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Abstract: PIII/PV redox cycling has recently emerged as a valuable strategy to minimized the chemical waste 
generated by phosphine-mediated reac>on, as well as enabling asymmetric transforma>on. In this ar>cle, we 
detail our contribu>on to this field by designing a series of diversely func>onalized, electron-rich bridgehead 
phosphine oxides with structural features that make them well-suited as PIII/PV redox organocatalysts. Their 
cataly>c performance has been assessed in various model reac>ons, including WiFg or Staudinger reac>ons, 
along with the reduc>on of ac>vated alkenes and allenes. For each of these scenarios, we performed a 
compara>ve analysis with exis>ng catalysts in order to demonstrate the applicability and limita>on of 
methanophosphocines. 
 
 
Introduc-on 
Phosphorus-mediated reac>ons, such as WiFg, Appel, Staudinger or Mitsunobu reac>ons cons>tute funda- 
mental tools in the synthe>c chemist arsenal.[1] These reac>ons enable a wide range of func>onal group 
transforma>ons, and play pivotal roles in forming key carbon-carbon, carbon-nitrogen and carbon-oxygen 
bonds, making them widely embraced by synthe>c chemists in academia. However, scaling-up these reac>ons 
poses a significant challenge due to the stoichiometric produc>on of phosphine oxide by-products. The 
substan>al genera>on of this highly polar species commonly results in intricate work-up and purifica>on 
procedures, hampering the overall efficiency of the reac>ons. Furthermore, addressing the phosphine oxide 
issue becomes paramount on an industrial scale, as current recycling phosphine oxide methods are oPen 
hazardous and expensive, and have notable environmental impacts.[2] Among the solu>ons developed to 
alleviate this challenge, PIII/PV redox cycling emerged in 2009 with O’Brien’s groundbreaking report on the 
first phosphorus-based cataly>c WiFg reac>on.[3] This approach employs substoichiometric amounts of an 
electron-rich and strained phosphine, coupled with a silane serving as a chemoselec>ve reducing agent 
(Figure 1, A).[4] Following this ini>al milestone, PIII/PV redox cycling has been successfully applied to a 
variety of common phosphine-mediated reac>ons.[5] Furthermore, it has also demonstrated its efficacy in 
addressing more complex transforma>ons, including nitrenoid chemistry[6] and heterocycle synthesis.[7] 
Another advantage of this methodology is its use of chiral phosphines in substoichiometric amounts for 
enan>oselec>ve synthesis.[8] 
Concurrently with the development of such methodology, organocatalyst structure evolved from O’Brien’s 
phospholane cat-1 to more ac>ve scaffolds, such as dibenzophospholes cat-2 or phosphetanes cat-3 (Figure 1, 
C). Both experimental and theore>cal findings highlighted a correla>on between the formalcharge on the 
phosphorus atom of phosphine oxide and the ease of reduc>on by silanes: a lower formal chargecorresponds 
to a lower energy barrier.[4][9] In addi>on, the shape of phosphine oxide also has an important role on the 
reduc>on process, with op>mal geometry recommended to closely resemble the trigonal bipyramid transi>on 
state, thereby minimizing distor>on energy.[9b] This jus>fies the prevalence of cyclic phosphine oxide 
cons>tuted by small 4- or 5-membered rings, restraining the phosphorus atom subs>tuents at a narrow angle 
close to the op>mal 90°, as illustrated by O’Brien bicyclo[4,2,1]nonane cat-4 and Kwon chiral phosphine oxides 
cat-5. In this series, tributylphosphine cat-6, although electron-rich phosphine, appears as a notable structural 
excep>on. While phosphetanes cat-3 represent a significant advance in terms of efficiency, structural 
modifica>ons of the heterocyclic backbone are limited. Therefore, there is a real challenge in designing 



organocatalysts that are equally effec>ve and also bring forth novel func>onali>es, thereby exploring new 
chemical space. In a 2020 DFT study, Krenske group highlighted the theore>cal low energy barrier of the 
reduc>on of 1- phosphabicyclo[3,3,0]-octane oxide by silane,[9b] previously isolated by Mügge.[10] Although 
the synthesis of the lager goes through an unstable primary alkylphosphine intermediate, the bridgehead 
phosphine oxide ac>vity as PIII/PV organocatalysts are yet to be explored and holds promises. Based on these 
calcu- la>ons and on our ongoing research on methanophosphocine cat-7 a, which features a bridgeheaded 
phosphorus atom, we herein present their first experimental applica>ons as PIII/PV organocatalysts in well-
established benchmark reac>ons (Figure 1, B).[11] 
 

