The specimen dimensions and setup are shown in Fig. 31. The pulled
steel bar of a 16 mm diameter is in direct contact with concrete for a
specific distance A2A3 (see Fig. 31(b)) of 80 mm. This distance is here
equal to 7 times the pulled steel bar diameter.

3.5.1. Material properties
Steel bars are supposed to have an elastic behavior with a Young’s

modulus of 200 GPa, which is compatible with the experimental ob-
servations since steel does not yield in the studied beam-end test. A
regularized Mazars’ law is used for concrete. Table C.1 summarizes the
concrete material parameters.
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Fig. 27. Damage patterns for a nonlinear interface model using the macro-element (a) and a perfect steel–concrete bond (b).
Fig. 28. Concrete strain calculation.

Fig. 29. Experimental and numerical steel stress–concrete strain curves.

Fig. 30. (a) Experimental cracks pattern, (b) damage field distribution for the
macro-element simulation, (c) and for the perfect bond simulation.

The bond law of [40] Appendix B is used. It is interesting here to
estimate the bond law parameters 𝜏1, 𝑔1, and 𝑔3 before comparing the
simulation results with the experimental ones. Different empirical ex-
pressions are recommended in the literature for these three parameters.
Table 5 presents different empirical expressions for the bond stress 𝜏1
which is the maximum bond stress of the initial global envelop curve
of the bond law.

One single expression is given in [49–51], while two distinct expres-
sions are given in [13] for pull-out and splitting failure types of the
15 
interface. In [52], several expressions are given as follows (Eq. (41)):
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𝑓𝑐 ∶ pull-out failure with a good bond condition
1.25

√

𝑓𝑐 ∶ pull-out failure with all other bond conditions
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𝑓𝑐
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)0.25
∶ splitting failure with a good bond condition

forunconfined concrete

8.0
(

𝑓𝑐
20

)0.25
∶ splitting failure with a good bond condition

forconcrete confinement due to stirrups

5.0
(

𝑓𝑐
20

)0.25
∶ splitting failure with all other bond conditions

forunconfined concrete

5.5
(

𝑓𝑐
20

)0.25
∶ splitting failure with all other bond conditions

forconcrete confinement due to stirrups

(41)

𝑓𝑐 and 𝑓 ′
𝑐 are respectively concrete cubic and cylindrical compressive

strength values. 𝑐 and 𝑑 subscripts in Table 5 refer respectively to the
concrete cover and the steel bar diameter.

Some proposals are given for the slip 𝑔1, which is the slip value
corresponding to the bond stress 𝜏1 (Table 6).

It is recommended to attribute the value of the clear spacing 𝑐𝑐𝑙𝑒𝑎𝑟
between the steel ribs to the bond law parameter 𝑔3 in [50,53]. [52]
recommends the same value for the pull-out failure, a value of 1.2𝑔1 for
a splitting failure under unconfined concrete conditions, and 0.5𝑐𝑐𝑙𝑒𝑎𝑟
for a splitting failure with a concrete confinement due to stirrups.

For the calculation of 𝜏1 and 𝑔1, the recommendations of [13] can be
a convenient choice since distinct values are given for the two failure
mechanisms, and yet these recommendations are simple compared to
the recommendations of [52]. In contrast, no indications are given
in [13] to create a dependence between the slip 𝑔3 and the failure
mechanism, which should be the case according to [54] (see Fig. 32).
Thus, the recommendations of [52] are adopted. These choices give an
identification methodology for the parameters of the used bond law,
which is simple yet dependant of the failure mechanism. Predicting the
mechanism that is more likely to occur can be done using the criterion
of [13] (Eq. (42)). For the studied beam-end test, a splitting failure is
expected. Table 7 sums up the bond law parameters.

