
HAL Id: hal-04688059
https://hal.science/hal-04688059v1

Submitted on 4 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Anatomical Connections of the Visual Word Form Area
Florence Bouhali, Michel Thiebaut de Schotten, Philippe Pinel, Cyril Poupon,

Jean-François Mangin, Stanislas Dehaene, Laurent Cohen

To cite this version:
Florence Bouhali, Michel Thiebaut de Schotten, Philippe Pinel, Cyril Poupon, Jean-François Mangin,
et al.. Anatomical Connections of the Visual Word Form Area. Journal of Neuroscience, 2014, 34
(46), pp.15402-15414. �10.1523/jneurosci.4918-13.2014�. �hal-04688059�

https://hal.science/hal-04688059v1
https://hal.archives-ouvertes.fr


Behavioral/Cognitive

Anatomical Connections of the Visual Word Form Area

Florence Bouhali,1,2,4,10 Michel Thiebaut de Schotten,2,4,5,10 Philippe Pinel,7,8,9 Cyril Poupon,7,8,9

Jean-François Mangin,7,8,9 Stanislas Dehaene,6,7,8,9 and Laurent Cohen1,2,3,4,10

1Inserm, U 1127, F-75013, Paris, France, 2Sorbonne Universités, UPMC Univ Paris 06, F-75013, Paris, France, 3AP-HP, Hôpital de la Pitié Salpêtrière,
Department of Neurology, F-75013, Paris, France, 4CNRS, F-75013, Paris, France, 5Natbrainlab, Department of Forensic and Neurodevelopmental Sciences,
Institute of Psychiatry, King’s College London, London, United Kingdom, 6Collège de France, 75005 Paris, France, 7INSERM, Cognitive Neuroimaging Unit,
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The visual word form area (VWFA), a region systematically involved in the identification of written words, occupies a reproducible
location in the left occipitotemporal sulcus in expert readers of all cultures. Such a reproducible localization is paradoxical, given that
reading is a recent invention that could not have influenced the genetic evolution of the cortex. Here, we test the hypothesis that the VWFA
recycles a region of the ventral visual cortex that shows a high degree of anatomical connectivity to perisylvian language areas, thus
providing an efficient circuit for both grapheme-phoneme conversion and lexical access. In two distinct experiments, using high-
resolution diffusion-weighted data from 75 human subjects, we show that (1) the VWFA, compared with the fusiform face area, shows
higher connectivity to left-hemispheric perisylvian superior temporal, anterior temporal and inferior frontal areas; (2) on a posterior-
to-anterior axis, its localization within the left occipitotemporal sulcus maps onto a peak of connectivity with language areas, with slightly
distinct subregions showing preferential projections to areas respectively involved in grapheme-phoneme conversion and lexical access.
In agreement with functional data on the VWFA in blind subjects, the results suggest that connectivity to language areas, over and above
visual factors, may be the primary determinant of VWFA localization.
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Introduction
The first step in word reading is the computation of an ordered
string of abstract letters, invariant for location, case, and other
irrelevant visual features (Dehaene and Cohen, 2011). Studies of
patients with pure alexia (Dejerine, 1892; Cohen et al., 2003;
Pflugshaupt et al., 2009), and functional brain imaging (Nobre et
al., 1994; Jobard et al., 2003; Glezer and Riesenhuber, 2013) have
put to light a region in the left ventral occipitotemporal cortex
(the visual word form area; VWFA), which is thought to carry out
this computation (Cohen et al., 2000). The VWFA then broad-
casts orthographic information to language areas involved in
central aspects of reading, including stored lexical information
(the “deep” reading route), and grapheme-phoneme conversion
(the “surface” reading route; Jobard et al., 2003; Price, 2012).

The VWFA is located lateral to the middle section of the fusi-
form gyrus, with remarkable reproducibility across subjects, even
across a variety of script types (Cohen et al., 2000; Dehaene et al.,
2002; Jobard et al., 2003; Bolger et al., 2005). To account for such
consistent localization of the VWFA, two nonexclusive kinds of
arguments have been put forward. First, this region may possess a
priori perceptual biases that make it particularly suitable for read-
ing, including preference for foveal versus peripheral stimuli
(Hasson et al., 2002), analytical versus configural processing
(Ventura et al., 2013), sensitivity to line junctions (Szwed et al.,
2011), or perceptual invariance (Lerner et al., 2001). Second, this
region lies anatomically close to the left perisylvian areas devoted
to the processing of spoken language, and may therefore provide
direct connections from visual to language areas. Supporting this
latter view, the hemispheric lateralization of the VWFA is
strongly correlated with the lateralization for spoken language
(Cai et al., 2008, 2010; Pinel and Dehaene, 2010). Tracking the
connections of the VWFA, Yeatman et al. (2013) identified fibers
passing through the inferior longitudinal fasciculus (ILF), infe-
rior fronto-occipital fasciculus (IFOF), and vertical occipital fas-
ciculus of Wernicke (VOF). In addition, Epelbaum et al. (2008)
found projections of the VWFA through the arcuate fasciculus
(AF), presumably reaching superior temporal regions.

