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Communication complexity quantifies how difficult it is for two distant computers
to evaluate a function f(X, Y ), where the strings X and Y are distributed to the first
and second computer respectively, under the constraint of exchanging as few bits as
possible. Surprisingly, some nonlocal boxes, which are resources shared by the two
computers, are so powerful that they allow to collapse communication complexity, in
the sense that any Boolean function f can be correctly estimated with the exchange of
only one bit of communication. The Popescu-Rohrlich (PR) box is an example of such
a collapsing resource, but a comprehensive description of the set of collapsing nonlocal
boxes remains elusive.

In this work, we carry out an algebraic study of the structure of wirings connecting
nonlocal boxes, thus defining the notion of the “product of boxes” P ⊠ Q, and we show
related associativity and commutativity results. This gives rise to the notion of the
“orbit of a box”, unveiling surprising geometrical properties about the alignment and
parallelism of distilled boxes. The power of this new framework is that it allows us
to prove previously-reported numerical observations concerning the best way to wire
consecutive boxes, and to numerically and analytically recover recently-identified noisy
PR boxes that collapse communication complexity for different types of noise models.

Nonlocal boxes (NLBs) were introduced by Popescu and Rohrlich in 1994 as a theoretical gener-
alization of quantum correlations [41]. When Alice and Bob share a pair of entangled states |Ψ⟩,
each of them can choose to measure their state in a certain basis depending on some “instructions”
x, y ∈ {0, . . . , p}, and then each of them can encode their outcomes in respectively a, b ∈ {0, . . . , q}.
Similarly, a two-party NLB is a “black box” shared between Alice and Bob, with some inputs x, y
and some outputs a, b, and with the rule that Alice has access only to the left part and Bob only
to the right part, see Figure 1. This way, we only study the statistics produced by the “hidden
state” inside of the box and not the physical theory describing that state, which is the reason why
nonlocal boxes are said to be device-independent. In this work, we consider one of the simplest
scenarios, the CHSH scenario named after Clauser, Horne, Shimony, and Holt [16], where p = q = 1
and with two parties Alice and Bob (for more general scenarios, see [4, 5, 14, 20, 44]).

Generally, nonlocal boxes are non-signalling, meaning that they respect the relativistic con-
straint of no faster-than-light communication between parties (although there is a recent interest
for partially-signalling scenarios [44]). These non-signalling boxes form a set NS defined by the
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Figure 1: Representation of a nonlocal box.

following non-negativity and normalization equations, which ensure P is a well-defined conditional
probability distribution:

∀a, b, x, y ∈ {0, 1}, P(a, b |x, y) ≥ 0 and
∑
a,b

P(a, b |x, y) = 1 , (1)

together with the conditions that the marginals of each party are independent of the other party’s
question:

∀a, x ∈ {0, 1},
∑

b∈{0,1}

P(a, b |x, 0) =
∑

b∈{0,1}

P(a, b |x, 1) =: P(a |x) , (2)

∀b, y ∈ {0, 1},
∑

a∈{0,1}

P(a, b | 0, y) =
∑

a∈{0,1}

P(a, b | 1, y) =: P(b | y) . (3)

The physical interpretation of Equations (2) and (3) is that Alice and Bob are space-like separated,
so it would take more time for a light ray to move from Bob to Alice than the time needed for
Alice to do her protocol and to receive her output of the box, and therefore Alice’s marginal does
not depend on Bob’s input.

The best-known example of a non-signalling box is the PR box, named after Popescu and
Rohrlich [41]. This box is designed to perfectly win at the CHSH-game [16], i.e. the box produces
outputs a, b such that a ⊕ b = xy with probability 1, where the symbol “⊕” stands for the sum
modulo 2.1 More precisely, given an input pair (x, y), there are two possibilities for the outputs:
either (a = 0, b = xy) or (a = 1, b = xy ⊕ 1), each being output with probability 1/2 by the
PR box. In fact, it is possible to show that the PR box thus defined is the only box of NS that
perfectly wins at the CHSH-game. Let us give two other examples of boxes: (i) the fully mixed
box I, which outputs purely random bits a and b; and (ii) the deterministic boxes P0, P1 that
always output (0, 0), (1, 1) independently of the inputs. All these boxes are in NS and can be
written as conditional probability distributions:

PR
(
a, b |x, y

)
:= 1

21a⊕b=xy , I
(
a, b |x, y

)
:= 1

4 ,

P0
(
a, b |x, y

)
:= 1a=b=0 , P1

(
a, b |x, y

)
:= 1a=b=1 ,

(4)

where the symbol “1” stands for the indicator function. Two other important classes of correlations
are the local set L and the quantum (tensor) set Q, with strict inclusions L ⊊ Q ⊊ NS, defined as:

L =
{

P(a, b |x, y) =
∫

λ

PA(a |x, λ)PB(b | y, λ) µ(λ) : PA,PB , µ are probability distributions

}
,

Q =
{

P(a, b |x, y) = ⟨Ψ|
(

Ex
a ⊗ F y

b

)
|Ψ⟩ : {E

x
a}a, {F y

b }b are POVMs over Hilbert spaces HA,HB ,
|Ψ⟩ is a vector of HA ⊗HB of norm 1

}
.

For more details on correlation sets and their separation, see [29].
Interestingly, some nonlocal boxes collapse what is called communication complexity (CC), a

notion introduced by Yao in [48] and reviewed in [30, 43] that quantifies the difficulty of performing

1From a computing perspective, the PR box turns a distributed AND (xy) into a distributed XOR (a⊕ b), where
“distributed” means that the computation requires both parties (Alice knows x and a, and Bob knows y and b).
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a distributed computation. Say we want to evaluate a Boolean function f : {0, 1}n × {0, 1}m →
{0, 1} using two distant computers, where the first computer receives as input X ∈ {0, 1}n, and the
other computer receives as input Y ∈ {0, 1}m. The CC of f is then defined as the minimal number
of bits that the computers need to communicate in order for the first computer to output the value
f(X, Y ). For instance, when n = m = 2, X = (x1, x2), Y = (y1, y2), the CC of f1 := x1 · (y1 ⊕ y2)
equals 1, using the communication bit y1 ⊕ y2, whereas it is possible to show that the CC of
f2 := x1 · y1 ⊕ x2 · y2 equals 2, using communication bits y1 and y2; therefore f2 is more complex
than f1 in the sense of CC. Yao also introduced in [48] a probabilistic version of CC, in which the
computers can access shared randomness, and where for all X, Y the first computer has to output
the correct value f(X, Y ) with probability at least p > 1/2 (p being independent of X and Y ).
Now, if a nonlocal box P is used in the protocol to compute the value f(X, Y ), we say that the box P
collapses communication complexity if there exists a fixed p > 1/2 for which any Boolean function
f , with arbitrary input size, can be correctly computed with only one bit of communication and
probability p. In this definition, an arbitrary number of copies of the box P can be used in the
protocol. Such a collapse is strongly believed to be unachievable in Nature since it would imply
the absurdity that a single bit of communication is sufficient to distantly estimate any value of
any Boolean function f [6, 10, 13, 18]. For more details on the link between nonlocal boxes and
communication complexity, see [7].

Open question. Among the four examples of boxes listed in Equation (4) , only the PR box
collapses communication complexity [18], meaning that this box is very “powerful”. We also know
that some noisy versions of the PR box collapse CC for different types of noise [8, 10, 11, 13, 23]. On
the other hand, we know that quantum correlations do not collapse communication complexity [17],
and neither does a slightly wider set named “almost quantum correlations” [36]. To this day, the
question is still open whether the remaining non-signalling boxes are collapsing, meaning that there
is still a gap to be filled. We refer to [8, Fig. 2] for a figure that summarizes the situation.

Recent results. Two recent papers make progress on the question above. In [11] Brito, Moreno,
Rai, and Chaves study correlation distillation in quantum voids [42], which are subsets of a face of
NS where all nonlocal points are non-quantum. They prove strong distillation properties in 1- and
2- dimensional quantum voids and deduce that these regions collapse communication complexity,
which partially answers the open question. More recently, in [23], Eftaxias, Weilenmann, and
Colbeck propose a sequential algorithm to find a suitable sequence of wirings to collapse communi-
cation complexity, where a wiring is defined as a connection between boxes that allows the creation
of a new box out of copies of a box (see Section 1). This allows us to numerically determine a
collapsing region of nonlocal boxes, which is again a partial answer to the open question.

Our Results. We provide a new mathematical framework and algorithms in working towards
addressing the open question. The ideas are based in part on the M.Sc. thesis of one of the
authors [7].

(i) We introduce a new framework that we call the algebra of boxes. After recalling the definition
of a wiring W, we use it to introduce a product of boxes P ⊠W Q. This leads to a natural
embedding of the non-signalling set NS in an algebra, which we call an algebra of boxes
and for which we characterize associativity and commutativity (see Proposition 7 ). This
gives an algebraic perspective on protocols for correlation distillation—for instance, the non-
associativity of the algebra of boxes tells us that the order in which the boxes are wired
matters.

(ii) This framework gives rise to the fascinating notion of what we call the orbit of a box. The
orbit of P ∈ NS is roughly the set of all possible boxes that can be produced by wiring
arbitrarily many copies of P. This allows interesting visualizations of the hidden structure of
boxes (see Figure 7), and surprisingly we observe that these orbits satisfy strong alignment
and parallelism properties as shown in Theorem 10 and Corollary 11. Moreover, we derive the
expression of the highest CHSH-valued box of the (tilted) orbit in Theorem 13, which explains
the numerical observation reported in [23, Supplementary Material, II], and for which we
derive an insightful linear-time algorithm that is exponentially more efficient compared to the
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naive exponential-time computation of the entire orbit. In addition, we recover in Theorem 16
a similar result as in [23] stating that those methods lead to finding collapsing boxes via the
recursive application of the multiplication ·⊠ P on the right.

(iii) We provide algorithms in our GitHub page [9] for the following task: given a box P that
we want to show is collapsing, find an appropriate wiring W such that the orbit contains
a collapsing box. The idea is to repeat several times in parallel a variant of the Gradient
Descent Algorithm in order to find the most appropriate wiring W. These algorithms allow
us to recover in Figure 10 similar new collapsing areas as in [23, Figure 3].

(iv) In Theorems 23 and 29, we show that our framework also allows us to recover some analytical
results with a new proof based on the algebra of boxes: some triangles in the boundary of
NS are collapsing [11]. To that end, algorithms of (iii) above were performed in order to
identify a convenient wiring. Moreover, in Corollary 27, we recover a result from [42] with a
new proof, based on communication complexity, showing that the triangle joining PR, P0, P1
is a “quantum void”.

Further Comparison with Recent Results. A contribution of our work is in providing a new
algebraic framework for a unified perspective on three recent results [11, 23, 42]. Compared to [23],
our work concurrently and independently2 derives the existence of new collapsing boxes using right
multiplication (Theorem 16) and we report a similar numerical result (Figure 10). However, as
detailed in Remark 19, we note that the methods complement each other: as the authors of [23],
we implement an algorithm finding a non-constant sequence of wirings, but we also implement an
algorithm finding a constant sequence of wirings for analytical purposes. Moreover, as mentioned
above, our Theorem 13 analytically proves a numerical observation reported in [23, Supplementary
Material, II]. As for [11], we recover some of their results in Theorems 23 and 29, and although
our proof reproduces previously-known analytical collapsing areas, we view our contribution as a
new approach based on the algebra of boxes. Regarding [42], we recover one of their result in
Corollary 27 with a new proof, based on communication complexity, showing that the triangle
joining PR, P0, P1 is a “quantum void”. In summary, our new algebraic viewpoint unifies the results
of [23] (see Subsection 4.1), [11] (see Subsection 4.2), and [42] (see Subsection 4.2).

Structure. This work is divided into four sections, a conclusion, and some appendices:

• Section 1: given a wiring W, we introduce the product of nonlocal boxes P⊠W Q and we study
the new framework of algebra of boxes.

• Section 2: we define the notion of the orbit of a box P, which consists of all boxes produced
using copies of P and the product ⊠ previously defined, and we investigate its surprising
geometric structure.

• Section 3: we present algorithms for the following task: given a box P that we want to show
is collapsing, find an appropriate wiring W such that the orbit contains a collapsing box.
These algorithms are based on Gradient Descents methods and are entirely accessible via our
GitHub page [9].

• Section 4: we find collapsing boxes in two different ways: (i) numerically, using the algorithms
of the previous section, and (ii) analytically, using the algebra of boxes and the orbit of a box.

• Conclusion: we conclude with some discussion, open problems, and avenues for future work.

• Appendices: we complete this work with supplementary figures and proofs.

1 Algebra of Boxes
The set of non-signalling boxes NS is the compact convex subset of the vector space B =

{
P :

{0, 1}4 → R
}
satisfying Equations (1), (2), (3). In this section, we propose to endow the vector

2Our results were first reported in the M.Sc. thesis of one of the authors [7], which appeared in the same month
(June 2022) as the arXiv version of [23].

Accepted in Quantum 2024-05-27, click title to verify. Published under CC-BY 4.0. 4

coro:quantum-boxes-in-the-boundary-of-NS


space B with a multiplication ⊠W, so that B becomes an algebra that we call algebra of boxes and
that we denote BW. To that end, we recall the notion of wiring W (deterministic then mixed),
which, for the sake of simplicity, we define for only two boxes being connected — see Remark 6 for
more generality. Then we provide some typical examples of wirings from the literature, and we
finally introduce the algebra of boxes and characterize its associativity and commutativity.

1.1 Intuition Behind Wirings
Given two non-signalling boxes P and Q, it is possible to build a new box by wiring them together.
This notion of wiring has found a great interest in the last two decades, especially with the following
two goals: (i) attempting nonlocality distillation, i.e. we want to build a box that is “strongly
nonlocal” starting from some boxes that are “weakly nonlocal” [6, 11, 13, 19, 21, 23, 24, 25, 27,
35]; (ii) finding sets that are closed under wirings, because it is argued that a consistent physical
theory should, in principle, be closed under natural simple operations as wirings [1, 6, 31, 36, 37].