⎧

⎪

⎨

⎪

⎩

𝑐
𝑑

< 0.39
𝑓𝑐
𝑓𝑡

− 0.24: splitting failure

𝑐
𝑑

≥ 0.39
𝑓𝑐
𝑓𝑡

− 0.24: pull-out failure
(42)

3.5.2. Finite elements mesh
Fig. 33(a) shows the concrete mesh. Fig. 33(b) details the con-

figuration of the steel bar elements and the macro-elements, where
macro-elements connect steel and concrete. No inner discretization is
done here for the macro-elements; each macro-element is composed
of one biphasic element. For the sake of simplicity, the part A3A4
of the pulled steel bar (see Fig. 31) is not explicitly modeled in the
numerical simulation. It is important to note here that the interface
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Fig. 31. Beam-end 3D specimen (a) and longitudinal section (b).
Table 5
Empirical expressions for 𝜏1.
𝜏1 (MPa) 𝑓𝑡(1.53

𝑐
𝑑
+ 0.36): splitting failure0.6𝑓 𝑐 : pull-out failure 2.305𝑓𝑐 0.555 1.163𝑓𝑐 0.75 2.57𝑓 ′

𝑐
0.5 Eq. (41)

Reference [13] [49] [50] [51] [52]
Table 6
Empirical expressions for 𝑔1.
𝑔1 (mm) 0.17 𝑐

𝑑
: splitting failure 1:

pull-out failure
0.07𝑑 1: pull-out failure with a good bond

condition 1.8: pull-out failure with other
bond conditions Value not specified for
splitting failure

Reference [13] [50] [52]
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Fig. 32. Bond law shape for different failure mechanisms.

able 7
ond law parameters for the beam-end model.
Parameter Description Value Unit

𝜏1 Input parameter of the bond law (Fig. B.1(a)) 10.7 MPa
𝑔1 Input parameter of the bond law (Fig. B.1(a)) 0.425 mm
𝑔3 Input parameter of the bond law (Fig. B.1(a)) 5 mm

and the steel nodes of the macro-elements have the same position at the
initial configuration even though distinct nodes positions are illustrated
in Fig. 33(b). A thickness of 8 mm is here associated to the interface
zone of the macro-elements.

Concrete and steel meshes are chosen to be coincident. The dis-
placements of the steel bars beside the pulled one are equal to the
displacements of the coincident concrete nodes.
 s

16 
The boundary conditions indicated in Fig. 31 are applied. One
steel bar element is used between the steel nodes A1 and A2. The
displacements of node A1 and the totality of the macro-elements nodes
are blocked in the normal directions 𝑦 and 𝑧. The longitudinal displace-
ments of the interface part of the macro-elements is imposed to be equal
to the displacements of concrete nodes, while the steel part is free to
slide with respect to the interface.

An additional boundary condition is imposed to the concrete node
P indicated in Fig. 33(a). The normal displacement of this node in the
𝑦 direction is blocked. This boundary condition is added to prevent the
displacement of the whole concrete specimen in the 𝑦 direction.

.5.3. Results
Fig. 34 shows the evolution of the bond stresses with respect to

he steel–concrete slip. This evolution is compared to the experimen-
al range. The slip between steel and concrete is calculated at the
ongitudinal position of the node A3.

The concrete damage field at the time step for which the slip value
s equal to 5 mm is shown in Fig. 35.

.5.4. Discussion
Fig. 34 shows that the adopted approach to identify the bond

aw parameters gives a satisfactory agreement with the experimental
esults. Since the damage reaches the concrete face (Fig. 35), the
amage field demonstrates that a splitting failure mode is numerically
ell reproduced. Fig. 36 compares the experimental crack pattern to

he numerical damage field distribution. It shows that the position of
oint A where surface cracks with different directions are initiated is
umerically well estimated. Experimental longitudinal and 45 degrees
nclined cracks are represented in the numerical damage field. How-
ver, the numerical damage distribution does not represent the totality
f the experimental cracks. This is due to the fact that in the numerical

imulation the nonlinearities of the beam-end test are carried out at the
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Fig. 33. Beam-end test concrete mesh (a) and steel bars configuration (b).
Fig. 34. Numerical and experimental curves for the bond stress values with respect to
the steel–concrete slip.

