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Abstract

This paper is concerned with the numerical solution of the unified first order hyperbolic formulation of continuum
mechanics proposed by Peshkov & Romenski [65], which is based on the theory of nonlinear hyperelasticity of
Godunov & Romenski [67, 48, 51], further denoted by GPR model. Notably, the governing PDE system is symmetric
hyperbolic and fully consistent with the first and the second principle of thermodynamics. The nonlinear system
of governing equations of the GPR model is overdetermined, large and includes stiff source terms as well as non-
conservative products. In this paper we solve this model for the first time on moving unstructured meshes in multiple
space dimensions by employing high order accurate one-step ADER-WENO finite volume schemes in the context of
cell-centered direct Arbitrary-Lagrangian-Eulerian (ALE) algorithms.

The numerical method is based on a WENO polynomial reconstruction operator on moving unstructured meshes,
a fully-discrete one-step ADER scheme that is able to deal with stiff sources [31], a nodal solver with relaxation to
determine the mesh motion, and a path-conservative technique of Castro & Parés for the treatment of non-conservative
products [63, 19]. We present numerical results obtained by solving the GPR model with ADER-WENO-ALE
schemes in the stiff relaxation limit, showing that fluids (Euler or Navier-Stokes limit), as well as purely elastic
or elasto-plastic solids can be simulated in the framework of nonlinear hyperelasticity with the same system of gov-
erning PDE. The obtained results are in good agreement when compared to exact or numerical reference solutions
available in the literature.

Keywords: high order direct Arbitrary-Lagrangian-Eulerian finite volume schemes, hyperbolic conservation laws
with stiff source terms and non-conservative products, high order ADER-WENO schemes on moving unstructured
meshes, unified first order hyperbolic formulation of continuum mechanics, symmetric-hyperbolic
Godunov-Peshkov-Romenski model (GPR model) of nonlinear hyperelasticity, viscous heat conducting fluids and
nonlinear elasto-plastic solids

1. Introduction

The aim of this paper is the numerical solution of the unified first order hyperbolic formulation of continuum
mechanics proposed by Peshkov & Romenski [65], which is based on the theory of nonlinear hyperelasticity of
Godunov and Romenski [48, 51], denoted as GPR model in the following, and which describes fluid mechanics and
solid mechanics at the same time in one single system of hyperbolic governing partial differential equations (PDE). In
the GPR model the viscous stresses are computed from the so-called distortion tensor A, which is one of the primary
state variables in this first order system. The appealing property of the GPR model is its ability to describe within
the same mathematical framework the behavior of inviscid and viscous compressible Newtonian and non-Newtonian
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fluids with heat conduction, and, at the same time, the behavior of elastic and elasto-plastic solids. In this model fluids
as well as solids are modeled via a stiff source term that accounts for strain relaxation in the evolution equations of
the distortion tensor. In addition, heat conduction is included using a first order hyperbolic evolution equation of the
thermal impulse which allows the heat flux to be retrieved. The governing system of PDEs is symmetric hyperbolic
and fully consistent with the first and the second principle of thermodynamics, as detailed in [65, 35]. However,
this system has a large number of equations, is nonlinear and it includes stiff source terms and also non-conservative
products.

Consequently, the numerical solution of such a large multi-dimensional system on moving meshes is a big chal-
lenge. For this purpose, in this work we propose to employ a high order accurate multi-dimensional ADER-WENO
finite volume scheme in the context of direct Arbitrary-Lagrangian-Eulerian (ALE) algorithms. This scheme is con-
structed with a high order WENO polynomial reconstruction operator on unstructured meshes [34, 33], a one-step
space-time ADER integration [74, 78, 76] that is suitably extended for dealing with stiff sources [31, 52], a nodal
solver with relaxation to determine the mesh motion [44, 11, 12, 14], and a path-conservative integration technique
for the treatment of non-conservative products, following the ideas of Castro & Parés [63, 19], which have been re-
cently extended to the moving-mesh framework in [29, 12, 15]. The proper treatment of boundary conditions is of
paramount importance for these simulations on moving meshes. We will pay special attention to them in this work.

In this paper we intend to show that, although the GPR model may seem to be more complex and difficult to
solve than other classical ones (Euler & Navier-Stokes equations, linear elasticity or nonlinear hypo-elasticity with
plastic strain), the high order ADER-WENO-ALE schemes which allow for a proper treatment of non-conservative
terms and stiff source terms [29, 12] are an appropriate candidate for this task. Therefore, we will present numerical
results obtained with ADER-WENO-ALE schemes for the GPR model in the stiff relaxation limits showing that
fluids (Euler or Navier-Stokes limits) as well as pure elastic and elasto-plastic solids can be simulated. In these
different situations — fluids, elastic and elasto-plastic solids — which usually require a different mathematical model
for each situation, we will numerically prove that the high order accurate ADER-WENO-ALE algorithm is able to
reproduce existing exact or numerical reference solutions even for very demanding test cases. These test problems
involve shocks (viscous or inviscid ones), contacts and rarefactions in fluids, along with reversible or irreversible
deformations in elasto-plastic solids.

The rest of this paper is organized as follows. Section 2 introduces the unified first order hyperbolic Godunov-
Peshkov-Romenski (GPR) model of continuum mechanics, which is numerically solved in this paper. Section 3
presents the high order accurate ADER-WENO-ALE schemes devoted to solve general hyperbolic systems of con-
servation laws with stiff source terms and non-conservative products. Boundary conditions are discussed in Section
4, while numerical experiments are carried out in Section 5, which also contains a detailed description of these test
cases, as well as the obtained numerical results with associated comments. Note that the numerical experiments are
designed so that the scheme solves two extreme limits of the GPR model, namely inviscid and viscous fluids (i.e.
the compressible Euler equations for gasdynamics and the compressible Navier-Stokes equations) as well as elastic /

elasto-plastic solids. Conclusions and perspectives are proposed in the last Section 6.

2. The GPR model: a unified first order hyperbolic approach to continuum mechanics

In this work we consider the first order hyperbolic Godunov-Peshkov-Romenski (GPR) model [48, 49, 51, 65, 35],
which is the first successful attempt to build a unified and thermodynamically compatible formulation of continuum
mechanics under a first order symmetric hyperbolic form that includes classical fluid mechanics and solid mechanics
just as two special limiting cases of the same formulation. We refer to the recent work of Dumbser et al. [35], where
a detailed introduction to this model is given and where the GPR model has been solved numerically for the first time
using high order accurate Eulerian ADER-WENO and ADER-DG schemes on fixed grids, and where many numerical
examples have been provided. The GPR model also includes a hyperbolic formulation of heat conduction and it can
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be written under the form given in [35] as follows:

∂ρ

∂t
+
∂ρvk

∂xk
= 0, (1a)

∂ρvi

∂t
+
∂ (ρvivk + pδik − σik)

∂xk
= 0, (1b)

∂Aik

∂t
+
∂Aimvm

∂xk
+ v j

(
∂Aik

∂x j
−
∂Ai j

∂xk

)
= −

ψik

θ1(τ1)
, (1c)

∂ρJi

∂t
+
∂ (ρJivk + Tδik)

∂xk
= −

ρHi

θ2(τ2)
, (1d)

∂ρs
∂t

+
∂ (ρsvk + Hk)

∂xk
=

ρ

θ1(τ1)T
ψikψik +

ρ

θ2(τ2)T
HiHi ≥ 0. (1e)

The solutions of the above PDE system fulfill also the additional conservation of total energy

∂ρE
∂t

+
∂ (vkρE + vi(pδik − σik) + qk)

∂xk
= 0. (2)

At this point we emphasize that the system above is an overdetermined system of PDE, hence in the numerical
solution of the above model we solve the total energy conservation equation (2) and not the entropy equation (1e).
Such a choice is mandatory for overdetermined systems. We use the following notation: ρ is the mass density,
[vi] = v = (u, v,w) is the velocity vector, [Aik] = A is the distortion tensor, [Ji] = J is the thermal impulse vector, s
is the entropy, p = ρ2Eρ is the pressure, E = E(ρ, s, v, A, J) is the total energy potential, δik is the Kronecker delta,
[σik] = σ = −[ρAmiEAmk ] is the symmetric shear stress tensor, T = Es is the temperature, [qk] = q = [EsEJk ] is
the heat flux vector and θ1 = θ1(τ1) > 0 and θ2 = θ2(τ2) > 0 are positive scalar functions depending on the strain
dissipation time τ1 > 0 and the thermal impulse relaxation time τ2 > 0, respectively. The dissipative terms ψik and Hi

on the right hand side of the evolution equations for A, J and s are defined as [ψik] = ψ = [EAik ] and [Hi] = H = [EJi ],
respectively. Accordingly, the viscous stress tensor and the heat flux vector are directly related to the dissipative terms
on the right hand side via σ = −ρATψ and q = T H. Note that Eρ, Es, EAik and EJi denote the partial derivatives
∂E/∂ρ, ∂E/∂s, ∂E/∂Aik and ∂E/∂Ji; they are the energy gradients in the state space or the thermodynamic forces.
The Einstein summation convention over repeated indices is implied throughout this paper.