As one might guess, a wiring simply connects some outputs to some inputs under some rules,
and it applies some pre- and post- processing operations to the carried bits. An example of wiring
is presented in Figure 2 (a), where the wiring indeed connects some outputs to some inputs, but
is counter-intuitive at first, since Alice and Bob do not use their share of the boxes in the same
order: while Alice uses P then Q, Bob uses Q then P. This independence on the choice of the
box order for each player generalizes quantum mechanics, in the sense that if Alice and Bob were
sharing two entangled pairs instead of two nonlocal boxes, Alice would be able to measure her first
particle and then the second one, while Bob would be able to do the converse, and they would
still receive the outputs “instantaneously”. Now, as in the quantum case, Alice receives an answer
from the box P instantaneously even if Bob has not yet inputted a bit in his side of P, and she
can use the output a1 as a parametrization for the input x2 of the box Q; similarly for Bob. This
“instantaneous-answer” property of a box is typical of non-signalling correlations, as modelled by
Equations (2) and (3) saying that Alice’s marginal is independent of Bob’s input, and vice-versa.
Note that a wiring cannot link Alice’s side to Bob’s side, nor the opposite, since otherwise it could
create a signalling box: there would be communication between parties.

(a)

P

Q

x

a = a2

y

b = b1

x1

a1

x2

a2 b2

y1

b1

y2

P

Q

A lice Bob

(b)

P

Q

x

f1(x, a2)

a1

f2(x, a1)

a2

f3(x, a1, a2)

y

g1(y, b2)

b1

g2(y, b1)

b2

g3(y, b1, b2)

Figure 2: (a) Example of wiring between two boxes P and Q. (b) General wiring between two boxes P and Q.

1.2 Deterministic Wirings
Two boxes P and Q can be wired as in Figure 2 (b), using functions fi and gj depending on the
global entries x and y and on the outputs ak and bℓ of the boxes. Nevertheless, to be a valid wiring,
the inputs on Alice’s side must be in a valid order: the input x2 of Q can depend on the output a1
of P only if the input x1 of P does not depend on the output a2 of Q; the same should also hold on
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Bob’s side. In other words, the functions f1(x, a2) and f2(x, a1) cannot both depend on a2 and a1
respectively for the same value of x, and similarly for g1(y, b2) and g2(y, b1). These conditions are
formalized in (5) and (6) of the following definition:

Definition 1 (Deterministic wiring). A deterministic wiring W between two boxes P, Q ∈ NS consists
in six Boolean functions f1, f2, g1, g2 : {0, 1}2 → {0, 1} and f3, g3 : {0, 1}3 → {0, 1} satisfying the
non-cyclicity conditions:

∀x,
(
f1(x, 0)− f1(x, 1)

)(
f2(x, 0)− f2(x, 1)

)
= 0 , (5)

∀y,
(
g1(y, 0)− g1(y, 1)

)(
g2(y, 0)− g2(y, 1)

)
= 0 . (6)

Given a wiring W and two boxes P, Q ∈ NS, we obtain a new box that we denote P ⊠W Q.
Formally, this new box is defined as the following conditional probability distribution:

P ⊠
W

Q(a, b |x, y) :=
∑

a1,a2,b1,b2

P
(

a1, b1 | f1(x, a2), g1(y, b2)
)
× Q

(
a2, b2 | f2(x, a1), g2(y, b1)

)
× 1a=f3(x,a1,a2) × 1b=g3(y,b1,b2) , (7)

where the symbol 1 stands for the indicator function, taking value 1 if the indexed condition
is satisfied, and 0 otherwise. It is important to specify the condition P, Q ∈ NS, since in that
case P ⊠W Q is indeed a conditional probability distribution as shown in the proof of Fact 3 ;
otherwise, if one requires only the condition on P, Q to be conditional probability distributions
(not necessarily lying in NS), then it might happen that the product P ⊠W Q is not a well-defined
probability distribution: consider for example P = Q = 1a=y1b=x and the deterministic wiring
W = (f1 = x, f2 = a1, g1 = b2, g2 = y, f3 = 0, g3 = 0).

Definition 2 (Closed under wirings). A set X ⊆ NS is said to be closed under wirings if for all
boxes P, Q in X and all wirings W, the new box P ⊠W Q is in X as well.3

For the sake of completeness, we recall the fact that the non-signalling polytope NS is an
example of a set that is closed under wirings.

Fact 3. [1] NS is closed under deterministic wirings.

Proof. We need to show that the box P ⊠W Q given in (7) is a well-defined conditional probability
distribution that satisfies the non-signalling conditions (2) and (3). First, by non-negativity of
P and Q, the new box P ⊠W Q is non-negative as well. Now, fix x, y ∈ {0, 1}. The non-cyclicity
conditions (5) and (6) tell us that f1 or f2 is constant in the second variable, and similarly for g1
and g2. Without loss of generality, up to changing the roles of both f1, g1 with respectively f2, g2,
we only need to consider the following two non-exclusive cases:

• Case 1: the functions f1(x, a2) and g1(y, b2) are constant in the second variable, and we
denote them f1(x) and g1(y);

• Case 2: the functions f2(x, a1) and g1(y, b2) are constant in the second variable, and we
denote them f2(x) and g1(y).

In Case 1, we see that coefficients sum to one by normalization of P and Q:∑
a,b

P ⊠
W

Q(a, b |x, y) =
∑
a1,b1

P
(
a1, b1 | f1(x), g1(y)

)
×

(∑
a2,b2

Q
(

a2, b2 | f2(x, a1), g2(y, b1)
)

︸ ︷︷ ︸
=1

)
= 1 .

3Notice that there exists as well a more general definition involving k boxes and m parties, but our manuscript
is restricted to the simpler case of k = m = 2, which is the reason why we give a simpler definition here. In the
general framework, many sets are known to be closed under wirings [1, 6, 31, 36, 37].
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In Case 2, using the non-signalling conditions on P and Q, we see that coefficients sum to one again:

∑
a,b

P ⊠
W

Q(a, b |x, y) =
∑
a2,b1

(∑
a1

P
(
a1, b1|f1(x,a2), g1(y)

)
︸ ︷︷ ︸

= P(b1 |g1(y))

)(∑
b2

Q
(

a2, b2|f2(x), g2(y,b1)
)

︸ ︷︷ ︸
= Q(a2 |f2(x))

)

=
(∑

b1

P
(
b1 |g1(y)

))(∑
a2

Q
(
a2 |f2(x)

))
= 1 .

Hence P⊠W Q is a conditional probability distribution. It only remains to check that P⊠W Q satisfies
the non-signalling conditions (2) and (3). Fix x, a ∈ {0, 1}. In Case 1, we have for all y ∈ {0, 1}:∑

b

P ⊠
W

Q(a, b |x, y) =
∑

a1,a2

P
(
a1 | f1(x)

)
Q
(
a2 | f2(x, a1)

)
1a=f3(x,a1,a2) =: P ⊠W Q(a |x) ,

i.e. the result does not depend on y, which means that the marginal in b is well-defined. This
is similar in Case 2, changing f1(x) into f1(x, a2) and f2(x, a1) into f2(x). Hence the first non-
signalling condition (2) is satisfied, and the other one (3) follows in a similar way.

1.3 Mixed Wirings
Using local randomness, one can generalize the class of deterministic wirings to the one of mixed
wirings. The difference is that the functions fi and gj take values in [0, 1] instead of {0, 1}.
For instance, if f1(x, a1) = p ∈ [0, 1] for some fixed bits x and a1, it means that Alice uses a
Bernoulli distribution B(p) to input the bit 1 with probability p, or the bit 0 with probability
1− p. In other words, we have 32 Bernoulli variables (B1, . . . , B32), whose parameters are stored
in W =

(
f1(0, 0), f1(0, 1), . . . , g3(1, 1, 1)

)
∈ R32, and the box product P ⊠ Q becomes the expected

value of the deterministic wirings:

P ⊠
W

Q = E
[
P ⊠

{Bi}
Q
]

. (8)

Note that this generalization of wirings does not change the definition of nonlocal boxes: the inputs
and outputs of a box are still classical bits, not any real number between 0 and 1. In order to
ensure a well-defined local order for both Alice and Bob, we will need to add a dependence relation
between the variables Bi, namely the non-cyclicity condition, as for the deterministic wirings:

Definition 4 (Mixed wiring). A mixed wiring W between two boxes P, Q ∈ NS consists in six
functions f1, f2, g1, g2 : {0, 1}2 → [0, 1] and f3, g3 : {0, 1}3 → [0, 1] satisfying the non-cyclicity
conditions (5) and (6). Mixed wirings form a set that we denote W.

The set of mixed wirings W is not convex because non-cyclicity conditions (5) and (6) are
non-affine equalities. For instance, consider the wirings W, W′ with all coefficients 0 except the
one corresponding to respectively f1(0, 0) = 1, f ′

2(0, 0) = 1; each of these wirings satisfies the
non-cyclicity conditions (5) and (6), but the mean W′′ = (W + W′)/2 does not:(

f ′′
1 (0, 0)− f ′′

1 (0, 1)
)(

f ′′
2 (0, 0)− f ′′

2 (0, 1)
)

=
(
1/2− 0

)(
1/2− 0

)
̸= 0 ,

hence the non-convexity ofW. The expression of P⊠W Q is the same as before, with the convention
that P(a, b |α, β) with α, β ∈ [0, 1] means (1 − α)(1 − β)P(ab | 00) + (1 − α)βP(ab | 01) + α(1 −
β)P(ab | 10) + αβP(ab | 11), which gives:
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P ⊠W Q(a, b |x, y)

=
∑

a1,a2,b1,b2∈{0,1}

[
P
(
a1, b1 | 0, 0

)
(1− f1(x, a2)) (1− g1(y, b2)) + P

(
a1, b1 | 0, 1

)
(1− f1(x, a2)) g1(y, b2)

+ P
(
a1, b1 | 1, 0

)
f1(x, a2) (1− g1(y, b2)) + P

(
a1, b1 | 1, 1

)
f1(x, a2) g1(y, b2)

]
×
[
Q
(
a2, b2 | 0, 0

)
(1− f2(x, a1)) (1− g2(y, b1)) + Q

(
a2, b2 | 0, 1

)
(1− f2(x, a1)) g2(y, b1)

+ Q
(
a2, b2 | 1, 0

)
f2(x, a1) (1− g2(y, b1)) + Q

(
a2, b2 | 1, 1

)
f2(x, a1) g2(y, b1)

]
×
[
(1− f3(x, a1, a2))1a=0 + f3(x, a1, a2)1a=1

]
×
[
(1− g3(y, b1, b2))1b=0 + g3(y, b1, b2)1b=1

]
. (9)

Using the probabilistic point of view of Equation (8), we see that a mixed wiring is a convex
combination of deterministic wirings (the realization of Bernoulli variables being either 0 or 1).
Hence, by linearity of the expectation E, we deduce from Fact 3 that the set NS is closed under
mixed wirings:

Fact 5. NS is closed under mixed wirings.

Remark 6. Note that the formalism presented here is deliberately not the most general one,
since this simpler version is enough to state our results in the next sections. For a more general
framework, see [6]. For instance, here we require a deterministic local box order: knowing x, Alice
perfectly knows which box she will use first, and similarly for Bob knowing y, but a more general
mixed wiring would consist in setting a probability distribution on the different permutations of
Alice’s boxes and another one on Bob’s boxes. In addition, here we only defined wirings of depth 2,
but it is possible to have more complex wirings using k nonlocal boxes, thus obtaining a wirings
of depth k, which play a significant role in the context of trivial communication complexity [23].

1.4 Typical Examples of Wirings
We now review typical wirings that are studied in the literature. See Figure 3 for an illustration of
these wirings. Note that all of these wirings are deterministic wirings.

Example 0. The trivial wiring Wtriv is defined as the wiring that does “nothing”, in the sense
that it outputs exactly the global inputs: (a, b) = (x, y). Similarly, the linear wiring Wlin simply
connects the output of a box to the input of the box immediately below.

Example 1. In [25], Forster et al. introduce a wiring W⊕ in order to distill nonlocality. It consists
in setting boxes in parallel and in taking the sum mod 2 of the outputs.

Example 2. In [13], Brunner and Skrzypczyk enhance the wiring from Example 1 in order to
obtain a better distillation protocol of nonlocality. Their wiring WBS is adaptive, in the sense that
boxes are no longer in parallel: the second box’s inputs a2, b2 are not simply equal to the previous
box’s outputs a1, b1, but they equal the the latter multiplied by the general inputs x, y. Their new
protocol is so powerful that it allows to arbitrarily reduce the noise of any correlated box (defined
as convex combinations of PR and SR) so that the PR box is almost perfectly simulated. As a
consequence, communication complexity collapses; see the next section for more details.

Example 3. In [1], Allcock et al. study two variants of the previous wirings. First, their “distil-
lation wiring” Wdist is similar to the one in Example 2: it is also adaptive and it also distills all
correlated boxes. Second, their “AND wiring” W∧ resembles the one in Example 1: boxes are set
in parallel, but we take the product of the outputs instead of the sum.
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(Ex. 0) Wtriv

P

Q

x

x

y

y

(Ex. 0) Wlin

P

Q

x

a2

y

b2

a1

a2

b1

b2

(Ex. 1) W⊕ [25]

P

Q

x

•

⊕

a1 ⊕ a2

y

•

⊕

b1 ⊕ b2

a1

a2 b2

b1

P

Q

(Ex. 2) WBS [13]

P

Q

x

•

•

∧

⊕

a1 ⊕ a2

y

•

•

∧

⊕

b1 ⊕ b2

a1

a2

b1

b2

∧ ∧

(Ex. 3) Wdist [1]

P

Q

x

•

•

⊕

⊕

a1 ⊕ a2

y

•

•

∧

⊕

b1 ⊕ b2

a1

a2

b1

b2

⊕ ∧

(Ex. 3) W∧ [1]

P

Q

x

•

∧

a1 ∧ a2

y

•

∧

b1 ∧ b2

a1

a2 b2

b1

P

Q

(Ex. 4) Wdepth3 [23]

P

Q

R

x

x

a1

x

a2

(⋆)

a3

(⋆⋆⋆)

y

y

b1
y

b2

(⋆⋆)

b3

(⋆⋆⋆⋆)

(Ex. 5) W∨∧ [35]

P

Q

x

•

∨

max{a1, a2}

y

•

∧

min{b1, b2}

a1

a2 b2

b1

P

Q

Figure 3: Typical examples of wirings. Wirings with the same color have similar internal structures. The overline
bar is the NOT gate: x = x ⊕ 1. The symbol (⋆) stands for xa2 ∨ xa1 ∨ xa2a1, and (⋆⋆) for yb2 ∨ yb1, and
(⋆⋆⋆) for a3a2 ∨ a3a1 ∨ a3a2a1, and (⋆⋆⋆⋆) for b3b2 ∨ b3b1 ∨ b3b2b1.

