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Abstract

Having in mind the issue of control of insects vectors or insects pests, we consider in
this paper a metapopulation model with patches linearly interconnected, and explore
the global effects of the (on purpose) increase of mortality in some of them. Based on
previous results by Y. Takeuchi et al., we show that under appropriate conditions, the
sign of the stability modulus of the Jacobian of the system at the origin determines
the asymptotic behaviour of the solutions. If it is non-positive, then the population
becomes extinct in every patch. Conversely, if it is positive, then there exists a unique
nonnegative equilibrium, which is positive and globally asymptotically stable.

In the latter case, given a subset of ‘controlled’ patches where human intervention
is allowed, through mass-trapping for instance, we study whether the introduction of
additional linear mortality in some of them can result in population elimination in every
patch. We characterize this possibility by an algebraic property on the Jacobian at the
origin of a so-called residual system. We then assess the minimal globally asymptotically
stable equilibrium that may be attained in this way, and when elimination is possible,
we study the optimization problem consisting in achieving this task while minimizing
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a certain cost function, chosen as a nondecreasing and convex function of the mortality
rates added in the controlled patches. We show that such minimization problem admits
a global minimizer, which is unique in the relevant cases. An interior point algorithm
is proposed to compute the numerical solution.

Keywords: Pest; Vector; Metapopulation; Control strategy; Monotone system; Interior-
point algorithm; Oriental fruit fly
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1 Introduction
Food and health securities have become of main importance in many countries all around

the world. Among the significant threats to these securities are aphids and whiteflies, which
are major plant disease vectors, responsible for transmitting over 500 virus species [19].
Additionally, pests like fruit flies cause substantial damages on vegetable crops and orchards.
For instance, Bactrocera dorsalis, commonly known as the oriental fruit fly, is a significant
pest that primarily inhabits tropical and subtropical regions [3] and is considered one of the
world’s most invasive species [10]. The females deposit their eggs beneath the fruit’s surface,
leading to bacterial and fungal proliferation, ultimately rendering the fruit unmarketable.
In African countries where Bactrocera dorsalis is present, high losses have been recorded on
mango crops. For example, in Mozambique, the percentage of damaged mango fruits ranged
from 21% to 78% between September 2014 and August 2015 [12]. Similarly, human disease
vectors, like mosquitoes, are a growing concern, challenging not only Southern countries. As
an example, the invasion of mosquito Aedes albopictus (the ‘tiger mosquito’) puts in risk the
human populations of Northern countries, as it is a vector for several diseases (Dengue, Zika,
Chikungunya) to which they are fully susceptible [24].

Effective pest and vector management is essential to minimize as much as possible their
impact. A large variety of techniques are employed in the field. Among these, mass trapping

3



is widely used, and some methods are specifically designed to target and increase mortality.
For instance, gravid traps utilize water infused with decomposing organic material to attract
gravid females in search of egg-laying sites, thereafter either retaining or eliminating them
[15, 26, 37], and attractive toxic sugar baits also play a significant role [5, 38]. In fruit flies
management, Methyl Eugenol, when used together with an insecticide, is frequently used
against Bactrocera dorsalis to attract and kill male flies [45]. Other mass trapping methods
aim to reduce fecundity. For example, ovitraps, particularly used for Aedes mosquitoes,
are tailored to intercept eggs laid by ovipositing females [30]. As other biological control
techniques, the sterile insect technique (SIT) or the incompatible insect technique (IIT) are
very promising strategies consisting in massive releases of sterile or incompatible males. After
mating with these males, the wild females do not produce viable eggs, thereby contributing
to reducing the size of the population [14]. This method has already been implemented
successfully in the field [51], and a feasibility project called AttracTIS that combines SIT
and other control tools against Bactrocera dorsalis, is ongoing in Réunion Island.

These issues deserve deep studies, for which mathematical modelling can be of great help.
Mathematical models not only help aggregate and formalize knowledge, but make it possible
to identify the processes and parameters important to be studied. These approaches are
particularly valuable as an alternative to extensive and potentially impractical simultaneous
field studies that are often long, tedious, and costly, or impossible to conduct simultaneously.

In this paper, we delve into modeling mass trapping methods that affect mortality rates.
We take into account the spatial aspects, which influence significantly the efficacy of this
strategy, since in practice, the surfaces on which mass trapping is applied are limited and
heterogeneous. Our focus lies within a metapopulation framework, which consists of a group
of populations of the same species occupying distinct homogeneous patches of suitable habi-
tat within a larger landscape. This concept was introduced by Richard Levins in 1969 to
describe a model of population dynamics of insect pests in agricultural fields [35]. It has
been used mainly by ecologists to show that the connectivity between zones in heterogeneous
landscapes promotes species conservation [25]. Subsequently, these metapopulation models
were extended to epidemiological issues and other biological processes involving interactions
among dispersed populations [1, 27]. Despite biologists’ significant interest in metapopula-
tion, such models have been primarily underused in pest management, focusing more on the
study of population persistence. For example in [2], the authors proved the existence of a
threshold number of source patches necessary to ensure this property.

With the aim of designing efficient control strategies, we consider in the present work the
opposite question, exploring the conditions necessary for population elimination. We consider
that the control action is limited to a specific number of plots. This limitation might stem
e.g.from environmental constraints (gullies, marshes...) that prevent control implementation,
reluctance of plot owners to allow any form of intervention, or certain fallow lands remaining
untreated. We aim to explore the influence of an untreated land on its neighbours, as well as
the impact of treated areas on their surroundings. Specifically, we seek to recognize whether
the incapacity to operate in a specific region may detrimentally affect the overall efficacy of
the strategy.
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The paper is organized as follows. In Section 2, we present a model describing the natural
evolution of a population in a patchy environment. We recall and refine Takeuchi’s results
for such model [36, 47], which state that the elimination or persistence of the population
is determined by the sign of the stability modulus of the Jacobian matrix at the origin of
the system. In Section 3, we study the feasibility of population elimination by introducing
additional mortality terms in a subset of controllable patches. We assess in Section 4 the
minimal attainable equilibrium value. When elimination is feasible, we study in Section 5
the optimization problem consisting in achieving this task while minimizing a certain cost
function, chosen as a non-decreasing and convex function of the mortality rates added in the
controlled patches. We then present an algorithm that computes the numerical solution. In
Section 6, we apply the algorithm for a population of Bactrocera dorsalis to examine how
the model parameters, especially diffusion coefficients, affect the optimal control strategy.
For reader’s convenience, the proofs of the results are put in Appendix.

General notations and notions

Let us introduce some general notations and definitions that will be used in this paper.
First, the inequalities between vectors are considered in their usual coordinate-wise sense,
that is, for any x = (x1, ..., xn) and y = (y1, ..., yn),

• x ≤ y ⇐⇒ xi ≤ yi, i = 1, . . . , n,

• x < y ⇐⇒ x ≤ y, x ̸= y,

• x≪ y ⇐⇒ xi < yi, i = 1, . . . , n.

These definitions are extended to matrices.

Definition 1.1. The cardinal of any non-empty subset C of {1, ..., n} is denoted nC. For
any x = (x1, ..., xn), the point of RnC composed of the nC components of x with index in C is
denoted x|C :

x|C := (xi)i∈C .

Similarly, for any non-empty subsets C,D of {1, ..., n} and any matrix A ∈ Mn(R), we
define the matrix

A|C,D := (Aij)i∈C,j∈D .

Definition 1.2. We denote
R+ := R+ ∪ {+∞}

the extended positive real number line.

Definition 1.3. [32, p. 31] A square matrix A ∈ Mn (R) is said reducible if there exists a
permutation matrix P such that P TAP is block triangular. Otherwise, A is called irreducible.

Definition 1.4 (Metzler matrix). A square matrix A ∈ Mn (R) is said to be a Metzler
matrix if all its non-diagonal entries are non-negative.
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Metzler matrices are also called essentially non-negative matrices [13]. Many of their
properties are derived by extending properties of non-negative matrices [6].

Definition 1.5. The stability modulus of a square matrix A ∈Mn(R) is defined as

s(A) := {max{Re(λ)} : λ is an eigenvalue of A}.

By convention, when A is a matrix of dimension zero, we put s(A) = −∞.

See e.g. [32, p. 32] for more details. The value s(A) is also called the spectral abscissa [2].
Finally, when A is Metzler and irreducible, s(A) is also referred to as the Perron value or
Perron root of A, denoted r(A) (see for example [13]).

Definition 1.6. Let α ≥ 0. The solutions of a dynamical system are said to converge towards
the origin at an exponential rate α if eαtx(t) converges to the origin along every trajectory.

Definition 1.7. Let α ∈ R+ The origin of a dynamical system is said α-globally asymptot-
ically stable (α-GAS) if the following conditions are fulfilled.

(i) The origin of the system is globally asymptotically stable;

(ii) For any 0 < α′ < α, the solutions of the system converge towards the origin at an
exponential rate α′.

As a consequence of this definition, the origin is said 0-GAS iff it is GAS.

2 Mathematical model and preliminary results
We consider the following population model, composed of n patches linearly intercon-

nected and occupied by a single species:

ẋi = xigi(xi) +
n∑

j=1
j ̸=i

Dijxj −
n∑

j=1
j ̸=i

Djixi, xi(0) ≥ 0, i = 1, ..., n. (1)

For every i = 1, ..., n, xi(t) is a scalar representing the number of individuals in the i-th patch
at the time t, ẋi is the derivative of xi with respect to time, and gi is the specific growth rate
of the population in the i-th patch. Dij is a non-negative diffusion coefficient describing the
flow of individuals from the patch j to the patch i (i ̸= j).

We note x = (x1, ..., xn) and we define F (x) as the right hand side of the model (1), i.e.

F (x) := (F1(x), ..., Fn(x)) , Fi(x) := xigi(xi) +
n∑

j=1
j ̸=i

Dijxj −
n∑

j=1
j ̸=i

Djixi. (2)

6



Let us introduce the matrix D = (dij) where

dij =


Dij if j ̸= i

−
n∑

k=1
k ̸=i

Dki if i = j. (3)

D is called the connectivity matrix of the system (1), which writes in vector form

ẋ = (D + diag(gi(xi)))x.

Notice that the system (1) is cooperative, and some proofs of the results presented in this
paper rely on the theory of monotone cooperative systems. For more details about theoretical
properties of such class of models, the reader may refer to [46].

Throughout this article, for any i = 1, ..., n, gi is assumed continuous and locally Lips-
chitz. We introduce the following hypotheses.

(H1). For any i = 1, ..., n, gi(0) > 0.

(H2). For any i = 1, ..., n, gi is decreasing on R+.

(H3). For any i = 1, ..., n, lim
xi→+∞

gi(xi) < 0.

(H4). For any i = 1, ..., n, the matrix D is irreducible.

D being irreducible means that the underlying directed graph is strongly connected [6,
Theorem 2.7], that is, there always exists a path between two patches. Moreover, it is worth
noticing that D is a Metzler matrix.

Assumptions (H1), (H2) and (H3) describe the local behaviour of the population.
In absence of migration coupling the patches, (H1) means that when there are very few
individuals in the patch, the population in this patch increases. Assumptions (H2) and (H3)
express competition effects between individuals from the same patch. The more individuals,
the less increase of the population. The latter is indeed bounded, since it decreases when
it goes beyond a certain value (the unique zero of gi), called the carrying capacity of the
environment. Typical functions satisfying (H1),(H2) and (H3) are the well-known logistic
function gi(xi) = ri(1 − xi

Ki
), where Ki > 0 is the carrying capacity and ri > 0 denotes the

intrinsic growth rate; or gi(xi) = bie
−βix−mi, where bi > 0 and mi > 0 represent respectively

the birth rate at low population level and the death rate, such that bi−mi > 0, and βi takes
into account the indirect/direct competition between individuals [8]. For this second model,
the carrying capacity is equal to − 1

βi
log mi

bi
.

Model (1) has already been the subject of research work, see [16, 17, 18]. In [17], the
function xi 7−→ xigi(xi) is a logistic function, and a coefficient β is set as a factor of the
sums in model (1). The author shows that in case of perfect mixing, i.e. when the migration
rate β tends to infinity, the total population follows a logistic law, with a carrying capacity
generally different from the sum of the n carrying capacities of each patch.
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In absence of dispersal, model (1) simplifies into the uncoupled system

ẋi = xigi(xi), xi(0) ≥ 0, i = 1, ..., n. (4)

It is easy to prove the following result.

Theorem 2.1. Assume (H2) and (H3) hold.

(i) If gi(0) ≤ −α for some α ≥ 0, then the origin is α-GAS on R+ for the system (4).

(ii) If gi(0) > 0, then (4) admits a positive equilibrium point which is GAS on R∗
+.

In this section, we extend this result to model with migration (1), drawing inspiration
from the work of Takeuchi in [47] and Lu and Takeuchi in [36], where is studied the similar
system

ẋi = xigi(xi) +
n∑

j=1
j ̸=i

Dij(xj − xi), xi(0) ≥ 0, i = 1, ..., n. (5)

In model (5), the net exchange from the j-th patch to the i-th patch is proportional to the
difference xj − xi of population densities in patches i and j. The authors showed that the
asymptotic behaviour of the solutions of system (5) is determined by the sign of the stability
modulus of the Jacobian matrix of the right hand side of the system at the origin.