Fig. 35. Damage field in the concrete beam-end specimen.

level of the interface by the macro-elements and in concrete elements as
a damage field. In other terms, the concrete damage does not represent
the whole nonlinearities.

It is convenient to note here that a sensitivity study on the choice
of the nonlinear damage concrete model may be interesting to reduce
the disparity between the numerical and the experimental results. This
17 
Fig. 36. Damage field in the concrete beam-end specimen compared to the surface
experimental cracks pattern.

Table 8
Steel parameters: four-point flexural beam test.

Parameter Description Value Unit

𝐸𝑎 Young’s modulus 210 GPa
𝑓𝑦 Limit of elasticity 450 MPa
𝐸ℎ Hardening slope 2100 MPa

study focuses anyway on the choice of the bond law parameters, that
define its shape.

3.6. Four-point flexural beam test

The macro-element formulation is used to model a four-point rein-
forced concrete beam bending test carried out by [55]. The considered
test is described in Fig. 37.

3.6.1. Material properties
An elastic plastic behavior with a linear strain hardening is consid-

ered for the steel behavior, with the parameters of Table 8.
A revised Mazars’ law is considered for concrete [56], with the

parameters of Table 9. A Hillerborg regularization is applied to this
law [42].

The bond law of [40] (see Appendix B) is used. Similarly to the
numerical application of Section 3.5, the bond law parameters are
identified as follows:

• the prediction of the interface failure type is done using Eq. (42).
A splitting failure is predicted;

• 𝜏1 and 𝑔1 are estimated by following the recommendations of
[13];

• 𝑔3 is estimated by following the recommendations of [52];

Table 10 sums up the bond law parameters.
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Fig. 37. Configuration of the four-point beam test of [55].
Fig. 38. Mesh an boundary conditions of the four-point beam test.
Table 9
Concrete nonlinear parameters: four-point bending test.

Parameter Description Value Unit

𝑓𝑡 Tensile strength 2.6 MPa
𝑓𝑐 Compressive strength 56.9 MPa
𝜀t0 Revised Mazars’ model input 𝑓𝑡

𝐸𝑐
= 1.1429 × 10−4 –

𝜀c0 Revised Mazars’ model input 𝑓𝑐
𝐸𝑐

= 1.9 × 10−3 –
𝐴𝑡 Revised Mazars’ model input 0.99
𝐵𝑡 Revised Mazars’ model input 8000 –
𝐴𝑐 Revised Mazars’ model input 1.2 –
𝐵𝑐 Revised Mazars’ model input 400 –
𝛽 Revised Mazars’ model input 1.06 –

Table 10
Bond law parameters for the beam model.

Parameter Description Value Unit

𝜏1 Input parameter of the bond law (Fig. B.1(a)) 13.392 MPa
𝑔1 Input parameter of the bond law (Fig. B.1(a)) 0.425 mm
𝑔3 Input parameter of the bond law (Fig. B.1(a)) 0.51 mm

3.6.2. Finite elements mesh
A plane stress configuration is chosen for the beam test model. The

considered mesh and the boundary conditions are detailed in Fig. 38.
Each macro-element of Fig. 38 is composed of one biphasic element.
The steel part of the macro-elements has an equivalent section of the
two 16 mm steel bars of Fig. 37. A thickness of 1.6 mm is associated
to the interface part of the macro-elements. This thickness is equal to
0.1𝑑, where 𝑑 is the steel bars diameter of 16 mm.

3.6.3. Results
Fig. 39 presents the numerical reaction curves with a perfect bond

state and a nonlinear interface behavior, compared to the experimental
curve. It is shown in this figure that the consideration of the nonlinear
interface behavior does not provide a considerable difference of the
reaction curve of the four-point bending test. Nevertheless, taking into
account a nonlinear interface behavior in the numerical simulation
provides a better representation of the experimental cracking pattern,
as shown in Fig. 40, especially in the zoomed areas of this figure.
18 
Fig. 39. Reaction curves of the four-point beam test.