Example 4. In [27], Høyer and Rashid study the depth-k generalizations of the wirings from
Examples 1 and 2 and 3: they wire k boxes instead of only two. They also give an example of a
depth-3 protocol that extends the known region of distillable boxes. In [23] this idea is improved
upon, by constructing genuine depth-3 protocols, such as Wdepth3 drawn above. These protocols
are strictly better than depth-2 protocols in terms of the collapse of CC, in the sense that they
prove the existence of nonlocal boxes that are shown to collapse CC using this wiring but that
cannot be distilled using any depth-2 wiring. To do so, they use their algorithm to single out the
area of nonlocal boxes that are distillable by means of depth-2 wirings, and they show that their
example Wdepth3 is out of this region.4 Note that in our work, the study is limited to depth-2
wirings.

Example 5. More recently, in [35], Naik et al. defined the “OR-AND wiring” W∨∧ in order to
distill the nonlocality of quantum correlations. That wiring is a mix of the ones in Examples 1 and
3: it consists in setting boxes in parallel and in taking the maximum (the “OR”) of Alice’s outputs
and the minimum (the “AND”) of Bob’s outputs.

1.5 Algebra of Boxes Induced by a Wiring
Let B be the vector space of all the functions {0, 1}4 → R, and consider a mixed wiring W.
As defined in Equation (9) , the operation ⊠W is bilinear, so the vector space B equipped with

4We thank Mirjam Weilenmann for feedback and for pointing out that [12] states that the wirings W⊕ and Wdist
are sufficient to characterize the distillable region of the slice PR–SR–I.
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the product ⊠W is actually an algebra, which we denote by BW for that specific wiring W ∈
W. Its dimension is dimBW = 24 = 16. Note that the (affine) dimension of the non-signalling
polytope NS ⊆ BW is dimNS = 16 − 8 = 8 because there are 8 dependent variables in the affine
conditions (1), (2), (3); see [3] for a more general expression.

Multiplication Table. In order to better understand the behavior of the box product ⊠, it is
interesting to compute the product of some basic boxes: for instance the boxes PR, P0, P1, I defined
in Equation (4). In Figure 4, we present the multiplication table for the wiring WBS from [13]. By
bilinearity of the box multiplication, this table shows that the convex hull Conv{PR, P0, P1} is stable
under ⊠. On the contrary, observe that the convex hull Conv{PR, P0, P1, I} is not stable under ⊠:
the product I ⊠ PR gives Q1 := 1

4 PR− 1
8
(
P0 + P1

)
+ I which is out of the convex hull (nevertheless

the affine hull Aff{PR, P0, P1, I} is stable under ⊠). Notice that we show in Proposition 22 that
actually Conv{PR, P0, P1} = NS ∩ Aff{PR, P0, P1}. From this table, one may postulate that P0 is
a right identity in the sense that P ⊠ P0 = P for all P in NS, and it is indeed true as a simple
consequence of formula (7). One may similarly verify that I is a right fixed point, in the sense that
P⊠ I = I for all P in NS, as it is possible to guess from the table. See all the multiplication tables
of the typical depth-2 wirings in Appendix C.

P

Q
PR P0 P1 I

PR PR PR PR I

P0 1
2

(
P0 + P1

)
P0 P1 I

P1 PR P1 P0 I

I Q1 I I I

Figure 4: Multiplication table of the operation ⊠WBS induced by the wiring from [13]. Each cell displays the
result of P ⊠ Q. The box Q1 at the bottom left is Q1 := 1

4 PR − 1
8

(
P0 + P1

)
+ I. Further multiplication tables

are available in Appendix C.

Non-Commutativity and Non-Associativity. A direct consequence of the multiplication table in
Figure 4 is that the algebra BWBS induced by the wiring WBS is non-commutative (P0 ⊠ PR ̸=
PR ⊠ P0) and non-associative ((P0 ⊠ P1) ⊠ PR ̸= P0 ⊠ (P1 ⊠ PR)). This non-associativity is at
the root of interesting remarks, see drawings of the orbit of a box in the next section, Figure 7.
Similarly, the algebra induced by the wiring Wdist is both non-commutative and non-associative,
but on the contrary, the algebras induced by W ∈ {Wtriv, W⊕, W∧, W∨∧} are both commutative
and associative. One may wonder if there exist induced algebras that are associative but not
commutative, and the converse. To that end, here is a characterization of commutativity and
associativity in a simple case where boxes are set in parallel and with the same input functions:

Proposition 7 (Characterization of commutativity and associativity). Assume W is a wiring such
that f1 = f2 = f(x) and g1 = g2 = g(y). Then:

(i) BW is commutative if and only if the functions f3(x, a1, a2) and g3(y, b1, b2) are “symmetric”
in the last two variables, in the sense that f3(x, a1, a2) = f3(x, a2, a1) for all x, a1, a2, and
similarly for g3.

If in addition f(x) = x and g(y) = y:

(ii) BW is associative if and only if the functions f3(x, a1, a2) and g3(y, b1, b2) are “associative”
in the last two variables, in the sense that f3(x, a1, f3(x, a2, a3)) = f3(x, f3(x, a1, a2), a3) for
all x, a1, a2, a3, and similarly for g3.

Proof. (i) First, from the expression (7), see that for all bits a, b, x, y and any boxes P, Q in BW, we
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have:

P ⊠
W

Q(a, b |x, y)− Q ⊠
W

P(a, b |x, y)

=
∑

a1,a2,b1,b2

P
(
a1, b1 | f(x), g(y)

)
× Q
(
a2, b2 | f(x), g(y)

)
×
[
1a=f3(x,a1,a2)1b=g3(y,b1,b2)

− 1a=f3(x,a2,a1)1b=g3(y,b2,b1)

]
.

Hence, if f3 and g3 are both symmetric in the last two variables, then the difference is null and
the algebra is commutative. Conversely, suppose that BW is commutative, so that the left-hand
side is null. Taking probability distributions P and Q that are always positive (such as I), we have
that the difference in the right-hand side has to be null for all x, y, a, b, a1, a2, b1, b2. Fix x, a1, a2
and consider a := f3(x, a1, a2), and similarly fix y, b1, b2 and consider b := g3(y, b1, b2). We obtain
1− 1a=f3(x,a2,a1)1b=g3(y,b2,b1) = 0, which means that both indicator functions are equal to 1, and
therefore both subscript equalities hold. Hence, this being true for any fixed x, a1, a2 and y, b1, b2,
we obtain that f3 and g3 are symmetric as wanted.

(ii) From (7) again, we have for all bits a, b, x, y and any boxes P, Q, R in BW:

P ⊠
W

(Q ⊠
W

R)(a, b |x, y)− (P ⊠
W

Q) ⊠
W

R(a, b |x, y)

=
∑

a1,a2,a3,b1,b2,b3

P
(
a1, b1 |x, y

)
×Q
(
a2, b2 |x, y

)
×R
(
a3, b3 |x, y

)
×
[
1a=f3(x,a1,f3(x,a2,a3))1b=g3(y,b1,g3(y,b2,b3))

− 1a=f3(x,f3(x,a1,a2),a3)1b=g3(y,g3(y,b1,b2),b3)

]
.

A similar proof with double implication as in (i) applies, hence the associativity criterion follows.

Now, it is easier to build an associative non-commutative induced algebra BW′ . Consider the
wiring W′ given by f1(x, a2) = f2(x, a1) = x, and g1(y, b2) = g2(y, b1) = y, and f3(x, a1, a2) := a1,
and g3(y, b1, b2) := b1. This wiring satisfies the condition (ii) of the proposition and does not
satisfy the condition (i), hence it is as wanted. Conversely, with similar arguments, a commutative
non-associative algebra BW′′ is induced by the wiring W′′ defined by the same f1, f2, g1, g2 and
f3(x, a1, a2) := a1a2 ⊕ 1 and g3(y, b1, b2) := b1b2 ⊕ 1. Therefore, we obtain the table in Figure 5.

Associativity Non-associativity
Commutativity Wtriv, W⊕, W∧, W∨∧ W′′

Non-commutativity W′ WBS, Wdist

Figure 5: Associativity and commutativity of the induced algebra BW, depending on the wiring W displayed in
the table cell.

2 Orbit of a Box
In this section, we study the set of all boxes that can be generated given many copies of a starting
box P and a wiring W. After introducing the orbit of a box, we provide some consequences to
communication complexity. Subsequently, we study a particular example, WBS, with which we
find collapsing boxes in Subsection 4.2, and then we give some general remarks about other orbits.
Finally, we conclude this section by giving the technical proof of the theorem stating that the
“best” parenthesization is the multiplication on the right.

2.1 Definition
Given multiple copies of a non-signalling box P ∈ NS and of a (mixed) wiring W, Alice and Bob
can produce many other boxes, e.g. (P ⊠W P) ⊠W P or P ⊠W (P ⊠W P). All of these new boxes are
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again non-signalling because NS is closed under wirings, see Lemma 5. We call orbit of the box P
(induced by the wiring W) the set of all of these possible new boxes:

OrbitW(P) :=
{
boxes Q ∈ NS that can be produced by using finitely many times the box P and the wiring W

}
=
⋃
k≥1

Orbit(k)
W (P) ⊆ NS ,

where Orbit(k)(P) is called the orbit of depth k of P (or simply k-orbit), defined as:

Orbit(k)
W (P) :=

{
all possible products with k times the term P, using the multiplication ⊠W

}
.

When the context is clear, we overload the notation and write Orbit and Orbit(k) respectively.
In general, these k-orbits are not singletons for k ≥ 3 since the algebra BW induced by W is not
necessarily associative and commutative (see Figure 5). Actually, up to multiplicity, the cardinal

# Orbit(k) is exactly the number of parenthesizations with k terms, which is the Catalan number
1
k

(
2k − 2
k − 1

)
, which grows exponentially fast. Here are the 3- and 4- orbits:

Orbit(3)(P) =
{

(P ⊠ P) ⊠ P, P ⊠ (P ⊠ P)
}

,

Orbit(4)(P) =
{(

(P ⊠ P) ⊠ P
)
⊠ P,

(
P ⊠ (P ⊠ P)

)
⊠ P, (P ⊠ P) ⊠ (P ⊠ P), P ⊠

(
(P ⊠ P) ⊠ P

)
, P ⊠

(
P ⊠ (P ⊠ P)

)}
.

Note that a k-orbit (k ≥ 2) can be inductively computed using orbits with lower depth:

Orbit(k) =
⋃

1≤ℓ≤k−1
Orbit(ℓ) ⊠Orbit(k−ℓ) ,

which is the same recurrence relation as that of Catalan numbers.

2.2 Consequences to Communication Complexity
Assume Alice and Bob are given infinitely many copies of a nonlocal box P, and assume they want
to distantly compute (in finite time) the value of a Boolean function f(X, Y ), where X, Y ∈ {0, 1}n

are strings that are known by Alice and Bob respectively. Among all the possible protocols they
can try to do in order to succeed, they can wire their copies of P in order to produce a “better”
box. For example, starting from a noisy box P, Alice and Bob can try to produce a box that is
closer to the “perfect box” PR which satisfies a⊕ b = xy without noise. Such a protocol is called a
distillation protocol [13]. We call collapsing box a nonlocal box that collapses CC.

Find Collapsing Boxes Using the Orbit. Imagine Alice and Bob are able to produce a collapsing
box Q after applying wirings to copies of a starting box P. Then they can use that new box Q to
distantly compute the value f(X, Y ), which means that they have a protocol to collapse communi-
cation complexity and therefore that P is collapsing. This point of view is particularly interesting
since it implies that it is sufficient to find a single collapsing box in the union

⋃
W OrbitW(P) to

deduce that P is collapsing as well. See an illustration in Figure 6 (a).

Find Collapsing Boxes Using a Cone. Once we find a collapsing box P, we can deduce many other
collapsing boxes: there is a convex cone taking origin at P that is collapsing as well. More precisely,
given a box P, denote CP the convex cone of boxes R for which there exists a local correlation L ∈ L
such that P = λ R + (1 − λ) L, with λ ∈ [0, 1]. We claim that if P is collapsing, then any R ∈ CP
is collapsing as well. Indeed, assume Alice and Bob are given copies of a box R. Then, they can
use shared randomness to produce the wanted box L and the wanted convex coefficient λ, so that
they can generate the box P with the relation P = λ R + (1 − λ) L. Now, as P is collapsing, they
have a protocol that collapses communication complexity, hence R is collapsing as well. See an
illustration in Figure 6 (b). In the study of collapsing boxes, notice that it is standard to assume
that shared randomness is a “free” resource; for instance Brassard et. al. made that choice in [10]
in their collapsing protocol.
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Combining arguments from these last two paragraphs and by the fact that Alice and Bob can
make a convex combination of boxes using shared randomness, we deduce a sufficient criterion for
a box to collapse communication complexity:

Proposition 8 (Collapsing orbit). Let P be a box in NS. If there exists a box Q ∈ Conv
(
L ∪⋃

W OrbitW(P)
)

that collapses communication complexity, then P is collapsing as well. See Figure 6 (c).

