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Abstract

The paper aims to bridge a part of the gap between source separation and
sensor placement studies by addressing a novel problem: “Predicting optimal
sensor placement in noisy environments to improve source separation quality”.
The structural information required for optimal sensor placement is modeled as
the spatial distribution of source signal gains and the spatial correlation of noise.
The sensor positions are predicted by optimizing two criteria as measures of sep-
aration quality, and a gradient-based global optimization method is developed
to efficiently address this optimization problem. Numerical results exhibit supe-
rior performance when compared with classical sensor placement methodologies
based on mutual information, underscoring the critical role of sensor placement
in source separation with noisy sensor measurements. The proposed method
is applied to actual electroencephalography (EEG) data to separate the P300
source components in a brain-computer interface (BCI) application. The results
show that when the sensor positions are chosen using the proposed method, to
reach a certain level of spelling accuracy, fewer sensors are required compared
with standard sensor locations.

Keywords: Source separation, sensor placement, statistical signal processing

1. Introduction

Determining optimal sensor positions to maximize the quality of a data mea-
surement system is a crucial consideration preceding data analysis and process-
ing, forming a part of the experiment design. This concern has been investigated
in various applications where sensors are responsible for acquiring information,
such as wireless sensor networks [1, 2], structural health monitoring [3] or source
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localization [4, 5]. This paper focuses on the novel application of optimal sensor
location prediction for source separation.

The objective of a source separation problem [6] is to estimate the latent
source signals from their mixtures recorded by the sensors. Although source
separation has been extensively studied from the late 80’s [6] to propose the
best algorithm to separate or extract the sources, very few has been done to
study the impact of sensor location onto the quality of the estimated sources.
However, the position of the sensors has directly an impact on the mixing model
and thus on the recorded signals. For instance, in a linear source mixing model,
each sensor measures a signal that is a linear combination of the sources, and
the coefficients of this combination depend directly on the sensor position. In
the absence of additive noise, the coefficients, and consequently the sensor po-
sitions, do not affect the quality of the source separation due to the existence
of equivariant blind source separation (BSS) methods that provide performance
independent from the mixing coefficients [7, 8]. This might explain why sensor
placement for source separation has not already been thoroughly investigated in
the literature. However, as this paper demonstrates, optimal sensor placement
becomes a crucial consideration for source separation in the presence of additive
noise in the measurements.

There have been a few studies addressing the sensor placement problem
for source separation in acoustic environments, when sources are convolutively
mixed, without accounting for the impact of additive noise. In [9], the sensitiv-
ity of the unmixing system is analyzed in relation to errors in both the mixing
system and observations. In [10], efforts are made to optimize microphone loca-
tions to improve the quality of the desired separated speech. However, it assumes
that the intended speech source signals are known, limiting thus the general-
ity of this solution. The current paper considers noise as a crucial parameter
in the problem as it is unavoidable in practical situations, targeting thus most
applications of source separation. An application example is electroencephalog-
raphy (EEG) experiments, in which signals recorded by electrodes consist of a
mixture of sources of interest and interfering noise from ongoing brain activities
and artifacts. Consequently, optimal electrode placement on the scalp is crucial
for achieving the best quality of the estimated sources.

It is important to note that the sensor placement problem is fundamentally
distinct from the sensor selection problem, as explored in studies such as [11, 12].
In sensor selection, data from pre-existing sensors is available, and the goal is
to select some of them with the most useful information. However, in sensor
placement, the objective is to find the best positions to place a few sensors
without accessing their data before deployment.

A related topic to the current work is sensor placement for target localiza-
tion, which has been widely studied in the literature [13, 14, 15]. These studies
optimize sensor locations to maximize the accuracy of localizing one or multi-
ple targets. The key differences between these works and the current problem
are as follows: first, sensor measurements in previous studies typically involve
time-of-arrival (TOA), angle-of-arrival (AOA), or received-signal-strength (RSS)
metrics, rather than a mixture of source signals. Second, the goal in these stud-
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ies is to estimate the target location, rather than separating the latent source
signals. Despite some similarities, the key differences between source separation
and target localization make them two distinct problems.