These equations express the mass conservation (1a), the momentum conservation (1b), the time evolution for the
distortion tensor (1c), the time evolution for the thermal impulse (1d), the time evolution for the entropy (1e), and
the total energy conservation (2). The PDE governing the time evolution of the thermal impulse (1d) looks similar
to the momentum equation (1b), where the temperature T takes the role of the pressure p. Therefore we refer to this
equation as the thermal momentum equation.

To close the above system, the total energy potential E(ρ, s, v, A, J) must be specified. This potential definition
will then generate all constitutive fluxes (i.e. non advective fluxes) and source terms by means of its partial derivatives
with respect to the state variables. As a consequence the energy potential specification is fundamental for the model
formulation.

In order to specify E, following [65, 35] we note that there are three scales: the molecular scale, referred to as the
microscale; the scale of the material elements, called here mesoscale; and the main flow scale, that is the macroscale.
As a consequence it is assumed that the total energy E is decomposed into three terms, each of them representing the
energy distributed in its corresponding scale, that is:

E(ρ, s, v, A, J) = E1(ρ, s) + E2(A, J) + E3(v). (3)

The specific kinetic energy per unit mass E3(v) =
1
2

vivi refers to the macroscale part of the total energy. The internal
energy E1(ρ, s) is related to the kinetic energy of the molecular motion and it is sometimes referred to as the equilib-
rium energy because it is the only energy which does not disappear in the thermodynamic equilibrium when meso-
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and macro-scopic dynamics are absent, but only molecular dynamics remains. In this paper, for E1 we will use either
the ideal gas equation of state

E1(ρ, s) =
c2

0

γ(γ − 1)
, c2

0 = γργ−1es/cv , (4)

or the Mie-Grüneisen equation of state

E1(ρ, p) =
p − ρ0c2

0 f (ν)
ρ0Γ0

, f (ν) =
(ν − 1)(ν − 1

2 Γ0(ν − 1))
(ν − s(ν − 1))2 , ν =

ρ

ρ0
, (5)

where c0 has the meaning of the adiabatic sound speed, cv and cp are the specific heat capacities at constant volume
and at constant pressure, respectively, which are related by the ratio of specific heats γ = cp/cv. Moreover ρ0 is the
reference mass density and p0 is the reference (atmospheric) pressure. For the mesoscopic, or non-equilibrium, part
of the total energy we adopt a simple quadratic form

E2(A, J) =
c2

s

4
GTF

i j GTF
i j +

α2

2
JiJi, (6)

with
[GTF

i j ] = dev(G) = G −
1
3

tr(G)I, and G = AT A. (7)

Here, [GTF
i j ] = dev(G) is the deviator, or the trace-free part, of the tensor G = AT A and tr(G) = Gii is its trace, I is the

unit tensor and cs is the characteristic velocity of propagation of transverse perturbations. In the following we shall
refer to it as the shear sound velocity. The characteristic velocity of heat wave propagation ch is related to the variable
α.

The fundamental frame invariance principle implies that the total energy can only depend on vectors and tensors
by means of their invariants. Hence,

GTF
i j GTF

i j ≡ I2 − I2
1/3,

where I1 = tr(G) and I2 = tr(G2), and therefore E2, as well as the total energy E, are only a function of invariants of
A and J.

The algebraic source term on the right-hand side of equation (1c) describes the shear strain dissipation due to
material element rearrangements, and the source term on the right-hand side of (1d) describes the relaxation of the
thermal impulse due to heat exchange between material elements. Once the total energy potential is specified, all fluxes
and source terms have an explicit form. Thus, for the energy E2(A, J) given by (6), we have ψ = EA = c2

s Adev(G),
hence the shear stresses are explicitly given by

σ = −ρATψ = −ρATEA = −ρc2
sGdev(G), tr(σ) = 0, (8)

and the strain dissipation source term becomes

−
ψ

θ1(τ1)
= −

EA

θ1(τ1)
= −

3
τ1
|A|

5
3 Adev(G), (9)

where we have chosen θ1(τ1) = τ1c2
s/3 |A|−

5
3 , with |A| = det(A) > 0 the determinant of A and τ1 being the strain

relaxation time, also called the particle-settled-life (PSL) time in [42, 65]. In other words, this time scale characterizes
how long a material element is connected with its neighbor elements before rearrangement occurs. The determinant
of A must satisfy the constraint

|A| =
ρ

ρ0
, (10)

where ρ0 is the density at the reference configuration, see [65]. Furthermore, from the energy potential E2(A, J) the
heat flux vector follows from EJ = α2J as

q = T H = EsEJ = α2TJ. (11)
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For the thermal impulse relaxation source term, we postulate that θ2 = τ2α
2 ρ
ρ0

T0
T yielding

−
ρH
θ2(τ2)

= −
ρEJ

θ2(τ2)
= −

T
T0

ρ0

ρ

ρJ
τ2
. (12)

The previous formula contains another characteristic relaxation time τ2 which is associated to heat conduction. The
motivation for this particular choice of θ1 and θ2 is the connection with classical Navier-Stokes-Fourier theory in the
stiff limit τ1 → 0 and τ2 → 0, see [35] for details.

As shown in [65, 35], the GPR model is compatible with the first and second law of thermodynamics and it
constitutes a hyperbolic system of PDEs. For a detailed discussion of the hyperbolicity of nonlinear hyperelasticity,
see [61]. For a discussion on the symmetric hyperbolic structure, see [35] and references therein. In other words the
Cauchy problem for the system (1) is well-posed. A detailed discussion of the intrinsic nature of this model can be
found in [65, 35] and we refer the interested reader to these references. Further work on nonlinear hyperelasticity
can be found e.g. in [48, 50, 51, 56, 47, 64, 7, 5, 4]. In this paper we assume the model as given and our goal is to
solve it numerically in an accurate, robust and efficient way on moving unstructured meshes using one of the most
advanced high order accurate ADER-WENO direct Arbitrary-Lagrangian-Eulerian schemes that it currently available
[37, 11, 29, 12].

3. High order accurate direct ADER-WENO-ALE schemes for hyperbolic PDE

As already mentioned, the GPR model is a large nonlinear system of hyperbolic balance laws which contains
non-conservative products and stiff source terms. To solve this system we consider the arbitrary high order accurate
ADER-WENO direct Arbitrary-Lagrangian-Eulerian (ALE) finite volume schemes derived in [11, 29, 12] that we
refer to as ADER-WENO-ALE in the rest of the paper. The GPR model (1) can be cast into the following general
formulation which holds in multiple space dimensions d ∈ [2, 3]:

∂Q
∂t

+ ∇ · F(Q) + B(Q) · ∇Q = S(Q), x ∈ Ω ⊂ Rd, t ∈ R+
0 , (13)

where Q = (q1, q2, · · · , qv) is the vector of conserved variables, F = (f, g,h) is the conservative nonlinear flux tensor,
B = (B1,B2,B3) is the purely non-conservative part of the system written in block-matrix notation and S(Q) is the
vector of algebraic source terms. We furthermore introduce the abbreviation P = P(Q,∇Q) = B(Q) · ∇Q to simplify
the notation in some parts of the manuscript.

In our moving-mesh framework the computational domain Ω(t) ⊂ Rd is discretized at any time level tn by a set of
moving and deforming simplexes T n

i . NE denotes the total number of elements and the union of all elements is referred

to as the mesh configuration T n
Ω

of the domain: T n
Ω

=
NE⋃
i=1

T n
i . We assume that the computational domain continuously

changes in time. Because of this fundamental assumption we adopt the mapping between the physical element T n
i to

the reference element Te defined in the reference coordinate system ξ = (ξ, η, ζ). As usual, the reference element Te

is taken to be the unit triangle in 2D or the unit tetrahedron in 3D, see [11, 12].
For any finite volume scheme, data are represented by piecewise constant cell averages both in space and time. As

a consequence we define at each time level tn within the control volume T n
i the mean value of the state vector Qn

i as

Qn
i =

1
|T n

i |

∫
T n

i

Q(x, tn) dx, (14)

where |T n
i | is the volume of element T n

i . High order of accuracy in space is obtained by means of a polynomial recon-
struction technique that provides piecewise high order WENO polynomials wh(x, tn) from the known cell averages Qn

i
(see next Section 3.1). High order of accuracy in time is further achieved by applying a local space-time discontinuous
Galerkin predictor method starting from the high accurate WENO reconstruction polynomials wh(x, tn) (see Section
3.2). Both techniques are now introduced.

5



3.1. Polynomial reconstruction

3.1.1. Single stencil reconstruction.
The reconstruction operator generates piecewise polynomials wh(x, tn) of degree M which are computed for each

element T n
i considering the so-called reconstruction stencil Si and its associated known cell averages. The reconstruc-

tion stencil Si is composed of a number ne of neighbor elements of T n
i , which is bigger than the smallest number

M =M(M, d) =

d∏
k=1

(M + k)
d!