 
Figure 1. PIII/PV redox cycling. (A) General mechanism. (B) Dibenzomethanophosphocines as new PIII/PV organocatalysts. ORTEP 

plot (50% thermal ellipsoids) of the solid-state structure of methanophosphocine cat-7 a. Phosphorus atom is shown in orange and 
oxygen in red. (C) PIII/PV organocatalysts evolu@on toward more strained and electron-rich phosphine. 

 
 
Results and Discussion 

Design and Synthesis of Methanophosphocines 
 
 A set of methanophosphocines cat-7 a–i were prepared using an improved procedure based on a previously 
reported methodology within our research group.[11] Specifically, we employed an effec>ve gold-catalyzed 
intramolecular double hydroaryla>on of bis(arylmethyl)(alkynyl)phosphine oxides as a key step to efficiently 
synthesize the catalysts (detailed informa>on can be found in the SI).[11a] It is noteworthy that the 
aforemen>oned precursor can be prepare from environmentally benign hypophosphorous acid, unlike most 
other catalysts which are made from phosphorus trichloride. Similarly, bisbiaryl deriva>ves cat-7 b were 
produced through a double Suzuki-Miyaura coupling.[11b] In our previous work, we determined that 
dibenzomethanophosphocine cat-7 a exhibited a percent buried volume (%Vbur) similar to that of 
trimethylphosphine (%Vbur = 26.1), emphasizing the easy accessibility of the phosphorus atom even for 
hindered reagents. Moreover, the electronic proper>es showed a strong σ donor character in line with the 
nature of the alkyl subs>tuents. By contrast the π-acceptor character was significantly affected by the ring 
strain, resul>ng in methanophosphocine cat-7 a being a poor acceptor. The combina>on of these proper>es 



makes it suitable for PIII/PV redox organocatalysis. To explore the poten>al of such compounds, we 
consecu>vely added specific structural features. To tune the steric hindrance of the phosphorus centre, 
hydrogen atoms of methylene groups were replaced by methyl, yielding tetramethyl methanophosphocine cat-
7 b. Addi>onally, to promote π-stacking interac>ons, we prepared bisbiaryl methanophosphocines cat-7 c–i. 
Aryl or heteroaryl mo>fs were introduced to generate a spectrumof electronically rich and poor aroma>c 
compounds. With a large family of poten>al organocatalysts cat-7 a–i in hands, we decided to benchmark their 
cataly>c ac>vity in standard synthe>c strategies where well-established phosphorus-based catalysts work, 
namely cataly>c-WiFg reac>on, Staudinger reac>on and reduc>on of ac>vated alkenes and allenes. The 
organocataly>c poten>al of methanophosphocines has been evaluated by comparing them with standard 
phosphines or phosphine oxides, namely triphenylphosphine cat-8, tributylphosphine cat-6, phospholene cat- 
9, phospholane oxide cat-1, dibenzophosphole cat-2, and pentamethylphosphetane oxide cat-3. 
 