We now show in Theorem 2.2 that this result also applies to the model (1). Let us define

A := D + diag(gi(0)), (6)

which is the Jacobian matrix at the origin of the right hand side of the system (1). The fol-
lowing result classifies the asymptotic behaviour of the solutions of the system (1), according
to the value of the stability modulus s(A).

Theorem 2.2. Assume Hypothesis (H2) holds.

(i) If s(A) ≤ −α for some α ≥ 0, then the origin is α-GAS on Rn
+ for the system (1).

(ii) If s(A) > 0 and Assumptions (H3) and (H4) also hold, then the system (1) admits a
unique non-negative and non-zero equilibrium. Furthermore, the latter is positive and
GAS on Rn

+ \ {0n}.

In particular, Theorem 2.2 gives a simple necessary and sufficient condition for population
elimination, namely s(A) ≤ 0.
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3 General properties of a controlled model

3.1 Controlled model and assumptions

The aim of this section is to determine whether the population can be eliminated at a
prescribed exponential convergence rate by introduction of linear, diagonal, control terms,
and otherwise, to assess the minimal globally asymptotically stable equilibrium that may be
attained.

We consider that in the field, the action is limited to a specific number of plots, stem-
ming e.g. from environmental constraints that prevent control implementation or from the
reluctance of plot owners to allow any form of intervention. We also assume that the control
is realized by introduction of supplementary mortality terms that may be arbitrarily large
in some patches, but bounded in others due to practical limitations on achievable mortality
rates.

For some ρ ∈ Rn
+, consider the controlled system

ẋi = xi(gi(xi)− ρi) +
n∑

j=1
j ̸=i

Dijxj −
n∑

j=1
j ̸=i

Djixi, i = 1, ...., n. (7)

The system (7) is identical to system (1), except that the functions gi have been replaced by
gi − ρi, where ρi is the additional mortality term induced by the control. Notice that these
new functions verify Hypotheses (H2) and (H3) when the functions gi do. Moreover, the
connectivity matrix of the system (7) is equal to D, and is thus irreducible when (H4) is
verified.

We now introduce a boundedness assumption on the vector ρ in (7).

Definition 3.1. Let ρ ∈ Rn

+. Define the sets CF , CI as follows:

CF := {i ∈ {1, ..., n} : 0 < ρi < +∞}, CI := {i ∈ {1, ..., n} : ρi = +∞} (8a)

and
C := CF ∪ CI . (8b)

The sets C, CF and CI are called respectively the set of controllable patches, the set of
finitely controllable patches and the set of infinitely controllable patches. The complemen-
tary set C = {i ∈ {1, ..., n} : ρi = 0} of C is called the set of uncontrollable patches.

Definition 3.2. For any ρ ∈ Rn

+, we call ρ-admissible any ρ ∈ Rn
+ satisfying ρ ≤ ρ.

Notice that any ρ-admissible ρ satisfies ρi = 0, for every i ∈ C.
For any ρ-admissible ρ ∈ Rn

+, denote A(ρ) the Jacobian matrix of system (7) at the
origin:

A(ρ) := A− diag(ρ). (9)

In particular, A(0n) = A, and s(A(0n)) is simply written s(A).
Theorem 2.2 applies to the system (7), allowing to introduce the following definition.
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Definition 3.3. Assume (H2), (H3) and (H4) hold. For any ρ-admissible ρ, let x∗(ρ) be
the (positive) globally asymptotically stable equilibrium of (7) on Rn

+ \ {0n} if s(A(ρ)) > 0;
and x∗(ρ) = 0n if s(A(ρ)) ≤ 0.

A key point is that, whatever the value of s(A(ρ)), x∗(ρ) is always the equilibrium point
that attracts every non-zero trajectory.

3.2 Study of the control effects

In this section, we study some properties of the control (Theorem 3.1 and Theorem 3.2).
Demonstrations are provided in Appendix B.

Theorem 3.1. Assume (H4) holds. The function which associates to any ρ-admissible ρ
the value s

(
A(ρ)

)
is twice differentiable and decreasing, that is, for any ρ-admissible ρ and

ρ′ ∈ Rn
+,

ρ < ρ′ =⇒ s
(
A(ρ′)

)
< s
(
A(ρ)

)
.

Moreover, it is convex, and strictly convex if C ⊊ {1, ...n}.

As long as x∗(ρ)≫ 0n i.e. as long as s(A(ρ)) > 0, the following theorem ensures that the
higher the additional mortality terms, the larger the population reduction.

Theorem 3.2. Assume (H2), (H3) and (H4) hold. The function which associates to any
ρ-admissible ρ such that s(A(ρ)) > 0 the value x∗(ρ) is strictly decreasing in the following
sense: for any ρ-admissible ρ, ρ′ such that x∗(ρ′)≫ 0n,

ρ < ρ′ ⇒ x∗(ρ′)≪ x∗(ρ).

Recall that x∗(ρ) is the equilibrium of the system (7) attracting every nonzero trajectory
(see Definition 3.3).

Theorem 3.2 implies that introducing mortality in any non-void subset C ⊂ {1, ..., n}
induces population reduction in every patch of the network. In particular, introducing a
control in a single patch reduces the positive equilibrium across all patches.

3.3 Limit behaviour for large control

A natural issue is now to assess whether, for given ρ ∈ Rn

+ and α ≥ 0, the origin may be
rendered α-GAS for some ρ-admissible controls. As having s(A(ρ)) ≤ −α for some α ≥ 0
ensures α-global asymptotic stability of the origin for system (7) (see Theorem 2.2), and
since the stability modulus decreases with the control (Theorem 3.1), our analysis focuses
on evaluating the stability modulus of A(ρ) for large ρ-admissible ρ.

By slight abuse of notation, one denotes A|CI ,CI (ρ) = A(ρ)|CI ,CI . A key technical result is
now stated. Its proof in Appendix C.1 is based on singular perturbation theory [34].
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Lemma 3.3. For A(ρ) defined in (9), one has

inf{s(A(ρ)) : ρ ρ-admissible} = lim
ρ→ρ

s(A(ρ)) = s(A|CI ,CI (ρ)), (10)

where CI is defined in (8a). Moreover, the infimum is a minimum if and only if CI = ∅.
Building on this lemma, one derives the following theorem. A proof is provided in Ap-

pendix C.2.

Theorem 3.4. Assume (H2), (H3) and (H4) hold.

• If CI is not empty, then the following statements are true.

(i) If s(A|CI ,CI (ρ)) < 0, then there exists ρ′ ρ-admissible such that, for any ρ ρ-
admissible satisfying ρ ≥ ρ′, x∗(ρ) = 0n. Moreover, the origin of (7) is then
α-GAS for α := −s(A(ρ)).

(ii) If s(A|CI ,CI (ρ)) ≥ 0, then x∗(ρ)≫ 0n for any ρ-admissible ρ.

• If CI is empty, then the following holds.

(iii) If s(A|CI ,CI (ρ)) ≤ 0, then there exists ρ′ ρ-admissible such that, for any ρ ρ-
admissible satisfying ρ ≥ ρ′, x∗(ρ) = 0n. Moreover, the origin of (7) is then
α-GAS for α := −s(A(ρ)).

(iv) If s(A(ρ)) > 0, then x∗(ρ)≫ 0n for any ρ-admissible ρ.

Notice that elimination feasibility does not solely depend on the exchanges between the
patches that are either uncontrollable or finitely controllable: the leaks from these patches
towards infinitely controllable patches must also be considered, as they appear in the diagonal
terms of the matrix A|CI ,CI (ρ). As seen below in Section 4, this matrix is the Jacobian matrix
in zero of the residual system on the set of patches belonging to CI (defined in (11)).

Theorem 3.4 states in particular that, if every patch is infinitely controllable (that is
CI = C), then it is always possible to eliminate the population at any desired exponential
convergence rate. As a matter of fact, in this case, CI = ∅, so that s(A|CI ,CI (ρ)) = −∞.

Using conditions sufficient to have s(A|CI ,CI (ρ)) < 0 or s(A|CI ,CI (ρ)) > 0 yields the
following result, for which a proof is given in Appendix C.3.

Corollary 3.5. Assume (H2), (H3) and (H4) hold, and let CI ⊊ {1, ..., n}. Then, the two
following statements are true.

(i) If gi(0)− ρi −
∑
j∈CI

Dji < 0 for every i ∈ CI , then there exists ρ′ ρ-admissible such that,

for any ρ ρ-admissible satisfying ρ ≥ ρ′, x∗(ρ) = 0n. Moreover, the origin of (7) is
then α-GAS for α := −s(A(ρ)).

(ii) If gi(0)− ρi −
∑
j∈CI

Dji > 0 for every i ∈ CI , then x∗(ρ)≫ 0n for any ρ-admissible ρ.

Remark 3.1. When (H2), (H3) or (H4) do not hold, then, adapting ideas from [36, 47],
one may show that s

(
D + diag(supxi≥0 gi(xi))− diag(ρi)

)
< 0 is a sufficient condition for

the origin of (7) to be α-GAS with α := −s
(
D + diag(supxi≥0 gi(xi))− diag(ρi)

)
.
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4 Minimal reachable equilibrium
In this section, we study the minimal globally asymptotically stable equilibrium x∗(ρ)

that may be attained for ρ-admissible ρ. It is particularly relevant when x∗(ρ) is positive for
any ρ-admissible ρ.

As will be seen shortly, this minimal value depends crucially upon the connectivity ma-
trix1 D|CI ,CI on the network of patches that are either uncontrollable or finitely controllable.
Actually, the minimal value is related to the evolution of the residual system on R

nCI
+ defined

below in (11). This system is obtained by removing all infinitely controllable patches, and its
Jacobian matrix at the origin, called the residual Jacobian matrix at the origin, is precisely
equal to A|CI ,CI (ρ).

When the underlying graph, called residual graph, is irreducible, the same analysis than
before holds. On the contrary, when it is reducible, the situation is a little more complex
and one has to consider its strongly connected components. These two cases are treated
separately in the sequel, respectively in Theorems 4.1 and 4.2.

4.1 Irreducible residual graph

When D|CI ,CI is irreducible, one has the following Theorem. A proof, as well as a proof
of Theorem 4.2, is provided in Appendix D.

Theorem 4.1. Assume (H2), (H3) and (H4) hold and D|CI ,CI is irreducible. Then the
value x∞ := inf{x∗(ρ) : ρ ρ-admissible} fulfils

x∞ = lim
ρ→ρ

x∗(ρ).

In particular,
x∞|CI = 0nCI

,

and x∞|CI is equal to the equilibrium attracting every non-zero trajectory of the so-called
residual system on CI , defined as

ẋi = xi

(
gi(xi)− ρi −

∑
j∈CI

Dji

)
+
∑
j∈CI
j ̸=i

Dijxj −
∑
j∈CI
j ̸=i

Djixi, i ∈ CI . (11)

Consequently,

• if s(A|CI ,CI (ρ)) ≤ 0, then
x∞|CI = 0nCI

;

• if s(A|CI ,CI (ρ)) > 0, then x∞|CI is equal to the unique positive equilibrium of the system
(11).

1This notation conforms to the convention defined in Definition 1.1.
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Proof. See Appendix D.

The value of x∞ in the infinitely controllable patches is null, as infinite mortality terms in-
troduced in these patches lead to the elimination of the population. The population dynamics
within the network is then studied in the patches that are either untreated or finitely con-
trollable, considering that there is no migration from the infinitely controllable patches, due
to the elimination of the population in these patches. The migration towards the infinitely
controllable patches, as well as the maximum control allowed in CF , produce additional
mortality terms in the untreated patches and in the finitely controllable patches.

Recall that when CI is not empty and s(A|CI ,CI (ρ)) ≥ 0, Theorem 3.4 states that x∗(ρ)≫
0n for any ρ ρ-admissible. Consequently, in this case, the infimum x∞ is not a minimum.
When CI is empty, ρ only takes finite values, and the infimum is a minimum, and the residual
system (11) is exactly the system (7) for ρ = ρ.

An example of irreducible residual graph is shown in Fig. 1. A case is treated numerically
in Section 6.

Fig. 1: Determination of the minimal reachable equilibrium in the case of ir-
reducible residual graph. The infinitely controllable patches CI , in which the minimal
reachable equilibrium is null, are depicted in red. The blue patches are untreated, i.e. be-
long to C, and the yellow patches correspond to the finitely controllable patches CF . The
red crosses indicate the interruption of migration from the infinitely treated patches to the
remaining ones due to population elimination in the former. In the residual graph, the mi-
gration towards the infinitely controllable patches are represented by the red arrows. The
dashed arrows indicate additional mortality terms corresponding to the maximum control
allowed in CF .
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4.2 Reducible residual graph

We will now consider the case where D|CI ,CI is reducible. As in the proof of Theorem 4.1
in Appendix D, determining the minimal globally asymptotically stable equilibrium of sys-
tem (7) attainable for some ρ-admissible ρ involves examining the long-term dynamics of
the solutions to the residual system (11). However, due to the reducibility of D|CI ,CI , one
cannot apply Theorem 2.2 to (11) for determining the asymptotic behavior of its solutions.
Additional work is needed, which uses directed graph theory as central tool [4].