Optimal sensor placement for extracting a single source from noisy measure-
ments has been studied in [16, 17]. To address the optimal sensor placement
problem for separating mixed sources from noisy sensor measurements, the cur-
rent paper uses the signal-to-interference-plus-noise ratio (SINR) and the mean
squared error (MSE) measures as the optimization criteria, combining them
with the stochastic model of the source gains, leading to a stochastic optimiza-
tion problem. To tackle this optimization problem, a gradient based method is
developed, significantly enhancing computational efficiency compared with the
grid search method employed in previous studies.

Parts of this work have already been presented in the conference paper [18].
However, the current paper provides a more detailed analysis of numerical re-
sults compared with that conference paper, along with the inclusion of results
from applying the proposed method to actual P300 brain-computer interface
(BCI) data. Moreover, it introduces new contributions on the optimization as-
pect by incorporating the gradient of the objective function. Additionally, the
paper introduces the MSE sensor placement criterion for source separation.

The paper is organized as follows. In Section 2, the source separation model
and the proposed criteria are presented. Section 3 discusses the optimization
approaches for the problem. Finally, in Section 4, our method is numerically
studied, and the results of applying the method to actual EEG data are in-
cluded.

2. Sensor placement for source separation

This section begins by explaining the linear source mixing and separating
model. Then, two criteria for optimal source separation are presented. Fi-
nally, the discussion revolves around the reasoning and the procedure behind
the modelling of the spatial gains using the Gaussian process (GP) model.

2.1. The mixing model of the sources
Consider P independent latent sources, s1(t), s2(t), ..., sP (t). In order to

measure the mixed source signals, the sensors are to be placed in a D-dimensional
space, X ⊂ RD. The signal attenuation from the p-th source to the sensor lo-
cated at the coordinates x is denoted as ap(x), and it is referred as the spatial
gain of the p-th source at x. Assuming an instantaneous linear mixing model of
the sources in the presence of additive noise, the measured signal by the sensor
located at the coordinates x is expressed as

y(x, t) =

P∑
p=1

ap(x)sp(t) + n(x, t), (1)

where n(x, t) represents the noise signal at the sensor position. Note that in
the mixing model, the propagation delay between the sources and the sensors is
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Figure 1: Linear measurement and source separation model, with 2 sources and 3 sensors.

assumed to be negligible. This assumption is valid for electrical signal propaga-
tion, such as in electroencephalography (EEG) source separation experiments
[19, 20]. However, in the case of the acoustic environment, a convolutive mixing
model should be taken into account.

The noise is assumed to be independent of the sources and may exhibit
spatial correlation. The source signals are assumed to be independent of each
other and have zero means and unit variances. This variance assumption does
not limit the generality of the problem, as the power of the sources can be
embedded in their spatial gains.

Consider a set of M sensors located at the positions XM ≜ [x1,x2, ...,xM ].
The vector of measured signals by these sensors at time t is denoted as y(XM , t) =

[y(x1, t), y(x2, t), ..., y(xM , t)]
T , and can be expressed as

y(XM , t) =

P∑
p=1

ap(XM )sp(t) + n(XM , t), (2)

where the vector ap(XM ) ≜ [ap(x1), ap(x2), ..., ap(xM )]
T contains the spatial

gains of the p-th source, and n(XM , t) ≜ [n(x1, t), n(x2, t), ..., n(xM , t)]
T de-

notes the vector of the additive noise at the sensor positions XM . Fig. 1 illus-
trates the problem setup with M = 3 sensors measuring the propagated signals
of P = 2 sources.

2.2. Criteria for sensor placement
Here, by assuming that the sources are separated linearly, two criteria for

sensor placement are obtained. Note that the goal is not to optimize the sepa-
ration algorithm, but to optimize the position of the sensors given a separation
method. The first criterion is based on the SINR of the separated signals, and
the second one is based on the MSE of the separation. These criteria are two
measures of the quality of the source separation.