Organocataly6c Ac6vity Assessment of Methanophosphocine Deriva6ves  
 
Cataly6c Wi<g Reac6on 

 
We ini>ated our study by evalua>ng the organocataly>c ac>vi>es of dibenzomethanophosphocine cat-7 a in a 
model WiFg reac>on (Figure 2).[3][5a] We selected benzaldehyde 1 a and methyl bromoacetate 2 a as 
substrates, diisopropylethylamine (DIPEA) as a base, diphenylsilane as the reducing agent and bis(4-
nitrophenyl)phosphate (BNPA) as an addi>ve to facilitate the reduc>on of phosphine oxide.[12] The reac>ons 
were carried out on a 1 mmol scale of benzaldehyde 1a, at 100 °C in dry toluene for 24 h under an inert 
atmosphere. Following op>miza>on process of the reac>on parameters using cat-7 a as organocatalyst (see 
op>miza>on details in SI), diversely func>onalized methanophosphocines cat-7 b–i were tested. By reducing 
the quan>>es of DIPEA and diphenylsilane to a slight excess (1.1 equiv.) and u>lizing a 5 mol% catalyst loading, 
the simplest dibenzomethanophosphocine cat-7 a successfully yielded the desired olefin 3 a in 93% 1H NMR 
yield and an E/Z-ra>o of 8:2 (Figure 2). Increasing the amounts of base and diphenylsilane to 1.4 equiv. resulted 
in a complete conversion into the alkene 3 a (monitored by 1H NMR) and 90% isolated yield (E/Z-ra>o of 9:1). 
None of the other methanophosphocines cat-7 b–i demonstrated an enhancement in yield. The use of 
tetramethyl-dibenzomethanophosphocine cat-7 b resulted in a loss of cataly>c ac>vity. This significant change 
is likely agributed to the increased steric hindrance of cat-7 b, which presented a buried volume of 40%. The 
subs>tuents significantly influence this parameter, and it was calculated to be 27% for phosphetane cat-3. 
Bisbiaryl catalysts exhibit similar trends with an 1H NMR yield of 15% for biphenyl deriva>ve cat-7 c and 24% 
yield for cat-7 d (xylyl). Other biaryl-dibenzomethanophosphocines (phenyl cat-7 e, 4-pyridyl cat-7 f and the 4-
trifluoromethylphenyl cat-7 g) displayed comparable cataly>c ac>vity, affording the desired cinnamate 3 a in 
NMR yields ranging from 50% to 60%. The presence of a methyl or methoxy electron dona>ng group localized 
on the phenyl subs>tuent cat- 7 h and cat-7 i, impacted posi>vely the catalyst turnover, leading to the alkene 
3 a in 87% 1H NMR yield and an 8:2 E/Z-ra>o. 
Based on these encouraging observa>ons, our agen>on shiPed towards exploring the substrate scope of the 
cataly>c WiFg reac>on using the most efficient methanophosphocine cat-7 a as organocatalyst (Scheme 1). 
To gain insights, we conducted a compara>ve analysis of the effec>veness of our methano-phosphocine cat-7 
a with the phospholane catalyst cat- 1 reported by O’Brien using 10 mol% loading during 24 h at 100 °C,[3] and 
the most recent method published by the Werner group in 2019, relying on 2 mol% of phosphetane cat-3 at 
room temperature for 48 h.[13] Using 5 mol% of methanophosphocine cat-7 a, along with 10 mol% of BNPA, 
1.4 equiv. of diphenylsilane, 1.4 equiv. of DIPEA and 1.2 equiv. of methyl bromoacetate, various aldehydes (1 
mmol scale) were subjected to the reac>on. Under these condi>ons, benzaldehyde provided methyl cinnamate 
3 a in high yield and stereoselec>vity (90% and E/Z 9:1, respec>vely). Moreover, the reac>on could be readily 
scaled up to 10 mmol, affording the desired product with an increased yield of 98%, albeit at the cost of 



stereoselec>vity (8:2). Remarkably, this reac>on showed good tolerance towards electron-withdrawing 
groups, as evidenced by the 78% yield of 2-nitrocinnamate 3 b, and the 85% yield of the 4-chloro-deriva>ve 3 
c. 

 
Figure 2. Organocatalyst screening on a model Wiag reac@on (see op@miza@on details in the SI). a All reac@ons were conducted 

with 1 mmol of aldehyde, 1.2 equiv. of alkyl halide, 5 mol% of catalyst cat-7 a–i, 10 mol% of BNPA, 1.1 equiv. of DIPEA and 1.1 
equiv. of diphenylsilane in toluene (C = 1 M) at 100 °C during 24 h. b Yields determined by 1H NMR using 1,3,5-trimethoxybenzene 

as an internal standard. 
 