Introducing ΓCI , defined as the subgraph whose vertices are the patches belonging to CI ,
we revert to the irreducible case by decomposing ΓCI into its strongly connected components,
which are irreducible subgraphs. Assume ΓCI admits N strongly connected components,
where 1 ≤ N ≤ nCI . The case N = 1 corresponds to the situation where D|CI ,CI is irreducible,
and N = nCI corresponds to the case where ΓCI is composed of nCI strongly connected
subgraphs, each composed of a single patch. It is a classical result that one may arrange
the strongly connected components in an acyclic order, that is, into a sequence G1, ...,GN ,
so that there is no arc (no direct path) from Gj to Gi unless possibly if j < i [4, p. 17].

Let us now introduce adequate notations and definitions from graph theory.

Definition 4.1. For any subgraph or set of subgraphs G of ΓCI , the set and the number of
its vertices are respectively denoted VG and nVG .

Definition 4.2. For any strongly connected component G of ΓCI , the set of its in-neighbouring
(resp. out-neighbouring) subgraphs, denoted G− (resp. G+), is the set of strongly connected
components from which there exists a direct path leading to G (resp. that are reachable from
G via a direct path), that is:

H ∈ G− ⇐⇒ there exists i ∈ VG and j ∈ VH such that Dij > 0.

(resp. H ∈ G+ ⇐⇒ there exists j ∈ VG and i ∈ VH such that Dij > 0.)

The in-degree (resp. out-degree) of G is the number of vertices in G− (resp. G+).

Let us introduce the concept of upstream (resp. downstream) subgraphs. These notions
are commonly discussed in literature related to graph theory, algorithms, and network anal-
ysis, though it might not always be labeled explicitly as ‘upstream’ (resp. ‘downstream’)
subgraph. Instead, related concepts such as ‘reachability’ and ‘subgraph extraction’ are often
used [11, 23, 41, 43].

Definition 4.3. For any strongly connected subgraph G of ΓCI , define the set of its upstream
(resp. downstream) subgraphs, denoted Gup (resp. Gdown), as the set of strongly connected
subgraphs from which there exists a path leading to G (resp. that are reachable from G via a
path).

With these considerations, one may now introduce the following theorem, which extends
Theorem 4.1 to the case of reducible residual graphs.
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Theorem 4.2. Assume (H2), (H3) and (H4) hold. Then, the value

x∞ := inf{x∗(ρ) : ρ ρ-admissible}

fulfills
x∞ = lim

ρ→ρ
x∗(ρ).

In particular,
x∞|CI = 0nCI

,

and x∞|CI is equal to the equilibrium attracting every positive trajectory of the residual system
(11).

Moreover, for any strongly connected component G of ΓCI , the following system admits
an equilibrium attracting every non-zero trajectory :

ẋi = xi

gi(xi)− ρi −
∑

j∈CI∪VG+

Dji

+
∑
j∈VG
j ̸=i

Dijxj −
∑
j∈VG
j ̸=i

Djixi +
∑

j∈VG−

Dijx
∞
j , i ∈ VG, (12)

and x∞|VG is equal to this equilibrium. In particular, if there exists j ∈ VG− such that∑
j∈VG−

Dijx
∞
j > 0, x∞|VG is positive and GAS on R

nVG
+ for the system (12).

Consequently,

• if s(A|VG ,VG(ρ)) ≤ 0 and if one of the following conditions is fulfilled

1. G is of in-degree zero;

2. x∞|VG− = 0nVG−
,

then,
x∞|VG = 0nVG

;

• otherwise, x∞|VG ≫ 0nVG
and x∞|VG is equal to the unique positive equilibrium of system

(12).

Proof. See Appendix D.

Notice that the first element of the list of the strongly connected components arranged in
an acyclic order is always of in-degree zero. The equilibrium values on the strongly connected
components of ΓCI are determined inductively, following an acyclic order. In particuler, if
s(A|VG ,VG(ρ)) > 0 and if one of the conditions 1. or 2. given above is fulfilled, then x∞|VG is
equal to the unique positive equilibrium of the following system on VG:

ẋi = xi

gi(xi)− ρi −
∑

j∈CI∪VG+

Dji

+
∑
j∈VG
j ̸=i

Dijxj −
∑
j∈VG
j ̸=i

Djixi, i ∈ VG.
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Moreover, if x∞|VG ≫ 0nVG
for some strongly connected component G, then, for any strongly

connected component H ∈ Gdown, the system (12) on VH admits a unique equilibrium, which
is positive, and x∞|VH is then equal to this equilibrium.

An example of reducible residual graph is illustrated in Fig. 2, and a numerical case is
discussed below in Section 6.

Remark 4.1. Theorem 4.1 is a corollary of Theorem 4.2. Indeed, the latter theorem can be
applied to the particular case where D|CI ,CI is irreducible. In such case, ΓCI is composed of a
single strongly connected component, which is ΓCI itself.
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Fig. 2: Determination of the minimal reachable equilibrium in the case of re-
ducible residual graph. In the underlying graph (left figure), the yellow patches are the
patches of CF and the blue patches are untreated, i.e. belong to C. The red patches are the
infinitely controllable patches CI , in which the minimal reachable equilibrium is null. The
red crosses represent the interruption of migration from the infinitely treated patches to the
remaining ones, due to population elimination in the former. In the the residual system, the
migration towards the infinitely controllable patches is represented by the red arrows. The
additional mortality terms corresponding to the maximum control allowed in CF are repre-
sented by the dashed arrows. The residual graph is composed of three strongly connected
components, G1, G2 and G3 in acyclic order. There is one component of in-degree zero (G1)
and V down

G1
= {VG2 , VG3}. Moreover, G−2 = G1, G−3 = G2 = G+1 and G+2 = G3. The right figure

depicts the various scenarios possible for the equilibrium value on the residual graph

5 A cost-effective approach for achievable elimination sce-
narios

In this section, we assume that Hypotheses (H2), (H3) and (H4) hold, and that the
population can be driven to elimination by strong enough action on a subset C of patches
(in other terms, some of the conditions for elimination feasibility given in Theorem 3.4 are

17



fulfilled). We now build a cost-efficient strategy to achieve α-global asymptotic stability of
the origin for given α, while minimizing a certain control cost. Here, this cost is taken as
a weighted sum of the additional mortality terms ρi introduced in the controllable patches,
but any convex function of the latter would be convenient.

5.1 Minimization problem and properties

Let us first define the vector π > 0n, where for every i ∈ C, πi > 0 is the relative
intervention price2 in patch i. For any α such that 0 ≤ α < −s(A|CI ,CI (ρ)), let us introduce
the following problem:

minimize f(ρ)
subject to ρ ρ-admissible

h(ρ) ≤ −α,
(13)

where
f(ρ) := πTρ, h(ρ) := s(A(ρ)).

The function f(ρ) represents the total cost corresponding to the ρ-admissible control ρ. The
constraint h(ρ) ≤ −α ensures α-global asymptotic stability of the origin (see Theorem 2.2).

Note that if α > −s(A|CI ,CI (ρ)), then the Problem (13) has no solution, since as a
consequence of Theorem 3.1 and Lemma 3.3, there is no ρ-admissible ρ satisfying h(ρ) ≤ −α.
The same holds if α = −s(A|CI ,CI (ρ)), except when CI = ∅, in which case the minimization
problem has a unique global minimizer, equal to ρ.

Additionally, it is worth observing that (13) is a problem in RnC
+ , since by definition of a

ρ-admissible vector, ρi = 0 for all i ∈ C.

The solvability of problem (13) is adressed in the next result.

Theorem 5.1. Assume s(A|CI ,CI (ρ)) < 0 and let α satisfy 0 ≤ α < −s(A|CI ,CI (ρ)). Then
Problem (13) admits local minimizers. The latter are also global and their set is convex.
Moreover, if C ⊊ {1, ..., n}, the minimizer is unique. Last,

• if s(A) > −α, then any minimizer ρ∗ satisfies ρ∗ > 0n and s(A(ρ∗)) = −α;

• if s(A) ≤ −α, the minimizer is unique and equal to 0n.

Proof. See Appendix E.

5.2 Interior-point algorithm

We propose now an algorithm that solves numerically the Problem (13). It pertains to
the class of interior point methods [9, Chapter 11], whose convergence properties have been
the subject of many works [50]. The basic idea is to solve the minimization problem by ap-
plying Newton’s method to a sequence of unconstrained penalized problems with decreasing
penalization.

2In other words, the price vector fulfils: π|C ≫ 0nC .
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Consider the following barrier problem:

minimize fϕ,t(ρ)
subject to ρi = 0, i ∈ C, (14)

where

fϕ,t(ρ) := tf(ρ) + ϕ(ρ), ϕ(ρ) := − log (−h(ρ)− α)−
∑
i∈C

log(ρi)−
∑
i∈CF

log(ρi − ρi).

The function ϕ is a logarithmic barrier function. Its domain is the set of points that satisfy
strictly the inequality constraints of (13). The solution of Problem (13) consists in solving a
sequence of penalized unconstrained problems of the form (14), obtained while increasing the
parameter t at each step, and starting each Newton minimization at the numerical solution of
the problem for the previous value of t. One must ensure that each solution of the Newton’s
method for each updated value of t satisfies strictly the inequality constraints of Problem
(13), so that the function ϕ remains well defined. Note that given the constraints imposed
on α in Problem (13), it is always possible to find a ρ that satisfies strictly these inequalities.
Moreover, if C ⊊ {1, ..., n}, then the function fϕ,t is strictly convex since h is strictly convex
(see Theorem 3.1), which implies that for each t > 0, the problem (14) admits a unique
minimizer.

In order to use Newton’s method for the barrier problem (14), one integrates the equality
constraints ρi = 0 for any i ∈ C by reducing the number of effective decision variables.
To do so, we identify any ρ-admissible vector ρ ∈ Rn

+ with its components in C, that is,
ρ := (ρi)i∈C. Similarly, we represent π ∈ Rn

+ using its components in C. Consequently, the
functions h = s(A(·)), f , ϕ and fϕ,t are now defined in RnC

+ .
The proposed interior-point algorithm is given in pseudo-code in Algorithm 1.

Algorithm 1 Interior-point method
Require: t = t0 > 0, ε > 0, η > 0, µ > 1 and ρ0 ≫ 0nC such that h(ρ0) < −α and
ρ0|CF ≪ ρ|CF .
while 1

t
> ε do

while ∥∇fϕ,t(ρ0)∥ > η do
ρ = ρ0 − d(ρ0) (∇2fϕ,t(ρ

0))
−1∇fϕ,t(ρ0)

ρ0 ← ρ
end while
t← µt

end while

The expressions∇fϕ,t(ρ0) and∇2fϕ,t(ρ
0) denote respectively the gradient and the Hessian

matrices of the function fϕ,t. The parameter ε is the desired level of accuracy for the
approximation (14) of the Problem (13), η is the level of accuracy of the solution of the
barrier problem on each updated value t, and µ is the factor by which is increased the
parameter t at each step.
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At the initial step, ρ0 is chosen strictly feasible, in the sense that it satisfies strictly the
inequality constraints of Problem (13). Then for each ρ0 computed at a step of the Newton’s
method, the scalar d(ρ0) ∈ (0, 1] is chosen in order to ensure that the next iteration ρ is also
strictly feasible. Of course, one may take d(ρ0) = 1 as long as ρ0 − (∇2fϕ,t(ρ

0))
−1∇fϕ,t(ρ0)

satisfies the inequality constraints.
In order to implement this algorithm, it is necessary to compute the gradient and the

Hessian of the function fϕ,t. For this, one takes advantage of the concept of group inverse of
a matrix. The reader is referred to [33] for a thorough presentation of this notion.

Definition 5.1. Assume that B ∈ Mn(C) is a complex singular matrix, and that its eigen-
value 0 is semisimple, that is, its algebraic and geometric multiplicities coincide. Then, the
group inverse of B, denoted B#, is the unique matrix X ∈Mn(C) such that

(i) BXB = B; (ii) XBX = X; (iii) BX = XB.

The following technical result shows how to compute the gradient and the Hessian of the
function fϕ,t. Recall that any ρ-admissible ρ as well as the vector π now belong to RnC

+ .