, (15)

needed to reach the nominal order of accuracy M + 1 in d space dimensions, according to [3, 62, 43, 55, 34]. As
suggested in [34, 33], for an unstructured mesh we usually take ne = d · M, with d ∈ [2, 3] representing the number

of space dimensions. The stencil called Si is defined as Si =
ne⋃
j=1

T n
m( j), where 1 ≤ j ≤ ne is a local index counting

the elements in the stencil and m( j) is a mapping from the local index j to the global index of the element in T n
Ω

. We
rely on the orthogonal Dubiner-type basis functions ψl(ξ, η, ζ) [27, 54, 22], defined on the reference element Te, to
explicitly write the high order accurate reconstructed polynomial as

wh(x, tn) =

M∑
l=1

ψl(ξ)ŵn
l,i := ψl(ξ)ŵn

l,i, (16)

where the mapping from x to the reference coordinate system ξ is considered and the ŵn
l,i denote the unknown degrees

of freedom, also called expansion coefficients. The procedure to determine the degrees of freedom demands the
integral conservation for the reconstruction on each element T n

j belonging to stencil Si, that is

1
|T n

j |

∫
T n

j

ψl(ξ)ŵn
l,idx = Qn

j , ∀T n
j ∈ Si. (17)

The above relations (17) yield an overdetermined linear system of equations for the unknowns ŵn
l,i that can be solved

using either a constrained least squares technique (LSQ), see [34], or a more sophisticated singular value decomposi-
tion (SVD) algorithm [34, 58].

3.1.2. WENO procedure.
As stated by the Godunov theorem [46], linear monotone schemes are at most of order one and if the scheme is

required to be high order accurate and non-oscillatory, it must be nonlinear. In this work we consider the pragmatic
polynomial WENO approach that has also been adopted in [43, 55, 34, 33, 1, 75, 80, 29, 11, 12, 29, 13, 14, 10]
to supplement the linear polynomial reconstruction procedure previously described with a nonlinearity. For optimal
WENO schemes, see [2, 53, 69, 85, 21, 68, 23]. Seven or nine reconstruction stencils are first determined for d = 2
and d = 3, respectively, and they are further used to compute the associated different polynomials for each cell of
the computational domain. These stencils are supposed to cover sufficiently enough “directions” in order to “catch”
local oscillatory phenomena. Next, these seven or nine polynomials are blended together using nonlinear weights to
obtain the actual high order WENO polynomials wh(x, tn). This rather classical procedure has already been described
in [34, 33, 11, 12] and in all the aforementioned references, consequently we omit the details in this paper. However
we highly recommend the interested readers to consult these references.

3.2. Local space-time Discontinuous Galerkin predictor on moving curved meshes

The reconstructed polynomials wh(x, tn) computed at time tn are then evolved during one time step locally within
each element Ti(t), without needing any neighbor information, but still solving the original PDEs (13). As a result
one obtains piecewise space-time polynomials of degree M, denoted by qh(x, t), that allow the scheme to achieve
high order of accuracy even in time. An element-local weak space-time formulation of the governing equations
(13) is employed, following the approach developed in the Eulerian framework on fixed grids by Dumbser et al. in
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[31, 32, 52]. According to [31, 52, 38, 12] we adopt the local space-time Discontinuous Galerkin predictor method
due to the presence of stiff source terms in the governing equations (1). Let x = (x, y, z) and ξ = (ξ, η, ζ) be the
spatial coordinate vectors defined in the physical and in the reference system, respectively, and let x̃ = (x, y, z, t) and
ξ̃ = (ξ, η, ζ, τ) be the corresponding space-time coordinate vectors. Let furthermore θl = θl(ξ̃) = θl(ξ, η, ζ, τ) be a
space-time basis function defined by the Lagrange interpolation polynomials passing through the space-time nodes
ξ̃m = (ξm, ηm, ζm, τm), which are defined by the tensor product of the spatial nodes of classical conforming high order
finite elements in space and the Gauss-Legendre quadrature points in time. Following [28], the local solution qh, the
fluxes Fh = (fh, gh,hh), the source term Sh and the non-conservative products Ph = B(qh) · ∇qh, are approximated
within the space-time element Ti(t) × [tn; tn+1] with

qh = qh(ξ̃) = θl(ξ̃) q̂l,i, Fh = Fh(ξ̃) = θl(ξ̃) F̂l,i,

Sh = Sh(ξ̃) = θl(ξ̃) Ŝl,i, Ph = Ph(ξ̃) = θl(ξ̃) P̂l,i. (18)

Since the Lagrange interpolation polynomials lead to a nodal basis, we evaluate the degrees of freedom of Fh, Sh and
Ph from qh in a pointwise manner as

F̂l,i = F(̂ql,i), Ŝl,i = S(̂ql,i), P̂l,i = P(̂ql,i,∇q̂l,i), ∇q̂l,i = ∇θm(ξ̃l )̂qm,i, (19)

with ∇q̂l,i representing the gradient of qh at node ξ̃l. An isoparametric approach is adopted, where the mapping
between the physical space-time coordinate vector x̃ and the reference space-time coordinate vector ξ̃ is represented by
the same basis functions θl used for the discrete solution qh. Consequently we have x(ξ̃) = θl(ξ̃) x̂l,i, and t(ξ̃) = θl(ξ̃) t̂l,
where x̂l,i = (x̂l,i, ŷl,i, ẑl,i) are the degrees of freedom of the spatial physical coordinates of the moving space-time
control volume, which are unknown, while t̂l denote the known degrees of freedom of the physical time at each space-
time node x̃l,i = (x̂l,i, ŷl,i, ẑl,i, t̂l). The mapping in time is simply linear: t = tn + τ∆t, then t̂l = tn + τl ∆t, with tn

denoting the current time. ∆t is the time step and it is computed under a classical Courant-Friedrichs-Levy number
(CFL) stability condition of the form

∆t = CFL min
T n

i

di

|λmax,i|
, ∀T n

i ∈ Ωn, (20)

where di is the insphere diameter of element T n
i and |λmax,i| corresponds to the maximum absolute value of the eigen-

values computed from the solution Qn
i in T n

i . For the GPR model (1) the sound speed c is computed according to [65]
as

c =

√
γp
ρ

+
4
3

c2
s . (21)

On unstructured meshes the CFL stability condition for explicit upwind schemes must satisfy the inequality CFL ≤ 1
d .

We want the governing PDE formulation (13) to be written in the space-time reference system x̃, hence we first
define the Jacobian of the space-time transformation from the physical to the reference element and its inverse:

Jst =
∂̃x
∂ξ̃

=


xξ xη xζ xτ
yξ yη yζ yτ
zξ zη zζ zτ
0 0 0 ∆t

 , J−1
st =

∂ξ̃

∂̃x
=


ξx ξy ξz ξt

ηx ηy ηz ηt

ζx ζy ζz ζt

0 0 0 1
∆t

 . (22)

Furthermore let us introduce the nabla operator ∇ in the reference space ξ = (ξ, η, ζ) and in the physical space
x = (x, y, z) as:

∇ξ =


∂
∂ξ
∂
∂η
∂
∂ζ

 , ∇ =


∂
∂x
∂
∂y
∂
∂z

 =

 ξx ηx ζx

ξy ηy ζy

ξz ηz ζz




∂
∂ξ
∂
∂η
∂
∂ζ

 =

(
∂ξ

∂x

)T

∇ξ, (23)
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and two integral operators

[
f , g

]τ
=

∫
Te

f (ξ, η, ζ, τ)g(ξ, η, ζ, τ) dξ, 〈 f , g〉 =

1∫
0

∫
Te

f (ξ, η, ζ, τ)g(ξ, η, ζ, τ) dξ dτ,

that denote the scalar products of two functions f and g over the spatial reference element Te at time τ and over the
space-time reference element Te × [0, 1], respectively.

The system of balance laws (13) is then reformulated in the reference coordinate system x̃ with the following
compact notation

∂Q
∂τ

+ ∆t H = ∆t S(Q), (24)

where we have introduced the unified term H =
∂Q
∂ξ ·

∂ξ
∂t +

(
∂ξ
∂x

)T
∇ξ · F + B(Q) ·

(
∂ξ
∂x

)T
∇ξQ by using the inverse of

the associated Jacobian matrix (22) and the gradient notation (23). The numerical approximation of H is computed
by the same isoparametric approach (18), i.e. Hh = θl(ξ̃) Ĥl,i. Inserting this approximation and (18) into (24), then
multiplying (24) with a space-time test function θk(ξ) and further integrating the resulting equation over the space-time
reference element Te × [0, 1], one obtains a weak formulation of the original governing system (13):〈

θk,
∂θl

∂τ

〉
q̂l,i = 〈θk, θl〉∆t

(̂
Sl,i − Ĥl,i

)
.

The term on the left hand side can be integrated by parts in time considering the initial condition of the local Cauchy
problem wn

h, yielding

[
θk(ξ, 1), θl(ξ, 1)

]1 q̂l,i −

〈
∂θk

∂τ
, θl

〉
q̂l,i =

[
θk(ξ, 0), ψl(ξ)

]0 ŵn
l,i + 〈θk, θl〉∆t

(̂
Sl,i − Ĥl,i

)
, (25)

that simplifies to
K1q̂l,i = F0ŵn

l,i + ∆t M
(̂
Sl,i − Ĥl,i

)
, (26)

with the following more compact matrix-vector notation:

K1 =
[
θk(ξ, 1), θl(ξ, 1)

]1
−

〈
∂θk

∂τ
, θl

〉
, F0 =

[
θk(ξ, 0), ψl(ξ)

]
, M = 〈θk, θl〉 . (27)

De facto equation (26) constitutes an element-local nonlinear system of algebraic equations for the unknown space-
time expansion coefficients q̂l,i

1 .
Together with the solution, we have to evolve the geometry of the space-time control volume which moves in time.