(a)

NS

L

P

Orbit(P)

If ∃ Q∈Orbit(P)
that is collaps-
ing, then P is
also collapsing.

(b)

NS

L

P

CP ∩NS

If P is collaps-
ing, then any
box in CP∩NS is
also collapsing.

(c)

NS

L

P

Orbit(P)

C = Conv
(

L ∪⋃
W OrbitW(P)

)

If ∃ Q∈C that is
collapsing, then
P is also col-
lapsing.

Figure 6: Orbits that collapse communication complexity.

2.3 Case Study: Orbit of WBS

In this subsection, we focus our attention on the wiring WBS inspired by Brunner and Skrzypczyk [13].
Denote ⊠ the corresponding box multiplication. Define the shared randomness box as SR :=
(P0 + P1)/2; it is designed to output a couple (a, b) such that a = b uniformly and independently
of the inputs. From the multiplication table in Figure 4, one can see that the 2-dimensional affine
space A := Aff{PR, SR, I} is stable under ⊠. As a consequence, the orbit Orbit(P) of any box P in
A is itself included in A, and as A is two-dimensional, it is particularly easy to draw the orbit of
a box in that case. We represent an orbit in Figure 7.

By definition of the affine space A, any box A ∈ A can be uniquely written as A = c1(A) PR +
c2(A) SR + c3(A) I for some real coefficients ci(A) that sum to 1, called convex coordinates of A in
the affine basis {PR, SR, I}. An interesting aspect of considering convex coordinates is that it gives
a simple characterization of the parallelism property of lines:

∀A, B ∈ A, Aff{A, B} || Aff{PR, SR} ⇐⇒ c3(A) = c3(B) . 5 (10)

Moreover, in our case, we have an additional interesting property of the third convex coordinate:

Lemma 9. The function 1− c3(·) is multiplicative:

∀A, B ∈ A, 1− c3(A ⊠ B) =
(
1− c3(A)

) (
1− c3(B)

)
.

5Indeed, for A ̸= B ∈ A whose convex coefficients are respectively a1, a2, a3 and b1, b2, b3, saying that the line
Aff{A, B} is parallel to the line Aff{PR, SR} is equivalent to knowing that there exists a scalar λ ∈ R∗ such that
A − B = λ (PR − SR), i.e. there exists λ ∈ R∗ such that a1 − b1 = λ and a2 − b2 = −λ and a3 − b3 = 0, i.e. we have
two equations: a1 + a2 = b1 + b2 and a3 = b3. Finally, using the normalization condition

∑
i
ai =

∑
j
bj = 1, we

see that these two equations are equivalent to simply imposing a3 = b3, as claimed.
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Figure 7: Example of a box orbit, drawn for depth up to k = 12. The quantum area Q (in pink) is drawn using
formulas from [33]. Dark green represents the collapsing area that was found by Brassard et. al. in [10], which
consists of all the boxes with CHSH-value higher than 3+

√
6

6 ≈ 0.91. The orbit is drawn in yellow and orange dots
— observe that it intersects the collapsing area in dark green, so Proposition 8 tells us that the starting box P
is collapsing. The black circles represent the boxes that were studied in [13], doing “pairwise” multiplications:
P, P ⊠ P, (P ⊠ P) ⊠ (P ⊠ P), etc... Each iteration is the wiring of two copies of the previous iteration, it gives a
subset of our orbit. As displayed in the drawing and detailed in the proof of Proposition 16, our method allows
us to find a larger set of boxes P that are collapsing.

Proof. The multiplication table induced by the wiring WBS [13] is:

P

Q
PR SR I

PR PR PR I

SR 1
2 PR + 1

2 SR SR I

I 1
4 PR− 1

4 SR + I I I

, (11)

where each cell displays the result of P⊠Q. For A, B ∈ A whose coefficients ci are denoted a1, a2, a3
and b1, b2, b3 for the sake of readability, we use the bilinearity of the product ⊠ and we get:

A ⊠ B =
[
a1b1 + a1b2 + 1

2 a2b1 + 1
4 a3b1

]
PR +

[
1
2 a2b1 + a2b2 − 1

4 a3b1

]
SR

+
[
a1b3 + a2b3 + a3b1 + a3b2 + a3b3

]
I .

Hence, using the normalization property of coefficients
∑

i ai =
∑

j bj = 1, the third coefficient
simplifies as b3 + a3(1− b3), which is equal to 1− (1− a3)(1− b3) as wanted.

Now, interestingly, we observe that the points of a given k-orbit are all aligned, and we even
know the equation of the line:

Theorem 10 (Alignment). For any k ≥ 1 and P ∈ A, the points of Orbit(k)(P) are all aligned on
a line Lk whose expression in convex coordinates is given by:

Lk :=
{

A ∈ A : c3(A) = 1−
(
1− c3(P)

)k
}

.

Proof. We prove by induction on k ≥ 1 that Orbit(k) ⊆ Lk. For k = 1, the 1-orbit contains only
one element, namely P, which obviously satisfies c3(P) = 1−

(
1− c3(P)

)
, so P indeed belongs to L1.
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Now, assume the result holds until some integer k ≥ 1, and let Q ∈ Orbit(k). By definition, the
box Q decomposes as Q = Q1⊠Q2, for some Q1 ∈ Orbit(ℓ) and Q2 ∈ Orbit(k−ℓ) for some 1 ≤ ℓ ≤ k−1.
By the induction hypothesis, we know that c3(Q1) = 1−

(
1−c3(P)

)ℓ and c3(Q2) = 1−
(
1−c3(P)

)k−ℓ
.

Then using Lemma 9, we obtain:

c3(Q) = 1−
(
1− c3(Q1)

) (
1− c3(Q2)

)
= 1−

(
1− c3(P)

)ℓ (1− c3(P)
)k−ℓ

= 1−
(
1− c3(P)

)k
,

which means that Q belongs to the line Lk.

As a consequence, we see that all the points of the k-orbit have the same third convex coefficient,
so using the equivalence given in Equation (10), we obtain:

Corollary 11 (Parallelism). The supporting line Lk of all the orbits Orbit(k) are parallel to the
diagonal line LD := Aff{PR, SR}:

∀k ≥ 1, Orbit(k) ||LD .

In particular, all the orbits are parallel to each other:

∀k, ℓ ≥ 1, Orbit(k) ||Orbit(ℓ) .

Moreover, looking closely at the sequence of coefficients 1−
(
1− c3(P)

)k
and noticing that the

diagonal line LD is defined by the equation c3(A) = 0, we see that:

Corollary 12 (Orbits move to the left). Assume P /∈ LD. Then the orbits are more and more
distant from the diagonal line as k grows. Moreover, the sequence of lines (Lk)k tends to the line
L∞ defined by the equation c3(A) = 1, which is exactly the line passing through I and parallel to
the diagonal LD.

It takes a lot of computational time to draw k-orbits of a box P as k grows, since it requires
to compute 1

k

(
2k − 2
k − 1

)
elements (Catalan number), which grows exponentially. However, our goal is

not to compute the whole orbit, but simply to determine whether or not the orbit intersects the
known collapsing area (dark green). To that end, one may notice that it is enough to compute
the “highest” box of each k-orbit in the y-coordinate (see Figure 7) and to check whether those
“highest” boxes intersect the collapsing area (dark green area). This is the purpose of the following
proposition, which displays a simple expression of the “highest” box of each k-orbit, and which
allows much faster tests of a box P being collapsing or not without computing all the points of the
orbit. We prove this result only in a subset of the orbit, that we call tilted orbit, which is easier to

manipulate in inductions, and which is defined by Õrbit(1)(P) := {P} and for k ≥ 2:

Õrbit(k) :=
(

P ⊠ Õrbit(k−1)
)
∪
(

Õrbit(k−1) ⊠ P
)

=
⋃

ℓ∈{1,k−1}

Õrbit(ℓ) ⊠ Õrbit(k−ℓ) ⊆ Orbit(k) .

Note that the cardinality of that set is #Õrbit(k+1) = 2k, up to multiplicity. We call CHSH-value
the y-coordinate, indicating how “high” is a box:

CHSH(P) := P
(
win at CHSH

)
= 1

4
∑

a⊕b=xy

P(a, b |x, y) .

We say that a tilted orbit distills the CHSH-value if it contains a box Q such that CHSH(Q) ≥ CHSH(P).
In the following theorem, we present the expression of the best parenthesization in terms of CHSH-
value, which explains the numerical observation reported in [23, Supplementary Material, II]:
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Theorem 13 (Highest box). Let P ∈ Ã be a box, and let k ≥ 2 an integer such that the tilted
(k − 1)-orbit distills the CHSH-value. Then the highest CHSH-value of Õrbit(k)(P) is achieved at a
box whose expression is the product of k times P on the right:

P⊠k :=
((

(P ⊠ P) ⊠ P
)
· · ·
)
⊠ P ∈ argmax

Q∈Õrbit(k)(P)
CHSH(Q) .

Proof. See Subsection 2.5.

Remark 14. In the Ph.D. thesis of Giorgos Eftaxias [22], the author presents three types of
architectures of wirings in Subsection 5.5.1: the exponential architecture, that we call here pair-
wise multiplication, used in [13]; the linear architecture, that is the same as the one used in the
theorem above; and the Fibonacci architecture. They present some subsets of NS for which the
linear architecture seems to be the best one among the three (Remark 1), and some other subsets
of NS for which it is the Fibonacci architecture (Subsection 5.F.2).

Conjecture 15 (Dyck paths). We conjecture that the same result actually holds without the tilde,
i.e. the right multiplication P⊠k gives the highest CHSH-value of Orbit(k)(P), as observed numerically.
An idea of the proof could be to use Dyck paths. Each time we open/close a parenthesis, the path
goes up/down respectively, which produces a certain Dyck path. The statement to be proved is that
each time we convert a ∨ into a ∧, the CHSH-value is non-decreasing. Then, we would have that the
best Dyck path is necessarily the one that always goes up first and then always goes down, which
corresponds to the multiplication of boxes on the right.

As previously mentioned, the next theorem is concurrent and independent of the work of [23]:

Theorem 16 (New collapsing boxes). The techniques described in Subsection 2.2 allow the discovery
of new collapsing boxes. See new collapsing areas in Figure 10.

Proof. See Figure 7 for an intuition of the proof. Take the starting box P with coordinates
(0.627, 0.862) in the affine plane A = Aff{PR, SR, I}, where the coordinate system is given by
the CHSH′- and CHSH- values of P. On the one hand, the tilted orbit of P intersects the collapsing
area that was found in [10] (in dark green), since for instance CHSH(P⊠5) ≈ 0.913 > 0.908 ≈ 3+

√
6

6 ,
so P is collapsing by Proposition 8 . On the other hand, this box P does not lie in any of the
previously-known collapsing areas from [8, 10, 11, 13, 18] (to the best of our knowledge, these
five references are the only previous results showing a collapse of communication complexity, in
addition to [23] which concurrently and independently found a similar result to ours as mentioned
before). Indeed, it is not in the collapsing areas from [10, 18] since CHSH(P) = 0.862 < 0.908, nor is
it in the collapsing area from [8] since A + B ≈ 14.13 < 16 (using the authors’ notation). The box
P neither is in any of the collapsing regions found in [11] since it does not belong to the boundary
∂NS of the non-signalling set. The last area to check is the one from [13], which was numerically
found. From a box P, they define a sequence of boxes using “pairwise” multiplications: Q1 := P
and Qn+1 := Qn ⊠ Qn for n ≥ 1, and they check whether or not there exists an integer n such that
CHSH(Qn) > 3+

√
6

6 . But, for our starting box P, none of the Qn satisfy this inequality: indeed, for
1 ≤ n ≤ 5, it possible to check it by hand, for n = 6 we have Q6 ∈ L, and for n ≥ 7 we also have
Qn ∈ L since L is closed under wirings [1]. Hence our example P is a new collapsing box.

2.4 Some Other Orbits
In the previous subsection, we studied specifically the orbit of the wiring WBS in the slice of NS
passing through the boxes PR, SR, I. Here we comment on some examples of other orbits in three
different ways: (i) it is possible to study the same wiring WBS but in different slices of NS; (ii) it is
possible to study another wiring than WBS but to keep the same slice as in the previous subsection;
(iii) it is possible to change both the wiring and the slice. See Appendix A for many drawings.
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(i) We keep the wiring WBS and we consider the slice of NS passing through PR, P0, P1. Notice
that we prove in Proposition 22 that this slice is actually precisely the convex combination of the
three points. We draw two examples of such an orbit in Figure 8 , with two different starting
boxes. We observe that both of them seem to recover the alignment and parallelism properties
that we showed in Theorem 10 and its corollary. Again, these lines seem all parallel to what
we called previously the diagonal line LD, which is defined as the line passing through PR and
SR = 1

2 (P0 + P1). Notice that we show in Theorem 23 that all the boxes of this triangle are actually
collapsing, except the ones in the segment Conv{P0, P1}, drawn in pink.

Figure 8: Orbit of WBS in a different slice than in Subsection 2.3: here we consider the slice of NS passing
through PR, P0, and P1. We represent the orbit with two different starting boxes. Each orbit is drawn with
depth going until k = 12. The game G is defined by the winning rule a = 0 and b = y. Notice that we give a
proof based on CC that this triangle Conv{PR, P0, P1} is a quantum void in Corollary 27, which is why the only
quantum boxes in this triangle are actually local boxes.

(ii) Among the “typical” wirings defined in Subsection 1.4 , the only ones that stabilize the
plane Aff{PR, SR, I} are W⊕ and WBS, see Appendix C . This is why, for these two wirings, we
can conveniently draw the orbits in a plane. The orbit of W⊕ is drawn in Appendix A (a). We
observe that each k-orbit contains only one element, which is not surprising since we know from
Figure 5 that its induced algebra is associative, meaning that the choice of parenthesization does
not lead to a different result. In the same appendix, we also draw the orbit for three other wirings.
Surprisingly, we observe that the three new orbits look the same as the orbit of WBS.