Lemma 5.2. Assume with no loss of generality that the control is introduced in the first nC
patches, and among them, the infinite controllable patches are the first nCI patches. Moreover,
for any ρ ∈ RnC

+ , let Q(ρ) := h(ρ)In − A(ρ), and denote Q#(ρ) its group inverse. Then,

∇fϕ,t(ρ) = tπ − 1

h(ρ) + α
∇h(ρ)− 1

ρ
+

(
0nCI

,
1

ρ|CF − ρ|CF

)T

,

where the gradient ∇h(ρ) is given by:

∇h(ρ) = −
(
InC − diag

((
Q(ρ)Q#(ρ)

)
11
, ...,

(
Q(ρ)Q#(ρ)

)
nCnC

))
1nC , (15)

where 1nC is the vector of RnC whose components are all equal to 1. Moreover,

∇2fϕ,t(ρ) =
1

(h(ρ) + α)2
∇h(ρ)∇h(ρ)⊤ − 1

h(ρ) + α
∇2h(ρ) + diag

(
1

ρ2

)
+ diag

(
0nCI

,
1

(ρ|CF − ρ|CF )2

)
,

where the Hessian matrix ∇2h(ρ) ∈MnC(R) is such that, for any i, j = 1, ..., nC,(
∇2h(ρ)

)
ij
=
(
In −Q(ρ)Q#(ρ)

)
ij

(
Q#(ρ)

)
ji
+
(
In −Q(ρ)Q#(ρ)

)
ji

(
Q#(ρ)

)
ij
. (16)

In Lemma 5.2, we denote by 1
ρ
, 1

ρ|CF −ρ|CF
, etc. the vectors whose components are the

scalar numbers 1
ρi

, i ∈ C, 1
ρi−ρi

, i ∈ CF , etc.
To compute the group inverse Q#(ρ) of the matrix Q(ρ) = s(A(ρ))In−A(ρ), one uses the

formula provided in [33, Remark 2.5.3]. This formula is stated therein for matrices written
in the form r(A)I − A, for A a non-negative irreducible matrix and r(A) its Perron value.
One shows easily that it remains valid for an irreducible Metzler matrix A.
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Remark 5.1. In the more general case where (H2), (H3) or (H4) do not hold, one may
solve Problem (13) with h(ρ) := s(Ar), Ar := D + diag

(
supxi≥0 gi(xi)

)
and 0 < α <

−s(Ar|CI ,CI (ρ)). Theorem 5.1 still applies, and the interior-point algorithm in Algorithm 1
may be used, with gradient and Hessian as in Lemma 5.2, with now Q(ρ) defined as

s (Ar − diag(ρi)) In − (Ar − diag(ρi)) .

Moreover, notice that one does not set α = 0, because h(Ar) = 0 may not guarantee global
asymptotic stability of the origin (see Theorem A.1) in Appendix A.

6 Application to Bactrocera dorsalis
In this section, we present several numerical simulations to illustrate our results for a

population of Bactrocera dorsalis evolving across interconnected orchards. This habitat
can be represented by a graph, where each patch corresponds to a different orchard. This
graph is directed because the propensity to go from an orchard to the other is not necessarily
symmetric. The aim is to explore the impact of the different parameters – network structure,
diffusion coefficients, intrinsic growth rates, intervention prices and parameter α – on the
selection of the most efficient controllable patches and the corresponding optimal control
strategy. As indicated in the introduction, we focus on control tools that increase the natural
mortality rate, i.e. the use of sticky/deadly traps that attract and kill the fruit flies. We
implicitly assume that the control death rate is proportional to the amount of traps that
have been set-up in each orchard.

We assume that the network is composed of n patches and we are limited to acting on
a maximum of nC ≤ n patches. We modify Algorithm 1 so that it solves the minimization
Problem (13), for each ’feasible’ combination C of nC patches. This results in a ranked list,
arranged in ascending order of cost, of the appropriate combinations of nC patches along
with the corresponding optimal control strategy. Our aim is to study the impact of the
parameters of the model on the selection of the most efficient controllable patches. To better
highlight this aspect, we suppose that one can add arbitrarily large mortality terms, that is,
CI = C for any combination C of {1, ..., n}.

For the intrinsic growth rate values, we rely on the data presented in [29, Table 2], [42,
Table 3] and [52, Table 3], and consider a combination of numerical values, since orchards
are not necessarily mono-specific but a combination of several host fruits. Thus the intrinsic
growth rates range, on average, from 0.079 to 0.18. Concerning the carrying capacity of
an orchard for Bactorcera Dorsalis, it is difficult to find data in literature. In [48], the
male population was estimated between 3,300 and 18,000 per hectare. Therefore, we will
set the carrying capacity for each patch between 6, 000 and 20, 000, depending on the size
of the patch. Recall that the carrying capacity has no impact on the solution of Problem
(13). When the problem is solvable, this quantity only affects the speed at which population
converges towards the origin. When it is not solvable, it only affects the value of the minimal
reachable positive equilibrium point.
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We first consider in Section 6.1 a model with three patches, and explore the impact of the
modification of several parameters. We then consider in Section 6.2 a more complex network
with seven patches, in an attempt to illustrate the influence of the network configuration.

6.1 Three-patch model

We start with a graph containing three patches, each one connected to the others, thus
forming a complete directed graph. We explore the effects of changing intrinsic growth rates
and prices in Section 6.1.1, of modifying the prescribed convergence rate in Section 6.1.2,
and of altering the diffusion coefficients in Section 6.1.3.

6.1.1 Intrinsic growth rate and prices effects

In order to examine the effects of the growth rate values and the prices, we first suppose
that the diffusion is the same between every pair of patches. This implies in particular that
the network is a symmetric directed graph, that is for any i ̸= j, Dij = Dji. As far as we
know, there is no data available in literature for migration parameters, but it is likely that
‘mark-release-recapture’ experiments could provide such estimates [31, 44].

For migration terms such that

D12 = D21 = D13 = D31 = D23 = D32 = 0.2, (17)

the algorithm outputs, depending on the number nC of controllable patches, are given in
Table 1 for uniform prices across all patches and different intrinsic growth rates. Obviously,
the more the controllable patches, the less the optimal cost associated to the optimal com-
bination of patches. Moreover, when the intrinsic growth rate is the same in every patch,
and given the rotation invariance of the graph along with identical prices across all patches,
the optimal control for each patch is the same. One also notices that for different intrinsic
growth rates in the patches and when nC = 1 and nC = 2, the optimal combinations com-
prise patches with highest growth rates, while the less efficient combination involves those
with the lowest growth rates. Additionally, for each combination, the optimal strategy is to
introduce a higher control in the patch with the higher intrinsic growth rate.

Moreover, we observe that when nC = n = 3, the optimal control allocated in each patch is
equal to the intrinsic growth rate in the patch. Notice that we ran numerical simulations with
various symmetrical graphs, and always obtained experimentally that, when C = {1, ..., n},
then the optimal control in each patch is equal to the intrinsic growth rate.

When the intervention price in the third patch is 7 times more expensive than the others
(Table 2), the optimal combination of patches for nC = 2 is {1, 2}. For the combinations
{1, 3} and {2, 3}, almost all the control is allocated respectively to the patch 1 and the patch
2. When nC = 3, all the control is allocated exclusively to patches 1 and 2.
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number nC of controllable patches
1 2 3

Patch Control Cost Patches Control Cost Patches Control Cost
Intrinsic growth rates in patches

{1,2,3}
(0.14, 0.14, 0.14) 1 1.07 1.07 {1,2} (0.25,0.25) 0.50 {1,2,3} (0.14,0.14,0.14) 0.42

2 1.07 1.07 {1,3} (0.25,0.25) 0.50
3 1.07 1.07 {2,3} (0.25,0.25) 0.50

(0.16, 0.14, 0.16) 1 1.37 1.37 {1,3} (0.27, 0.27) 0.54 {1,2,3} (0.16, 0.14, 0.16) 0.46
3 1.37 1.37 {1,2} (0.293, 0.273) 0.57
2 1.74 1.74 {2,3} (0.273, 0.293) 0.57

(0.12, 0.14, 0.16) 3 0.91 0.91 {2,3} (0.226, 0.246) 0.47 {1,2,3} (0.12, 0.14, 0.16) 0.42
2 1.09 1.09 {1,3} (0.23, 0.27) 0.50
1 1.33 1.33 {1,2} (0.253, 0.273) 0.53

Table 1: Optimal combination of patches and the corresponding optimal control and cost
for diffusion coefficients in (17), α = 0 and πT = (1, 1, 1)

number nC of controllable patches
1 2 3

Patch Control Cost Patches Control Cost Patches Control Cost
Intrinsic growth rates in patches

{1,2,3}
(0.14, 0.14, 0.14) 1 1.07 1.07 {1,2} (0.25,0.25) 0.50 {1,2,3} (0.25,0.25,0) 0.50

2 1.07 1.07 {1,3} (0.83,0.03) 1.02
3 1.07 7.51 {2,3} (0.83,0.03) 1.02

(0.16, 0.14, 0.16) 1 1.37 1.37 {1,2} (0.293, 0.273) 0.57 {1,2,3} (0.293, 0.273, 0) 0.57
2 1.74 1.74 {1,3} (0.85, 0.05) 1.18
3 1.37 9.57 {2,3} (0.87, 0.07) 1.33

(0.12, 0.14, 0.16) 2 1.09 1.09 {1,2} (0.253, 0.273) 0.53 {1,2,3} (0.25, 0.27, 0) 0.53
1 1.33 1.33 {2,3} (0.79, 0.03) 1.02
3 0.91 6.34 {1,3} (0.81, 0.05) 1.14

Table 2: Optimal combination of patches and the corresponding optimal control and cost
for diffusion coefficients in (17), α = 0 and πT = (1, 1, 7)
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6.1.2 Exponential convergence rate

In the previous examples, the constraint α = 0 only required the elimination of the
population. By setting α > 0, we ensure that the elimination occurs at a positive exponential
convergence rate, at least equal to α−ε, for any ε > 0. A larger α leads to faster convergence
towards zero at the expense of a higher optimal cost. This is illustrated in Fig. 3, for the
growth functions

g1(x1) = 0.14(1− x1

7, 000
), g2(x2) = 0.14(1− x2

9, 000
), g3(x3) = 0.14(1− x3

12, 000
) (18a)

and the initial condition

x1(0) = 8,586.2, x2(0) = 9,032.5, x3(0) = 9,501.7. (18b)

The latter has been chosen equal to the positive equilibrium point of the uncontrolled system
(1), determined numerically for growth functions (18a) and diffusion coefficients (17). For
all subsequent numerical simulations throughout the paper, the initial population values are
selected to match the positive equilibrium of the respective uncontrolled system.

0 0.1 0.2 −s(A|, ) = 0.26
α

0

500

1000

1500

2000

2500

3000
Optimal cost
Time (days) for the total pop lation to fall below 1% of its initial val e

Fig. 3: Optimal cost for the Problem (13) and time for the population to fall below
1% of its initial value, depending on α, for n = 3, C = {1, 2}, diffusion coefficients in
(17), growth functions in (18a) and initial values in (18b). As α approaches −s(A|C,C), the
optimal cost tends to infinity and the population drops rapidly below 1% of its initial value.

As α approaches −s(A|C,C), the control introduced in the patches within C tends towards
infinity, leading to an immediate elimination of the population in those patches. However,
in the uncontrolled patches C, the asymptotic behaviour of the population approaches the
asymptotic behaviour of the residual system on C. Consequently, no matter how large the
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control in C, the origin in the patches in C is at best −s(A|C,C)-GAS. This behavior is
illustrated in Fig. 4 for a value of α near −s(A|C,C).
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Fig. 4: Population trajectories for optimal control (ρ1, ρ2) = (800.2, 800.2) intro-
duced at Time = 50 in C = {1, 2} associated with α = −s(AC,C)− 0.0001 = 0.26. The
growth functions are defined in (18a), initial conditions in (18b)and diffusion coefficients in
(17).

6.1.3 Diffusion effects

Optimal solutions for some diffusion coefficients values are presented in Table 3. When
the first orchard is further apart and more difficult to reach, so that for example D13 =
D12 = 0.001 3, then it is not possible to eliminate the population controlling only patch
1. As a matter of fact, it is useless to put a control in this patch, even when nC ≥ 2. An
interpretation is that when the population in patch 1 is reduced to an extremely low level
by introducing a sufficient control in this patch, the population dynamics in patches 2 and
3 becomes nearly independent of patch 1, since the migration from and towards this patch
is negligible. In these conditions, the control introduced in the patch 1 will have negligible
effect on patches 2 and 3. The system for patches 2 and 3 then approaches the following:

ẋ2 = 0.14(1− x2

9, 000
)x2 + 0.5x3 − 0.5x2, ẋ3 = 0.14(1− x3

12, 000
)x3 + 0.5x2 − 0.5x3.

The stability modulus s(A) of this system is equal to 0.14 > 0, which implies that the
population persists. It is then more efficient to act directly on the patches 2 and 3. Moreover,
the optimal cost when nC = 2 (resp. nC = 2), equal to 0.28, is 44% (resp. 33%) lower
compared to the case where all diffusion parameters are equal to 0.2 (see Table 1). In

3We avoid setting D13 = D12 = 0 to maintain the graph’s irreducibility.
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practice, this suggests that integrating mass trapping with measures to prevent migration
towards some specific orchards as part of an integrated pest management strategy, would
beneficially reduce the overall costs by increasing pest mortality.

number nC of controllable patches
1 2 3

Patch Control Cost Patches Control Cost Patches Control Cost
Diffusion parameters

D21 = D23 = D31 = D32 = 0.2, 2 0.61 0.61 {2, 3} (0.14,0.14) 0.28 {1,2,3} (0,0.14,0.14) 0.28
D13 = D12 = 0.001 3 0.61 0.61 {1,2} (0,0.61) 0.61

{1,3} (0,0.61) 0.61

D23 = D13 = D21 = 0.08 {1,2} (0.299, 0.259) 0.558 {1,2,3} (0.178, 0.138, 0.060) 0.377
D32 = D31 = 0.02, D12 = 0.12

Table 3: Optimal combination of patches and the corresponding optimal control and total
cost for α = 0 and πT = (1, 1, 1), and intrinsic growth rates (r1, r2, r3) = (0.14, 0.14, 0.14).