3.6.4. Discussion
The consideration of the interface behavior helps localizing the

damage around the steel reinforcement, and gives a better represen-
tation of the experimental cracking pattern.

The local description of the concrete cracking process is character-
ized by a steel stress localization and a discontinuity in the slip field,
as shown in Fig. 41 that presents the steel stress and the slip values for
the resolution time steps.

3.7. Three-point flexural beam test

In order to evaluate the performance of the macro-element model in
the context of a structural reinforced concrete element, the three-point
beam bending test of [1] is modeled.

The studied reinforced concrete beam has a total length of 1.5 m
and a span of 1.4 m. Its cross-section measures 0.15 m in width and
0.22 m in height. In the tension zone of the beam, two longitudinal steel



M. Trad et al. Structures 68 (2024) 107137 
Fig. 40. Damage distribution of the four-point beam test with perfect and imperfect bond behaviors compared to the experimental cracking pattern.
Fig. 41. Local cracking description of the four-point beam test.
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Table 11
Bond law parameters: three-point flexural beam test.
Parameter Value Unit

𝜏1 12.59 MPa
𝑔1 1 mm
𝑔3 8 mm

Table 12
Steel parameters: three-point flexural beam test.

Parameter Description Value Unit

𝐸𝑎 Young’s modulus 200 GPa
𝑓𝑦 Limit of elasticity 500 MPa
𝐸ℎ Hardening slope 4000 MPa

bars with a diameter of 14 mm each are used. These bars are anchored
to the concrete at both ends. Additionally, two longitudinal bars with
a diameter of 8 mm each are placed in the compressed zone of the
beam. Along beam length, stirrups with a diameter of 6 mm connect
the longitudinal bars. The geometric configuration of the beam test
conducted by [57] is illustrated in Fig. 42.

3.7.1. Material properties
The three-point bending test is here modeled by assigning nonlinear

behaviors to the steel, the interface, and the concrete.
A regularized Mazar’s nonlinear damage law [41,42] is considered

for concrete. Table C.1 sums up the adopted material properties for
concrete.

The bond law of [2] is used, with the values indicated in Table 11
of its defining parameters.

An elastic plastic behavior with a linear strain hardening is assigned
to the steel with the indicated parameters of Table 12.

3.7.2. Finite elements mesh
Because of the beam symmetry, a quarter of its geometry is mod-

eled. Three mesh sizes are tested, as shown in Fig. 43.
Macro-elements are used to represent the longitudinal bottom steel

with its interface behavior with respect to concrete. Macro-elements
and concrete meshes are coincident. The interface part of the macro-
elements has the same displacement as concrete in all directions. The
steel part has the same displacements as concrete in the normal direc-
tions (via kinematic relationships) but not in its longitudinal direction.
Along this longitudinal direction, the steel can slide relatively to the
interface, the interface being perfectly attached to the concrete. Each
macro-element is discretized into 10 biphasic elements. Fig. 44 shows
the configuration of the steel bars and the macro-elements.

Fig. 45(a) shows the boundary conditions applied to the concrete
volume. The conditions imposed on surfaces S1 and S2 of this figure
establish the double symmetry conditions of the beam. The boundary
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Fig. 42. Configuration of the three-point beam test of [1].
Fig. 43. Different mesh sizes tested: coarse mesh (a), intermediate mesh (b) and fine mesh (c).
Fig. 44. Configuration of the steel elements and the macro-elements of the three-point
beam bending model within the 3D concrete volume.

conditions applied to the steel elements and the macro-elements are
illustrated in Fig. 45(b).

Anchoring the bottom steel bar extremity to the concrete is achieved
through a kinematic relation that requires the external steel node to
exhibit the same displacement as the corresponding concrete node in
all directions (Fig. 45(b)). The steel and interface nodes belonging to
surfaces S1 and S2 of Fig. 45(a) have the same boundary conditions
applied to these surfaces.