 
Scheme 1. Scope of the cataly@c Wiag reac@on using methanophosphocine cat-7 a as PIII/PV organocatalyst. Comparison with 

literature data using phospholane cat-1 catalyst,[3] or a phosphetane cat-3 catalyst.[13] a Unless otherwise indicated, all reac@ons 
were conducted with 1 mmol of aldehyde 1, 1.2 equiv. of alkyl halide 2, 5 mol% of catalyst cat-7 a, 10 mol% of BNPA, 1.4 equiv. of 

DIPEA and 1.4 equiv. of diphenylsilane in toluene (C = 1 M) at 100 °C during 24 h. b Isolated yield. c E/Z ra@o determined by 1H 
NMR integra@on of the ethylenic signals on the crude reac@on mixture. d E/Z ra@o determined by 1H NMR on the isolated product. 

e Catalysts ac@vity compared using methanophosphocine condi@ons. Yield and E/Z ra@o determined by 1H NMR using 1,3,5-
trimethoxybenzene as an internal standard. 



Consistent with Werner’s findings, 2-nitrobenzaldehyde gave the olefin with a slightly lower yield of 78%. 
Notably, no by-products resul>ng from the forma>on of a reac>ve nitrenoid intermediate, commonly observed 
with nitroaryl compounds, were observed.[6] Similarly, in line with Werner,[13] electronrich 4-
methoxybenzaldehyde furnished the olefin 3 d in 58% yield and a 9:1 E/Z-isomer ra>o. Steric hindrance on the 
aldehyde did not seem to be a limi>ng factor, as evidenced by the synthesis of 4-phenyl-2-pentenoate 3 e in a 
61% yield, and a nearly quan>ta>ve yield observed for the 3-(1-naphthyl)acrylate 3 f. The same reac>on was 
also reported by O’Brien,[3] albeit with a lower yield of 72%. Compared to phospholane cat-1, 
methanophosphocine cat-7 a achieved improved yields, reaching 98%, while using a catalyst loading reduced 
by a factor 2. This was validated by trying the other catalysts in the exact same condi>on as 
methanophosphocine cat-7 a. Overall, the performance of our methanophosphocine cat-7 a was similar to that 
of phosphetane cat-3 and compared favorably with phospholane cat-1. Both heteroaroma>c and alipha>c 
aldehydes proved to be reac>ve in our system, affording the 2-pyrrolylacrylate 3 g in a sa>sfying 83% yield, 
and the cyclohexylacrylate 3 h in 77% yield. We expanded our inves>ga>on by reac>ng various alkyl bromides 
with benzaldehyde. Bromoacetonitrile 2 b gave the cinnamonitrile 3 i in a 59% yield, consistent with Werner’s 
report.[13] Surprisingly, the selec>vity was poor, with an E/Z-ra>o of 6:4. Hindered ester, such as tert-butyl 
bromoacetate 2 c, was well tolerated and afforded the olefin product 3 j in a nearly quan>ta>ve yield. Finally, 
4-trifluoromethylbenzyl bromide 2 d was also reac>ve, giving s>lbene deriva>ve 3 k in a 53% yield with an 
improved E/Z-selec>vity (8:2). It is worth no>ng that this reagent led to a semi-stabilized ylide intermediate, 
and its u>liza>on typically resulted in modest E/Z-selec>vi>es in classical WiFg olefina>on.[3][14] In this 
example as well as for the other substrates, the difference of E/Z- selec>vity might be accounted to the ability 
of the catalyst to promote isomeriza>on of the product. Indeed, in his pioneer report O’Brien observed an 
enrichment of the thermodynamically favored E olefin driven by the free rota>on of the C C single bond aPer 
phospholane cat-1 addi>on.[3] In our cataly>c system, olefin Z isomerized as opposed to the other 
diastereoisomer that does not react (see suppor>ng informa>on for details). The isomeriza>on process is 
probably governed by the stereo-electronic parameters of the phosphine, which differ from one catalyst to 
another and might explain the various outcome. Under comparable condi>ons, a base-free WiFg reac>on 
between diethyl maleate 4 and benzaldehyde 1 a was successfully performed, producing diethyl 2-
benzylidenesuccinate 5 in 86% yield and a 9:1 E/Z- ra>o (Scheme 2). Werner has previously reported this 
reac>on using tributylphosphine cat-6 (5 mol %) as a catalyst and 1.0 equiv. of phenylsilane in toluene, at 125 
°C for 24 h.[15] Notably, in our experiments, diphenylsilane demonstrated effec>veness in contrast to Werner’s 
findings (20% yield using 10 mol% of tributylphosphine cat-6 and 1.0 equiv. of diphenylsilane). Similar yields 
were obtained using either methanophosphocine cat-7 a or tributylphosphine cat-6. 
 