The motion of the nodes of element T n
i is described by the ODE system

dx
dt

= V(Q, x, t), (28)

with V = V(Q, x, t) denoting the local mesh velocity. Our direct Arbitrary-Lagrangian-Eulerian (ALE) method allows
the mesh velocity to be chosen independently from the fluid velocity. Following the same philosophy as for the
solution, the velocity inside element Ti(t) is also expressed in terms of the space-time basis functions θl as Vh =

θl(ξ, τ)V̂l,i , with the notation V̂l,i = V(q̂l,i, x̂l,i, t̂l). The local space-time DG method is used again to solve (28) for the
unknown coordinate vector x̂l = (xl, yl, zl), according to [11, 29], hence

K1x̂l,i =
[
θk(ξ, 0), x(ξ, tn)

]0
+ ∆t M V̂l,i, (29)

1This system is solved using the following iterative scheme
q̂r+1

l,i − ∆t K−1
1 M Ŝr+1

l,i = K−1
1

(
F0ŵn

l,i − ∆t MĤr
l,i

)
,

where r denotes the iteration number. Stiff algebraic source terms S are implicitly discretized, see [31, 38, 52].
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where x(ξ, tn) is given by the mapping based on the known vertex coordinates of simplex T n
i at time tn. The above

system is iteratively solved together with (26).
Once the above procedure is performed for all cells, an element-local predictor for the numerical solution qh, for

the fluxes Fh = (fh, gh,hh), for the non-conservative products Ph, for the source term Sh and also for the mesh velocity
Vh is available. This procedure is carried out locally for each cell, consequently it remains to update the mesh motion
globally, by assigning a unique velocity vector to each node. To address this issue, in the next section a local nodal
solver algorithm for the velocity together with an embedded rezoning technique are presented.

3.3. Mesh motion

The aim of any ALE scheme is to follow as closely as possible the material motion. This motion can generate
highly deformed cells specifically when fluids or gases are considered. That may drastically reduce the admissible
timestep, or, worse, may lead to tangled elements. In order to guarantee good resolution properties for contact waves
and material interfaces together with a good geometrical mesh quality, the mesh velocity must be chosen carefully.
When natural evidences emanate from the motion of the material boundary conditions, such a mesh velocity can be
inferred. However in the general case, specifically for fluids and gases, we adopt a suitable Lagrangian nodal solver
technique [24, 59, 20, 57] to assign a unique velocity vector to each node accurately representing the “true” material
velocity. Notice that since we are dealing with a direct ALE formulation the mesh velocity is a degree of freedom.
As a consequence we could run our ALE code in a pure Eulerian regime by setting the mesh velocity to zero, or in an
almost Lagrangian regime by setting the velocity to an local average of the computed Lagrangian velocities. We could
also force any sort of intermediate or artificial mesh motion leading de facto to a so-called ALE motion. In this work
the simple nodal solver of Cheng and Shu is used [20, 57] and the rezoning strategy exposed in [44, 12] is employed
to locally improve the mesh quality. The final mesh configuration, i.e. the vertex coordinates at the new time level
tn+1 are then computed relying on the relaxation algorithm presented in [44].

3.4. Finite volume scheme

The same approach already developed in two and three space dimensions discussed in [11, 29, 12] is briefly sum-
marized here. To begin with, the governing PDE (13) is more compactly reformulated using a space-time divergence
operator ∇̃:

∇̃ · F̃ + B̃(Q) · ∇̃Q = S(Q), ∇̃ =

(
∂

∂x
,
∂

∂y
,
∂

∂z
,
∂

∂t

)T

, (30)

where the space-time flux tensor F̃ and the system matrix B̃ are given by F̃ = (f, g, h, Q) and B̃ = (B1,B2,B3, 0).
For the computation of the state vector at the new time level Qn+1, the balance law (30) is integrated over a four-
dimensional space-time control volume Cn

i = Ti(t) ×
[
tn; tn+1

]
, which after the application of the theorem of Gauss

yields ∫
∂Cn

i

F̃ · ñ dS +

∫
Cn

i

B̃(Q) · ∇̃Q dx dt =

∫
Cn

i

S(Q) dxdt. (31)

The non-conservative products are treated with the path-conservative approach of Castro and Parés, see [79, 63,
19, 18, 66, 30, 32, 36, 29], for a non-exhaustive overview, hence leading to∫

∂Cn
i

(
F̃ + D̃

)
· ñ dS +

∫
Cn

i \∂C
n
i

B̃(Q) · ∇̃Q dx dt =

∫
Cn

i

S(Q) dxdt, (32)

where a new term D̃ has been introduced in order to take into account the jumps of the solution Q on the space-time
element boundaries ∂Cn

i . This term is computed by the path integral

D̃ · ñ =
1
2

1∫
0

B̃
(
Ψ(Q−,Q+, s)

)
· ñ

∂Ψ

∂s
ds =

1
2


1∫

0

B̃
(
Ψ(Q−,Q+, s)

)
· ñ ds

 (Q+ −Q−
)
, (33)
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where the integration path Ψ in (33) is chosen according to [63, 19, 32, 36] to be a simple straight-line segment, i.e.
Ψ(Q−,Q+, s) = Q− + s(Q+ −Q−), and (Q−,Q+) are the conserved variables in element T n

i and its direct neighbor T n
j ,

respectively. Moreover ñ = (̃nx, ñy, ñz, ñt) denotes the outward pointing space-time unit normal vector on the varying
space-time volume ∂Cn

i .
Let Ni denote the Neumann neighborhood of simplex Ti(t), which is the set of directly adjacent neighbors T j(t)

that share a common face ∂Ti j(t) with Ti(t). The space-time volume ∂Cn
i is composed of d +1 space-time sub-volumes

∂Cn
i j, each of them defined for each face of Ti(t), and two more space-time sub-volumes, T n

i and T n+1
i , that represent

the simplex configuration at times tn and tn+1, respectively (see [12] for details). Therefore the space-time volume
∂Cn

i involves overall a total number of 2 + d + 1 space-time sub-volumes, i.e.

∂Cn
i =

 ⋃
T j(t)∈Ni

∂Cn
i j

 ∪ T n
i ∪ T n+1

i . (34)

Each of the space-time sub-volumes is mapped to a reference element in order to simplify the integral computation.
For the configurations at the current and at the new time level, T n

i and T n+1
i , we use the mapping from the physical to

the reference element. The space-time unit normal vectors simply read ñ = (0, 0, 0,−1) for T n
i and ñ = (0, 0, 0, 1) for

T n+1
i , since these volumes are orthogonal to the time coordinate. For the lateral sub-volumes ∂Cn

i j we adopt a linear
parametrization to map the physical volume to a d + 1-dimensional space-time reference prism [12].

Starting from the old vertex coordinates Xn
ik and the new ones Xn+1

ik , that are known from the mesh motion algorithm
described in Section 3.3, the lateral sub-volumes are parametrized using a set of linear basis functions βk(χ1, χ2, τ)
that are defined on a local reference system χ = (χ1, χ2, τ) which is oriented orthogonally w.r.t. the face ∂Ti j(t) of T n

i ,
e.g. the reference time coordinate τ is orthogonal to the reference space coordinates (χ1, χ2) that lie on ∂Ti j(t). The
temporal mapping is simply given by t = tn +τ∆t, hence tχ1 = tχ2 = 0 and tτ = ∆t. The lateral space-time volume ∂Cn

i j

is defined by six vertices of physical coordinates X̃n
i j,k. The first three vectors (Xn

i j,1,X
n
i j,2,X

n
i j,3) are the nodes defining

the common face ∂Ti j(tn) at time tn, while the same procedure applies at the new time level tn+1. Therefore the six
vectors X̃n

i j,k are given by

X̃n
i j,k =

(
Xn

i j,k, t
n
)
, and X̃n

i j,k+3 =
(
Xn+1

i j,k , t
n+1

)
, k = 1, 2, 3. (35)

The parametrization for ∂Cn
i j reads

∂Cn
i j = x̃ (χ1, χ2, τ) =

6∑
k=1

βk(χ1, χ2, τ) X̃n
i j,k, (36)

with 0 ≤ χ1 ≤ 1, 0 ≤ χ2 ≤ 1 − χ1 and 0 ≤ τ ≤ 1 and the linear basis functions βk(χ1, χ2, τ) given by

β1(χ1, χ2, τ) = (1 − χ1 − χ2)(1 − τ), β4(χ1, χ2, τ) = (1 − χ1 − χ2)(τ)
β2(χ1, χ2, τ) = χ1(1 − τ), β5(χ1, χ2, τ) = χ1τ,

β3(χ1, χ2, τ) = χ2(1 − τ), β6(χ1, χ2, τ) = χ2τ. (37)

The coordinate transformation is associated with a matrix T that reads

T =

(
ê,
∂̃x
∂χ1

,
∂̃x
∂χ2

,
∂̃x
∂τ

)T

, (38)

with ê = (ê1, ê2, ê3, ê4). Let êp represent the unit vector aligned with the p-th axis of the physical coordinate system
(x, y, z, t) and let x̃q denote the q-th component of vector x̃. The determinant of T produces at the same time the
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quantity |∂Cn
i j| of the space-time sub-volume ∂Cn

i j and the space-time normal vector ñi j, as

ñi j =

(
εpqrs êp

∂x̃q

∂χ1

∂x̃r

∂χ2

∂x̃s

∂τ

)
/|∂Cn

i j|, (39)

where the Levi-Civita symbol has been used according to the usual definition

εpqrs =


+1, if (p, q, r, s) is an even permutation of (1, 2, 3, 4),
−1, if (p, q, r, s) is an odd permutation of (1, 2, 3, 4),
0, otherwise,