It is important to highlight that the macro-elements represent the
bottom steel behavior with its interface with respect to concrete. The
top longitudinal steel and the stirrups are assumed to have a perfect
bond to concrete. This assumption is based on the fact that concrete
cracking is initiated in its tension zone around the bottom steel re-
inforcement. For this reason, macro-elements are used to model this
bottom steel and its interaction with concrete. A thickness of 0.08𝑑
is associated to the interface part of the macro-elements, 𝑑 being the
diameter of the bottom longitudinal reinforcement.

3.7.3. Results
Fig. 46 shows the numerical reaction curves, using the intermediate

mesh size, compared to the experimental reaction curve. Different val-
ues of the interface thickness for macro-elements are tested. This figure
20 
validates the macro-element model with respect to the experimental
behavior of the studied structure. In addition, a slight sensitivity is
observed with respect to the interface thickness parameter. Fig. 47
shows the reaction curves due to the different mesh sizes. The curves
associated the intermediate and fine mesh sizes are very close to each
other. The curve of the coarse mesh is slightly stiffer. This figure
demonstrates that, using the macro-element model,a representative
structural behavior can result from the numerical simulation without
the need to use a significantly refined mesh.

3.7.4. Discussion
The advantage of the nonlinear interface behavior modeling is that

it provides a detailed description of the local behavior at the interface
between steel and concrete. Indeed, it is possible to have an access to
the local values of slip and bond stresses. Damage occurs around the
beam mid-span, where the bending moment has its maximal value. The
damage is initiated in the tension zone and then propagates from the
lower to the upper fibers of the beam.

Figs. 48, 49, and 50 show that the cracks initiation in concrete
around the steel reinforcement is characterized by:

• a of steel stress concentration at the level of the cracked concrete
element;

• a discontinuity of the slip value that links the slips the ends of the
cracked element.

The same observations concerning the local characterization of the
concrete cracking are captured using the different mesh sizes.

4. Conclusive remarks and perspectives

The present paper proposes a multiscale steel–concrete bond model
within the context of the finite element method. The proposed model
consists in defining a macro-element formulation defined at two com-
plementary scales: a global scale and a local one. At the global scale
(the scale of the studied reinforced concrete structure), the macro-
element is a four-node finite element. At its local scale, the macro-
element is an assembly of a set of biphasic elements. Each biphasic

element has two parallel three-node bar elements: one bar element
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Fig. 45. Boundary conditions applied to concrete (a), steel elements and the macro-elements (b).
Fig. 46. Reaction curves with perfect and imperfect bond conditions compared with
the experimental curve.

Fig. 47. Reaction curves associated to different mesh sizes.

represents a concrete interface zone and the other one represents the
steel. Moreover, bond laws connect the nodes of the two bar elements.
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In addition to the global iterative resolution at the global scale of the
studied structure, an inner resolution is done at the level of each macro-
element. The internal degrees of freedom are condensed on the four
macro-element external nodes. It has been shown in this paper that the
implementation of this macro-element formulation has no impact on
the main architecture of a classical finite element code.

Numerical examples of 1D and 3D pull-out models are performed
using the macro-element formulation. These models validate the macro-
element formulation that is able to reproduce the interface behavior for
monotonic and cyclic load configurations.

In a second example, macro-elements are used to model a tie-rod
experiment. To demonstrate the numerical robustness of the macro-
element model, the number of iterations required for convergence is
compared to the number of iterations for the same simulation with
other interface models of the literature. It has been shown how well the
macro-element formulation is able to reduce the number of iterations at
the main Newton–Raphson algorithm. Taking into account the interface
behavior in the simulation leads to a better representation of the
experimental cracking pattern. By comparing the numerical and the
experimental curves of the steel stress with respect to concrete strain,
one can deduce that the macro-element can reproduce the tie-rod
experimental behavior.

The interface model is then used to reproduce the experimen-
tal behavior of a beam test. Indeed, beam tests represent a better
structural evaluation of the interface behavior with respect to clas-
sical pullout tests. The bond law parameters are identified based on
empirical expressions proposed in the literature. For this test, an ex-
perimental splitting failure mode of the interface is reproduced with
the macro-element model.