In the present study, using diffusion and functional imaging,
we investigate the hypothesis that the location of the VWFA is
tightly dependent on its anatomical connectivity to the language
system. This hypothesis predicts that the location of the VWFA is
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characterized, on both lateral-to-medial and posterior-to-
anterior axes, by a particular “signature” of high anatomical con-
nectivity to left-hemispheric perisylvian language areas. This idea
generates two specific predictions, each assessed through a dedi-
cated experiment. First, we predict that overall the VWFA should
be more connected to language areas than a functionally distinct
but anatomically contiguous area devoted to face processing (the
fusiform face area; FFA). Second, considering that the VWFA is
not functionally homogeneous along its posterior-to-anterior ex-
tent, we predict that its pattern of connection differs across the
length of the occipitotemporal sulcus, reflecting the involvement
of successive regions in visual, grapho-phonological, or lexical
aspects of reading.

Materials and Methods
Participants
Seventy-nine French subjects gave written informed consent to partici-
pate in the “Archi Database Part 1” project (Neurospin, CEA, Saclay,
France). All participants indicated French as their first language, had
normal or corrected-to-normal visual acuity, and had no history of neu-
rological, learning, or reading disorders.

Four subjects were excluded because of defects in fMRI acquisition
(one subject) or handedness as assessed with the Edinburgh handedness
inventory (Oldfield, 1971; three left-handed subjects), because left-
handed subjects are more likely to display atypical lateralization of both
language networks and the VWFA (Cai et al., 2008; Van der Haegen et al.,
2012). The current study was thus based on a database of 75 subjects (46
males/29 females, mean age 24 years, range 19 –50, SD 5.3).

Functional and anatomical MRI
Stimulation paradigms. To isolate the VWFA, we contrasted activations
by visual words minus checkerboards. To this end, we used a subpart of a
functional localizer experiment whose details can be found in Pinel et al.
(2007). For the word condition, we pooled (1) trials on which subjects
simply had to covertly read short sentences (10 trials), and (2) trials on
which sentences instructed subjects to press three times a left or right
button (5 trials each). Visual sentences were broken down into four
successive screens (250 ms) separated by 100 ms blank intervals. Each
screen comprised one to three words, resulting on average in 1.3 s of trial
duration per sentence. The baseline condition consisted in passively
viewing flashing horizontal (10 trials) or vertical (10 trials) checker-
boards. One checkerboard trial consisted in eight alternating black/white
checkerboards, each displayed for 200 ms.

To isolate the FFA, we used a subpart of the experimental conditions
included in another short protocol designed to investigate social cogni-
tion, contrasting activations by faces minus scrambled images. In the face
condition, subjects had to judge the gender or the trustworthiness of a
human character according to his/her face. Before the trial, a sentence
shortly displayed in the center of the video screen (1200 ms) reminded
the task to be done (“face of a man or of a woman?” or “trustworthy or
untrustworthy?”). Stimuli consisted in a series of 32 black and white
images of standardized faces with direct gaze and neutral expressions,
originally extracted from the Karolinska database (Lundqvist et al.,
1998). In the control task, subjects had to decide whether a scrambled
image of a face was straight or slightly tilted (preceded by the question
“straight or tilted image?”).

Both protocols were programmed using E-Prime software and orga-
nized as fast event-related paradigms: trials were intermixed in a random
order, identical across subjects. Twenty percent of blank trials were
added to the trial sequence, during which subjects saw a white fixation
cross in the center of the screen.

Acquisition parameters. We used a 3-tesla MRI (Siemens Trio TIM)
with a 12-channel head coil, and a gradient-echo planar imaging se-
quence sensitive to brain oxygen level-dependent contrast (40 contigu-
ous axial slices, acquired using ascending interleaved sequence, 3 mm
thickness; TR � 2400 ms; flip angle � 90°, TE � 30 ms, in-plane resolu-
tion � 3 � 3 mm, matrix � 64 � 64). For each acquisition, the first four

volumes were discarded to reach equilibrium. T1-weighted images were
also acquired for anatomical localization.

Data processing. Data were preprocessed using SPM8 software as fol-
lows: slice timing, motion correction, normalization to the MNI tem-
plate (resampled voxel size � 3 � 3 � 3 mm), and smoothing (5 mm
FWHM). Each voxel time series was fitted with a linear combination of
functions derived by convolving a standard hemodynamic response
function with the time series of the stimulus categories, plus their tem-
poral derivatives. Individual contrast images were computed for the two
contrasts of interest, then smoothed (5 mm FWHM), and eventually
entered in a second level random effect group analysis.

We used functional and anatomical data to create two special types of
images for use in Experiments 1 and 2 (Fig. 1B).

First, we created a group-level mask of reading-related left occipito-
temporal activations. To this end, group level activations to the words
minus checkerboards contrast were thresholded at a voxelwise p � 0.001
uncorrected, and intersected with an anatomical mask of the left ventral
stream. This yielded a left occipitotemporal volume extending from y �
�101 to y � �37, which was used subsequently for the definition of
regions-of-interest (ROIs), as explained below. Using the same proce-
dure, we also created a mask of face-related left occipitotemporal activa-
tions, based on the contrast of faces minus scrambled images, and used it
subsequently for the definition of ROIs.