(40)

and with

|∂Cn
i j| =

∥∥∥∥∥∥εpqrs êp
∂x̃q

∂χ1

∂x̃r

∂χ2

∂x̃s

∂τ

∥∥∥∥∥∥ .
The final one-step direct ALE ADER-WENO finite volume scheme takes the following form:

|T n+1
i |Qn+1

i = |T n
i |Q

n
i −

∑
T j∈Ni

1∫
0

1∫
0

1−χ1∫
0

|∂Cn
i j|G̃i j · ñi j dχ2 dχ1 dτ +

∫
Cn

i \∂C
n
i

(Sh − Ph) dx dt, (41)

where in the term G̃i j · ñi j the Arbitrary-Lagrangian-Eulerian numerical flux function is embedded, as well as the
path-conservative jump term, which allows the discontinuity of the predictor solution qh that occurs at the space-time
boundary ∂Cn

i j to be properly resolved also in the presence of non-conservative products. The volume integrals in (41)
are approximated using multidimensional Gaussian quadrature rules [72] of suitable order of accuracy and the term
G̃i j is evaluated relying on a simple ALE Rusanov-type scheme [37, 11, 12] as

G̃i j =
1
2

(
F̃(q+

h ) + F̃(q−h )
)
· ñi j +

1
2


1∫

0

B̃(Ψ) · ñ ds − |λmax|I

 (q+
h − q−h

)
, (42)

where q−h and q+
h are the local space-time predictor solution inside element Ti(t) and the neighbor T j(t), respectively,

and |λmax| denotes the maximum absolute value of the eigenvalues of the matrix Ã · ñ in space-time normal direction.
Using the normal mesh velocity V · n, matrix Ã reads

Ã · ñ =

(√
ñ2

x + ñ2
y + ñ2

z

) [(
∂F
∂Q

+ B
)
· n − (V · n) I

]
, (43)

with I denoting the ν × ν identity matrix, A = ∂F/∂Q + B representing the classical Eulerian system matrix and n
being the spatial unit normal vector given by n =

(̃nx ,̃ny ,̃nz)T
√

ñ2
x+ñ2

y+ñ2
z
.

Finally we remark that the integration over a closed space-time control volume, as done in this scheme, automat-
ically respects the geometric conservation law (GCL), since application of Gauss’ theorem yields

∫
∂Cn

i
ñ dS = 0. As

already pointed out in [12, 15] the numerical method allows a mass flux even for “Lagrangian” motion. Consequently
there is no associated pure Lagrangian scheme in sensu stricto to this numerical method. Nonetheless, very accurate
results can still be achieved with this high order accurate ALE scheme , see [11, 29, 14, 13, 12].

3.5. Timestep constraint
The timestep ∆t, which is needed for the discretization of the governing equations (41), is computed taking into

account two different criteria, namely a classical CFL stability condition and a user-defined geometrical limitation.
The Courant-Friedrichs-Levy (CFL) stability condition is given by (20), while the second criterion is based on the lim-
itation of the rate of change of the element volume within one timestep, i.e. the volume of each cell T n

i is not allowed
either to increase more than a certain threshold which is provided by the user at the beginning of the computation, see
[29, 12, 15] for details.
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4. Boundary conditions

In this section we design appropriate boundary conditions for the GPR model and the ALE ADER-WENO finite
volume schemes employed in this work. From the practical viewpoint of implementation, the boundary conditions
setting assigns a suitable boundary state Qg for the ghost neighbor Tg of element Ti, which lies on boundary of the
domain given its state Qi. The set of boundary conditions needed to run the test cases reported in Section 5 are the
following ones:

• Transmissive boundary conditions are adopted to let the fluid flow across the domain boundary. The flow is
governed by the internal state, hence yielding the simple setting Qg = Qi;

• Wall (or reflective) boundary conditions are used for the treatment of wall boundaries. In this case the normal
flux across the domain boundary is zero, therefore we first set Qg = Qi and then the velocity vector vg = (ug, vg)
for the boundary state is computed as

vg = vi − 2 (vi · n) n, (44)

where n denotes as usual the outward pointing unit normal vector on the boundary edge of element Ti and
vi represents the velocity vector of the internal state Qi. This treatment is also called no-slip wall boundary
condition and, for inviscid flows, the fluid is still allowed to flow along the boundary, i.e. tangential to the
boundary edge;

• Free traction boundary conditions are normally employed in the context of solid mechanics, where the viscous
stress tensor components are set to zero in order to discard the stresses at boundaries. In the GPR model (1) we
only have a control on the distortion tensor A and it is not possible to derive an analytical function of the type
A = f (σ). Therefore the following simple strategy has been designed: we compute the value of the distortion
tensor at the boundary A∗ via a stiff relaxation to the stress-free boundary state, using the same source terms as
in the original governing PDE system, but with a different relaxation time τ′1 → 0. Hence, for the free traction
boundaries we solve the ODE

d A
dt

= −
ψ(A)
θ1(τ′1)

, (45)

with a simple implicit backward Euler scheme, which yields the following nonlinear algebraic equation for the
unknown tensor A∗

A∗ +
∆t

θ1(τ′1)
ψ(A∗) = Ai, (46)

that can be easily solved with a standard Newton method. Here, Ai is the known distortion tensor of the
boundary element Ti and A∗ is the distortion tensor on the boundary edge of element Ti. Note again that the
source term on the right hand side of the ODE (45) is the same as the strain relaxation term given by the
governing PDE (1), but with smaller relaxation time. The solution of Eqn. (46) provides the sought boundary
ghost distortion tensor Ag as

Ag = 2 A∗ − Ai. (47)

Moreover, we also require the hydrodynamic part of the pressure to vanish at the free surface boundary, hence
setting pg = −pi, while the remaining variables are copied from the internal state Qi;

• moving boundary conditions impose a prescribed velocity vector vb on the boundary, hence they are classically
treated by imposing

vg = 2 (vb · n) n − vi, (48)

after setting Qg = Qi for the remaining variables.

We underline that for finite volume schemes no “canonical” procedure is available to specify the boundary conditions.
Thus, different ways are possible and, in principle, equally appropriate.
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Table 1: Material parameters: reference density ρ0, reference (atmospheric) pressure P0, adiabatic sound speed c0, shear wave speed cs, Yield
stress σ0 and the coefficients Γ0 and s appearing in the Mie-Grüneisen equation of state (5).

ρ0 p0 c0 cs σ0 Γ0 s
Copper 8.930 0.0 0.394 0.219 0.004 2.00 1.480

Beryllium 1.845 0.0 1.287 0.905 1 1.11 1.124
Aluminum 2.785 0.0 0.533 0.305 0.003 2.00 1.338

5. Numerical experiments

The aim of this section is to describe and show the numerical results for a list of representative test cases for
the GPR model (1). The numerical solution is provided by the direct ALE ADER-WENO finite volume schemes
presented in this paper, employing piecewise polynomial reconstructions of degree M = 1, 2, 3. The CFL number
is generally set to 0.5, if not stated otherwise, and all tests are run on unstructured meshes made of NE triangular
elements. The computational grids are automatically generated by an external software and the characteristic mesh
size is denoted in the following by h.

Since the GPR model (1) is able to handle in one single PDE system both fluid mechanics and solid mechanics,
our methodology of validation and verification involves those two branches of continuum mechanics. We clearly state
that physical units are based on the [m, kg, s] unit system for fluid mechanics, while we rely on the [cm, g, µs] system
for solid mechanics with the stresses measured in [Mbar]. The ideal gas (4) equation of state is employed for fluids,
whereas the Mie-Grüneisen EOS (5) is used for solids as usually done [56, 16, 60].

Unless explicitly given, for each test case simulated in the following the thermal impulse vector is set to zero, i.e.
J = 0 with τ2 → ∞, and the mesh velocity is chosen to be equal to the local fluid velocity computed with the nodal
solver of Cheng and Shu [14], hence achieving a Lagrangian-like behavior of our direct ALE scheme.

According to [65, 35], in the case of fluid mechanics the relation between the relaxation time τ1 and the dynamic
viscosity coefficient µ is given by

µ =
1
6
τ1ρ0c2

s , (49)

which allows us to set either the relaxation time τ1 or the viscosity coefficient µ as parameter of the GPR model. For
inviscid fluids we simply set τ1 → 0 as discussed in [65, 35].

Regarding solid mechanics, if τ1 → ∞, we can describe the governing equations of pure elastic solids, while for
general elasto-plastic solids we compute the relaxation time τ1 following [7] as a power law function, i.e.

τ1 = τ0

(
σ0

σI

)n

(50)

where τ0, σ0 and n are material specific constants and the shear stress intensity σI is evaluated by

σI =

√
1
2

[
(σ11 − σ22)2 + (σ22 − σ33)2 + (σ33 − σ11)2 + 6 (σ2

12 + σ2
13 + σ2

23)
]
. (51)

Note that the parameter σ0 corresponds to the so-called Yield stress of the material under quasi-static loading and
the generic quantity σik is a component of the viscous shear stress tensor σ given by (8). In Table 1 we report some
mechanical constants as well as the parameters needed in the Mie-Grüneisen EOS for the materials considered in the
test cases for solid mechanics presented in this paper.