Some suggestions to upgrade the current version of the macro-
element formulation are the following:

• The consideration of normal stresses between the two zones is not
possible by using bar elements in the macro element. However, it
can be done by replacing the three-node bar elements with beam
elements.

• In the current work, a linear behavior is assigned to the interface
zone of the macro-element. However, non-linear behavior can
also be assigned to this zone which is interesting to investigate the
effect of this type of non-linearity on the macro-element behavior.

• In the current work, since the steel reinforcement is represented
by one-dimensional truss finite elements, bending and shear ef-
fects are not considered. Considering beam steel elements in
future works makes it possible to take into account these effects.
In addition, simple linear bar geometries are considered. Inspired
by the work of [58], the macro-element philosophy can be applied
in future works to model complex steel reinforcement shapes. In
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Fig. 48. Local observations of the slip distribution and the steel stress along the longitudinal position due to concrete damage: coarse mesh.
this case, two rod elements can be used to model steel and inter-
face zones with bond stresses in between, within the framework
of macro-elements.

Finally, additional numerical tests using the macro-element can be
interesting to perform. These applications can give a better under-
standing on the effect of the interface zone thickness on the structural
response of reinforced concrete elements. Applications for large-scaled
structures subjected to both static and dynamic loads will be addressed
in a future paper.
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Fig. 49. Local observations of the slip distribution and the steel stress along the longitudinal position due to concrete damage: intermediate mesh.
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Appendix A. Double Lagrange multipliers methodology

The double Lagrange multipliers methodology introduces two La-
grange multipliers for each Dirichlet condition, and Eqs. (11) and (13)
are combined as follows:

⎡

⎢

⎢

⎣

𝑭 𝒊𝒏𝒕(𝑼 ) +𝑳𝑇 𝝀𝟏 +𝑳𝑇 𝝀𝟐

𝑳𝑼 − 𝛼𝝀𝟏 + 𝛼𝝀𝟐

𝑳𝑼 + 𝛼𝝀𝟏 − 𝛼𝝀𝟐

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝑭 𝒆𝒙𝒕
𝑼𝒅
𝑼𝒅

⎤

⎥

⎥

⎦

(A.1)

Eq. (A.1) can be written in a more condensed form as:

𝑭 (𝑼 𝒕𝒐𝒕) = 𝑭 𝒕𝒐𝒕 (A.2)

Where:

𝑼 𝒕𝒐𝒕 =
[

𝑼 𝝀𝟏 𝝀𝟐
]𝑇 ,𝑭 𝒕𝒐𝒕 =

[

𝑭 𝑒𝑥𝑡 𝑼𝒅 𝑼𝒅
]𝑇 (A.3)

The linearization of the term 𝑭 (𝑼 𝒕𝒐𝒕) of Eq. (A.2) gives:

𝒅𝑭 (𝑼 ) = 𝒌 𝒅𝑼 (A.4)
𝒕𝒐𝒕 𝒕𝒐𝒕 𝒕𝒐𝒕
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Fig. 50. Local observations of the slip distribution and the steel stress along the longitudinal position due to concrete damage: fine mesh.
Where:

𝒌𝒕𝒐𝒕 =
⎡

⎢

⎢

⎣

𝒌 𝑳𝑇 𝑳𝑇

𝑳 −𝛼𝑰 𝛼𝑰
𝑳 𝛼𝑰 −𝛼𝑰

⎤

⎥

⎥

⎦

(A.5)

𝑰 is the identity matrix. The value of 𝛼 is chosen to ensure a good
conditioning of the matrix 𝒌𝒕𝒐𝒕.

Appendix B. Cyclic bond law

The bond law of [40] is here described. For the monotonic initial
envelope curve of the law, the bond stress is assumed to be the sum of
two types of stresses: the friction stress 𝜏𝑓 and the bearing stress 𝜏𝑏. The
maximum stress value 𝜏 is estimated by considering a contribution of
1
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25% of the friction stress and 75% of the bearing stress. This envelope
curve is reduced due to the unloading/reloading cycles (see Fig. B.1).