Second, we extracted for each individual brain, in its native space, the
1-voxel-thick sheet of WM just beneath the cortical ribbon. To extract
this sheet, native anatomical images were segmented into GM and WM
using Morphologist/BrainVisa pipeline (http://brainvisa.info). Bina-
rized GM volumes were then slightly inflated by smoothing them with a
2 mm FWHM isotropic Gaussian kernel, and applying a threshold of 0.2.
Those GM volumes were then intersected with the WM volume, result-
ing in a 1-voxel-thick superficial sheet of white matter (Thiebaut de
Schotten et al., 2014), which was used subsequently for the definition of
ROIs.

Diffusion-weighted imaging
Acquisition and preprocessing. HARDI (high-angular resolution diffusion
imaging) data were acquired in 60 directions with a b value of 1500
s/mm2 (voxel size of 1,7 mm 3) using a twice refocusing spin-echo tech-
nique (Reese et al., 2003) compensating eddy currents to the first order.
To improve the subjects’ comfort, the acquisition was divided into three
sessions of 19/20/21 diffusion directions, respectively, plus a null b value
volume at the beginning of each session, leading to a total of 3 null b value
data. The three subsets of directions were optimized such that (1) the
directions of each set is almost uniformly distributed over the unit
sphere, (2) the total set of directions is uniformly distributed, and (3) the
three subsets have complementary directions (Dubois et al., 2006). All
diffusion-weighted volumes were corrected for motion and matched to
the first volume acquired at b � 0 s/mm 2. Geometrical distortions linked
to susceptibility artifacts were corrected using a phase map acquisition.
T1- and diffusion-weighted data of each subject were optimally aligned
using a rigid 3D transform estimated by an automatic registration algo-
rithm based on mutual information. Registration was performed be-
tween one diffusion-free T2-weighted image and the high-resolution
T1-weighted image (1 � 1 � 1.1 mm resolution).

Tractography. The diffusion orientation distribution function (ODF)
was reconstructed in each voxel with an analytical solution of the q-ball
model, using SHmax � 6 and �LB � 0.006, allowing for a satisfactory
resolution of fiber crossings (Descoteaux et al., 2007). Fiber tracts were
reconstructed using the diffusion model estimation and a streamline
deterministic tractography algorithm provided in Connectomist soft-
ware. The tracts were calculated as the trajectories of particles with iner-
tia, leading to regularized curvature (Perrin et al., 2005).

Streamline deterministic tractography was initiated from 27 (3 � 3 �
3) seeds in each voxel of the propagation mask (with T1 resolution), in
both retrograde and anterograde directions, according to the maximal
direction of the underlying ODF. Retrograde and anterograde tracking
were merged into one single tract. The tracking step was 0.4 mm. Track-
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ing was stopped either when the particle exited the propagation mask, or
when the angle between the two last moves exceeded 30°, or when the
tract length exceeded 200 mm.

Tracking of fibers from ROIs. In Experiments 1 and 2, we defined ROIs
that we used as seeds for tracking fibers. To this end, we selected all
streamlines intersecting the given ROI on a minimal distance of 0.2 mm.
Individual connectivity maps, indicating in each voxel of the diffusion
space the number of fibers passing through, were derived from those
tractograms. Individual connectivity maps were then binarized and reg-
istered to an optimal FA template in MNI space drawn from the present
dataset using Advance Normalization Tools (http://www.picsl.upenn.

edu/ANTS/). Affine and diffeomorphic deformations used for the regis-
tration were computed from individual FA maps to the obtained tem-
plate (Avants et al., 2008; Klein et al., 2009). Similar methods are reported
in Thiebaut de Schotten et al. (2011). Normalized connectivity maps
were finally smoothed using a Gaussian kernel of 4 mm FWHM, and
were used for statistical analyses as described below. 3D fusion images of
connectivity or statistical maps with a mesh of the average gray-white
interface from the MNI database were produced using the BrainVisa
package (http://brainvisa.info). Except for the images of maximal pro-
jections in Figure 4, which use point-to-point fusion, each point of the
mesh is labeled with the maximum value in a surrounding 5 mm sphere.

Figure 1. Definition of regions of interest. Method used for defining ROIs for tracking WM fibers, as illustrated in the case of Experiment 2. The VWF system was defined as the intersection of an
anatomical mask with functional activations during reading, and was then divided into seven posterior to anterior ROIs, which were eventually transformed into individual ROIs of superficial WM (see
main text for details).
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Results
Experiment 1: specificity of the connections of the
VWF system
In Experiment 1, we contrasted the connectivity of the VWFA
and the FFA. Previous fiber-tracking studies indicate that the
inferior occipitotemporal visual cortex, where the VWFA lies, is
connected to the rest of the cortex by several fasciculi, including
the ILF, the IFOF, the AF in its posterior temporoparietal and
long temporofrontal segments, and the vertical occipital fascicu-
lus projecting toward the angular gyrus and occipital lobe (Catani
et al., 2005; Yeatman et al., 2012, 2013; Thiebaut de Schotten et
al., 2014; see Figure 5). However, at present, only a global pattern
of projections has been documented, and its specificity to the
VWFA has not been demonstrated. Indeed, the above fasciculi
are very large and seem as likely to link to neighboring regions
with different functional specialization, such as the medially ad-
jacent FFA. If our hypothesis is correct, however, the VWFA site
should be singled-out by a preferential pattern of anatomical
connectivity. We predicted that there should be systematically
stronger projections of the VWFA to language areas, while the
FFA should preferentially project to areas involved in social cog-
nition, as previously proposed (Mahon and Caramazza, 2011;
Saygin et al., 2011). To test this hypothesis, in a first study, we
compared within subjects the pattern of anatomical connectivity
of the VWFA and of the FFA.