2.2.1. SINR criterion
In a linear estimation scheme, the l-th source is estimated by the inner

product of a vector fl ∈ RM with the vector of measurements y(XM , t), which
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can be expressed as

ŝl(t) = fTl y(XM , t) =

P∑
p=1

fTl ap(XM )sp(t) + fTl n(XM , t). (3)

The estimated signal contains terms corresponding to the source of
interest (fTl al(XM )sp(t)), the remaining sources acting as interferences
((
∑P

p=1,p ̸=l f
T
l ap(XM )sp(t)), and the noise (fTl n(XM , t)). The SINR is used

as a measure for the quality of the l-th separated source, and can be written as

SINRl(fl;XM ) =

E
{
(fTl al(XM )sl(t))

2
}

E
{(∑P

p=1,p̸=l f
T
l ap(XM )sp(t) + fTl n(XM , t)

)2} . (4)

The noise covariance matrix is defined as Cn(XM ,XM )
∆
=

E
{
n(XM , t)n(XM , t)T

}
and assumed to be known, denoted as Cn

MM for
simplicity throughout the paper. Using it and the statistics of the source
signals, the SINR can be simplified to

SINRl(fl;XM ) =

fTl al(XM )al(XM )T fl

fTl

(∑P
p=1,p̸=l ap(XM )ap(XM )T +Cn

MM

)
fl
. (5)

Our objective is to use the maximum achievable SINR with the sensor positions
as the sensor placement criterion. Thus, fl is chosen to maximize the SINR in
(5). The optimum fl is given by [21]

f∗l =

 P∑
p=1,p̸=l

ap(XM )ap(XM )T +Cn
MM

−1

al(XM ). (6)

Note that the noise covariance matrix is assumed to be full rank, ensuring the
matrix is invertible in (6). By substituting (6) into (5), the maximum achievable
SINR for the l-th source using a linear estimation is given by

SINRl(f
∗
l ;XM ) =

al(XM )T

 P∑
p=1,p̸=l

ap(XM )ap(XM )T +Cn
MM

−1

al(XM ),
(7)

which is a function of the sensor positions. To consider the separation of all the
sources, the sum of the SINRs of the sources is chosen as a criterion for sensor
placement:

JSINR =

P∑
l=1

SINRl(f
∗
l ;XM ). (8)
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Note that this criterion can be modified to fit cases where only the separation
of a subset of the sources is desired. In such cases, only the SINR of the desired
sources will be included in the summation:

JSINR(L) =
∑
l∈L

SINRl(f
∗
l ;XM ), (9)

where L ⊂ {1, 2, ..., P} is the subset of desired sources.

2.2.2. MSE Criterion
Let us consider an alternative form of the mixing model (2) given by

y(XM , t) = A(XM )s(t) + n(XM , t), (10)

where A(XM ) ≜ [a1(XM ),a2(XM ), ...,aP (XM )] ∈ RM×P is the mixing matrix
whose columns are the spatial gains of the sources at the sensor positions. For
simplicity, it will be denoted as AM hereafter. Assuming that, using an unmix-
ing matrix B ∈ RP×M , the sources are linearly estimated as ŝ(t) = By(XM , t),
the MSE, E

{
∥s(t)− ŝ(t)∥22

}
, is considered as a measure for the separation qual-

ity. The optimum matrix B∗ that minimizes the MSE is given by [6, Eq.(4.95)]

B∗ = E{s(t)y(XM , t)T }
(
E{y(XM , t)y(XM , t)T }

)−1

= AT
M

(
AMAT

M +Cn
MM

)−1
.

(11)

Using the optimum linear estimator matrix B∗, the minimum MSE is

E
{
∥B∗y(XM , t)− s(t)∥2

}
=

P − Trace
(
AT

M (AMAT
M +Cn

MM )−1AM

)
.