For the second set of diffusion parameters, one sees from Table 3 that the population
cannot be eliminated if nC = 1. When nC = 2, only one specific combination, patches
1 and 2, guarantees elimination. Therefore, if the control is not allowed in the patch 1
or 2, the control fails. For instance when a control is introduced in patches 2 and 3, the
equilibrium point in patch 1 will not fall below a certain threshold despite considerable
efforts, as illustrated in Fig. 5 for initial conditions

x1(0) = 9446.4, x2(0) = 8548.4, x3(0) = 4762.7. (19)

This is a consequence of Theorem 4.1. Indeed, in this scenario, C = {1}, so the residual
system is ẋ1 = x1 (g1(x1)−D21 −D31), with s(AC,C) = g1(0) − D21 − D31 = 0.14 − 0.08 −
0.02 > 0, which proves the existence of a positive equilibrium threshold x∞

1 in patch 1. The
quantity x∞

1 is equal to the positive equilibrium of the latter system, i.e. x∞
1 = 2, 000 when

g1(x1) = 0.14(1 − x1

7,000
). Moreover, introducing control in all patches results in an optimal

cost that is 32% lower than when it is introduced only in patches 1 and 2. This highlights
the fact that some patches may play a critical role, the impossibility to control them directly
resulting in substantial cost increases or even control failure.
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Fig. 5: Population trajectories for optimal control (ρ∗1, ρ
∗
2) = (0.399, 0.259) intro-

duced at Time = 50 in patches {1, 2} (left), and for large control (ρ2, ρ3) =
(1000, 1000) in patches {2, 3} (right), with α = 0, growth functions in (18a), initial
conditions in (19) and second set of diffusion coefficients in Table 3. The equilibrium for the
right figure is equal to (2000.56, 0.16, 0.04).

6.2 Seven-patch model and the impact of the network configuration

Consider now a higher dimension example, involving seven patches. In this section, our
aim is to observe the impact of the network spatial structure. To achieve this, we enforce
uniform pricing ang growth rates across all patches, and only require elimination (α = 0).
Additionally, we ensure that the diffusion coefficients between patches that are connected
are all equal to 0.2. The parameter values are summarized as follows:

πT = (1, 1, 1, 1, 1, 1, 1), gi(0) = 0.14, i = 1, ..., 7, α = 0, Dij = 0.2 if Dij > 0. (20)

As a comparison, when C = {1, ..., 7} and the directed graph is symmetric, then the best
strategy consists in introducing mortality rates equal to the intrinsic growth rates in all seven
patches, resulting in an optimal cost of 7× 0.14 = 0.98.

We examine in the following three different examples of networks with seven patches
(some of these networks being possibly identical, up to vertex permutation). We assume the
intervention is limited to three patches (for example because of limited number of traps or
because only three orchards owners agree to set-up traps in their fields). Notice that there
are 35 possible ways of selecting three patches out of seven.

Example 1

Let us begin with the example illustrated in Fig. 6, where lines connecting two patches
illustrate bidirectional and symmetric migration.
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Fig. 6: A network configuration with seven patches

The algorithm outputs that out of the 35 possible combinations of three patches, 32 can
lead to elimination. The optimal combination is patches {2, 3, 7} as illustrated in Fig. 7,
with optimal control (0.416, 0.416, 0.416), and optimal cost 1.25. The optimal control is the
same in each patch 2, 3 and 7 because we may permute them without changing the structure
of the graph, albeit with different numbering.

For the second best combination of three patches, there are three possible configura-
tions, namely {1, 4, 7}, {2, 4, 6} and {3, 4, 5}. This lack of uniqueness also arises because
permutations are possible among patches 1, 5, 6, and also among patches 2, 3, 7, with-
out altering the graph structure (albeit with different numbering). For the same reason,
(ρ∗1, ρ

∗
4, ρ

∗
7) = (ρ∗6, ρ

∗
4, ρ

∗
2) = (ρ∗5, ρ

∗
4, ρ

∗
3). Additionally, the algorithm indicates that the opti-

mal cost for the second-best combination is 1.53, which is 23% higher than the optimal cost
for the best combination of patches.

Fig. 7: Optimal combination (green) and second-best combinations (orange) of three patches
for parameters in (20).
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Example 2

Let us now assume that there is no diffusion between patch 4 and patch 7 (due to land-
scape configuration, for instance). This tends to lower the number of possible combinations
capable of achieving elimination, and the number of possible combinations indeed drops from
32 to 24. Notably, the optimal combination remains unchanged, as illustrated in Fig. 8, but
it comes with an optimal cost of 1.28, which is 3% higher than for Example 1. Moreover,
the second-best configuration is now unique.

Fig. 8: Optimal combination (green) and second-best combination (orange) of three patches
for parameters in (20). Unlike in Fig. 7, there is no diffusion between patches 4 and 7.

Assume now that there is no diffusion from patch 5 to patch 7 and from patch 7 to patch
6, as illustrated in Fig. 9. The algorithm indicates that there are 23 possible combinations
of patches that can lead to elimination with appropriate control. The best combination is
{2, 3, 5} with an optimal total cost of 1.11. Notably, the algorithm determines that it is
impossible to eliminate the population when C = {1, 3, 4}.

Let us assess the minimal attainable positive equilibrium point for such C. The residual
graph is reducible, and composed of three strongly connected components, noted in acyclic
order G1,G2 and G3, where G1 is the graph composed of the unique patch 6, G2 the graph
composed of the patch 7, and G3 the graph composed of the patches 2 and 5 and the diffusion
between them, as illustrated in Fig. 10a. We apply Theorem 4.2. One has A|VG1 ,VG1

=
g6(0) − D36 − D76 = −0.26 ≤ 0, which implies x∞

6 = x∞|VG1
= 0. Similarly, A|VG2 ,VG2

=
g7(0) − D57 = −0.06 ≤ 0, leading to x∞

7 = x∞|VG2
= 0. Next, we examine A|VG3 ,VG3

which is given by A|VG3 ,VG3
=

(
g2(0)−D12 −D42 −D52 D25

D52 g5(0)−D25

)
=

(
−0.46 0.2
0.2 −0.06

)
.

Therefore, s(A|VG3 ,VG3
) = 0.03 > 0, which implies (x∞

2 , x∞
5 ) = x∞|VG3

≫ 02. Moreover, still
by Theorem 4.2, one has that (x∞

2 , x∞
5 ) is the unique positive equilibrium of the system

ẋ2 = x2 (g2(x2)−D12 −D42) +D25x5 −D52x2, ẋ5 = x5g5(x5) +D52x2 −D25x5.

By applying Newton-Raphson method, ones finds numerically that (x∞
2 , x∞

5 ) = (469.52, 1097.04)
for the growth functions

gi(xi) = 0.14(1− xi

Ki

), i = 1, ..., 7 (21a)
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and carrying capacities

K1 = 7, 000, K2 = 9, 000, K3 = 12, 000, K4 = 16, 000,

K5 = 6, 000, K6 = 13, 000, K7 = 19, 000.
(21b)

An illustration when large mortality terms are introduced in the patches {1, 3, 4} is provided
in Fig. 10b for the initial condition

x1(0) = 8, 697.3, x2(0) = 10, 0024.5, x3(0) = 8, 846.3, x4(0) = 10, 678.5,

x5(0) = 11, 496.7, x6(0) = 5, 535.6, x7(0) = 8, 844.8.
(22)

Fig. 9: Network configuration with seven patches. The arrows indicate unidirectional mi-
gration.
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(a) Residual graph when C = CI =
{1, 3, 4}
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(b) Population trajectory when C = {1, 3, 4}
and (ρ1, ρ3, ρ4) = (1000, 1000, 1000).

Fig. 10: Residual graph (a) and population trajectories when large linear mor-
tality terms are introduced at Time = 50 in patches 1,3 and 4 (b) for parameters
in (20), (21a) and (21b). The positive equilibrium point for (b) is equal to (0.094, 469.97,
0.0000376, 0.094, 1097.89, 0.00002.89, 0.0000964).

Example 3

Let us now revert to the initial configuration of Example 1, and assume there is no
migration between patches 2 and 5, 3 and 4, and 6 and 7, to create a chain structure. This
type of structure occurs, for example, when the orchards are positioned side by side. In such
cases, it is likely that insects will migrate from one orchard to another sequentially, without
skipping any.

The algorithm outputs that 8 combinations of three patches can lead to the population
elimination. The optimal combination is depicted in Fig. 11, and the associated optimal
total cost increases to 1.78, which is 39% higher than the optimal cost in Example 2 (1.28).
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Fig. 11: Optimal combination (green) and second-best combinations (orange) of three
patches for parameters in (20). Unlike in Fig. 7, there is no diffusion between patches 2
and 5, 6 and 7, and 3 and 4.

7 Conclusion
Having in mind the issue of control of insects vectors or insects pests, we considered in

this paper a metapopulation model with patches linearly interconnected, and explored the
global effects of (on purpose) increase of the mortality in some of these patches. The patches
are classified in three categories, depending on whether the local value of the mortality rate
may be increased or not (controllable or uncontrollable patches); and in the former case,
whether the additional mortality rate may be chosen arbitrarily large, or equal at most to a
given quantity (infinitely controllable or finitely controllable patches). Typically this setting
is supposed to replicate mass trapping campaigns aimed at eliminating the population in an
heterogeneous environment where the control application is submitted locally to restrictions.

With the help of results by Y. Takeuchi et al., we showed that the sign of the stability
modulus of the Jacobian at the origin determines the asymptotic behaviour of such model. If
it is non-positive, then the population becomes extinct in every patch; while if it is positive,
then there exists a unique non-negative and non-zero equilibrium, which is positive and
globally asymptotically stable.

Based on this preliminary result, the possibility of eliminating the population at a given
exponential convergence rate by adequate choice of the mortality rates was investigated. It
turns out that elimination feasibility depends upon the value of the stability modulus of the
Jacobian matrix at the origin of some residual system, obtained by removing the infinitely
controllable patches and by adjusting the mortality rates in the finitely controllable patches
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at their maximum value allowed. When the stability modulus of the residual system is
positive, then the best that can be done is to lower the positive equilibrium to some minimum
value. When it is negative, elimination is possible, and we showed how the choice of the
mortality rates in the controllable patches may be done in order to achieve elimination while
minimizing some control cost.

We then applied these results numerically, using life cycle characteristics of Bactrocera
dorsalis. We investigated scenarios with different intrinsic growth rates and migration pa-
rameters, and highlighted the corresponding effects on the optimal elimination strategies.
Our findings underscore the importance of tailoring elimination strategies to seasonal vari-
ations, which influence intrinsic growth rates and diffusion coefficients. For example, one
could consider the effect of the temperature on the intrinsic growth rate, as done in [20,
Table 5].

We also studied the effects induced by modification of the network connectivity. We
showed by examples that some patches play a critical role, and that the impossibility to
control them directly may lead to significant cost increase, or even control failure. This points
out the importance of considering early engagement, thorough explanation, and detailed
information dissemination to landowners who are hesitant about intervention. We believe
that mathematical modelling and simulations can be of great help to design, size and schedule
control strategies, but also to convince reluctant people.

Finally, our work stresses the crucial need of estimation methods for the migration rates
in the field in order to develop effective control strategies. Techniques such as Mark-Release-
Recapture [44, 31] can be employed to measure the flux between the target areas. While
such experiments are lengthy, challenging, and not always successful, they are essential for
minimizing the risk of control failure.

This paper may serve as basement for further investigations on vector/pest control tools.
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Appendix – Demonstrations

A Fundamental stability result (Thm. 2.2)
First, let us define the following matrix.

Ar := D + diag(ri), (A.23)

where for every i = 1, ..., n,
ri := sup

xi≥0
gi(xi).

In particular, when (H2) holds , Ar = A, and s(Ar) is simply written s(A).
To prove Theorem 2.2, let us introduce the following result which summarizes the asymp-

totic behaviour of the model (1), depending on Assumptions (H2), (H3) and (H4).

Theorem A.1.

(i) If s(Ar) ≤ −α for some α > 0, then the origin is α-GAS on Rn
+ for system (1).

Moreover, if (H2) holds, then this statement is still true for α = 0

(ii) Assume (H4) holds. If s(A) > 0, then any solution x of the model (1) initiated in a
point x0 > 0n satisfies

lim inf
t→+∞

x(t)≫ 0n.

Furthermore, if (H3) also holds, then the model (1) admits at least one non-negative
and non-zero equilibrium x∗, which is necessarily positive.

Finally, if in addition to (H3) and (H4), (H2) also holds, then x∗ is unique and GAS
on Rn

+ \ {0n} for the system (1).

Proof. The proofs of points (i) for the global asymptotic stability of the origin and (ii) may
be obtained by adapting those provided by Takeuchi for the model (5) in [36, 47], under the
assumption that (H1), (H2), (H3) and (H4) hold. (In Takeuchi’s work, these assumptions
are merged.)

Let us now prove the α-global asymptotic stability of the origin in point (i) for some
α > 0. Assume s(Ar) ≤ −α < 0. By definition of Ar in (A.23), F (x) ≤ Arx. As the linear
system ẋ = Arx is cooperative [46], it follows that for any initial condition x0 ≥ 0n, the
solution x(t) of the system (1) is upper-bounded by the solution of the linear system, that
is,

0n ≤ x(t) ≤ eArtx0.