Definition of ROIs
We took the reading-related and the face-related group-level ac-
tivation masks (see Materials and Methods) and intersected
them, thus deriving 3 ROIs: a reading-only or VWFA ROI, a more
mesial face-only or FFA ROI, and in between the intersection of
the two functional masks, which was activated during both read-
ing and face perception. Posterior to y � �70, the two functional
masks overlapped entirely, and the three ROIs were therefore
truncated at y � �70 (Fig. 2A). We did not use directly those 3D
ROIs as seeds, but wished to use ROIs restricted to the most
superficial layer of white matter. This would allow us to select
only fibers emerging from and projecting to the overlying gray
matter and to exclude fibers passing through the neighboring
white matter and not stopping at the target areas. To do so, we
defined the 3 ROIs in the T1 native space of each participant by
denormalizing group-level 3D ROIs. We intersected these denor-
malized ROIs with the subject’s sheet of superficial white matter,
and translated them from the anatomical to the individual diffu-
sion space through a rigid transformation. Finally, we initiated
the tracking following the methods described in Materials and
Methods.

Experiment 1 results
Figure 2B shows the respective connectivity of the VWFA and the
FFA ROIs. Maps indicate the connectivity index, computed as the
mean of normalized and smoothed individual connectivity maps,
with a threshold of 50%. Left-hemispheric projections extended
roughly throughout the ventral half of the left hemisphere’s sur-
face, including the lateral and ventral occipital and temporal
lobes, the temporal pole, the inferior and orbital frontal lobe. We
found no projection to the right hemisphere above the 50%
threshold. On visual inspection, the projections of the VWFA and
FFA ROIs spanned approximately the same area, with sugges-
tions of some local differences.

To assess those differences, we statistically compared the pro-
jections of the VWFA ROI and of the FFA ROI across the whole
brain. To this end, we entered individual normalized smoothed

connectivity maps in a nonparametric repeated-measures
ANOVA using the permutation method, as implemented in FSL
software (Nichols and Holmes, 2002). This analysis included one
within-subject factor (the 3 ROIs), one regressor of noninterest
(the individual volume of the ROI), and subjects were treated as a
random factor. 5000 permutations were run and the threshold-
free cluster enhancement (TFCE) method was applied (Smith
and Nichols, 2009). We report results significant at a threshold of
0.05, familywise error (FWE) corrected, based on the TFCE sta-
tistic image. Within this model, we contrasted the projections of
the VWFA ROI and of the FFA ROI minus the other two ROIs
(Fig. 2C). This showed that the VWFA connected significantly
more to most perisylvian language-related areas, including Bro-
ca’s area and insula, the superior and lateral temporal lobe, and
the posterior inferior parietal lobule. In contrast, the FFA con-
nected more to the mesial occipital and temporal lobes, including
the hippocampus, the lingual and parahippocampal gyri, and the
amygdala, and to the posterolateral occipital lobe. To delineate
the overlap of regions connected to the VWFA and to the FFA, we
identified voxels connected to both ROIs with a connectivity in-
dex �50%, and moreover showing no statistical difference be-
tween their connectivity to the two ROIs. Those regions included
the temporal pole, the lateral occipital cortex, the orbitofrontal
cortex (Fig. 2D).

Finally, we checked whether anatomical connectivity differed
across subjects as a function of individual functional activations.
To this end, using the same statistical technique as before, we
entered individual normalized smoothed connectivity maps
of the VWFA ROI in a nonparametric ANOVA with two regres-
sors: the individual mean value of the reading-related contrast
within the VWFA mask as the factor-of-interest, and the individ-
ual volume of the ROI as a regressor of noninterest. This allowed
us to look for regions where anatomical connectivity would be
correlated to activation level. A parallel analysis was run on indi-
vidual connectivity maps of the FFA using the faces-related acti-
vation level within the FFA as the factor of interest. Those two
analyses yielded no significant correlation of distant anatomical
connectivity with activation level.

Experiment 1 summary
We showed that, despite their close anatomical proximity, the
VWFA and the FFA had significantly distinct patterns of anatom-
ical connectivity. As predicted, the VWFA was more connected to
perisylvian language areas, whereas the FFA was more connected
to mesial visual and limbic structures.