5.1. Numerical convergence results

As fully detailed in [35], a zeroth order approximation of the GPR model can be obtained in the stiff limit τ1 → 0
because the viscous stresses vanish, therefore retrieving the compressible Euler equations which govern an inviscid
fluid. In this way, we can use the smooth isentropic vortex test problem presented in [53] to study the numerical
convergence of our finite volume schemes. The initial computational domain is the square Ω(0) = [0; 10] × [0; 10]
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Table 2: Numerical convergence results for ALE ADER-WENO finite volume schemes applied to the GPR model in the stiff inviscid limit. The
error norms refer to the variable ρ (density) at time t f = 1.0 for first up to fourth order of accuracy and the exact solution is given by the inviscid
compressible Euler equations.

h(Ω(t f )) εL2 O(L2) h(Ω, t f ) εL2 O(L2)
1st order ADER-WENO-ALE 2nd order ADER-WENO-ALE
3.40E-01 3.084E-01 - 3.70E-01 7.880E-02 -
2.48E-01 2.556E-01 0.6 2.48E-01 5.907E-02 0.7
1.71E-01 1.921E-01 0.8 1.73E-01 2.542E-02 2.3
1.33E-01 1.533E-01 0.9 1.28E-01 1.443E-02 1.9
3rd order ADER-WENO-ALE 4th order ADER-WENO-ALE
3.37E-01 4.861E-02 - 3.28E-01 1.746E-02 -
2.51E-01 2.806E-02 1.9 2.51E-01 6.416E-03 3.8
1.68E-01 1.090E-02 2.3 1.68E-01 1.238E-04 4.1
1.28E-01 5.052E-03 2.8 1.28E-01 3.728E-04 4.4

with periodic boundaries everywhere. The initial condition is given in terms of primitive variables and it reads

(ρ, u, v, p) = (1 + δρ, 1 + δu, 1 + δv, 1 + δp), (52)

where the symbol δ represents the perturbations superimposed to a homogeneous background field. Since the vortex
is isentropic, the entropy perturbation is assumed to be zero, i.e. S =

p
ργ

= 0, and the perturbations for density and
pressure are

δρ = (1 + δT )
1
γ−1 − 1, δp = (1 + δT )

γ
γ−1 − 1 with δT = −

(γ − 1)ε2

8γπ2 e1−r2
. (53)

The generic radial coordinate is r =
√

(x − 5)2 + (y − 5)2 and the velocity perturbation is given by(
δu
δv

)
=

ε

2π
e

1−r2
2

(
−(y − 5)

(x − 5)

)
, (54)

with ε = 5 denoting the vortex strength. The initial distortion tensor is set to A = 3
√
ρ I and the final time of the

simulation is taken to be t f = 1.0. The parameters for the GPR model are γ = 1.4, cv = 2.5, ρ0 = 1, cs = 0.5 and
the relaxation time is τ1 = 10−12, which corresponds to the stiff inviscid limit τ1 → 0. We run our direct ADER-
WENO+ALE finite volume schemes on a series of successively refined grids up to fourth order of accuracy in space
and time. The reference solution Qe is given by the exact solution of the compressible Euler equations and it can
be simply computed as the time-shifted initial condition, e.g. Qe(x, t f ) = Q(x − vct f , 0), with the convective mean
velocity vc = (1, 1). The error is measured at time t f using the continuous L2 norm and the resulting convergence
rates are listed in Table 2, confirming clearly that the proposed numerical method is able to achieve its designed order
of accuracy for smooth problems in the stiff relaxation limit τ1 → 0.

5.2. 2D Taylor-Green vortex

A typical test problem used for the verification of numerical methods for the incompressible Navier-Stokes equa-
tions is the Taylor-Green vortex problem. An exact solution is available in two space dimensions, which is

u(x, y, t) = sin(x) cos(y)e−2νt,

v(x, y, t) = − cos(x) sin(y)e−2νt,

p(x, y, t) = C +
1
4

(cos(2x) + cos(2y))e−4νt, (55)
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where ν =
µ
ρ

represents the kinematic viscosity. The initial additive constant for the pressure field is given by C =

100/γ with the ratio of specific heats γ = 1.4. The other parameters are chosen to be ρ0 = 1, cv = 1, cs = 10 and
the dynamic viscosity coefficient is set to µ = 10−1. The computational domain is given by Ω(0) = [0; 2π]2 with
periodic boundaries imposed on each side and it is discretized with a total number of NE = 5630 triangles. The initial
condition for velocity and pressure is given by (55), while the initial density and the distortion tensor are ρ = ρ0
and A = I, respectively. The fourth order accurate numerical results are depicted in Figure 1 at the final time of the
simulation t f = 1.0. An excellent agreement between the GPR model in the low Mach number regime and the exact
solution of the incompressible Navier-Stokes equations can be observed, both for velocity and pressure. We also plot
the distortion tensor component A11 which provides a useful and intuitive visualization of the flow. Moreover one can
note that the mesh is adapted to the vortex structure of this problem.
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Figure 1: Taylor-Green vortex with a viscosity of µ = 10−1: exact solution of the Navier-Stokes equations and numerical solution for the hyperbolic
model (GPR) at a final time of t f = 1.0 obtained with the direct ALE ADER-WENO fourth order scheme. Top: mesh configuration (left) and
distortion tensor component A11. Bottom: 1D cuts along the x and the y axis for velocity components u and v (left) and for the pressure p.
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5.3. Viscous shock problem

The GPR model can also deal with supersonic viscous flows, therefore we propose to solve the problem of an
isolated viscous shock wave which is traveling into a medium at rest with a shock Mach number of Ms = 2. In [9] an
analytical solution for the compressible Navier-Stokes equations is derived for the special case of a stationary shock
wave at Prandtl number Pr = 0.75 with constant viscosity. As done in [35], we superimpose a constant velocity field
u = Msc0 to the previous stationary shock wave solution to obtain an unsteady shock wave traveling into a medium
at rest. The computational domain is initially the rectangular box Ω(0) = [0; 1] × [0; 0.2] which is paved with a set
of non-overlapping triangles with characteristic mesh size h = 1/100. No-slip wall boundary conditions are imposed
everywhere, except on the left side of the domain where we let the piston move with the local fluid velocity. The
initial condition involves a shock wave centered at x = 0.25 propagating at Mach Ms = 2 from left to right with a
Reynolds number of Re = 100. The upstream shock state is defined by ρ0 = 1, u0 = v0 = 0, p0 = 1/γ and c0 = 1.
and the parameters of the GPR model are γ = 1.4, cv = 2.5, cs = 50, µ = 2 × 10−2. In this case we also consider the
heat flux, hence setting initially J = 0 with α = 50, T0 = 1, and κ = 9/3 × 10−2. The distortion tensor is initialized to
A = 3
√
ρI and the final time of the simulation is t f = 0.2 with the shock front located at x = 0.65. Figure 2 depicts the

mesh configuration and the density distribution at the initial and at the final time, while in Figure 3 one can note an
excellent agreement of the third order ADER-WENO-ALE solution with the analytical solution of the compressible
Navier-Stokes equations [9]. We compare the exact solution and the numerical density, x component of the velocity,
pressure and viscous stress tensor component σ11 from top-left panel to bottom-right one

5.4. Cylindrical explosion problem

Here we present numerical results for a cylindrical explosion problem solved with the GPR model. The initial
computational domain Ω(0) is the circle of radius R = 1.0 and the initial condition is given by two constant states
separated by a discontinuity located at radius Rs = 0.5. Therefore the fluid is initially assigned with the corresponding
primitive state vector V = (ρ, u, v, A11, A12, A21, A22, A33, p, J1, J2) which reads

V(x, 0) =

{
(1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0) if r ≤ Rs,

(0.125, 0, 0, 0.5, 0, 0, 0.5, 0.5, 0.1, 0, 0) if r > Rs,
(56)

where the generic radial coordinate is r =
√

x2 + y2. The initial distortion tensor has been set to A = 3
√
ρ, while the

initial thermal impulse vector is J = 0. Transmissive boundary conditions are imposed on the external boundary and
the mesh is composed by NE = 68324 triangles. The final time of the simulation is chosen to be t f = 0.2 and the
parameters for the GPR model are γ = 1.4, cv = 2.5, cs = 0.5, ρ0 = 1, α = 0.5, µ = k = 10−4. The reference solution
can be computed by solving the one-dimensional compressible Euler equations with a geometric source term that takes
into account the cylindrical geometry, as fully detailed in [77, 11]. We use a second order MUSCL scheme with the
Rusanov flux on a one–dimensional mesh of 15000 points in the radial interval r ∈ [0; 1] to solve the inhomogeneous
system and this solution is assumed to be our reference solution. We run a fourth order scheme to obtain the numerical
results depicted in Figure 4, where one can note a good agreement with the reference solution for the 1D cut along the
x-axis representing density and pressure. Furthermore we plot also the final mesh configuration which highlights the
strongly compressed cells at the shock location and the stretched elements crossed by the rarefaction wave traveling
towards the center of the domain. We stress that this test case is more difficult than it seems, due to the presence of very
stiff source terms that are very demanding from a numerical point of view, especially in the context of a high order
discretization in space and time as the one presented in this paper. The good quality of the obtained computational
results confirms the ability of our numerical method to properly reproduce the stiff relaxation limit of the GPR model
(τ→ 0) also in the presence of discontinuities.