On the other hand, there exists a block diagonal matrix J , where each block is a Jordan
matrix, and an invertible matrix P such that Ar = PJP−1. Therefore,

∥x(t)∥ ≤ ∥eArtx0∥ = ∥PeJtP−1x0∥ ≤ C∥eJt∥. (A.24)

38



If Ar is diagonalizable, then J is the diagonal matrix with the eigenvalues λ1, ..., λn of Ar

on its diagonal. Therefore, eJt = diag(eλ1t, ..., eλnt), so that ∥eJt∥ ≤ e−αt. It follows

∥x(t)∥ ≤ Ce−αt.

Therefore, for any α′ < α, one has eα
′t∥x(t)∥ ≤ Ce(α

′−α)t → 0 as t→ +∞.
If Ar is not diagonalizable, for every eigenvalue λ of A, let Jk = λI + N be a Jordan

block of size k, where N is a matrix of all zeros except identities on the first superdiagonal.
Since J is a diagonal block matrix, it is enough to bound each block. For a Jordan block Jk,
Nn = 0 for any n ≥ k, which implies

eJkt = e(λI+N)t = eλteNt = eλt
k∑

n=0

Nn

n!
tn = e(λ+ε)t

k∑
n=0

Nn

n!
tne−εt.

Therefore, for any ε > 0, ∥eJkt∥ ≤ Cεe
(−α+ε)t. One deduces from (A.24) that for any ε > 0,

there exists Cε > 0 such that ∥x(t)∥ ≤ Cεe
(−α+ε)t. Moreover, for any α′ < α, there exists ε

satisfying 0 < ε < α− α′. It follows eα
′t∥x(t)∥ ≤ Cεe

(α′−α+ε)t → 0 as t→ +∞.

When assumption (H2) holds, Theorem 2.2 derives from Theorem A.1.

B Control effects properties (Thm. 3.1, 3.2)
This section is dedicated to the proofs of Theorem 3.1 and Theorem 3.2.

B.1 Proof of Theorem 3.1

Let C ⊂ {1, ..., n}. The function : ρ ∈ Rn
+ 7−→ s

(
A(ρ)

)
being twice differentiable is a

consequence of [13, Lemma 3.1 and Theorem 3.2] extended to irreducible Metzler matrices.
Moreover, for any ρ < ρ′, one has A(ρ′) < A(ρ). This implies that s(A(ρ′)) < s

(
A(ρ)

)
(see

[40, Lemma 1.2], also extended to irreducible Metzler matrices).
The convexity of the function ρ ∈ Rn

+ 7−→ s (A(ρ)) is a consequence of Theorem 4.1 in
[21], which addresses the (strict) convexity properties of (irreducible) non-negative matrices.
Once again, this property can be easily extended to (irreducible) Metzler matrices. When
C ⊊ {1, ..., n}, for any ρ-admissible ρ and ρ′ ∈ Rn

+, it is obvious that ρ−ρ′ cannot be a scalar
multiple of the unit vector, and it also follows from [21, Theorem 4.1] that the function :
ρ 7−→ s

(
A(ρ)

)
is strictly convex.

B.2 Proof of Theorem 3.2

To prove Theorem 3.2, let us first prove the following result.

Proposition B.1. Let A ∈Mn(R) be an irreducible Metzler matrix. Then,

s(A) < 0 =⇒ A non singular and A−1 ≪ 0n×n.
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Proof. We will show the following, statement: for any irreducible matrix A such that −A is
Metzler, s(A) > 0 implies A non singular and A−1 ≫ 0n×n.

As a matter of fact, if −A is a Metzler matrix, then s(A) > 0 iff A non singular and
A−1 > 0n×n (see [28, Theorem 2.5.3]). We make this statement more precise when A is also
irreducible.

One has A = αI−P for some irreducible P > 0n×n and α > 0. Without loss of generality,
let us suppose that α = 1. Then, A = I − P , and since s(A) > 0, s(P ) < 1. Thanks to the
Perron-Frobenius theorem, s(P ) = ρ(P ), where ρ(P ) denotes the spectral radius of P . It
follows ρ(P ) < 1. The Neumann series I+P+P 2+... then converges towards (I−P )−1 = A−1.
Moreover, since P > 0n×n and is irreducible, one has I+P+P 2+...≫ 0n×n, as a consequence
of [6, Theorem 2.1]. Therefore, A−1 ≫ 0n×n.

We can now prove Theorem 3.2. For any i, j = 1, ..., n, note Eij ∈ Mn(R) the matrix
whose (i, j)-th entry is 1 and whose remaining entries are 0. Since x∗(ρ) is an equilibrium
point of system (1), for any ρ ρ-admissible, one has(

D + diag(gi(x
∗
i (ρ)))− diag(ρ)

)
x∗(ρ) = 0n. (B.25)

Let us define
B(ρ) := D + diag(gi(x

∗
i (ρ)))− diag(ρ),

which is an irreducible Metzler matrix. Since we assume x∗(ρ)≫ 0n, it follows from Perron-
Frobenius theorem and (B.25) that x∗(ρ) is a Perron vector of B(ρ). In particular, s(B(ρ)) =
0.

On the other hand {ρ ∈ Rn : x∗(ρ) ≫ 0n} = {ρ ∈ Rn : s(A(ρ)) > 0} is an open set, by
continuity of the function s ◦ A. By differentiating (B.25) for any ρ ≥ 0n and rearranging
sides, one has for any j ∈ C,[

diag

(
∂x∗

i (ρ)

∂ρj
g′i(x

∗
i (ρ))

)
− Ejj

]
x∗(ρ) = −B(ρ)

∂x∗(ρ)

∂ρj
.

Since
diag

(
∂x∗

i (ρ)

∂ρj
g′i(x

∗
i (ρ))

)
x∗(ρ) = diag

(
x∗
i (ρ)g

′
i(x

∗
i (ρ))

)
∂x∗(ρ)

∂ρj
,

it follows [
B(ρ) + diag

(
x∗
i (ρ)g

′
i(x

∗
i (ρ))

)]
∂x∗(ρ)

∂ρj
= Ejjx

∗(ρ). (B.26)

One has that B(ρ)+diag

(
x∗
i (ρ)g

′
i(x

∗
i (ρ))

)
is an irreducible Metzler matrix. Since g′i(x∗

i (ρ)) <

0 a.e. du to (H2) and x∗
i (ρ) > 0,

B(ρ) + diag

(
x∗
i (ρ)g

′
i(x

∗
i (ρ))

)
< B(ρ) a.e.

40



It follows by [40, Lemma 1.2] extended to irreducible Metzler matrices that

s

(
B(ρ) + diag

(
x∗
i (ρ)g

′
i(x

∗
i (ρ))

))
< s
(
B(ρ)

)
= 0 a.e.

Ones deduces from Proposition B.1 that B(ρ) + diag

(
x∗
i (ρ)g

′
i(x

∗
i (ρ))

)
is non singular and

(
B(ρ) + diag

(
x∗
i (ρ)g

′
i(x

∗
i (ρ))

))−1

≪ 0n×n a.e. (B.27)

By multiplying both sides of (B.26) by
(
B(ρ) + diag

(
x∗
i (ρ)g

′
i(x

∗
i (ρ))

))−1

, it follows

∂x∗(ρ)

∂ρj
=

(
B(ρ) + diag

(
x∗
i (ρ)g

′
i(x

∗
i (ρ))

))−1

Ejjx
∗(ρ). (B.28)

Since x∗(ρ)≫ 0n and thanks to (B.27), it follows from (B.28)

∂x∗(ρ)

∂ρj
≪ 0n a.e.

This achieves the proof of Theorem 3.2.

C Limit behaviour for large control (Lemma 3.3, Thm.
3.4, Coro. 3.5)

C.1 Proof of Lemma 3.3

As s(A(ρ)) is strictly decreasing with respect to ρ (see Theorem 3.1), it follows

inf{s(A(ρ)); ρ ρ-admissible} = lim
ρ→ρ

s(A(ρ)).

In particular, the infimum is a minimum if and only if ρ does not take infinite values, i.e. if
and only if CI = ∅.

Denoting the vectors ρCF and 1CI as follows:

(
ρCF
)
i
:=

{
ρi if i ∈ CF
0 if i ∈ CF

, (1CI )i :=

{
1 if i ∈ CI
0 if i ∈ CI

, (C.29)

one has
lim
ρ→ρ

s(A(ρ)) = lim
λ→+∞

s(A(λ1CI + ρCF )).
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C.1.1 Case 1 : CI = C = {1, ..., n}

Let us first suppose that CI = C = {1, ..., n}. In particular, ρCF = 0n, which implies
limρ→ρ s(A(ρ)) = limλ→+∞ s(A(λ1n)). On the other hand, A(λ1n) = D + diag(gi(0)) −
λ diag(1n). Denoting by σ(A(λ1n)) the spectrum of A(λ1n), one has thanks to the Gersh-
gorin circle theorem [22, 49]

σ (A(λ1n)) ⊂
n⋃

i=1

B
(
(A(λ1n))ii ,

n∑
j=1
j ̸=i

Dji

)
, (C.30)

where B denotes closed ball. For any i = 1, ..., n,

(A(λ1n))ii +
n∑

j=1
j ̸=i

Dji = gi(0)− λ
λ→+∞−−−−→ −∞.

It follows from (C.30) that

lim
λ→+∞

s(A(λ1n)) = −∞ = s(A|CI ,CI (ρ)).

The last equality is a consequence of the convention adopted in Definition 1.5 for CI = ∅.

C.1.2 Case 2 : CI ⊊ {1, ..., n}

Without loss of generality, let us suppose that the first nCI patches are infinitely con-
trollable. In any case, it can be achieved by a permutation of components. With such a
convention on the ordering of the components, one has

A(λ1CI + ρCF ) =

(
A|CI ,CI − λInCI

A|CI ,CI
A|CI ,CI A|CI ,CI (ρ)

)
,

where InCI
denotes the nCI × nCI identity matrix. Moreover, one has

lim
λ→+∞

s

(
A|CI ,CI − λInCI

A|CI ,CI
A|CI ,CI A|CI ,CI (ρ)

)
= s(A|CI ,CI (ρ)). (C.31)

Equality (C.31) is a direct application of the following lemma.

Lemma C.1. Let n ≥ 2 and m ∈ N such that n − m ≥ 1. Let A11 ∈ Mm (R), A12 ∈
Mm×(n−m)(R), A21 ∈M(n−m)×m(R) and A22 ∈Mn−m (R). Then,

lim
ε→0+

s

(
A11 − 1

ε
Im A12

A21 A22

)
= s(A22)
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Proof. Drawing inspiration from singular perturbation theory ([34, pp. 49-55]), we find a

change of basis transforming A(ε) :=

(
A11 − 1

ε
Im A12

A21 A22

)
into an upper triangular block

matrix Ã(ε), whose eigenvalues are thus the combined eigenvalues of the diagonal blocks.
For some (n−m)×m matrix L(ε) to be chosen afterwards, let us denote

P :=

(
Im 0

εL(ε) In−m

)
.

Straightforward computations show that

Ã(ε) := PA(ε)P−1 =

(
A11 − 1

ε
Im − εA12L(ε) A12

R(L(ε), ε)− L(ε) εL(ε)A12 + A22

)
,

where R(L, ε) := A21 − εA22L + εLA11 − ε2LA12L. We will now show that, for sufficiently
small ε∗ > 0, there exists, for any ε in [0, ε∗], a fixed-point L(ε) ∈M(n−m)×m(R) of R(L, ε),
that is a solution to the equation R(L, ε) − L = 0. For ε = 0, the unique solution of this
equation is L(0) = A21.

Let c > ∥A21∥. For any L in the compact ball B(0(n−m)×m, c), one has

∥R(L, ε)∥ ≤ ∥A21∥+ (∥A11∥+ ∥A22∥)εc+ ∥A12∥ε2c2.

Take ε∗ > 0 such that ∥A21∥+(∥A11∥+∥A22∥)ε∗c+∥A12∥ε∗2c2 < c. Then, for any ε ∈ [0, ε∗],
the continuous map L 7→ R(L, ε) maps B(0(n−m)×m, c) into itself. Thus, due to Brouwer’s
fixed-point theorem, for any ε ∈ [0, ε∗], R(L, ε) possesses a fixed-point in B(0(n−m)×m, c).

Therefore, for any ε ∈ (0, ε∗],

s(A(ε)) = s(P−1Ã(ε)P )

= s(Ã(ε))

= max

{
s(A11 −

1

ε
Im − εL(ε)A12), s(A22 + εL(ε)A12)

}
= max

{
s (A11 − εL(ε)A12)−

1

ε
, s(A22 + εL(ε)A12)

}
.

As the matrix L(ε) pertain to the bounded set B(0(n−m)×m, c), one deduces in conclusion

lim
ε→0+

s(A(ε)) = max

{
lim
ε→0+

(
s(A11)−

1

ε

)
, s(A22)

}
= s(A22).

This achieves the proof of Lemma C.1, and consequently of Lemma 3.3.