Cataly6c Reduc6on of Ac6vated Alkenes and Allenes 
 
The second benchmark reac>on under considera>on involved the reduc>on of ac>vated alkenes, a method 
published in 2020 by the Werner group.[16] This elegant reac>on capitalizes on the oxophilicity of the 
phosphonium salts, and the selec>ve cleavage of P-C bonds in the presence of hydroxide as nucleophile.[17] 
In their original report, Werner employed 1 to 5 mol% of phosphetane catalyst cat-3 in combina>on with 
phenylsilane and three equivalents of water in THF at 80 °C for 24 h. APer op>miza>on (see op>miza>on details 
in SI), diethyl maleate 4 a was reduced quan>ta>vely into diethyl succinate 6 a, employing 5 mol% of 
methanophosphocine cat-7 a, at 100 °C in the presence of 3.0 equiv. of phenylsilane and 3.0 equiv. of water 
(Scheme 3). Using the aforemen>oned condi>ons, the scope of the reac>on was inves>gated on a 1 mmol 
scale. Similarly to Werner, di n-butyl maleate reacted smoothly, giving quan>ta>vely succinate 6 b.[16] 
Dimethyl succinate 6 c was isolated in 78% yield. The reac>on was also selec>ve toward ac>vated alkenes such 
as diallyl maleate 4 d, which bears terminal double bonds usually prone to reduc>on, yielding the 
corresponding diallyl succinate 6 d in a sa>sfactory 66% yield, albeit lower than the Werner’s published yield. 



Addi>onally, 1,4-diphenyl-2-butene-1,4-dione 4 e, as well as N-methyl maleimide 4 f, were also reduced, 
providing moderate yields of 46% and 53%, respec>vely. Subsequently, we broadened the spectrum of the 
reac>on to encompass novel substrates. The reduc>on of benzylidenemalonitrile 4 g provided an excellent 
93% yield. On this substrate, phosphetane cat-3 and dibenzophosphole cat.–2 showed inferior ac>vity (~70% 
NMR yield). Other dinitrile deriva>ves were evaluated, resul>ng in forma>on of the desired products 6 h in 
56% yield and 6 i in 97% yield. Arylalkylidene cyanoacetates 4 j and 4 k were also subjected to the reac>on 
condi>ons, furnishing the desired products in excellent yields of 98% (6 j) and 90% (6 k). Allene compounds 
also exhibited reac>vity in this process. The reduc>on of phosphorylallenes in the presence of 
methanophosphocine cat-7 a led to complete and selec>ve conversion, as monitored by 31P NMR. While 
allylphosphonate 6 l was isolated in a modest 34% yield likely due to purifica>on issues, allyl 
diphenylphosphine oxide 6 m was obtained in a sa>sfactory 66% yield. It’s worth no>ng that Werner reported 
the reduc>on of ethyl buta-2,3-dienoate in presence of phosphetane cat-3 with only a 33% yield (not 
isolated).[16] The rela>vely low electron-withdrawing character of diethyl phosphonate or diphenylphosphine 
oxide moie>es, compared to a carboxylic ester, is sufficient for achieving complete regioselec>vity and high 
conversion. 

 
Scheme 2. Base free cataly@c Wiag reac@on using methanophosphocine cat-7 a as PIII/PV organocatalyst. Comparison with 
literature data using a substoichiometric amount of tributylphosphine cat-6.[15] a Reac@on was conducted with 1 mmol of 

aldehyde, 1.1 equiv. of diethyl maleate, 5 mol% of catalyst cat-7 a and 1.4 equiv. of diphenylsilane in toluene (C = 1 M) at 100 °C 
during 24 h. b Isolated yield. c E/Z ra@o determined by 1H NMR integra@on of the ethylenic signals on the crude reac@on mixture. d 

E/Z ra@o determined by GC/FID on the isolated product. 