5.5. Purely elastic Riemann problems

In this section we consider the equations of nonlinear elasticity [48, 50, 51], which can be retrieved by the GPR
model in the limit τ1 → ∞ with σ0 > 0. We set up two shock tube problems on a 2D domain Ω(0) = [0; 1] × [0; 0.1]
with NE = 4440 where periodic boundary conditions are applied in y-direction and transmissive boundaries are
imposed in x-direction. The initial discontinuity located at x = 0.5 separates the two initial states, given in terms of
primitive variables and entropy in Table 3. The material is copper, described by the parameters given in Table 1, and
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and density distribution.
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Figure 4: Cylindrical explosion problem. Results obtained with the GPR model at the final time t = 0.2 obtained with a fourth order ADER-
WENO-ALE scheme with µ = k = 10−4. Top: three-dimensional density distribution and final mesh configuration. Bottom: cut along the x-axis
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Table 3: Initial condition for the left state (L) and the right state (R) for the Riemann problems of nonlinear elasticity solved with the GPR model.

u v A11 A12 A21 A22 A33 s
RP1 [28]:

L 0.0 0.0 0.95 0.0 0.0 0.0 1.0 0.001
R 0.0 0.0 1.0 0.0 0.0 1.0 1.0 0.0

RP2 [28]:
L 0.0 1.0 0.95 0.0 0.05 1.0 1.0 0.001
R 0.0 0.0 1.0 0.0 0.0 1.0 1.0 0.0

the equation of state considered in this case is a complicated function of the internal energy and the distortion tensor,
explicitly detailed in [73, 28].

The initial density is the reference density for copper, i.e. ρ = 8.930, and we impose cv = 0.4 · 10−3. The final
time of both simulations is t f = 0.06 and the numerical results are shown in Figures 5 and 6. Riemann problem
1 (RP1) corresponds to the three-wave shock tube problem, while RP2 considers a five-wave shock tube problem,
originally proposed in [73]. The solution for RP1 consists in a rarefaction wave traveling towards the left boundary
and two right-traveling waves, one contact discontinuity with velocity S C = 0.3948 and one shock moving with speed
S R = 5.5380. The second Riemann problem RP2 is more complex and it involves a total number of five waves: two
rarefaction waves propagating towards the left side of the domain and three different right-traveling waves, namely
one contact discontinuity, one rarefaction and one shock wave. The choice of these test problems is motivated by the
aim of showing that our numerical method is also able to properly solve the GPR model in the limit τ→ ∞. One can
note a very good agreement between the numerical results obtained with a third order ADER-WENO-ALE scheme
and the analytical solution of the nonlinear hyperelasticity model provided in [73, 6]. In Figure 6 we can see for RP2
that the y motion of the domain is not uniform but the waves are accurately maintained in their 1D shape. This may
be a concern when using a moving mesh technique, but our approach seems to properly deal with this situation.

5.6. Elastic-plastic piston problem

This test case is a one-dimensional flow characterized by a slope discontinuity which yields a two-wave structure
with a first elastic shock wave, typically called the elastic precursor, followed by a plastic shock wave [84, 81]. An
analytical solution is available and we refer the reader to [60] for an exhaustive description. The material employed in
this test case is copper modeled by the Mie-Grüneisen equation of state with the parameters given in Table 1. In this
case the Yield stress is set to σ0 = 9 ·10−4 and we consider cv = 1.0. The loading behavior of the material is described
by the relation (50) with τ0 = 0.1 and n = 10. The initial density and pressure correspond to the reference values and
the initial velocity field is zero, while the distortion tensor is simply set to A = I. The computational domain is initially
given by Ω(0) = [0; 1.5] × [0; 0.1] and it is discretized with a characteristic mesh size of h = 1/300 with NE = 13248
triangles. The left boundary condition is a piston of velocity vc = (0.002, 0) while the other boundaries are treated
as no-slip walls. The final computational time is t f = 1.5 and we use a third order accurate ADER-WENO-ALE
scheme to obtain the results plotted in Figure 7, where we compare the density and the horizontal velocity profiles
against an available exact solution for the model of ideal plasticity. Note that for this test problem we do not have an
exact solution of the GPR model used for the numerical simulation, but there is only an exact solution available for
the model of ideal plasticity, with rate independent yield stress. It is therefore not easy to make a direct comparison,
because only elastic precursors are discontinuous in both approaches, while the plastic wave is continuous in the GPR
model, see e.g. the paragraph 17 in the book [51] for a more detailed discussion on this topic. However, from the
results presented in Figure 7 we can observe that the main waves and plateaus are still well reproduced, despite the
use of different mathematical models in the numerical simulation and for the exact solution.

5.7. Elastic vibrations of a beryllium plate

This problem simulates the elastic (reversible) vibrations of a beryllium bar after an initial velocity impulse [70].
The beryllium plate is characterized by the constants given in Table 1. The initial computational domain is Ω(0) =
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Figure 5: Purely elastic Riemann problem 1 (top) and 2 (bottom). A 1D cut through the numerical solution at y = 0.025 is plotted for density (left)
and horizontal velocity component u (right).
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[−3; 3] × [−0.5; 0.5] and the computational grid counts NE = 3210 control volumes with h = 0.0065. Free traction
boundary conditions are imposed everywhere as explained in Section 4 and the bar is initially assigned with the
reference density and pressure, see Table 1, with the distortion tensor A = I and the velocity field v = (0, v(x)), where
the initial vertical velocity v(x) is given by

v(x) = Aω {C1 (sinh(Ω(x + 3)) + sin(Ω(x + 3))) − S 1 (cosh(Ω(x + 3)) + cos(Ω(x + 3)))} , (57)

with Ω = 0.7883401241, ω = 0.2359739922, A = 0.004336850425, S 1 = 57.64552048 and C1 = 56.53585154. The
final time is set to t f = 53.25 according to [17] such that it corresponds to two complete flexural periods ω. At this
time, the bar returns back to its original position for the second time. Furthermore the deformation should not generate
any irreversible plastic transition in the beryllium, that means that the Yield stress must never be exceeded throughout
the entire computation. The parameters for evaluating the relaxation time τ1 in (50) are τ0 = 10 and n = 1. In Figure
8 we present the mesh configuration, the pressure and the vertical velocity component respectively on left, middle and
right panels for intermediate times t = 8, t = 15, t = 23 and t = 30 which cover approximately one flexural period.
Please note that the color scales for the pressure are different depending if the bar is back to its original position or
not. Qualitatively the bar is behaving as expected and these third order accurate results visually compare well against
known results from other Lagrangian schemes [71, 17].
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Figure 8: Results for the beryllium bar test case at output times t = 8, t = 15, t = 23 and t = 30 (from top to bottom). Left: mesh configuration.
Middle: pressure distribution. Right: vertical component of the velocity.

As noticed in [17, 71] the observed oscillation period is of about ωn = 30 instead of the theoretical one of
ωe = 26.6266, so our results are in agreement with what already obtained in literature. Finally, Figure 9 shows the
time evolution of the vertical component of the velocity of the mesh point originally located at X0 = (0, 0), i.e. the
barycenter of the bar. Again the results are in excellent agreement with the same plot reported in [17].

5.8. Taylor bar impact

The Taylor bar impact is a classical test of an elasto-plastic target that impacts on a rigid solid wall [71, 60, 70, 26].
In this work we consider an aluminum bar with the initial length L = 500 and thickness H = 100. The parameters of
the material are given in Table 1 and the target is initially moving with velocity v = (0,−0.015) towards a wall located
at y = 0. The initial condition is chosen as ρ = ρ0, p = p0, A = I with the parameters τ0 = 1 and n = 20 for the
computation of the relaxation time (50). We set free traction boundary conditions everywhere apart from the bottom
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Figure 9: Beryllium bar test case: vertical velocity component of the point initially located at at X0 = (0, 0).

boundary which is treated with a wall-type boundary condition. According to [60, 26] the final time of the simulation
is t = 0.005 and the computational domain is discretized with a total number of NE = 12720 triangles, corresponding
to a mesh size of h = 3. Here we adopt a classical source splitting for the treatment of the stiff sources that arise
from the plastic deformation induced by the motion of the target. In Figure 10 we present the results computed with a
third order accurate ALE ADER-WENO scheme with an Osher-type numerical flux [29, 12] which is less dissipative
than the Rusanov flux (42): we plot the density distribution as well as the plastic rate η = σI

σ0
at output times t = 0,

t = 0.0025 and t = 0.005. We note that the numerical solution is reasonably in agreement with what presented in [60],
even though the models used are quite different. Furthermore during the impact the kinetic energy is totally dissipated
into internal energy, as clearly shown in Figure 11, and such a behavior has been observed also in [60, 26]. Finally,
Figure 12 depicts the initial and final mesh configurations, while the evolution of the target length is given in Figure
11 and we measure a final length of L f = 462 which perfectly fits the result achieved in [60].

5.9. Computational time

We have also monitored the computational time required for running each of the test cases presented in this paper.
Our ALE-ADER-WENO algorithm is implemented within an MPI code and the simulations have been performed in
parallel on 64 processors on the supercomputer SuperMUC located in Munich (Germany).