(iii) We add the slice PR, P0, P1 for each wiring of Appendix A. We observe that the alignment
and parallelism properties seem to still hold in those cases, as before. Moreover, we see that the
example (d) distills the CHSH-value better than the other examples in that slice.

2.5 Proof of Theorem 13
Recall that SR := (P0 + P1)/2 is the shared randomness box. Given a non-signalling box P ∈ NS,
its CHSH- and CHSH′- values are defined as follows:

CHSH(P) := 1
4
∑

a⊕b=xy

P(a, b |x, y) , and CHSH′(P) := 1
4

∑
a ⊕ b

= (x ⊕ 1)(y ⊕ 1)

P(a, b |x, y) .

For example, we have CHSH(PR) = 1 and CHSH(SR) = 3
4 and CHSH(I) = 1

2 . Denote A the affine space

A := Aff{PR, SR, I}, and denote Ã ⊆ A the set of boxes P in the convex hull Conv{PR, SR, I} whose
CHSH-value is ≥ 3/4. We will prove our results in Ã; by the symmetry of the problem, similar

results also hold in other areas, such as 2I− Ã the symmetric of Ã by I.

Lemma 17 (Multiplying by P preserves the CHSH-value order). Let P ∈ Ã, and let Q ̸= R ∈ A such
that the line Aff{Q, R} is parallel to the diagonal line LD := Aff{PR, SR}. We have:

CHSH(Q) ≥ CHSH(R) =⇒
{

CHSH(Q ⊠ P) ≥ CHSH(R ⊠ P) ,
CHSH(P ⊠ Q) ≥ CHSH(P ⊠ R) .
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Proof. As the box P lies in Ã, it is of the form P = p1PR+p2SR+(1−p1−p2)I for some coefficients
p1, p2 ≥ 0 such that p1 + p2 ≤ 1. Rewrite it as P =

(
p1
p2

)
, and similarly denote Q =

(
q1
q2

)
and R =

(
r1
r2

)
for some coefficients qi, rj ∈ R. By the parallelism assumption, vectors Q− R and PR− SR have to
be colinear, i.e. there must exist some λ ∈ R∗ such that Q− R = λ(PR− SR) = λ

(
1

−1

)
, so we may

rewrite the second coefficient of R as r2 = q1 + q2− r1. With this notation, we can use the linearity
of the function CHSH(·) to see that condition CHSH(Q) ≥ CHSH(R) simplifies to (q1 − r1) ≥ 0:

CHSH(Q)−CHSH(R) = (q1−r1)×CHSH(PR) + (q2−r2)×CHSH(SR) +
(
(1−q1−q2)−(1−r1−r2)

)
×CHSH(I)

= (q1 − r1)× 1− (q1 − r1)× 3
4 + 0× 1

2
= 1

4 (q1 − r1) .

Now, using the multiplication table from Figure 4 and bilinearity of ⊠, we may compute the
following expressions:

CHSH(Q ⊠ P)− CHSH(R ⊠ P) = 1
8 (p1 + 2p2)(q1 − r1) ≥ 0 ,

CHSH(P ⊠ Q)− CHSH(P ⊠ R) = 1
16 (1− p1 + p2)(q1 − r1) ≥ 0 ,

which gives the desired result.

Lemma 18 (Right multiplication gives better CHSH-value). For any P ∈ Ã and Q ∈ Õrbit(P), we
have:

CHSH(Q) ≥ CHSH(P) =⇒ CHSH
(

Q ⊠ P
)
≥ CHSH

(
P ⊠ Q

)
.

Proof. Use the coordinate system (x, y) given by the CHSH′- and CHSH- values respectively in order
to write P and Q as taking coordinates (xP, yP) and (xQ, yQ). For instance we have PR : ( 1

2 , 1) and
SR : ( 3

4 , 3
4 ) and I : ( 1

2 , 1
2 ). Use the multiplication table from Equation (11) and apply the bilinearity

of ⊠ in order to obtain the following expression:

CHSH
(
Q ⊠ P

)
− CHSH

(
P ⊠ Q

)
= 1

8 (12xPyQ − 12yPxQ − 7xP + 7yP + 7xQ − 7yQ) =: fP(xQ, yQ) .

For any fixed P ∈ Ã, we want to show that fP(xQ, yQ) ≥ 0. By construction, we know that P ∈ L1
and Q ∈ Lk for some k ≥ 1, so by Corollary 12 we have xQ + yQ ≤ xP + yP, which we may rewrite as
xQ ≤ xP + yP − yQ. As P lies in Ã, we have yP ≥ 3

4 , so the first partial derivative is non-positive:
∂

∂xQ
fP(xQ, yQ) = 1

8 (7− 12yP) ≤ −1/4 ≤ 0, which means that the function fP(·, yQ) is decreasing over
R for any fixed yQ. It yields the following inequalities:

fP(xQ, yQ) ≥ fP(xP + yP − yQ, yQ) = 3
2
(
yQ − yP

)(
xP + yP − 7

6
)
≥ 0 ,

since both factors are non-negative: the first one is non-negative using the hypothesis CHSH(Q) ≥
CHSH(P), and the second one is non-negative using xP ≥ 1/2 and yP ≥ 3/4 since P ∈ Ã. Hence fP
is non-negative and we obtain the wanted result.

Recall that the set Õrbit(k)(P) is called the tilted k-orbit of the box P and contains some boxes Q
that are generated by applying a wiring to copies of P. We say that this tilted k-orbit distills the
CHSH-value if it contains a box Q such that CHSH(Q) ≥ CHSH(P). In that distilling scenario, we can
compute the expression of a box achieving the best CHSH-value:

Statement (Theorem 13). Let P ∈ Ã be a box, and let k ≥ 2 be an integer such that the tilted
(k − 1)-orbit distills the CHSH-value. Then the highest CHSH-value of Õrbit(k)(P) is achieved at a
box whose expression is the product of k times P on the right:

P⊠k :=
((

(P ⊠ P) ⊠ P
)
· · ·
)
⊠ P ∈ argmax

Q∈Õrbit(k)(P)
CHSH(Q) .
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Proof. We prove the result by induction on k ≥ 2. It is obviously true for k = 2 since Õrbit(2)(P)
only contains P⊠P. Now, fix k ≥ 2 and assume CHSH(P⊠k) ≥ CHSH(Q) for any Q in the tilted k-orbit
(induction hypothesis). Assume as well that CHSH(P⊠k) ≥ CHSH(P) (distillation hypothesis). We
want to show that:

CHSH(P⊠k+1) ≥ CHSH(Q ⊠ P) and CHSH(P⊠k+1) ≥ CHSH(P ⊠ Q) ,

for all Q in the tilted k-orbit. The first inequality follows from Lemma 17 using the relation
P⊠k+1 = P⊠k⊠P and the induction assumption. For the other inequality, start from CHSH(P⊠k+1) =
CHSH(P⊠k⊠P) and apply Lemma 18 in order to get ≥ CHSH(P⊠P⊠k). Then conclude using Lemma 17
and the induction hypothesis in order to obtain ≥ CHSH(P ⊠ Q) for any Q in the tilted k-orbit.

3 Numerical Optimization on the Set of Wirings
We saw in the previous section that, given a non-signalling box P, there may exist a wiring W
that sufficiently distills the box P in order to collapse communication complexity. The question we
address in this section is the following: if the box P is fixed, how to find a wiring W good enough
to collapse communication complexity (when it is possible)? The difficulty is that, for each input
x, y ∈ {0, 1}, there are 82 possible deterministic wirings [45], leading to a total number of 824 ≈ 108

possible deterministic wirings. So a naive discrete optimization over deterministic wirings seems
inefficient. To that end, we present two optimization algorithms: (i) an algorithm that tests many
different combinations of wirings and that is suitable for numerical simulations, and (ii) another
one that finds a “uniform” collapsing wiring W in a whole region of boxes, which is appropriate for
deriving an analytical proof (see the next section). This section might be skipped at first reading
as it is more technical. See our GitHub page for the details of the algorithms [9].

Remark 19 (Comparison with [11, 23]). We now compare and contrast our methods with two
recent works that also study optimization over wirings:

(i) In [11], the authors suggest reducing the 824 possible deterministic wirings for Alice and Bob
to only 3152 by simply considering the ones that preserve the PR box, i.e. wirings W such
that PR ⊠W PR = PR, and then doing a discrete optimization over that smaller set. This
smaller set encompasses for instance the wirings WBS, Wdist but discards W⊕, W∧, W∨∧ (see
definitions in Subsection 1.4); see also [23, Supplementary Material, I] which mentions that
even some optimal wirings are discarded. This technique allows them to analytically prove
that many new areas of boxes are collapsing.

(ii) In [23], the authors use a mix of exhaustive search and linear programming. For each of Bob’s
822 extremal half-wirings, they apply linear programming to optimize Alice’s half-wiring, and
then they select the best pair of half-wirings. This allows them to numerically find optimal
wirings for any pair of boxes, which leads them to discover new collapsing boxes.

(iii) In our work, we use an efficient variant of the Gradient Descent algorithm, based on Line
Search methods, frequent resets, and parallel descents. A limitation in the method from [11]
could come from the fact that many wirings are discarded; this is why we choose to take
our feasible set to be the entire set of mixed wirings W ⊆ [0, 1]32. In [23, Supplementary
Material, II], the authors implement a sequence of different optimal wirings, which we do
similarly in what we call later Task A, but we also implement a uniform version of it in Task
B, which allows us to find a single optimal wiring for a whole region of boxes (instead of a
sequence of wirings) and then to prove by hand the collapse of communication complexity
for those boxes. In this manner, we recover both the numerical results of [23] (see details in
Subsection 4.1) and the analytical results of [11] (see details in Subsection 4.2).
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3.1 Goals of the Algorithms

Task A. To prove that a box P is collapsing, a particular case of Proposition 8 says that it is enough
to find a finite sequence of wirings (W1, . . . , WN ) such that the following box is collapsing:

PN+1 :=
((

(P ⊠
W1

P) ⊠
W2

P
)
⊠
W3

. . .
)

⊠
WN

P .

Note that we need to specify the parenthetization because the different products⊠Wi
are potentially

non-associative. Among the numerous possibilities, we choose the parenthesization on the left
because it is easy to implement and because it is the best one when the wiring is WBS, see
Theorem 13. This algorithm will consist in an iterative construction of the sequence (Wi)i: first,
find a wiring W1 such that the CHSH-value of the box P2 := P⊠W1 P is the highest possible, then find
W2 such that the CHSH-value of the box P3 := P2 ⊠W2 P is the highest possible, so on and so forth

until the N -th iteration. If the CHSH-value of the box PN+1 is above the threshold 3+
√

6
6 ≈ 0.91%,

we know that communication complexity collapses [10], so the starting box P is collapsing as well.
Otherwise, we cannot conclude whether P is collapsing or not.

Task B. The goal of this algorithm is essentially the same as the first one, but we add a strong
constraint: we want all the Wi to be the same wiring W:((

(P ⊠
W

P) ⊠
W

P
)
⊠
W

. . .
)
⊠
W

P =: P⊠WN+1 .

In that sense, this is a “uniform” version of the first algorithm. The interest of this algorithm is
that it helps to give analytical proofs (see Section 4): if the value CHSH(P⊠WN ) is above the threshold
3+

√
6

6 ≈ 0.91% for some N , then by continuity of ⊠W, there is an open neighborhood around P
such that for any Q close enough to P we also have that CHSH(Q⊠WN ) is above the threshold, and
therefore the whole neighborhood of P is collapsing. This technique will help to discover wide
collapsing areas and to provide analytical proofs by hand.

3.2 Toy Example (N = 1)
In this subsection, we treat the case when there is only one product ⊠W between two boxes
Q, P ∈ NS. We detail the maximization algorithm we use: a Projected Gradient Descent. The
optimization problem consists in finding W∗ as follows:

W∗ = argmax
W∈W

Φ(W) . (12)

where the objective function is Φ(W) := CHSH(Q⊠W P) for some fixed non-signalling boxes Q, P, and
where W is the set of mixed wirings introduced in Definition 4, which we recall below.

The Constraint W ∈ W. Recall that a mixed wiring W between two boxes Q, P ∈ NS is the data
of six functions f1, f2, g1, g2 : {0, 1}2 → [0, 1] and f3, g3 : {0, 1}3 → [0, 1] satisfying the following
non-cyclicity conditions:

∀x,
(
f1(x, 0)− f1(x, 1)

)(
f2(x, 0)− f2(x, 1)

)
= 0 , (13)

∀y,
(
g1(y, 0)− g1(y, 1)

)(
g2(y, 0)− g2(y, 1)

)
= 0 . (14)

Recall that the corresponding diagram can be found in Figure 2 (b), and that mixed wirings form
a set that we denote W. In our algorithms, we view W a real vector with 4 × 22 + 2 × 23 = 32
variables. This vector stores each value of each function:

W = [f1(0, 0) f1(0, 1) f1(1, 0) f1(1, 1) g1(0, 0) . . . ]⊤ ∈ R32 . (15)

To satisfy the normalization constraint that the fi, gj take value in [0, 1], and the non-cyclicity
conditions (13) and (14) (which are non-linear conditions), we implement a projection function
proj : R32 → R32 in Algorithm 1 . Notice that our real code is written in a vectorized fashion
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Algorithm 1: Projection function proj on the feasible set W. Vectorized version in our
GitHub page [9].

Data: W =
[
w1 . . . w32

]
=

[f1(0, 0) f1(0, 1) f1(1, 0) f1(1, 1) g1(0, 0) . . . g3(1, 1, 1)] ∈ R32.
Result: proj(W) ∈ W.

W←
[
max{w1, 0} . . . max{w32, 0}

]
;

W←
[
min{w1, 1} . . . min{w32, 1}

]
;

for x ∈ {0, 1} do
if |f1(x, 0)− f1(x, 1)| ≤ |f2(x, 0)− f2(x, 1)| then f1(x, 0), f1(x, 1)←

(
f1(x, 0) + f1(x, 1)

)
/2 ;

else f2(x, 0), f2(x, 1)←
(
f2(x, 0) + f2(x, 1)

)
/2 ;

end
for y ∈ {0, 1} do

if |g1(y, 0)− g1(y, 1)| ≤ |g2(y, 0)− g2(y, 1)| then g1(y, 0), g1(y, 1)←
(
g1(y, 0) + g1(y, 1)

)
/2 ;

else g2(y, 0), g2(y, 1)←
(
g2(y, 0) + g2(y, 1)

)
/2 ;

end
return W

and is difficult to read as such, so we only present the idea here. Moreover, we use the package
PyTorch [39] for automatic differentiation.