 
Scheme 3. Scope of the reduc@on of ac@vated unsaturated carbon-carbon bond using methanophosphocine cat-7 a as PIII/PV 

organocatalyst. Comparison with literature data using a phosphetane catalyst.[16] a Unless otherwise indicated, all reac@ons were 
conducted with 1 mmol of substrate, 3.0 equiv. of water, 5 mol% of catalyst cat-7 a and 3.0 equiv. of phenylsilane in toluene (C = 

0.66 M) at 100 °C during 24 h. b Isolated yield. c 1 mol% of phosphetane cat-3. d 48 h. e Catalysts ac@vity compared using 
methanophosphocine condi@ons. Yield determined by 1H NMR using 1,3,5-trimethoxybenzene as an internal standard. 



Cataly6c Staudinger Reduc6on 
 
Finally, we assessed the efficacy of methanophosphocine cat-7 a in the Staudinger reduc>on, one of the earliest 
reac>ons to have been converted into a cataly>c version. In 2012, the van DelP group pioneered this func>onal 
transforma>on using dibenzophosphole cat-2 (5 mol%), phenylsilane (1.5 equiv.) in refluxing dioxane for 16 
h.[18] The PIII/PV cataly>c system was later improved twice by the Mecinović group, employing either 
triphenylphosphine cat-8 (3 mol%) and PMHS (6 Si-H equiv.) in refluxing CPME for 20 h,[19] or 
triphenylphosphine cat-8 (10 mol%) and diphenyldisiloxane (1.5 equiv.) in CPME at room temperature for 24 
h.[20] With this background in mind, we op>mized the cataly>c Staudinger reac>on using 
methanophosphocine cat-7 a in combina>on with phenylsilane (see op>miza>on details in SI). Remarkably, 
this system proved highly efficient, with just 2 mol% of the catalyst enabling complete conversion of 1-
(azidomethyl)naphthalene 7 a into the corresponding amine in 2 h at 100 °C (Scheme 4). Furthermore, 
consistent with Mecinović’s findings,[19] the amine was easily isolated through a straighuorward acidic 
precipita>on-filtra>on workup, yielding the hydrochloride salt 8 a in 88% yield. Under these established 
condi>ons, we further explored the scope of the reac>on using various benzylazides 7 a–k. The reac>on 
proceeded smoothly, affording the corresponding amines 8 c–f in excellent yields (> 85%), irrespec>ve of the 
subs>tu>on on the aryl, thereby ruling out steric or electronic factors. An excep>on was noted with compound 
8 b, featuring an ortho-methoxy subs>tuent, which was isolated in 69% yield.  
 
 

 
Scheme 4. Scope of the cataly@c Staudinger reduc@on using methanophosphocine cat-7 a as PIII/PV organocatalyst. Comparison 

with literature data using a dibenzophosphole cat-2 catalyst,[18] or a substoichiometric amount of triphenylphosphine cat-8.[19] a 
Unless otherwise indicated, all reac@ons were conducted with 1 mmol of substrate, 2 mol% of catalyst cat-7 a and 1.1 equiv. Of 

phenylsilane in toluene (C = 1 M) at 100 °C during 2 h. b Isolated yield. c 2.2 equiv. of phenylsilane. d Catalysts ac@vity compared 
using methanophosphocine condi@ons. Yield determined by 1H NMR using 1,3,5-trimethoxybenzene as an internal standard. 

 



Comparing to other phosphine oxide on a model substrate 8 f, methanophosphocine demonstrated again a 
similar or higher cataly>c ac>vity, hence valida>ng its great versa>lity. The reac>on also exhibited tolerance 
towards allyl and alkyl azides. Cinnamyl amine hydrochloride 8 g was successfully obtained in 80% yield, while 
2-phenylethan-1-amine hydrochloride 8 h was isolated in 88% yield. Notably, aryl azides also demonstrated 
suitability as substrates for this transforma>on. For instance, both aminocoumarin 8 i and 4- aminoveratrole 8 
j were synthesized in excellent 95% and 90% yields, respec>vely. Remarkably, the bis(azide) 7 k was fully 
reduced, affording the diamine 8 k in only 2 h in a remarkable 89% yield. Even more interes>ngly, the reduc>on 
of 8 k using the same reac>on condi>on but with 1 mol% of methanophosphocine cat-7 a, which means in fact 
only 0.5 mol% of catalyst per azide func>onality, s>ll provided a high chemical isolated yield of 91%. 
Furthermore, the robustness of this process was demonstrated by conduc>ng the reduc>on of 8 k on a 10 
mmol scale, giving the desired product, without compromising the chemical isolated yield. To the best of our 
knowledge, bis(azide) reac>vity has never been assessed in PIII/PV redox cycling. 
 