Experiment 2: posteroanterior connectivity of the
VWF system
Describing the VWFA as a small homogeneous patch of cortex
surrounding a single activation peak would be naive phrenology.
Actually, the ventral occipitotemporal region involved in read-
ing, more aptly called VWF system, extends from posterior oc-
cipital cortex to the anterior fusiform gyrus (Szwed et al., 2011).
The VWFA strictly speaking may be seen as the most word-
specific patch within this more extended system. Along this axis,
the VWF system shows a functional gradient, with increasing
invariance for position (Dehaene et al., 2004) and increasing sen-
sitivity to high-level statistical properties of letter combinations
(Vinckier et al., 2007) as moving more anterior. This view is
supported by recent meta-analyses which both support the cau-
dorostral model of reading specialization within the left ventral
stream, by showing a more lexically oriented system the more
rostral one goes (Cattinelli et al., 2013; Taylor et al., 2013). This is
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Figure 2. Differential connectivity of the VWFA and FFA (Experiment 1). A, Fibers were tracked starting from three ROIs defined by group-level activations during reading, during face
perception, and their intersection. For tracking, those group-level ROIs were transformed into individual ROIs of superficial WM as shown in Figure 1. B, Connectivity index to the VWFA
and to the FFA, with a threshold of 50%. C, Value of the t test comparing connectivity from the VWFA minus the FFA and intersection ROIs, and from the FFA minus the VWFA and the
intersection ROIs, with a threshold of p � 0.05 FWE corrected. The VWFA was more connected to lateral language-related areas, whereas the FFA was more connected to inferior and
mesial temporal areas. The white line delineates the region connected to the VWFA with an index �50%, as shown in B. D, Regions of shared connectivity with the VWFA and the FFA.
Color coding represents the average of the connectivity index to the VWFA and the FFA, with a 50% threshold each, restricted to regions without statistical difference between VWFA and FFA.
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thought to reflect an underlying neural hierarchy, which sub-
tends the perception of complex visual objects, including written
words (Riesenhuber and Poggio, 1999; Serre et al., 2007).

In this context, our hypothesis predicts that different
posterior-to-anterior regions of the VWF system should exhibit
different patterns of anatomical connectivity. First, only the an-
terior half of the left occipitotemporal sulcus, where the peak of
the VWFA is located, should show direct connections to perisyl-
vian language-related cortex; we do not expect more posterior
occipital regions to project directly to language areas, but only
through the VWFA. Second, the posterior sector, thought to en-
code single letters or graphemes, should project preferentially to
temporal lobe areas and inferior parietal areas involved in
grapheme-phoneme conversion; whereas the anterior section,
thought to encode larger combinations of letters, should project
to anterior temporal areas involved in lexical access and semantic
retrieval (Mechelli et al., 2005; Grainger and Ziegler, 2011).

To test those predictions, we compared in a second study the
projections of a series of posterior-to-anterior segments of the
VWF system. We segmented the VWF system into seven ROIs,
which then served as seeds for tracking white matter fibers.

Definition of ROIs
The volume of reading-related activations defined in Materials
and Methods was segmented along the anteroposterior axis into
seven 8-mm-thick ROIs spanning the ventral stream from y �
�94 to y � �39 (Fig. 1; Table 1). This anatomical segmentation
was based upon previous segmentation of the VWF system ac-
cording to its graded functional properties along this axis (De-
haene et al., 2005; Vinckier et al., 2007; Szwed et al., 2011). Note
that the union of the five most anterior ROIs was identical to the
VWFA ROI used in Experiment 1. We did not use directly those
3D ROIs as seeds, but used the same method as in Experiment 1
to obtain seven individual ROIs restricted to the superficial WM,
to which we applied the tracking techniques described in Mate-
rials and Methods.

Experiment 2 results
Figure 3A shows the connectivity of the VWF system averaged
across all ROIs. Left-hemispheric projections extended through-
out the ventral half of the left hemisphere’s surface, as already
shown in Experiment 1. This analysis may however miss regions
with an average connectivity index lower than 50%, but only
receiving projections �50% from a subset of regions. Figure 3B
thus shows the maximal connectivity index across all seven ROIs,
also with a threshold of 50%, yielding a broader and more accu-
rate delineation of the overall connected area.

When visually inspecting the projections of each ROI sepa-
rately, we found approximately similar patterns, with some re-
gional modulations. Note particularly that only the most

posterior ROI 1 had suprathreshold connections with the left
calcarine fissure, and with the contralateral mesial occipital cor-
tex through the splenium of the corpus callosum (Fig. 3C). As our
aim was to understand the differential connectivity of the succes-
sive segments of the VWFA, we performed a pseudo-ANOVA
comparing, for each voxel across the whole brain, its connectivity
to the seven ROIs. We used the same technique as in Experiment
1, entering individual normalized smoothed connectivity maps
in ANOVAs with one within-subject factor (the 7 ROIs), one
regressor of noninterest (the individual volume of the ROI), and
subjects treated as a random factor. Figure 3D shows the resulting
map of (pseudo-)F values, with a threshold of F � 1.62 (p � 0.05;
FWE corrected for multiple comparisons). Areas showing differ-
ential connectivity overlapped with the connected areas de-
scribed before, with a slightly more dorsal extension.