C.2 Proof of Theorem 3.4

Assume first that CI is not empty. If s(A|CI ,CI (ρ)) < 0, then thanks to (10), there exists,
by continuity, ρ′ ρ-admissible such that s(A(ρ′)) ≤ 0. Let ρ ρ-admissible satisfying ρ ≥ ρ′.
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By Theorem 3.1, there exists α := −s(A(ρ)) ≥ −s(A(ρ′)). One deduces from Theorem 2.2
that the origin is α-GAS on Rn

+ for the system (7), which proves the point (i) of Theorem 3.4
when CI ̸= ∅. If now s(A|CI ,CI (ρ)) ≥ 0, then inf{s(A(ρ)); ρ ρ-admissible} ≥ 0. As CI is not
empty, the infimum is not a minimum, due to Lemma 3.3, and the point (ii) of Theorem 3.4
when CI ̸= ∅ also follows from Theorem 2.2.

If now CI is empty, then the infimum in (10) is a minimum, and A|CI ,CI (ρ) = A(ρ).
Therefore, the origin of (7) is GAS for ρ-admissible ρ if and only if s(A(ρ)) ≥ 0.

C.3 Proof of Corollary 3.5

Let us first recall that

ACI ,CI (ρ) = (Dij)i∈C,j∈C + diag
(
gi(0)− ρi, i ∈ CI

)
.

(i) Let us suppose that gi(0)−ρi−
∑
j∈CI

Dji < 0 for every i ∈ CI . We show that s(ACI ,CI (ρ)) < 0.

The Gershgorin circle theorem [22, 49] states that

σ(A|CI ,CI (ρ)) ⊂
⋃
i∈C

B
((

A|CI ,CI (ρ)
)
i,i
,
∑
j∈CI
j ̸=i

Dji

)
.

Furthermore, for any i ∈ CI ,

(
A|CI ,CI (ρ)

)
i,i
= gi(0)− ρi −

n∑
j=1
j ̸=i

Dji,

so that (
A|CI ,CI (ρ)

)
i,i
+
∑
j∈CI
j ̸=i

Dji = gi(0)− ρi −
∑
j∈CI

Dji < 0.

Therefore, the Gershgorin circles of ACI ,CI stay strictly at the left of the complex axis. This
implies that s(A|CI ,CI

(ρ)) < 0. The conclusion then follows from Theorem 3.4.
(ii) Let us suppose that gi(0) − ρi −

∑
j∈CI

Dji > 0 for every i ∈ CI . We will show that

s(ACI ,CI (ρ)) > 0. Let us suppose without loss of generality that the patches in CI are the
first nCI patches. One has,

1T
nCI

A|CI ,CI (ρ) =
(
g1(0)− ρ1 −

∑
j∈CI

Dj1, ... , gnC
(0)− ρnCI

−
∑
j∈CI

DjnCI

)
≥ min

i∈CI

{
gi(0)− ρi −

∑
j∈CI

Dji

}
1T
nCI

.
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Since mini∈CI

{
gi(0)− ρi −

∑
j∈CI

Dji

}
> 0 and since 1nCI

> 0nCI
, we can apply [39, Lemma 8],

which can be easily extended to Metzler matrices. Therefore,

s(AT
CI ,CI

(ρ)) ≥ min
i∈CI

{
gi(0)− ρi −

∑
j∈Ci

Dji

}
> 0.

As s(A|CI ,CI (ρ)) = s(AT
CI ,CI

(ρ)), it follows s(ACI ,CI ) > 0. The conclusion then follows from
Theorem 3.4.

D Minimal globally asymptotically stable equilibrium (Thm. 4.1
and Thm. 4.2)

First note that if s(A|CI ,CI (ρ)) < 0, or s(A|CI ,CI (ρ)) ≤ 0 and CI = ∅, it directly follows
from Theorem 3.4 that

x∞ = min{x∗(ρ) : ρ ρ-admissible} = 0n.

More generally, as x∗(ρ) is a non-decreasing function of ρ and using similar arguments as
for the proof of Lemma 3.3 in Appendix C.1, one has:

x∞ = lim
ρ→ρ

x∗(ρ) = lim
λ→+∞

x∗(λ1CI + ρCF ),

for ρCF and 1CI respectively defined in (C.29).
For any λ ≥ 0, x∗(λ1C + ρCF ) belongs to the set

E := {x ∈ Rn
+ : x ≤ x∗(0n)}. (D.32)

Note that this set is independent of λ and is compact.
On the other hand, for any λ > 0, x∗(λ1CI + ρCF ) is the largest non-negative solution of

the following system
−xi +

1
λ

xigi(xi) +
n∑

j=1
j ̸=i

Dijxj −
n∑

j=1
j ̸=i

Djixi

 = 0 i ∈ CI

xi (gi(xi)− ρi) +
n∑

j=1
j ̸=i

Dijxj −
n∑

j=1
j ̸=i

Djixi = 0 i ∈ CI .

Due to the fact that x∗(λ1C + ρCF ) belongs to the bounded set E, the limit equations when
λ→ +∞ are given by

xi = 0 i ∈ CI

xi

(
gi(xi)− ρi −

∑
j∈CI

Dji

)
+
∑
j∈CI
j ̸=i

Dijxj −
∑
j∈CI
j ̸=i

Djixi = 0 i ∈ CI . (D.33)
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Notice that any solution x of this system satisfies

x|CI = 0nCI
(D.34)

and x|CI is an equilibrium point of the residual system (11).

D.1 Irreducible residual system

We now assume that D|CI ,CI is irreducible, so that we can apply Theorem 2.2 to the
system (11). Since A|CI ,CI (ρ) is the Jacobian in zero of the system (11), it follows that

• If s(A|CI ,CI (ρ)) ≤ 0, then the origin of the system (11) is GAS on RnC
+ .

• If s(A|CI ,CI (ρ))) > 0, then the system (11) admits a positive equilibrium point, which
is globally asymptotically stable on RnC

+ \ {0nC
}.

In any case, the globally asymptotically stable equilibrium point belongs to the set E defined
in (D.32) and is the largest solution of the system (D.33). Moreover, since E is compact, the
equilibrium x∗(λ1CI +ρCF ) has at least a limit point in E when λ goes to infinity. Therefore,

• If s(A|CI ,CI (ρ)) ≤ 0, then

x∞|CI = lim
λ→+∞

x∗(λ1CI + ρCF )|CI = 0nCI
.

• If s(A|CI ,CI (ρ)) > 0, then

x∞|CI = lim
λ→+∞

x∗(λ1CI + ρCF )|CI

is equal to the positive equilibrium of the residual system (11).

Moreover, in both cases, it follows from (D.34)

x∞|CI = lim
λ→+∞

x∗(λ1CI + ρCF )|CI = 0nCI
.

This ends the proof of Theorem 4.1.

D.2 Reducible residual system

To prove Theorem 4.2, we have to study the equilibrium points of the residual system
(11) on CI , which may not be irreducible. For reasons that will be explained later, in Section
D.2.2, this requires to analyze an auxiliary model to the model (1), with a constant inflow.
This model is studied in Section D.2.1, where the existence of a positive GAS equilibrium
is established (Theorem D.1). To prove this result, we first demonstrate the existence of a
positive GAS equilibrium for the one-patch model (Lemma D.2 in Section D.2.1.1). We then
derive a persistence result for the multi-patch model (Lemma D.3 in Section D.2.1.2), which
allows to prove Theorem D.1 in Section D.2.1.3. The proof of Theorem 4.2, which relies on
Theorem D.1 is then given in Section D.2.2.
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D.2.1 Auxiliary model with constant inflow

Let us study the following auxiliary model, which corresponds to the model (1) with the
addition of a non-negative constant vector C = (C1, ..., Cn).

ẋi = xigi(xi) +
n∑

j=1
j ̸=i

Dijxj −
n∑

j=1
j ̸=i

Djixi + Ci, xi(0) ≥ 0, i = 1, ..., n. (D.35)

Let us define FC(x) as the right hand side of the model (D.35), that is,

FC(x) :=
(
FC1
1 (x), ..., FCn

n (x)
)
, FCi

i (x) := xigi(xi) +
n∑

j=1
j ̸=i

Dijxj −
n∑

j=1
j ̸=i

Djixi + Ci.

Notice that FC(x) = F (x) +C, where F , defined in (2), is the vector form of the right-hand
side of the system (1). When C = 0n, the system (D.35) is identical to the system (1). When
C > 0n, the aim of this subsection is to prove the following theorem.

Theorem D.1. Assume (H2), (H3) and (H4) hold. If C > 0n, then the system (D.35)
admits a unique equilibrium point x∗, which is positive and GAS on Rn

+.

To prove this theorem, one first studies the one-patch model.

D.2.1.1 One-patch model

The one-patch model writes

ẋ1 = x1g1(x1) + C1, x1(0) ≥ 0. (D.36)

When C1 > 0, the following lemma gives the asymptotic behaviour of the solutions of the
model (D.36).

Lemma D.2. Assume C1 > 0. Then any solution x1 of (D.36) initiated in x1(0) ≥ 0
satisfies

lim inf
t→+∞

x1(t) > 0. (D.37)

If in addition (H3) holds, then the system (D.36) admits a positive equilibrium point. More-
over, if (H2) also holds, then this equilibrium point is GAS on R+.

Proof. Since C1 > 0, one has F1(0) = C1 > 0. By continuity of F1, the exists a > 0 such
that

F (a) > 0 for any a ∈ [0, a).

Moreover, for any a ∈ [0, a), the set {x1 ≥ a} is positively invariant.
Let x1(0) > 0. There exists a ∈ (0, a) such that x1(0) ≥ a. Since {x1 ≥ a} is positively

invariant, it follows x1(t) ≥ a for any t ≥ 0. This implies (D.37).
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If x1(0) = 0, then since F (x1(0)) = F (0) > 0, there exists η such that for any t ∈ [0, η),
x1(t) > 0. As above, one shows that (D.37) is veritifed.

Let us now assume that (H3) holds. The function x1 7−→ x1g1(x1) is null when x1 = 0,
and converges towards −∞ as x1 → +∞. Therefore, by continuity, there exists x∗

1 > 0
satisfying x∗

1g1(x
∗
1) = −C1 < 0. This proves the existence of a positive equilibrium point for

the system (D.36). Moreover, since x∗
1 > 0, we have in particular that g1(x

∗
1) < 0. Let us

assume that (H2) holds and let x1 > x∗
1. Then,

FC1
1 (x1) = x1g1(x1) + C1

< x1g1(x
∗
1) + C1 since g1 is decreasing

< x∗
1g1(x

∗
1) + C1 since x1 > x∗

1 > 0 and g1(x
∗
1) < 0

= 0.

Therefore,
FC1
1 (x1) < 0, for any x1 > x∗

1. (D.38)

Following the same methodology for x1 < x∗
1, one finds

FC1
1 (x1) > 0, for any x1 < x∗

1. (D.39)

One easily deduces from (D.38) and (D.39) that x∗
1 is globally asymptotically stable on

R+.

D.2.1.2 Multi-patch model

Drawing inspiration from [36, 47], one now studies the general case where n ≥ 2.

Lemma D.3. If (H3) holds, then all the solutions of (D.35) are uniformly bounded.
If (H4) holds and C > 0n, then any solution x of (D.35) initiated in a point x(0) ≥ 0n

satisfies
lim inf
t→+∞

x(t)≫ 0n. (D.40)

If (H3) and (H4) both hold, and if limxi→+∞ gi(xi) < gi(0) for every i = 1, ..., n, then
the system (D.35) admits a positive equilibrium point.

Proof.
(i) Boundedness

Assume (H3) holds and let us compute the sum of the ẋi.

n∑
i=1

ẋi =
n∑

i=1

xigi(xi) +
n∑

i=1

Ci.

Thanks to (H3), lim
xi→+∞

gi(xi) < 0, so that xigi(xi) + Ci < 0 for xi large enough. Therefore,
n∑

i=1

ẋi < 0 for sufficiently large xi, i = 1, ..., n.
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(ii) Persistence
Assume (H4) holds and let x(0) ≥ 0n.
Step 1: Let us prove that for every i = 1, ..., n such that Ci > 0, lim inf

t→+∞
xi(t) > 0 for any

xi(0) ≥ 0. Let i ∈ {1, ..., n} such that Ci > 0, then

ẋi = xigi(xi) +
n∑

j=1
j ̸=i

Dijxj −
n∑

j=1
j ̸=i

Djixi + Ci ≥ xi

gi(xi)−
n∑

j=1
j ̸=i

Dji

+ Ci.

Let us define the system

ẋi = xi

gi(xi)−
n∑

j=1
j ̸=i

Dji

+ Ci. (D.41)

Let xi and x̃i be respectively the solutions of system (D.35) and (D.41) initiated in xi(0) ≥ 0.
By comparison,

xi(t) ≥ x̃i(t) for any t ≥ 0,

Therefore,
lim inf
t→+∞

xi(t) ≥ lim inf
t→+∞

x̃i(t) > 0,

the last inequality being a consequence of Lemma D.2.
Step 2: Let us prove that if there exists i and j in {1, ..., n} such that i ̸= j, lim inf

t→+∞
xj(t) >

0 and Dij > 0, then lim inf
t→+∞

xi(t) > 0.

Since lim inf
t→+∞

xj(t) > 0, there exists ε > 0 and T ≥ 0 such that

xj(t) ≥ ε for any t ≥ T.