Eq. (B.1) details the constitutive equations of the initial monotonic
envelope curve.

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜏 = 4 𝜏1
𝑔1
𝑔 for 𝑔 ≤ 0.1𝑔1

𝜏 = 𝜏1

[

1 − 0.6
(

𝑔−𝑔1
0.9𝑔1

)4
]

for 0.1𝑔1 < 𝑔 ≤ 𝑔1

𝜏 = 𝜏1 for𝑔1 < 𝑔 ≤ 𝑔2
𝜏 = 𝜏1

[

1 − 0.75 𝑔−1.1𝑔1
𝑔3−𝑔1

]

for 𝑔2 < 𝑔 ≤ 𝑔3
𝜏 = 0.25𝜏1 for 𝑔3 < 𝑔

(B.1)

For cyclic loads, two damage variables are defined: 𝑑𝑏 and 𝑑𝑓 . The
two variables are respectively associated to the stresses 𝜏𝑏 and 𝜏𝑓 . Due
to the loading/unloading cycles, reduced curves 𝜏 and 𝜏 are defined
𝑏,𝑟 𝑓 ,𝑟
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Fig. B.1. Bond law proposed in [40]: monotonic envelope curve (a); cyclic response (b).
Table C.1
Concrete parameters for the beam-end model.
Parameter Description Section 3.2 Section 3.4 Section 3.5 Section 3.7 Units

𝐸𝑐 Young’s modulus 28 30.4 28 28 GPa
𝜈𝑐 Poisson’s ratio 0.22 0.22 0.2 0.22 –
𝑓𝑡 Tensile strength 3.12 2.6 2.565 2.7 MPa
𝜀𝑑0 Damage threshold 𝑓𝑡

𝐸𝑐
= 1.1143 × 10−4 𝑓𝑡

𝐸𝑐
= 8.5526 × 10−5 𝑓𝑡

𝐸𝑐
= 9.1607 × 10−5 𝑓𝑡

𝐸𝑐
= 9.6429 × 10−5 –

𝐴𝑡 Local Mazars’ model input – – – –
𝐵𝑡 Mazars’ model input Regularized Regularized Regularized –
𝐴𝑐 Mazars’ model input 1.1 1.2 1.3 1.2 –
𝐵𝑡 Mazars’ model input 700 700 650 700 –
𝛽 Mazars’ model input 1.06 1.06 1.06 1.06 –
𝐺𝑓 Fracture energy 150 150 150 150 N/m
as:
{

𝜏𝑏,𝑟 =
(

1 − 𝑑𝑏
)

𝜏𝑏
𝜏𝑓,𝑟 =

(

1 − 𝑑𝑓
)

𝜏𝑓
(B.2)

here:

𝑑𝑏 = 1 − 𝑒
2.5

(

𝑔max
𝑔3

)0.8

𝑑𝑓 = 𝑔+max+𝑔
−
max

𝑔3

(

1 − 𝑒
0.4

(

𝑔max
𝑔3

)0.75) (B.3)

The term 𝑔𝑚𝑎𝑥 is a combination of the maximum positive and negative
slips 𝑔+𝑚𝑎𝑥 and 𝑔−𝑚𝑎𝑥.

max = 0.75max
(

𝑔+max, 𝑔
−
max

)

+ 0.125
(

𝑔+max + 𝑔−max
)

(B.4)

he stress value 𝜏rev indicated in Fig. B.1 is calculated as follows:

rev =
max

(

𝑔+max, 𝑔
−
max

)

𝑔1
𝜏𝑓,𝑟 with

max
(

𝑔+max, 𝑔
−
max

)

𝑔1
≤ 1 (B.5)

Unloading and reloading stiffnesses are equal to the initial stiffness of
the law: 𝑘𝑖𝑛 = 4 𝜏1

𝑔1
.

Appendix C. Regularized Mazars’ constitutive law parameters

The local Mazars’ model input 𝐴𝑡 is not used since the law is
regularized.
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