To explore the differences in connectivity across the seven
ROIs, we performed three additional analyses. First, we simply
labeled each voxel, within the overall connected volume as rep-
resented in Figure 3B, according to the ROI with the most repro-
ducible connectivity with this voxel across subjects (Fig. 4, left).
The resulting maps of maximum projection showed markedly
different patterns across ROIs: ROI 1 was the seed with maximal
projection to the occipital pole, the orbitofrontal cortex (OFC)
and the superior temporal pole; ROIs 2 and 3 were the maximum
seed for smaller occipitotemporal areas close to the ROIs. For
ROI 4, this area extended as an oblique band through the lateral
occipitotemporal cortex. For ROIs 5 and 6, projections extended
to the mid and superior temporal gyri and to the ventral part of
Broca’s area. For ROI 7, maximal projections additionally
reached the inferior part of the temporal pole.

Second, as this maximum approach lacked statistical quality,
we computed the contrasts of each ROI minus the six others,
using the same model and threshold as for the F test. Figure 4
(middle and right columns) shows regions with greater connec-
tivity to a given ROI as compared with the other six. The topog-
raphy was congruent with the topography of the analysis of
maximal projections, with some differences: similar to ROI 1,
ROI 2 projected to the orbitofrontal and superior temporal pole;
and similar to ROI 7, ROI 6 projected to the inferior temporal
pole.

Third, to appreciate not only the main sources of projections,
but also the full profiles of connectivity, we studied target regions,
consisting in 5-mm-radius spheres sampling the overall con-
nected area (Fig. 5A). Spheres were placed in the superficial white
matter, within the boundaries of the overall connected area (Fig.
3B), guided by maxima of the F test across the seven ventral ROIs.
We also placed a sphere at MNI �48, �60, �16, the coordinates
of the so-called LIMA (lateral inferotemporal multimodal area;
Cohen et al., 2004), an area responsive to both spoken and writ-
ten words. For each subject and each target ROI, we computed
the mean value of connectivity within the target ROI. Histograms
show the average across subjects of this individual connectivity
index, for each target and for each ventral ROI. We applied ex-
actly the same method to study the overall contribution of each of
the four main involved fasciculi in the connection of the VWF
system (Fig. 5B). To this end we used as ROIs the masks created
by Thiebaut de Schotten et al. (2011) for the ILF, IFOF, and long
and posterior segments of the AF, with a threshold of 50% of
subjects.

Histograms of connectivity profiles naturally agree with the
patterns of predominant connections revealed in the two previ-
ous analyses. Moreover, one may approximately distinguish
three sets of profiles among target regions. First, the orbitofrontal

Table 1. Coordinates of the seven ventral ROIs (Experiment 2)

MNI coordinates

ROI no. x y z

7 �40 �43 �22
6 �44 �51 �21
5 �45 �58 �19
4 �44 �66 �18
3 �43 �75 �16
2 �40 �83 �13
1 �29 �91 �12

MNI coordinates of the center of mass of the seven group-level ROIs into which the VWF system was divided
(Experiment 2). The usual coordinates of the main activation peak of the VWFA falls within ROI 5 (MNI �42, �57,
�15; Cohen et al., 2002).
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Figure 3. Overall connectivity of the VWF system (Experiment 2). A, Average connectivity index to the seven ROIs, with a threshold of 50%. B, Maximum connectivity index across the seven ROIs,
with a threshold of 50%. C, Connections from the most posterior ROI 1 to the right-hemispheric occipital lobe through the anterior part of the splenium, with a threshold of 50% in the connectivity
index. D, Value of the F test comparing connectivity from the seven ROIs (threshold of p � 0.05 FWE corrected). In summary, a large ventral expanse of the brain receives connections from the VWF
system, always with a differential contribution of the seven ROIs. The white line delineates the region connected to at least one ROI with a connectivity index �50%, as shown in B.
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region, the occipital, and the superior temporal pole were essen-
tially connected to the most posterior ROIs, i.e., ROI 1 and to a
lesser degree ROI 2. Those connections were mostly supported by
the IFOF, whose distinctive profile shows it to be mostly con-
nected to ROIs 1 and 2. Second, ROIs in perisylvian language-

related regions [ventral Broca’s area and superior temporal gyrus
(STG)] show another distinctive profile, with a selective and
comparable connectivity to the three most anterior ROIs 5, 6, and
7. Those connections were supported by the long segment of the
AF and the ILF, respectively. The posterior middle temporal

Figure 4. Differential connectivity of ventral ROIs spanning the length of the VWFA (Experiment 2). The seven ROIs showed different patterns of connection with distant regions, as illustrated by
maps of maximum projections (left column), and by statistical maps contrasting each ROI minus the other six (middle and right columns; threshold of p�0.05 FWE corrected). A reminder of the color
code for the seven ROIs is presented at the bottom. The most posterior ROIs had connections with the orbitofrontal and polar temporal regions, intermediate ROIs had connections with perisylvian
language-related regions, and the most anterior ROIs had additional connections with anterior ventral temporal regions.
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Figure 5. Connectivity profiles of the seven ventral ROIs. A, Profiles of connectivity between the seven ventral ROIs and distant targets. B, Profiles of connectivity between the seven ventral ROIs
and the main relevant fiber tracts (IFOF, green; posterior segment of the AF, yellow; long segment of the AF, red; ILF, blue), from Thiebaut de Schotten et al. (2011). Bars represent the connectivity
indices to each of the seven ventral ROIs, averaged over the target’s volume and across subjects. Error bars represent �1 SEM after subtraction of each subject’s overall mean. The color of triangles
in A refers to the fiber tract in B predominantly connecting each target. In summary, the IFOF links the most posterior ROIs with anterior frontotemporal regions, the AF, especially its posterior vertical
limb, links more anterior ROIs to perisylvian language areas, and the ILF establishes links within the whole extent of the inferotemporal region.
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gyrus (MTG) is an interesting variant of this pattern with a pre-
dominant connection through the posterior segment of the AF to
ROI 5 (which is the maximum source of projection to this area),
whereas ROIs 6 and 7 were slightly below the 50% threshold.
Third, the three ventral spheres showed profiles suggestive of the
ILF, as this ventral fasciculus is heavily connected to all ROIs,
presumably trafficking information all along the ventral tempo-
ral cortex. The most anterior ventral temporal region is of partic-
ular interest, as it is the only one to be more connected to the most
anterior ROI 7 even compared to the neighboring ROIs 6 and 5.