The Objective Function Φ(W) := CHSH(Q⊠W P). In our algorithms, we view a box P as a 2×2×2×2-
tensor: P[a, b, x, y] := P(a, b |x, y) with a, b, x, y ∈ {0, 1}, whose entries are float numbers between
0 and 1. Two things need to be computed separately: Q⊠W P and then CHSH(·). On the one hand,
the product P ⊠W P is computed using Equation (9), which we vectorized in our algorithm using
five types of operations: tensor transposition ⊤, tensor sum +, tensor product ⊗, contraction of
tensors ·, and entry-wise multiplication ∗; see details in the pdf document of our GitHub page [9].
On the other hand, the function CHSH(·) is a linear function that computes the CHSH-value of a
box, implemented with a dot product as follows:

CHSH(R) := 1
4
∑

a⊕b=xy

R(a, b |x, y) = ⟨R, T⟩ ,

where T is the 2× 2× 2× 2-tensor defined as T[a, b, x, y] = 1/4 if a⊕ b = xy, and = 0 otherwise.

3.2.1 Naive Gradient Descent

To gain insight into the complexity of the optimization problem, we begin by studying a basic
algorithm, the Projected Gradient Descent, with a small learning rate (α ≪ 1) and a lot of
iterations (K ≫ 1). We will obtain a histogram of the frequency of the different results we obtain,
see Figure 9 (a).

Projected Gradient Descent. We implement a “projected” version of the Gradient Descent algo-
rithm in order to satisfy the constraint W ∈ W at each step. It simply means that each iteration
is projected on the feasible set:

Wk+1 = proj
(
Wk + α∇Φ(Wk)

)
,

where α ∈ R is the learning rate. Our implementation can be found in Algorithm 2 . We com-
pute the gradient of the objective function using the automatic differentiation Python package
torch.autograd that provides us with the commands backward and grad. As we do not have a
good intuition of what could be a good wiring W in W to start with given a fixed box P, we take a
random initialization: W0 is uniformly generated in the hypercube [0, 1]32. As such, the vector W0

is not necessarily a well-defined mixed wiring since it does not necessarily satisfy the non-cyclicity
conditions (13) and (14), but this problem is fixed after one iteration in the Projected Gradient
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Algorithm 2: Projected Gradient Descent. More details on our GitHub page [9].
Data: Φ : R32 → R objective function, α ∈ R learning rate, K ∈ N number of iterations,

ε > 0 tolerance.
Result: Wout ≈ argmaxW Φ(W) ∈ W ⊆ R32.
W ∼ U([0, 1]32) ;
for k ∈ {0, . . . , K − 1} do

Wold ←W ;
W← proj

(
W + α∇Φ(W)

)
using Algorithm 1 ;

if ||W −Wold||∞ < ε then break ;
end
return Wout := W ∈ R32.

(a) (b)

Figure 9: Histogram of the evaluations of the objective function Φ applied at the output Wout of (a) Algorithm 2
and (b) Algorithm 3. As expected, we observe that the latter is more efficient than the former in maximizing
Φ, for equivalent computation duration.

Descent algorithm since the wiring is then projected. Otherwise, one can also directly apply proj
to W0. The notation W ∼ U(X) means that we uniformly generate W in the set X.

Estimating the Proportion of “Good” Outputs. We use Algorithm 2 with a learning rate α = 0.01, a
number of iterations of K = 106, a tolerance of ε = 10−6, and we obtain the histogram presented
in Figure 9 (a). Recall that the objective function is Φ(W) := CHSH(Q ⊠W P); this histogram is
drawn with Q = P = pPR + qSR + (1 − p − q)I, where p = 0.39 and q = 0.6. The number of
reruns is m = 103, done simultaneously in parallel, which is faster than doing m descents one
after another6. We observe that the results concentrate on certain discrete values. These values
correspond to different attractive points in different basins of attraction (recall that the initial W
is taken uniformly at random in [0, 1]32). As we want to maximize Φ, we are interested in the
highest concentrated value ≈ 0.87. In that example, we observe that the proportion of starting
wirings such that Wout is only χ ≈ 2/103 = 0.2% using this basic Gradient Descent algorithm. This
information tells us that the function Φ is difficult to maximize, which is why we present a more
efficient algorithm in the following subsection.

3.2.2 More Efficient Algorithm: Line Search with Resets

In this subsubsection, we present a variant of the Gradient Descent algorithm called Line Search,
which we enhance with frequent resets of bad outcomes. See [38] for a standard reference book in
numerical optimization. The idea of this algorithm is, instead of always keeping the same α, to

6In order to do m gradient descents in parallel efficiently, we “parallelize” Algorithm 2: instead of viewing W
as a 32-vector, we view it as a (32 × m)-matrix, where each column represents a different wiring. Comparing this
method with a naive FOR loop, we observe a factor of 100 in the speed gain. Notice that when the descent is done,
one can post-select the best wiring among the m columns of Wout. See our GitHub page [9].
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estimate the best coefficient αk at each step of the descent:{
αk = argmaxα∈R Φ

(
Wk + α∇Φ(Wk)

)
,

Wk+1 = proj
(
Wk + αk∇Φ(Wk)

)
.

As we observed in the previous subsection, the proportion χ of “good” starting wirings is very weak,
which is why we apply frequent resets: we do m = 103 descents in parallel but only Kreset = 100
steps, then we keep only the best m · χ wirings and we reset all the others to a new random
initialization. Then we repeat that procedure but we reset fewer wirings (say, at the j-th repetition,
keep for instance the best j ·m · χ wirings), and we repeat this procedure 1/χ times. In the end,
most of the wirings should be in the good basin of attraction, so we can apply one final run of line
search, with many more steps so that it converges to the attractor. See Algorithm 3, and we obtain
results of Figure 9 (b).

Algorithm 3: Line Search with Resets. More details on our GitHub page [9].
Data: Φ : R32 → R objective function, Kreset ∈ N number of iterations before reset,

χ ∈ [0, 1] proportion of “good” random wirings, m ∈ N number of descents in
parallel, M ∈ N number of iterations to compute the best learning rate α∗.

Result: Wout ∈ R32×m, where each column is ≈ argmaxW Φ(W).
W = (32×m null matrix), whose columns are denoted Wi ;
for j ∈ {0, . . . , ⌊1/χ⌋ − 1} do

W← among the m columns of W, keep the j ·m · χ ones giving the highest values for
the objective function Φ, and reset all the other columns randomly with U([0, 1]32) ;

if j = ⌊1/χ⌋ − 1 then Kreset ← 10 ·Kreset;
for k ∈ {0, . . . , Kreset − 1} do

for i ∈ {0, . . . , m− 1} do α∗
i ← argmaxα>0 Φ

(
Wi + α∇Φ(Wi)

)
using M iterations ;

W←
[
proj

(
Wi + α∗

i ∇Φ(Wi)
)]

i
using Algorithm 1 ;

end
end
return Wout = W ∈ R32×m.

3.3 Task A
Algorithm A is presented in Algorithm 4; it simply consists in applying the toy case Q⊠ P from the
previous subsection recursively N times. We want to find a sequence of wirings W1, ..., WN such
that the CHSH-value is above the following threshold:

CHSH
(((

(P ⊠
W1

P) ⊠
W2

P
)
⊠
W3

. . .
)

⊠
WN

P︸ ︷︷ ︸
=: PN+1

)
>

3 +
√

6
6 .

A consequence is that the box P collapses communication complexity [10]. Notice that for some
boxes P ∈ NS, it might not be possible to find such a sequence of wirings because it is impossible
to distill them by any means. This algorithm is used in Subsection 4.1 in order to plot the new
regions of collapsing nonlocal boxes.

Remark 20. Going further, once we find (W∗
1, ..., W∗

N ), it is possible to do a “backward” process:
for all i ∈ {1, ..., N}, fix W∗

j for j ̸= i, optimize the function Wi 7→ CHSH(PN+1) and update W∗
i . It

is also possible to use neural network methods to optimize all the Wi “at the same time”.
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Algorithm 4: Task A. More details on our GitHub page [9].
Data: P ∈ [0, 1]2+2+2+2 box, N ∈ N number of box products,

(Kreset, χ, m, M) parameters for Algorithm 3.
Result: [W∗

1, . . . , W∗
n] ∈ Wn for some n ≤ N .

P1 ← P ;
for n ∈ {1, . . . , N} do

W∗
n ∈ [0, 1]32 ← argmaxW CHSH(Pn ⊠W P) by picking the best column among the m

columns of the output Wout ∈ R32×m of Algorithm 3 ;
Pn+1 ← Pn ⊠W∗

n
P ;

if CHSH(Pn+1) > 3+
√

6
6 then return [W∗

1, . . . , W∗
n] ;

end
return “Nothing found.”

3.4 Task B
Task B is a “uniform” version of task A, in the sense that we want all the Wi’s to be the same. In
order words, we want to find a wiring W and an integer N such that:

CHSH
(((

(P ⊠
W

P) ⊠
W

P
)
⊠
W

. . .
)
⊠
W

P︸ ︷︷ ︸
=: P⊠W(N+1)

)
>

3 +
√

6
6 .

This algorithm is used in the proof of Theorem 29 in order to find appropriate collapsing wirings
for the analytical proof.

Idea of the Algorithm. First, find a wiring W∗
1 = argmaxW CHSH(P ⊠W P) with a Gradient Descent

algorithm, and then evaluate the powers of P with that wiring W∗
1 until N + 1, i.e. compute

CHSH
(
P⊠W∗

1
n
)
for n = 1, . . . , N + 1. If one of those evaluations is greater than the threshold

(3 +
√

6)/6 from [10], then we can stop the algorithm, it means that the wiring W∗
1 achieves the

goal. Otherwise, compute W∗
2 = argmaxW CHSH

(
P⊠W3) and repeat the same evaluation process of

the powers of P as in the previous step. Proceed like this until computing W∗
M , where M ∈ N is

some hyper-parameter. Typically, we take M ≤ N because it is a lot faster to evaluate the N -th
power of P than to optimize the N -th power of P. See the details in Algorithm 5.

Algorithm 5: Task B. More details on our GitHub page [9].
Data: P ∈ [0, 1]2+2+2+2 box, N ∈ N maximal tested box power, L ∈ N maximal

optimized box power, (Kreset, χ, m, M) parameters for Algorithm 3.
Result: W∗ ∈ W.
for ℓ ∈ {1, . . . , L} do

W∗
ℓ ← argmaxW CHSH

(
P⊠Wℓ+1) using Algorithm 3 ;

for n ∈ {1, . . . , N + 1} do
if CHSH

(
P
⊠W∗

ℓ
n)

> 3+
√

6
6 then return W∗

ℓ ;
end

end
return “Nothing found.”

4 New Collapsing Boxes
In this section, we present collapsing boxes found in two different ways. (i) First with a numerical
approach, using the algorithms (Section 3). (ii) Then with an analytical approach, using the algebra
of boxes (Section 1) and the orbit of a box (Section 2).
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4.1 Numerical Results
Using Algorithm 4 that addresses Task A, we obtain many collapsing boxes. Some samples are
drawn in Figure 10 on some slices of the non-signalling set NS, but note that this algorithm also
applies more generally to any desired slice. As previously mentioned, this work is concurrent and
independent of the work of [23]. In the drawings, some boxes are denoted PL and PNL, let us recall
their definition here. The local set L and the non-signalling set NS are polytopes, i.e. the convex
hull of a finite number of extremal points. The first set L admits exactly 16 extremal points, called
local extreme points and denoted Pµ,ν,σ,τ

L , where µ, ν, σ, τ ∈ {0, 1}. These 16 points are as well
extremal points of NS, together with 8 additional extremal points, called non-local extreme points
and denoted Pµ,ν,σ

NL . They are defined as follows [2, 3]:

• Local extremal points: Pµ,ν,σ,τ
L (a, b |x, y) :=

{
1 if a = µ x⊕ ν and b = σ y ⊕ τ ,
0 otherwise,

• Nonlocal extremal points: Pµ,ν,σ
NL (a, b |x, y) :=

{
1/2 if a⊕ b = xy ⊕ µ x⊕ ν y ⊕ σ,
0 otherwise.

(16)

Note that PR = P000
NL and P0 = P0000

L and P1 = P0101
L (we remove the commas in the superscripts for

the sake of simplicity of notations).

Figure 10: In orange are drawn the collapsing boxes outputted by Algorithm 4. Each drawing represents a
different slice of NS; the extreme points of the triangles indicate which slice is drawn and the definition of the
boxes PNL can be found in Equation (16). The three graphs have the same color legend, displayed at the center,
and they are all configured with the same algorithm parameters (Kreset, χ, m, M, N), detailed at the top. We
adopt the following convention: (i) boxes that are numerically determined are drawn with dots, (ii) boxes that
are analytically determined are drawn in plain regions (there exist explicit equations describing those regions).
Notice that the left drawing is similar to [23, Figure 3], which was found using a different algorithm as detailed
in Remark 19. The quantum set Q (in pink) is drawn using formulas from [33]. References: [BBLMTU06]=[10],
[BS09]=[13], [BBP23]=[8].

Observe in Figure 10 that, depending on the chosen slice, the collapsing area does not always
have the same “shape” nor the same “area”. Moreover, notice in the graphs that there seems to
exist a collapsing area in the neighborhood below the diagonal segments joining PR and respectively
SR, P0, P1. This is actually true. Indeed, we analytically show below in Theorem 23 that those three
segments are collapsing, and we also know that the box product P ⊠W Q is continuous in P and Q
for any W (it is even bilinear, recall the expression in (9)), so distillation protocols are continuous
and in some sense the orbits are also “continuous”, hence there exists an open neighborhood below
these diagonal segments that collapses communication complexity.