DFT Calcula6ons and Ra6onaliza6on 
 
Krenske et al. performed DFT calcula>ons in order to decipher the effects governing the hydride transfer from 
the silicon atom to the P-center.[9b] This step is rate-limi>ng for the reduc>on of a phosphine oxide by a silane 
and corresponds to an early transi>on state with a trigonal bipyramid geometry. An NBO analysis indicated 
that the main second order perturba>on in the transi>on state stems from the dona>on of the oxygen lone 
pair of the phosphine oxide into a vacant σ*(Si-H) at the silane part. This could account for the counterintui>ve 
fact that, although trialkylphosphine oxides are electron-richer, they are more easily reduced than their triaryl 
counterparts. In the case of cyclic deriva>ves, such as model phospholane cat-1, this interac>on is sub-op>mal 
because of the constrained environment around the phosphorus atom. However, this forced geometry is 
ul>mately beneficial, because it decreases the energe>c cost of the distor>on of the reactants from their 
ground-state geometries into their TS geometries. 
 
Table 1. Compared distor@on and interac@on energies of methanophosphocine cat-7 a and phosphetane cat-3 with phosphine 
oxides from literature. 

 
[a] Distor@on and interac@on energies in the transi@on state, according to Houk’s analysis.[21] Energies are in kcal.mol-1. 

 
We examined phosphine oxides cat-3 and cat-7 a at the same level of theory and the results are summarized 
in Table 1 (M06-2X/6-311 + G(d,p) with SMD implicit solvent model for toluene). On one hand, as expected for 
cyclic deriva>ves, the Si-O interac>ons in the transi>on state (59 kcal.mol-1) were found weaker than in 
trimethylphosphine (69 kcal.mol-1).On the other hand, this was counterbalanced by a lower energe>c cost for 



the distor>on of the reactants (Edist), as defined by Houk and Bickelhaupt.[21] Overall, Gibbs energies of 
ac>va>on predict cat-3 to be the most efficient. However, differences in calculated energies are small and, as 
indicated by the experimental results, they may be insufficient to account for all the subtle>es of these cataly>c 
systems. 
 
 
Conclusions 
 
In summary, as highlighted in this paper, methanophosphocines, represented by cat-7 a–i, are electron-rich 
bridgehead phosphine oxides possessing structural features that make them well-suited for PIII/PV redox 
organocatalysis. These compounds can be synthesized at a gram-scale from simple and cost-effec>ve 
hypophosphorous acid. Notably, their subs>tuents can be diversely tuned, which is rather difficult or oPen not 
possible with other conven>onal organocatalysts typically used in PIII/PV catalyzed reac>ons. Furthermore, we 
have demonstrated the efficacy of methanophosphocine cat-7 a as a potent organocatalyst in well-established 
PIII/PV redox cycling reac>ons. Specifically, its cataly>c ac>vity has been evaluated in various model reac>ons, 
encompassing WiFg or Staudinger reac>ons, as well as the reduc>on of ac>vated alkenes and allenes. In each 
of these reac>ons, the cataly>c performance of our in-house methanophosphocine cat-7 a compared well with 
the most highly regarded catalysts. Notably, the literature documents only a limited number of phosphine 
oxides proving effec>ve in the evolving realm of PIII/PV redox organocatalysis, and none possess a bridgehead 
structure. Consequently, we firmly believe that our findings would not only contribute to the scien>fic 
community but also augment the toolbox of synthe>c methods for these valuable transforma>ons, thereby 
paving the way for the discovery of new cataly>c pathways. Based on DFT calcula>on, ongoing experimental 
efforts con>nue with the aim of broadening the scope and enhancing the efficiency of these novel 
methanophosphocines in other useful PIII/PV redox cycling transforma>ons. Development of a chiral version 
of our electron-rich bridgehead phosphine oxides is another focal point of interest within our research group, 
and orthcoming discoveries will be shared in due course. 
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