Experiment 2 summary
We showed that segments of the VWF system arrayed along the
anteroposterior axis have significantly different patterns of con-
nection, involving to various degrees perisylvian language areas,
orbitofrontal and anterior temporal regions, and early visual cor-
tex. The functional significance of those connections will be dis-
cussed below.

Discussion
Two predictions prompted the present work. First, we predicted
that the VWFA and the immediately neighboring FFA should
preferentially project to networks related to language and to so-
cial/emotional cognition, respectively. Second, we predicted that
segments of the VWF system supporting different orthographic
representations should be differentially connected to the compo-
nents of the reading network.

VWFA versus FFA: specificity of the connection pattern
We found a set of mesial occipitotemporal regions connected to
the FFA more than to the VWFA (Fig. 2C), fitting with a meta-
analysis of �100 studies of activations during face processing
(Fusar-Poli et al., 2009). Conversely, the VWFA was more con-
nected to perisylvian language areas.

The OFC was equally connected to the VWFA and the FFA. Its
predominant links with the most posterior ROIs fit with the idea
that it plays a noncategory-specific top-down role in visual percep-
tion (Bar et al., 2006). This influence could be triggered by the early
projection of low-frequency shape information, supported by the
magnocellular system, allowing for subsequent predictive feedback
(Kveraga et al., 2007; Chaumon et al.,2013).

At a deeper causal level, it has been proposed that “domain-
specificity emerges (…) because of innate connectivity with a net-
work of regions that also process information about that
domain” (Mahon and Caramazza, 2011). The difference in con-
nectivity between the VWFA and the FFA may explain why those
two regions were selected during development to specialize for
words and faces. Accordingly, Saygin et al. (2011) showed that
individual anatomical connectivity predicts the location of acti-
vations to faces. This hypothesis is not exclusive of the role of a
priori perceptual biases. An intersection of constraints may make
the VWFA site most appropriate for orthographic decoding, and
may in turn, have constrained the form that scripts take across
cultures (Changizi and Shimojo, 2005; Changizi, 2006; Dehaene,
2009). Still, the fact that reading-related ventral activations have
the same topography in blind and sighted subjects suggests that
connections with language may be sufficient to determine the
reproducible location of the VWFA (Reich et al., 2011; Striem-
Amit et al., 2012).

Functional subdivision and connectivity of the VWF system
The canonical peak of the VWFA falls within current ROI 5 (Co-
hen et al., 2002). However, reading activates a whole strip of

occipitotemporal cortex, and more refined contrasts have re-
vealed functional differences along the rostrocaudal axis, which
we predicted, should be associated to distinct connectivity pat-
terns. Schematically, in line with the local combination detector
model (Dehaene et al., 2005), ROIs 1 and 2 fulfill nonspecific
perceptual functions for encoding letters shapes, ROIs 3 and 4
compute invariant representations of letters (Dehaene et al.,
2001, 2004; Devlin et al., 2004; Qiao et al., 2010), and the VWF
system anterior to �y � �60 (ROIs 5–7) identify higher-level
orthographic components (Vinckier et al., 2007; Glezer et al.,
2009; Szwed et al., 2011). This pattern fits neatly with the func-
tional fractionation of the VWF system observed by Danelli et al.
(2013). Privileged communication between the anterior VWF
system and language areas is further supported by studies using
functional correlations between the VWFA and distant areas
(Bokde et al., 2001; Bitan et al., 2005; Mechelli et al., 2005;
Yoncheva et al., 2010; Koyama et al., 2011).

In this context, we may propose the following interpretation
of the results of Experiment 2.

(1) The VWF system projects to a large expanse of the ventral
and inferior lateral aspects of the brain. This includes the
areas shown by Yeatman et al. (2013) to be connected to
the VWFA, plus lateral and superior temporal, and infe-
rior frontal regions. Those additional projections were
mostly linked to ROIs 5–7, which are on average anterior
to the seed used by Yeatman et al. (2013). This may ex-
plain why Yeatman et al. (2013) did not identify the arcu-
ate fasciculus as linking the VWFA to perisylvian regions.
They rather emphasized the VOF, a fascicle of vertical
fibers which lies posterior to the arcuate fasciculus (De-
jerine, 1895).