Remark 21 (Continuous extension of a finite collapsing set). The algorithm only provides us with
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finitely many collapsing boxes, but we can still deduce a continuous “extension” of that collapsing
set. Indeed, as explained in Subsection 2.2, if we know that a box P ∈ NS collapses communication
complexity, then we also know that the cone CP is collapsing, where CP denotes a certain cone
taking origin at P represented in Figure 6 (b). As a consequence, if we list the collapsing boxes
{Pk}1≤k≤K obtained by numerical means, we can deduce what follows:

The union of cones
K⋃

k=1
CPk

is a collapsing set.

4.2 Analytical Results
4.2.1 The Triangle PR, P0, P1 is Collapsing

In this subsection, we extend the result [13] from Brunner and Skrzypczyk, who showed that any
box in the segment joining the boxes PR and SR := (P0 + P1)/2 is collapsing (except the box SR,
which is classical). In the following theorem, we recover a result from [11] stating that any box in
the triangle joining the boxes PR, P0, P1 is collapsing (except the boxes in the segment joining P0
and P1, which are classical), with a new proof, based on the algebra of boxes. Recall that PR is the
non-signalling box that outputs (a, b) such that a⊕ b = xy when (x, y) is inputted, and P0 and P1
are respectively the deterministic boxes that output (0, 0) and (1, 1) independently of the inputs.
Recall also that the convex hull of a set {Q1, . . . , QN} is the set of all possible convex combinations
of these Qi:

Conv{Q1, . . . , QN} :=
{

N∑
i=1

qi Qi such that qi ≥ 0 and
∑

i qi = 1
}

,

and the affine hull of {Q1, . . . , QN} has the same definition but without the non-negativity con-
straint:

Aff{Q1, . . . , QN} :=
{

N∑
i=1

qi Qi such that qi ∈ R and
∑

i qi = 1
}
⊇ Conv{Q1, . . . , QN} .

Proposition 22. The triangle C := Conv{PR, P0, P1} is a face on the boundary of NS.

Proof. First, we prove the equality between the sets C and A := NS ∩ Aff{PR, P0, P1}, meaning
that the convex hull C is actually a slice of NS. The first inclusion C ⊆ A is trivial because the
three points PR, P0, P1 are in NS and because NS is a polytope so it is stable under taking convex
combination. Conversely, recall that by definition CHSH(P) := 1

4
∑

a⊕b=xy P(a, b |x, y), and CHSH′(·)
and CHSH′′(·) are defined similarly but with respective summand conditions a⊕ b = (x⊕ 1) · (y⊕ 1)
and a⊕ b = x · (y⊕ 1). As these three functions are linear, they preserve alignment and convexity.
It means that if a box P is of the form P =

∑
i qi Qi for some reals qi and boxes Qi, then CHSH(P) =∑

i qi CHSH(Qi), and similarly with CHSH′ and CHSH′′. We apply the preservation of alignment in
Figure 11 representing the 24 extremal points of NS [3], and we obtain the following inclusions:

(a) A ⊆ Conv{PR, P0, P1, P1011
L , P1110

L , P111
NL} ;

(b) A ⊆ Conv{PR, P0, P1, P1000
L , P1101

L , P100
NL} .

Now, taking the intersection, we obtain A ⊆ C, which yields the wanted equality A = C, and C is
indeed a slice of NS.

It remains to show that the slice C is included in the boundary ∂NS, so that it is indeed a face.
Assume that there is a point P in C of the form P = qQ1 + (1− q)Q2 with q > 0 and Q1, Q2 ∈ NS.
Applying the convexity preservation property of CHSH(·), CHSH′(·), CHSH′′(·) in Figure 11, we obtain
the following two necessary conditions:

(a) Q1, Q2 ∈ Conv{PR, P0, P1, P1011
L , P1110

L , P111
NL} ;

(b) Q1, Q2 ∈ Conv{PR, P0, P1, P1000
L , P1101

L , P100
NL} .
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Figure 11: Computation of the CHSH-, CHSH′- and CHSH′′- values of the 24 extremal points of NS [3], where by
definition CHSH(P) := 1

4
∑

a⊕b=xy
P(a, b |x, y), and CHSH′ and CHSH′′ are defined similarly but with respective

summand conditions a⊕ b = (x⊕ 1) · (y ⊕ 1) and a⊕ b = x · (y ⊕ 1).

Then, taking the intersection, we get Q1, Q2 ∈ C and therefore C ⊆ ∂NS as wanted.

Theorem 23. The face C of NS is collapsing, except in the segment Conv{P0, P1}.

Collapsing triangle ←(Non-collapsing segment)PR

P0

P1

Figure 12: Illustration of Theorem 23.

Proof. Denote T := Conv{PR, P0, P1}\Conv{P0, P1}, and consider a convex combination of the form
Pα,β := αPR + βP0 + (1 − α − β)P1 ∈ T with α, β ≥ 0 and α ̸= 0 and α + β ≤ 1. Similarly fix
other convex coefficients (α0, β0) =: u0 with the same conditions. We want to build a sequence
(uk)k =

(
(αk, βk)

)
k

such that (Puk
)k tends to the PR box. Denote ⊠ the box product induced by

the wiring WBS (see definition in Subsection 1.4). By bilinearity of ⊠ and using the multiplication
table in Figure 4, computations lead to Pα,β ⊠ Pα0,β0 = Pα̃,β̃ where:[

α̃

β̃

]
= A

[
α
β

]
+ b , A :=

[
1− α0 −α0

−1 + α0 + β0 −1 + 3
2 α0 + 2β0

]
, b :=

[
α0

1− α0 − β0

]
.

From this remark, we define the following sequence:

u0 := (α0, β0) , uk+1 = A uk + b .

We easily identify that ℓ := (1, 0) is a fixed point of x 7→ A x + b, so it yields:

uk+1 − ℓ =
(
A uk + b

)
−
(
Aℓ + b

)
= A (uk − ℓ) = Ak+1 (u0 − ℓ) ,

where the last equality follows from an induction on k. But the matrix A admits exactly two
distinct7 eigenvalues λ1 = 1 − a/2 and λ2 = −1 + a + 2b. So A is diagonalizable, and its power

7The eigenvalues λ1 and λ2 are distinct because otherwise we would have 2 = 3
2 (a + b) + b

2 , which is achieved
only if both a + b = 1 and b = 1, which is equivalent to a = 0 and b = 1 and which contradicts the assumption
a ̸= 0.
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Ak = P
[

λk
1 0

0 λk
2

]
P −1 tends to the null matrix because |λ1|, |λ2| < 1, where P is an invertible

matrix. Hence, from the above equation, the sequence (uk)k tends to ℓ, and by continuity we have
that the sequence of boxes (Puk

)k ⊆ R16 converges to Pℓ = PR. But Brassard et al. showed that
there is an open neighbor around PR that collapses communication complexity [10]. Therefore, we
know that the sequence (Puk

)k reaches this collapsing neighbor for some k large enough, and using
Proposition 8 we conclude that any starting box Pu0 ∈ T is indeed collapsing.

Remark 24 (Why is Conv{P0, P1} non-collapsing?). It is not surprising that the boundary segment
Conv{P0, P1} of T is not in the collapsing area because this segment is included in the local set L,
which is itself included in the quantum set Q, for which it is known that communication complexity
does not collapse [17].

Remark 25 (Left multiplication does not give the same result). In the proof, we defined our
sequence of boxes (Puk

)k based on right multiplication. One could instead try to do the left
multiplication: Puk+1 = Pu0 ⊠ Puk

. In that case, similar computations lead to:

uk+1 = A′uk + b′ , A′ :=
[

1− α0 − β0 0
−1 + α0 + 3

2 β0 −1 + α0 + 2β0

]
, b′ :=

[
α0

1− α0 − β0

]
.

The map x 7→ A′ x + b′ admits a unique fixed point ℓ′ :=
(

α0
α0+β0

, β0
2(α0+β0)

)
(no division by 0 since

α0 > 0). The matrix A′ is already in the triangular form, its eigenvalues are λ′
1 := 1−α0−β0 and

λ′
2 := −1 + α0 + 2β0, and again |λ′

1|, |λ′
2| < 1 so Pαk,βk

→ Pℓ′ . But in that case Pℓ′ is not the PR
box, so we cannot apply Ref. [10] to build a collapsing protocol from any starting box.

Remark 26 (Pairwise multiplication gives the same result). It is also possible to try the pairwise
multiplication: Puk+1 = Puk

⊠ Puk
, which is the way the authors of [13] originally proved that the

segment Conv{PR, SR}\{SR} is collapsing. But this pairwise multiplication does not behave as well
as with the right multiplication, iterations uk = (αk, βk) are non-affine here:

uk+1 =
[
−1 −1 0
1 5/2 2

] α2
k

αkβk

β2
k

+
[

2 0
−2 −2

]
uk +

[
0
1

]
.

Nevertheless, the result still holds using this pairwise multiplication, but the proof we found is
much more technical, see Appendix B.

The intersection of the quantum set Q with the boundary ∂NS of the non-signalling set was
recently studied in [15]. Moreover, the notion of the quantum void was introduced and studied
in [11, 42], which consist in a subset of ∂NS for which all quantum correlations are actually local.
A direct corollary of the previous theorem allows us to single out the quantum correlations of the
face C = Conv{PR, P0, P1}: they are exactly the ones in the segment Conv{P0, P1}. Indeed, on the
one hand, it is known that quantum correlations do not collapse communication complexity [17],
and on the other hand, local correlations are particular cases of quantum correlations, so we recover
the following statement from [42] with a new proof, based on communication complexity:

Corollary 27. The face C = Conv{PR, P0, P1} ⊆ ∂NS is a quantum void:

Q∩ C = Conv{P0, P1} .

4.2.2 Other Collapsing Triangles

The fact that the triangle T := Conv{PR, P0, P1}\Conv{P0, P1} is collapsing induces many further
collapsing triangles. In this subsection, we give some examples of such collapsing triangles, thus
recovering some results of [11] with a new proof, based on the algebra of boxes.
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Proposition 28. Let P, Q, R be three boxes. If there exists a wiring W ∈ W that induces the
multiplication table below, then the triangle Conv{P, Q, R}\Conv{Q, R} is collapsing.

P Q R

P P P P

Q 1
2

(
Q + R

)
Q R

R P R Q

Proof. For any α, β ∈ R, consider the convex combination Pα,β := αP+βQ+(1−α−β)R. We have
the equality Pα,β ⊠ Pα0,β0 = Pα̃,β̃ , with the same coefficients (α̃, β̃) as in the proof of Theorem 23.
Then, applying the same proof gives the desired result.

Theorem 29. All the triangles drawn in Figure 13 are collapsing.

Collapsing

(Thm 23)

PR

P0

P1

Collapsing

T1

PR

P0

P0111
L

Collapsing

T2

PR

P0

P1101
L

Collapsing

T3

PR

P0010
L

P1011
L

Collapsing

T4

PR

P0010
L

P1110
L

WBS

P

Q

x

x

a1

x ∧ a1

a2

a = a1 ⊕ a2

y

y

b1

y ∧ b1

b2

b = b1 ⊕ b2

W1

P

Q

x
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a1

x
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y
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b1

y
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Q
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x
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y
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y
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b1 ⊕ b2
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Q
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x
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Figure 13: Examples of collapsing triangles, together with wirings that can be used in Proposition 28 to show a
collapse of communication complexity. The definition of the boxes PL and PNL can be found in Equation (16).

Proof. The proof follows directly from Proposition 28 applied to what follows:

Triangle P Q R Wiring W ∈ W ⊆ R32

T PR P0 P1 WBS = [0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0]

T1 PR P0111
L P0 W1 = [1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0]

T2 PR P0 P1101
L W2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0]

T3 PR P0010
L P1011

L W3 = [0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1]

T4 PR P1000
L P1110

L W4 = [0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1]

where the notation W ∈ R32 comes form Equation (15). See a representation of these wirings in
Figure 13, bottom row.

The wirings of Figure 13 are arbitrary examples of collapsing wirings that were obtained using
Algorithm 5; many more wirings can be found in other triangles of NS using the same algorithm,
which is accessible via our GitHub page [9]. Notice that these wirings are all different from the
ones used in the proof of [11]. Now, an interesting problem would be to understand better the
structure of the set W so that, given a triangle in NS, we know how to construct a collapsing
wiring W without using a search algorithm.
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Conclusion
Our new algebraic perspective on nonlocal boxes allowed us to discover a surprising structure of
what we called the orbit of a box, with some strong alignment and parallelism properties (see
Figure 7 ). As a consequence, this deeper understanding of the algebraic structure of nonlocal
boxes enabled us to recover in Section 4 some collapsing regions of NS that were recently also
found in [11, 23]—for instance boxes in the triangle joining PR, P0, P1 (except boxes in the segment
P0, P1). The importance of our results is emphasized by considering the many known impossibility
results [6, 34, 46]. Note also that according to our present intuition of Nature [6, 10, 13, 18], a
direct consequence is that the collapsing boxes we presented are unlikely to exist in Nature.

We made advances towards answering the open question of determining which nonlocal boxes
do indeed collapse communication complexity, but there is still a gap to be filled: for instance, as
plotted in light blue in Figure 10, there are still regions of NS for which it is unknown whether
there is a collapse of communication complexity.

Further work includes the study of the “square root” of a box: here we introduced and studied
the properties of the product P ⊠ P, but one might be interested in finding all the boxes Q such
that Q ⊠W Q = P for some fixed wiring W ∈ W. If one knows that P is collapsing, then the wiring
W yields a collapsing protocol, thus all the square roots Q are also collapsing.

Another interesting problem is the one mentioned at the end of Section 4. Given a triangle of
boxes in NS, we already provided in Section 3 and in our GitHub page [9] an algorithm that intends
to find a wiring W that makes this triangle collapse communication complexity. Now, it would be
interesting to address the question of how to construct such a collapsing wiring W without using a
search algorithm, simply by knowing the target triangle of NS. This can then help to understand
better the structure of the set W and importantly to better understand protocols for correlation
distillation.