The results are collected and presented in Table 4: we report the total number of control volumes NE , the number
of time steps N needed to reach the final time of the simulation and the total computational time tCPU given in seconds
[s]. Furthermore we show the computational time required per element update, that is τE =

tCPU
NE ·N

. When inviscid fluids
or plastic solid deformations are considered, the computational time increases due to the presence of source terms in
the governing equations which can even become very stiff, like in the case of the Taylor-bar impact described in the
previous section. On the contrary, for viscous flows or purely elastic solids, the stiffness of the source terms becomes
much less important, hence demanding less computational efforts to carry our the simulations.

6. Conclusion and Perspectives

The purpose of this paper was the numerical solution of the unified first order hyperbolic Godunov-Peshkov-
Romenski [65] (GPR) model of continuum mechanics, using a multi-dimensional ADER-WENO scheme on moving
meshes in the direct ALE framework [29, 11, 12]. The appealing property of the GPR model, which derives from
the theory of nonlinear hyperelasticity established by Godunov & Romenski in [48, 51], is its ability to describe
the behavior of inviscid and viscous compressible Newtonian and non-Newtonian fluids with heat conduction, and,
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Figure 10: Taylor bar impact problem: density distribution (top) and plastic deformation (bottom) at output times t = 0, t = 0.0025 and t = 0.005.
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Figure 11: Left: balance of kinetic, total and internal energy for the Taylor bar impact problem. Right: Length of the target versus time.

Table 4: Computational time of the high order ALE-ADER-WENO algorithm applied to the GPR model for the test cases presented in this paper.
NE represents the total number of elements of the computational mesh, N is the number of time steps needed to carry out the simulation until the
final time, tCPU is the total computational time and τE =

tCPU
NE ·N

gives the time used per element update.

Test case NE N tCPU τE

Taylor-Green vortex 5630 861 58.61 · 103 1.21 · 10−2

Viscous shock problem 4462 10357 265.92 · 103 5.75 · 10−3

Cylindrical explosion problem 68324 1044 329.09 · 103 4.61 · 10−3

Elastic RP1 4440 469 2.55 · 103 1.22 · 10−3

Elastic RP2 4440 534 4.04 · 104 1.70 · 10−3

Elastic-plastic piston problem 13248 1896 184.67 · 104 7.35 · 10−3

Beryllium plate 3210 5098 15.05 · 103 9.20 · 10−4

Taylor-bar impact 12720 4579 409.41 · 103 7.03 · 10−3
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Figure 12: Taylor bar impact problem: initial (left) and final (right) mesh configuration.

27



at the same time, the behavior of elastic and elasto-plastic solids. In this paper we have shown that the family of
high order ADER-WENO-ALE schemes can solve the complex governing PDE system of the GPR model in two
limiting cases of the model, namely in the limit of inviscid and viscous Newtonian fluids, as well as in the limit of
nonlinear hyperelasticity for elastic and elasto-plastic solids. In both cases the numerical results are comparable with
results obtained from established standard models, namely the Euler or Navier-Stokes equations for fluids, or the
classical hypo-elastic model with plasticity [82]. More precisely, we have shown numerically that for pure fluid flow
problems, the numerical scheme can achieve optimal order of accuracy for smooth flow, maintaining an essentially
non oscillatory behavior in the presence of shock waves and steep fronts. On the other hand, we have also shown that
classical elasto-plastic test cases can be simulated both in the reversible elastic regime (beryllium plate) or in situations
where transition from elastic to plastic material behavior occurs (Taylor bar impact). Both limits of the GPR model can
be nicely simulated by our high order one-step ADER-WENO-ALE schemes. Together with the computational results
shown in [35] the family of ADER-WENO schemes seems therefore to be a very promising candidate to simulate the
full range of possible intermediate models embedded into the GPR formulation. The moving mesh technique used in
this paper is appealing when dealing with solid materials surrounded by fluids or gas, consequently we plan in the near
future to test such situations, also adopting the idea of diffuse interface methods as outlined in [41, 45, 40]. Another
possible field of application is the simulation of fluid-structure interactions of compressible fluids and solids, where
the high order ALE approach presented in this paper is suitable for interface tracking, hence providing an alternative
to the level-set methodology used on fixed grids [8]. We also plan to replace the WENO stabilization technique by the
a posteriori MOOD paradigm, see [25, 15, 58] and its extension to the discontinuous Galerkin framework recently
forwarded in [39, 83]. Also the treatment of boundary conditions needs to be mathematically analyzed in more detail.
Moreover we plan to explore even further the capability of the GPR model and compare with existing experimental
data when possible.

Acknowledgments

The authors would like to warmly acknowledge the help provided by I. Peshkov and E. Romenski for the de-
sign of proper boundary conditions and the computation of the relaxation time τ1 for the GPR model in the case
of elasto-plastic solids. We also would like to thank S. Gavrilyuk for the inspiring discussions about the subject of
hyperelasticity. Last but not least, the authors are grateful to S.K. Godunov for his great seminal ideas that are at the
basis of the theoretical and numerical framework used in this paper.

M.D. and W.B. have been financed by the European Research Council (ERC) under the European Union’s Seventh
Framework Programme (FP7/2007-2013) with the research project STiMulUs, ERC Grant agreement no. 278267. The
authors acknowledge PRACE for awarding access to the SuperMUC supercomputer based at the LRZ in Munich, Ger-
many.

References

[1] T. Aboiyar, E.H. Georgoulis, and A. Iske. Adaptive ADER Methods Using Kernel-Based Polyharmonic Spline WENO Reconstruction. SIAM
Journal on Scientific Computing, 32:3251–3277, 2010.

[2] D. Balsara and C.W. Shu. Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy.
Journal of Computational Physics, 160:405–452, 2000.

[3] T.J. Barth and P.O. Frederickson. Higher order solution of the euler equations on unstructured grids using quadratic reconstruction. 28th
Aerospace Sciences Meeting, pages AIAA paper no. 90–0013, January 1990.

[4] P. Barton and E. Romenski. On computational modelling of strain-hardening material dynamics. Communications in Computational Physics,
11(5):1525–1546, 2012.

[5] P.T. Barton, R. Deiterding, D. Meiron, and D. Pullin. Eulerian adaptive finite-difference method for high-velocity impact and penetration
problems. Journal of Computational Physics, 240:76–99, 2013.

[6] P.T. Barton, D. Drikakis, E. Romenski, and V.A. Titarev. Exact and approximate solutions of Riemann problems in non-linear elasticity.
Journal of Computational Physics, 228(18):7046–7068, 2009.

[7] P.T. Barton, D. Drikakis, and E.I. Romenski. An Eulerian finite-volume scheme for large elastoplastic deformations in solids. International
Journal for Numerical Methods in Engineering, 81:453–484, 2010.

[8] P.T. Barton, B. Obadia, and D. Drikakis. A conservative level-set based method for compressible solid/fluid problems on fixed grids. Journal
of Computational Physics, 230:7867–7890, 2011.

[9] R. Becker. Stosswelle und Detonation. Physik, 8:321, 1923.

28



[10] W. Boscheri, D.S. Balsara, and M. Dumbser. Lagrangian ADER-WENO Finite Volume Schemes on Unstructured Triangular Meshes Based
On Genuinely Multidimensional HLL Riemann Solvers. Journal of Computational Physics, 267:112–138, 2014.

[11] W. Boscheri and M. Dumbser. Arbitrary–Lagrangian–Eulerian One–Step WENO Finite Volume Schemes on Unstructured Triangular Meshes.
Communications in Computational Physics, 14:1174–1206, 2013.

[12] W. Boscheri and M. Dumbser. A Direct Arbitrary-Lagrangian-Eulerian ADER-WENO Finite Volume Scheme on Unstructured Tetrahedral
Meshes for Conservative and Nonconservative Hyperbolic Systems in 3D. Journal of Computational Physics, 275:484–523, 2014.

[13] W. Boscheri and M. Dumbser. An Efficient Quadrature-Free Formulation for High Order Arbitrary-Lagrangian-Eulerian ADER-WENO
Finite Volume Schemes on Unstructured Meshes. Journal of Scientific Computing, 66:240–274, 2016.

[14] W. Boscheri, M. Dumbser, and D.S. Balsara. High Order Lagrangian ADER-WENO Schemes on Unstructured Meshes – Application of
Several Node Solvers to Hydrodynamics and Magnetohydrodynamics. International Journal for Numerical Methods in Fluids, 76:737–778,
2014.

[15] W. Boscheri, R. Loubère, and M.Dumbser. Multi-dimensional direct arbitrary-lagrangian-eulerian ader-mood high order finite volume
schemes for non-conservative hyperbolic systems with stiff source terms. submitted, 2016.

[16] D.E. Burton, T.C. Carney, N.R. Morgan, S.K. Sambasivan, and M.J. Shashkov. A cell-centered lagrangian godunov-like method for solid
dynamics. Computers and Fluids, 83:33 – 47, 2013. Numerical methods for highly compressible multi-material flow problems.

[17] D.E. Burton, N.R. Morgan, T.C. Carney, and M.A. Kenamond. Reduction of dissipation in lagrange cell-centered hydrodynamics (cch)
through corner gradient reconstruction(cgr). Journal of Computational Physics, 299:229–280, 2015.
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