(2) Visual input mainly enters through ROIs 1 and 2. ROI 2 is
connected to the left occipital pole, whereas ROI 1 also
receives connections from the left calcarine region and
from the contralateral occipital lobe. Callosal pathways
cross thick bundles of fibers (Abe et al., 2004; Hofer and
Frahm, 2006) and we may have missed connections to
more anterior segments of the VWF system (Molko et al.,
2002; Clarke, 2003).

(3) ROIs 1 and 2 have connections to orbitofrontal regions
through the IFOF, which might be implicated in the early
activation of the OFC during visual perception, and its
role in the top-down facilitation of visual recognition
(Bar et al., 2006; Matsumoto and Kakigi, 2014).

(4) ROIs 2 and 3 show connections mostly to the neighboring
cortex, presumably bridging the gap between low-level
visual analysis and invariant letters representations.

(5) ROIs 5–7 are connected to language areas, whereas ROI 4
shows a transitional pattern between ROIs 3 and 5. Still,
the precise patterns of connection of ROIs 5–7 differ in
interesting ways:
First, the posterior MTG receives strong projections from
ROI 5. The posterior MTG region is activated during read-
ing (Jobard et al., 2003), underactivated in dyslexic readers
(Richlan et al., 2009), and activated in proportion to
grapheme-to-phoneme mapping difficulty (Graves et al.,
2010). Considering the positive correlation of fMRI acti-
vation in ROI 5 with bigram frequency (Binder et al.,
2006), one may suggest that ROI 5 and the posterior MTG
constitute an anatomically connected tandem involved in
grapheme-to-phoneme mapping.

Bouhali et al. • Connections of the Visual Word Form Area J. Neurosci., November 12, 2014 • 34(46):15402–15414 • 15411



Second, the anterior basal temporal lobe receives strong
projections from ROI 7. It has been proposed that this
region plays the role of an amodal hub binding informa-
tion across modalities and domains, contributing to con-
cept representation (Damasio, 1989; Martin and Chao,
2001; Patterson et al., 2007; Binder and Desai, 2011). As
such, it would be part of the “deep” reading route (Wilson
et al., 2009; Mion et al., 2010). This supramodal feature
starts anterior to the VWF system as defined here (Giraud
and Price, 2001; Cattinelli et al., 2013; Taylor et al., 2013).
A meta-analysis of semantic activation studies shows a
fusiform/parahippocampal focus �y � 35 (Binder et al.,
2009). Accordingly, in semantic dementia patients, a fusi-
form ROI anterior to y � �31 shows negative correlation
between semantic memory tests and glucose metabolism
(Mion et al., 2010). Assuming that the most anterior sec-
tors of the VWF system detect complex multiletter clusters
(Dehaene et al., 2005), it makes good sense that they
should provide the main orthographic input to neighbor-
ing semantic regions.
Third, Broca’s area and the STG are equally connected to
ROIs 5–7. van Atteveldt et al. (2004) showed that the STG
mediates the influence of script on speech perception (van
Atteveldt et al., 2009; Blomert, 2011). They argued that
such influence is probably relayed through multimodal
convergence zones, but also suggested that direct visual-
to-auditory connections might be involved (Falchier et al.,
2010). A parallel may be drawn between our results and
the demonstration of direct anatomical connections,
within the right hemisphere, between the FFA and supe-
rior temporal areas devoted to voice recognition (Blank et
al., 2011). This network devoted to the recognition of in-
dividuals may be the counterpart of the left-hemispheric
system subtending the visual and auditory recognition of
words (Cohen et al., 2004). Regarding Broca’s area, we
found connections involving the ventral opercular part,
which is thought to be involved in phonological process-
ing (Jobard et al., 2003; Binder et al., 2009; Price, 2012).

(6) Finally, all seven ROIs were connected with each other.
Such local connections transiting through the U-shape
fibers of the ILF, represent the intrinsic connectivity of the
ventral pathway (Kravitz et al., 2013), and may subtend
the formation of representations of increasing complexity
and invariance (Dehaene et al., 2005; Serre et al., 2007;
DiCarlo et al., 2012; Rolls, 2012).

One may note that connections to the angular gyrus may ap-
pear relatively sparse and restricted to the very posterior part of
the inferior parietal lobule, despite the traditional role attributed
to the angular gyrus in reading (Dejerine, 1892; Geschwind,
1965). Actually, angular activations during reading seem re-
stricted to semantically oriented tasks (Price, 2012; Taylor et al.,
2013), in agreement with a supramodal function of integration
and semantic access (Binder et al., 2009).

Conclusion
The present results clarify the anatomical connections of the
VWFA. They reveal a pattern of connectivity to language areas at
the precise left occipitotemporal location, which in readers of all
cultures, is preferentially activated by written words. Those re-
sults confirm that the VWFA plays a prominent role in reading by
serving as an interface between the ventral visual recognition
system and perisylvian language areas. We propose that connec-

tivity to language areas, over and above visual factors, may be the
primary determinant of VWFA localization. However, conclu-
sively separating the causes versus the consequences of learning
to read would require replication of the present work in pre-
reading children, in a longitudinal context, to directly test
whether the location of the developing VWFA can be predicted
by a prior pattern of long-distance connectivity.
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