Then, for any t ≥ T ,

ẋi = xigi(xi) +
n∑

k=1
k ̸=i

Dikxk −
n∑

k=1
k ̸=i

Dkixi + Ci

≥ xigi(xi) +Dijxj −
n∑

k=1
k ̸=i

Dkixi + Ci

≥ xigi(xi) +Dijε−
n∑

k=1
k ̸=i

Dkixi + Ci

= xi

gi(xi)−
n∑

k=1
k ̸=i

Dki

+Dijε+ Ci,
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with Dijε + Ci > 0. The proof of the persistence in the i-th patch is then the same as in
Step 1.

Step 3: Let us prove that lim inf
t→+∞

x(t)≫ 0n. Since C > 0n, there exists i ∈ {1, ..., n} such

that Ci > 0. Moreover, for any k ∈ {1, ..., n} such that k ̸= i, there exists by irreducibility
of D a path between patches k and i, that is, there exists m ∈ {2, ..., n} and a2, ..., am−1 all
different such that

Dkam−1 ...Da3a2Da2i > 0.

It follows by induction and from step 1 and step 2 that (D.40) holds for any x(0) ≥ 0n.
(iii) Positive equilibrium point

Let us now assume that (H3) and (H4) both hold, and that limxi→+∞ gi(xi) < gi(0) for
every i = 1, ..., n. Since A is irreducible thanks to (H4), one may apply the Perron-Frobenius
theorem [6]. It states that there exists a vector v ≫ 0n such that

Av = s(A)v. (D.42)

On the other hand, with some computations, we find that for any scalar a > 0,

FCi
i (av) = avi(gi(avi)− gi(0)) + a

(
Av
)
i
+ Ci. (D.43)

Let us first assume s(A) > 0. Thanks to (D.42) and since v ≫ 0n, we have Av ≫ 0n.
For every i = 1, ..., n, one has thanks to (D.43) that

∂FCi
i (av)

∂a

∣∣∣∣
a=0

= (Av)i > 0.

and
FCi
i (av)|a=0 = Ci ≥ 0.

Therefore, there exists a scalar a > 0 such that

FC(av)≫ 0n for any 0 < a < a.

Let x be the solution of the system (D.35) initiated in av for 0 < a < a. Since FC(av)≫ 0n
and since the system (D.35) is cooperative, x is increasing. As it is bounded thanks to
Lemma D.3, it converges towards a positive equilibrium. Therefore, if s(A) > 0, there exists
a positive equilibrium point.

Let us now assume s(A) ≤ 0. Thanks to (D.42) and since v ≫ 0n, one has Av ≤ 0n. Since
limxi→+∞ gi(xi) < gi(0), it follows as a consequence of (D.43) that, for every i = 1, ..., n,

FCi
i (av) < 0 for a large enough. (D.44)

Therefore, there exists a scalar a > 0 such that

FC(av)≪ 0n for any a > a.

Let x be the solution of the system (D.35) initiated in av for a > a. Since FC(av) ≪ 0n,
x is decreasing along this trajectory. By boundedness and since (D.40) holds, it converges
towards a positive equilibrium point. This proves the existence of a positive equilibrium
point if s(A) ≥ 0 and achieves the proof of Lemma D.3.
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D.2.1.3 Proof of Theorem D.1

If (H2) holds, it implies that limxi→+∞ gi(xi) < gi(0) for every i = 1, ..., n. If (H3)
and (H4) also hold, it follows from Lemma D.3 that the system (D.35) admits a positive
equilibrium point.

Let x∗ be a positive equilibrium4. With some computations, one finds the identity

FCi
i (ax) = axi

(
gi(axi)− gi(xi)

)
+ aFCi

i (x) + (1− a)Ci,

valid for any x ∈ Rn
+ and any scalar a ≥ 0. In particular, for any scalar a > 0,

FCi
i (ax∗) = ax∗

i

(
gi(ax

∗
i )− gi(x

∗
i )
)
+ (1− a)Ci.

Since gi is decreasing and Ci ≥ 0, this leads to{
FCi
i (ax∗) > 0 for any 0 < a < 1

FCi
i (ax∗) < 0 for any a > 1.

By [36, Lemma 2], x∗ is then globally asymptotically stable on Rn
+ \ {0n}. Moreover, since

FC(0n) = C > 0n, the solution of (D.35) initiated in the origin is increasing. By boundedness
of the solutions, it converges towards the unique equilibrium point x∗. It implies that x∗ is
GAS on Rn

+.

D.2.2 Proof of Theorem 4.2

First, as in the proof of Theorem 4.1 in Appendix D.1, one has

x∞|CI = 0nCI

and x∞|CI is equal to the equilibrium point that attracts every positive trajectory of the
residual system (11).

ẋi = xi

(
gi(xi)− ρi −

∑
j∈CI

Dji

)
+
∑
j∈CI
j ̸=i

Dijxj −
∑
j∈CI
j ̸=i

Djixi, i ∈ CI .

To prove the existence of this equilibrium point, one splits ΓCI into strongly connected
components and order them such that they follow an acyclic ordering. Therefore, for any
strongly connected subgraph G and any of its upstream subgraphs G−, one has Dji = 0 for
every j ∈ VG− and i ∈ VG. Similarly, for any subgraph G+ in its downstream subgraphs, one
has Dij = 0 for every j ∈ VG+ and i ∈ VG. It follows that

ẋi = xi

gi(xi)− ρi −
∑

j∈CI∪VG+

Dji

+
∑
j∈VG
j ̸=i

Dijxj −
∑
j∈VG
j ̸=i

Djixi +
∑

j∈VG−

Dijxj, i ∈ VG.

4Notice that by (D.40), any equilibrium of system (D.35) is necessarily positive when (H4) holds.
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To find the value of x∞|VG , we replace xj by x∞
j for every j ∈ VG− . This results in the

following system:

ẋi = xi

gi(xi)− ρi −
∑

j∈CI∪VG+

Dji

+
∑
j∈VG
j ̸=i

Dijxj −
∑
j∈VG
j ̸=i

Djixi +
∑

j∈VG−

Dijx
∞
j , i ∈ VG.

(D.45)
The Jacobian of this system evaluated in zero, is equal to A|VG ,VG(ρ). Moreover, since its
connectivity matrix is irreducible, we can apply Theorem 2.2 and Theorem D.1. In particular,
since x∞|VG is the equilibrium attracting every positive trajectory of (D.45), one has either
x∞|VG = 0nVG

or x∞|VG ≫ 0nVG
.

Assume first that either VG− is of in-degree zero, or x∞|VG− = 0nVG−
. In such a case, the

system (D.45) is equal to

ẋi = xi

gi(xi)− ρi −
∑

j∈CI∪VG+

Dji

+
∑
j∈VG
j ̸=i

Dijxj −
∑
j∈VG
j ̸=i

Djixi, i ∈ VG. (D.46)

System (D.46) is in the form of system (1), and applying Theorem 2.2 yields:

• if s(A|VG ,VG(ρ)) > 0, then the system (D.46) admits a positive equilibrium point, which
is GAS on R

nVG
+ \ {0nVG

}. Then x∞|VG is equal to this positive equilibrium point.

• if s(A|VG ,VG(ρ)) ≤ 0, then the origin of (D.46) is GAS on R
nVG
+ , yielding x∞|VG = 0nVG

.

Assume now that VG− ̸= ∅ and x∞|VG− > 0nVG−
. In such case, there exists at least one

strongly connected component H in G− such that x∞|VH− ≫ 0nVH
. Therefore, there exists

i ∈ VG such that ∑
j∈VG−

Dijx
∞
j > 0.

Then, by applying Theorem D.1, the system (D.45) admits a unique equilibrium, which is
positive and GAS on R

nVG
+ , and x∞|VG ≫ 0nVG

is equal to this equilibrium.

E Properties of the minimization problem (Thm. 5.1 and
Lemma 5.2)

E.1 Proof of Theorem 5.1

The set of the ρ-admissible vectors ρ is convex, as well as the function f(ρ). Furthermore,
Theorem 3.1 states that ρ 7−→ h(ρ) is convex. It follows that Problem (13) is a convex
problem.
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Now assume s(A|CI ,CI (ρ)) < 0 and let α satisfy 0 ≤ α < −s(A|CI ,CI (ρ)). The set of
the controls ρ satisfying the constraints of Problem (13) is a closed set, and is non empty
by assumption on α and s(A|CI ,CI (ρ)). Indeed, by Lemma 3.3, inf{h(ρ); ρ ρ-admissible} =
s(A|CI ,CI (ρ)) < −α, so that by continuity of the function h, there exists a ρ-admissible
control ρ satisfying h(ρ) ≤ −α. Since f(ρ)→ +∞ as ∥ρ∥ → +∞, the Problem (13) admits
at least one local minimizer ρ∗ (see [7]), which is necessarily global by convexity. The set of
minimizers is convex, by convexity of the problem.

Let ρ∗ be a minimizer of Problem (13). If s(A) = s(A(0n)) > −α, then ρ∗ > 0n since ρ∗

is non-negative. Moreover, assume by contradiction that h(ρ∗) < −α. By continuity of h,
there exists ε ∈ (0, 1) such that h ((1− ε)ρ∗) < −α. Then, (1− ε)ρ∗ satisfies the constraints
of Problem (13). As ρ∗ > 0n, it follows f(ρ∗) > 0. Therefore, f((1− ε)ρ∗) = (1− ε)f(ρ∗) <
f(ρ∗). This contradicts the fact that ρ∗ is a global minimizer of Problem (13). Therefore,
h(ρ∗) = α.

If s(A) ≤ −α, then 0n is the unique minimizer. Indeed, assume there exists another
minimizer ρ∗∗ > 0n. In such case, one has f(ρ∗∗) > 0n = f(0n), which is in contradiction
with the fact that ρ∗∗ is a global minimizer.

Assume now that C ⊊ {1, ..., n} and let us show the uniqueness of the minimizer. Denote
f(ρ∗) := f ∗. When s(A) ≤ −α, one has ρ∗ = 0n and it is the unique minimizer, as
seen above. Now assume that s(A) > −α. Since ρ∗ > 0n, it follows that f ∗ > 0. Let us
suppose by contradiction that Problem (13) admits another global minimizer ρ∗∗ ̸= ρ∗. Since
C ̸= {1, ..., n}, h(ρ) is strictly convex by Theorem 3.1. Then,

h

(
ρ∗ + ρ∗∗

2

)
<

1

2
h(ρ∗) +

1

2
h(ρ∗∗) ≤ −α.

Consequently, by continuity of r, there exists a scalar ε ∈ (0, 1) such that

h

(
(1− ε)

ρ∗ + ρ∗∗

2

)
< −α,

with (1 − ε)ρ
∗+ρ∗∗

2
satisfying the constraints of Problem (13). By linearity of f and since

f(ρ∗) = f(ρ∗∗) = f ∗ > 0,

f((1− ε)
ρ∗ + ρ∗∗

2
) = (1− ε)f ∗ < f ∗.

It is in contradiction with ρ∗ being a global minimizer of Problem (13). This achieves the
proof of Theorem 5.1.

E.2 Proof of Lemma 5.2

Let us compute the gradient (with respect to the variable ρ) of the function fϕ,t = tf+ϕ.
Recall that we assume with no loss of generality that the control is introduced in the first nC
patches, and among them, the infinite controllable patches are the first nCI patches. In any
case, this may be achieved by a permutation of components. Moreover, we identify in this
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section any ρ-admissible ρ as well as the vector π with their components in C. Consequently,
these vectors belong to RnC

+ , and the functions h = s(A(·)), f , ϕ and fϕ,t are now defined in
RnC

+ .
By composition,

∇ϕ(ρ) = − 1

h(ρ) + α
∇h(ρ)− 1

ρ
+

(
0nCI

,
1

ρ|CF − ρ|CF

)T

.

Since ∇f(ρ) = π, one deduces that

∇fϕ,t(ρ) = tπ − 1

h(ρ) + α
∇h(ρ)− 1

ρ
+

(
0nCI

,
1

ρ|CF − ρ|CF

)T

.

Moreover, with some computations, one finds that for any i = 1, ..., nC,

(∇h(ρ))i = −∂s(A(ρ))

∂ii
,

where ∂s(A(ρ))
∂ii

is the derivative of s(A(ρ)) with respect to the (i, i)-th component of A(ρ).
Let Q(ρ) := h(ρ)I − A(ρ) and note Q#(ρ) its group inverse. Equation (15) is then deduced
from the following identity, extracted from [13, Lemma 3.1]:

∂s (A(ρ))

∂ii
=
(
I −Q(ρ)Q#(ρ)

)
ii
.

Let us now compute the Hessian matrix of the function fϕ,t. By composition,

∇2ϕ(ρ) =
1

(h(ρ) + α)2
∇h(ρ)∇h(ρ)T − 1

h(ρ) + α
∇2h(ρ) + diag

(
1

ρ2

)
+ diag

(
0nCI

,
1

(ρ|CF − ρ|CF )2

)
.

Since ∇2f(ρ) = 0nC×nC , the conclusion follows for ∇2fϕ,t(x). Let us now compute ∇2h(ρ).
For any i, j = 1, ..., nC, (

∇2h(ρ)
)
ij
=

∂2s

∂jj∂ii
(A(ρ)) .

Thanks to [13, Theorem 3.2], Equality (16) then follows. This achieves the proof of Lemma 5.2.
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