In Subsection 4.2, we give examples of collapsing sets of dimension d = 2 (triangles). An open
question from [11] consists in finding higher-dimensional sets of boxes that are all distillable to the
PR box, which therefore collapses CC. For dimension d = 3, the authors provide explicit examples
of distillable sets, but it is still unknown whether these sets are collapsing. For dimensions d ≥ 4,
they prove that distillable quantum voids are impossible due to the presence of isotropic boxes.

Another interesting problem would be to generalize and study the notion of “product of boxes”
with more than two boxes. Indeed, our study is limited to wirings connecting two boxes, but it is
possible to consider more general wirings, connecting n boxes, which are known to be strictly more
powerful: for instance, some genuine depth-3 wirings have significance in the context of trivial
communication complexity [23]. As a consequence, it may be that the multi-product of boxes
W(P1, . . . , Pn) gives rise to similar structures of orbits as the one we found in Figure 7, which would
be useful in the study of n-box distillation protocols.

In this work, we chose to study the principle of communication complexity. Although this
principle alone cannot rule out the quantum set [36], a clever idea would be to combine it with
other principles, such as nonlocal computation [32], information causality [28, 40], macroscopic
locality [37], local orthogonality [26], nonlocality swapping [47], many-box locality [49], in working
towards a comprehensive information-based description of Quantum Mechanics.
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[31] Ben Lang, Tamás Vértesi, and Miguel Navascués. “Closed sets of correlations: answers from the zoo”.
In: Journal of Physics A: Mathematical and Theoretical 47.42 (Oct. 2014), p. 424029. doi: 10.1088/1751-
8113/47/42/424029.

[32] Noah Linden, Sandu Popescu, Anthony J. Short, and Andreas Winter. “Quantum Nonlocality and Beyond:
Limits from Nonlocal Computation”. In: Phys. Rev. Lett. 99 (18 Oct. 2007), p. 180502. doi: 10.1103/Phys-
RevLett.99.180502.

[33] Lluis Masanes. Necessary and sufficient condition for quantum-generated correlations. 2003. arXiv: quant-
ph/0309137 [quant-ph].

[34] Ryuhei Mori. “Three-input majority function as the unique optimal function for the bias amplification using
nonlocal boxes”. In: Phys. Rev. A 94 (5 Nov. 2016), p. 052130. doi: 10.1103/PhysRevA.94.052130.

[35] Sahil Gopalkrishna Naik, Govind Lal Sidhardh, Samrat Sen, Arup Roy, Ashutosh Rai, and Manik Banik.
“Distilling Nonlocality in Quantum Correlations”. In: Phys. Rev. Lett. 130 (22 June 2023), p. 220201. doi:
10.1103/PhysRevLett.130.220201.

[36] Miguel Navascués, Yelena Guryanova, Matty J. Hoban, and Antonio Aćın. “Almost quantum correlations”.
In: Nature Communications 6.1 (May 2015), p. 6288. doi: 10.1038/ncomms7288.

[37] Miguel Navascués and Harald Wunderlich. “A glance beyond the quantum model”. In: Proceedings of the
Royal Society A: Mathematical, Physical and Engineering Sciences 466.2115 (2009), pp. 881–890. doi:
10.1098/rspa.2009.0453.

[38] Jorge Nocedal and Stephen J. Wright, eds. Numerical Optimization. en. Springer Series in Operations Re-
search and Financial Engineering. New York: Springer-Verlag, 1999. isbn: 9780387987934. doi: 10.1007/b98874.

[39] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming Lin,
Alban Desmaison, Luca Antiga, and Adam Lerer. “Automatic differentiation in PyTorch”. In: OpenReview
(2017). url: https://openreview.net/forum?id=BJJsrmfCZ.

[40] Marcin Paw lowski, Tomasz Paterek, Dagomir Kaszlikowski, Valerio Scarani, Andreas Winter, and Marek
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A Drawing of Some Orbits
We present below some examples of orbits to illustrate Subsection 2.4, using different wirings, each time
in two different slices of NS. Each orbit is drawn with depth going until k = 12. The game G is defined by
the winning rule a = 0 and b = y.

(a) For W⊕ (see definition in Subsection 1.4):

(b) For W(b) := [0., 0., 1., 1., 0., 0., 1., 1., 0., 0., 0., 1., 0., 0., 0., 1., 1., 0., 0., 1., 1., 0., 0., 1., 1., 0., 0., 1., 1., 0., 0., 1.]:

W(b)

P

Q

x

x

a1

x ∧ a1

a2

a1 ⊕ a2

y

y

b1

y ∧ b1

b2

b1 ⊕ b2

(c) For W(c) := [0., 0., 1., 1., 0., 0., 1., 1., 0., 0., 1., 0., 0., 0., 1., 0., 1., 0., 0., 1., 1., 0., 0., 1., 1., 0., 0., 1., 1., 0., 0., 1.]:

W(c)

P

Q

x

x

a1

x ∧ a1

a2

a1 ⊕ a2

y

y

b1

y ∧ b1

b2

b1 ⊕ b2

(d) For W(d) := [0., 0., 1., 1., 0., 0., 1., 1., 0., 0., 1., 0., 0., 0., 1., 0., 0., 1., 1., 0., 0., 1., 1., 0., 0., 1., 1., 0., 0., 1., 1., 0.]:
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W(d)

P

Q

x

x ∧ a2

a1

x

a2

x⊕ a1 ⊕ a2

y

y ⊕ b2

b1

y

b2

b1 ⊕ b2

B An Alternative Proof of Theorem 23, using Pairwise Multiplication
Lemma 30 (Convergence sufficient conditions). Let K ⊆ R2 be a compact convex set, and let F , fβ, gα be
functions such that:

F :
{

K −→ K
(α, β) 7−→

(
fβ(α), gα(β)

)
.

where fβ : Iβ → Iβ and gα : Jα → Jα, where Iβ := K ∩
(
R× {β}

)
and Jα := K ∩

(
{α} ×R

)
are viewed as

intervals of R. Suppose that:
(i) The function F is continuous;

(ii) The fβ’s are strictly increasing and uniformly bounded in the “left part” of the interior of K:

∃µ∗, ∀(α, β) ∈ Int(K), α < µ∗ =⇒ α < fβ(α) < µ∗ ; (17)

(iii) For all boundary element (α, β) ∈ ∂K such that α < µ∗, either the resulting inequalities of (17) are
satisfied, or α = fβ(α) and the image F (α, β) lies in the interior Int(K) of K.

Then the sequence defined by (α0, β0) ∈ K, α0 < µ∗, and (αk+1, βk+1) = F (αk, βk) (k ≥ 0), satisfies:

αk −−−−−→
k→+∞ µ∗ .

Proof. A proof by induction based on (ii) and (iii) shows that the sequence (αk)k is increasing and bounded
from above by µ∗, so it converges to some α∞ ≤ µ∗. Let us show that α∞ = µ∗. As K is compact,
Bolzano–Weierstrass’ Theorem tells us that the sequence (βk)k admits a converging subsequence

(
βφ(k)

)
k
,

whose limit is β∞. Then, by continuity of F , we have:(
αφ(k)+1, βφ(k)+1

)
= F

(
αφ(k), βφ(k)

)
−−−−−→
k→+∞ F

(
α∞, β∞

)
=
(
fβ∞ (α∞), gα∞ (β∞)

)
.

Therefore the sequence
(
αφ(k)+1

)
k

tends to fβ∞ (α∞), but we know from before that it also tends to α∞,
so the limits coincide:

fβ∞ (α∞) = α∞ .

In other words, we showed that α∞ is a fixed point of fβ∞ . Now, by contradiction if α∞ were different
from µ∗, i.e. if α∞ < µ∗, then (ii) and (iii) would imply either the contradiction α∞ < fβ∞ (α∞), or the
inlcusion

(
fβ∞ (α∞), gα∞ (β∞)

)
∈ Int(K), but then (ii) would give fβ∞ (α∞) < fβ∞ ◦ fβ∞ (α∞), which is

again the contradiction α∞ < fβ∞ (α∞). Hence α∞ = µ∗ and we obtain the wanted result.

Theorem 31 (Alternative proof of Theorem 23). The set T := Conv{PR, P0, P1}\Conv{P0, P1} is collapsing.

Proof. Consider boxes of the form Pα,β := αPR + βP0 + (1 − α − β)P1, where α, β ≥ 0 and α ̸= 0 and
α + β ≤ 1. Denote ∆ the set of all such α’s and β’s, so that T = {Pα,β : (α, β) ∈ ∆}. The triangle ∆ is
not compact but it can be written as a union of compact convex sets:

∆ =
⋃
n≥1

Kn ,

where Kn := ∆ ∩ {α ≥ 1/n}. Denote ⊠ the box product induced by the wiring WBS inspired from [13].
Fix (α0, β0) ∈ ∆, and fix an integer n ≥ 1 large enough so that (α0, β0) ∈ Kn. We want to build a protocol
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that collapses communication complexity using the starting box Pα0,β0 as a resource. To do so, we will
define a sequence of boxes (Pαk,βk )k that are eventually collapsing for k large enough. First, see that the
closure T of the triangle T is stable under ⊠, because T equals NS∩Aff{PR, P0, P1} (see Proposition 22) and
the two intersected sets are stable under ⊠ 8. Moreover, by bilinearity of ⊠ and using the multiplication
table in Figure 4, we obtain:

Pα,β ⊠ Pα,β = Pα̃,β̃ , (18)
with α̃ := 2α − α2 − αβ and β̃ := 1 − 2α + α2 + 5

2 αβ − 2β + 2β2. We then consider the function
F : Kn ⊆ R2 → R2 such that F (α, β) := (α̃, β̃) and we define the sequence (αk+1, βk+1) := F (αk, βk) for
k ≥ 0. Let us show that the conditions of Lemma 30 are satisfied. Due to the stability of T under ⊠, we
have the inclusion F (Kn) ⊆ ∆, and as

α̃ = 2α− α(α + β) ≥ α ≥ 1/n , (19)

we obtain the inclusion F (Kn) ⊆ Kn, where we used α + β ≤ 1. (i) The function F is polynomial so
continuous. (ii) Condition (17) is satisfied for µ∗ := 1: on the one hand fβ is strictly increasing due to
(19) applied with α + β < 1 in the interior Int(Kn); on the other hand, by strict growth of fβ we have
fβ(α) = α̃ < fβ̃

(
α̃
)
, which is ≤ 1 because F (Kn) ⊆ Kn. Hence we indeed have α < fβ(α) < 1 in the

interior of Kn. (iii) Let (α, β) ∈ ∂Kn = {β = 0} ∪ {α = 1/n} ∪ {α + β = 1} such that α < 1. If β = 0 or
α = 1/n, then inequalities of Condition (17) hold. Otherwise we have α + β = 1 and in that case: α̃ = α ∈

(
1
n

, 1
)

,

β̃ = 1
2 (1− α)( 1 + β) > 0 ,

α̃ + β̃ = 1− 1
2 (1− α)(1− β) < 1 ,

which implies that (α̃, β̃) ∈ Int(Kn). Finally, we may assume that α0 < 1 (otherwise α0 = 1 and then
Pα0,β0 = PR, which is collapsing) and all the conditions of Lemma 30 are satisfied. The lemma tells that
the sequence (αk)k tends to µ∗ = 1, so (Pαk,βk )k ⊆ R16 tends to PR. But we know from [10] that there is
a non-empty open set around PR that is collapsing. So there exists a finite k for which the box Pαk,βk is
collapsing and we obtain the wanted collapsing protocol.

C Some Multiplication Tables
Find below the multiplication tables of ⊠W for different wirings W. Each cell displays the result of
P ⊠W Q, where P lies in the first column and Q lies in the first line. P10 := P0100

L . P01 := P0001
L . Q1 :=

− 1
8

(
P0 + P1

)
+ 1

4 PR + I. Q2 := 1
4

(
PR + P011

NL
)

+ 1
2 I. Q3 := 1

4 PR + 1
2 I + 3

8 P0 − 1
8 P1. Q4 := 3

8 P0 − 1
8 P1 + 3

4 I.
Q5 := 1

4 PR + 1
8 (P0 + P1) + 1

2 P10. Q6 := 3
16 (P0 + P1) + 1

16 P01 + 9
16 P10. Find an algorithm to compute a

multiplication table in our GitHub page [9]. Recall the definitions of PL and PNL in Equation (16).

Wtriv PR P0 P1 I

PR P1010
L P1010

L P1010
L P1010

L

P0 P1010
L P1010

L P1010
L P1010

L

P1 P1010
L P1010

L P1010
L P1010

L

I P1010
L P1010

L P1010
L P1010

L

W⊕ [25] PR P0 P1 I

PR P0+P1
2 PR PR I

P0 PR P0 P1 I

P1 PR P1 P0 I

I I I I I

WBS [13] PR P0 P1 I

PR PR PR PR I

P0
P0+P1

2 P0 P1 I

P1 PR P1 P0 I

I Q1 I I I

Wdist [1] PR P0 P1 I

PR PR PR PR I

P0
P0+P1

2 P1 P0 I

P1 PR P0 P1 I

I Q2 I I I

W∧ [1] PR P0 P1 I

PR P0+P1
2 P0 PR Q3

P0 P0 P0 P0 P0

P1 PR P0 P1 I

I Q3 P0 I Q4

W∨∧ [35] PR P0 P1 I

PR PR+P10
2

P0+P10
2

P1+P10
2 Q5

P0
P0+P10

2 P0 P10
P0+P10

2

P1
P1+P10

2 P10 P1
P1+P10

2

I Q5
P0+P10

2
P1+P10

2 Q6

8Indeed, (i) the set NS is stable under ⊠ because it is closed under wirings [1], (ii) the affine plane Aff{PR, P0, P1}
is stable under under ⊠ as a consequence of the multiplication table in Figure 4 and by bilinearity of ⊠.
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