(12)

Note that AM and Cn
MM are functions of the sensor positions, so the minimum

MSE is also a function of the sensor positions. The first term in (12) is constant,
so the second term is chosen as a sensor placement criterion:

JMSE =Trace
(
AT

M (AMAT
M +Cn

MM )−1AM

)
=

P∑
l=1

al(XM )T

(
P∑

p=1

ap(XM )ap(XM )T +Cn
MM

)−1

al(XM ).
(13)

The main distinction between the final formulations of the MSE (13) and
SINR (8) criteria lies in the inclusion of the term al(XM )al(XM )T in sum-
mation in the inverse matrix of the MSE criterion, whereas it is absent in the
SINR criterion. This slight difference may explain the closely comparable per-
formance of these criteria, as will be demonstrated in the numerical simulations
of Section 4.2.2. Another notable difference is that the MSE criterion aims to
minimize the error of the estimated sources, whereas the SINR criterion focuses
on eliminating the power of interference plus noise. Therefore, the MSE cri-
terion is preferable when achieving the closest estimation to the real sources
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is the goal, whereas the SINR criterion is preferred for noise and interference
suppression.

To modify this criterion for the case where only the estimation of a subset
of the sources (say L ⊂ {1, 2, ..., P}) is desired, the MSE can be defined as
E
{
∥sL(t)− ŝL(t)∥22

}
, where sL(t) is the vector of the sources included in L at

time t, and ŝL(t) = BLy(XM , t) with BL ∈ R|L|×M . In the same way described
above, using the optimum matrix of B∗

L, the MSE criterion for estimating the
source subset is given by

JMSE(L) =
∑
l∈L

al(XM )T (AMAT
M +Cn

MM )−1al(XM ). (14)

2.3. Statistical Modelling of the Spatial Gains
The criteria obtained in the previous section are functions of the spatial

gains. Therefore, optimizing them to choose the best sensor locations requires
information on how the spatial gains vary across the optimization space. As-
suming that the spatial gains are perfectly known as a function of the sensor
position is not realistic in practical applications. In real-world experiments, the
spatial gains are measured at a finite set of positions, inevitably including some
measurement error. Moreover, in certain applications, like EEG experiments,
measurements may be conducted on a specific experimental case and then gen-
eralized to other cases. Therefore, along with information about the spatial
distribution of the spatial gains, there exists uncertainty about them. To model
both the prior knowledge and the uncertainty, a statistical model to represent
the spatial gains is employed. The spatial gain of each source is independently
modeled by a Gaussian Process (GP) as [22]

âp(·) ∼ GP (map(·), Cap(·, ·)) , (15)

which implies that the p-th real spatial gain is considered as a sample function
of the spatial stochastic process âp(·). More precisely, the above notation states
that for any two points in space, x,x′ ∈ X , the random variables âp(x) and
âp(x

′) are jointly normal with covariance specified by Cap(x,x′) and means
given by map(x) and map(x′). From the definition of Gaussian processes, for
any finite number of points in space, the corresponding spatial gains follow
multivariate normal distributions, where the mean vector and covariance matrix
are determined by the mean and covariance functions of the GP model.

The mean function map(·) contains the prior knowledge derived from initial
measurements. In this paper, the covariance function is assumed to be in a
squared exponential form, although it could be replaced with any other suitable
form. The squared exponential covariance function is given by

Cap(x,x′) = σ2
pexp(−∥x− x′∥2/(2ρ2p)). (16)

This covariance function is isotropic, meaning that the covariance between âp(x)
and âp(x

′) only depends on the distance between the points, ∥x − x′∥. The
parameter σ2

p specifies the variance of âp(x) across the entire space and controls
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the level of the uncertainty; a larger σ2
p leads to a higher level of uncertainty. The

covariance between two points decreases exponentially with increasing squared
distance. The parameter ρp governs this rate of reduction. A smaller ρp leads
to faster loss of correlation as distance grows, resulting in less smooth sample
functions. Thus, ρp is termed the smoothness parameter. Determining the
parameters of the GP requires some initial measurement of the spatial gains. In
Section 3.2.2 an effective way of estimating the spatial gains using the measured
signals of the sensors and a BSS technique will be presented.

Note that actual spatial gains can be deterministic. The rationale behind
employing this stochastic model is to address the uncertainty arising from var-
ious factors, such as potential errors in the measurement of spatial gains and
the finite number of sampled points in space where the spatial gains are initially
measured. Having in mind the central limit theorem, it seems reasonable to
use a Gaussian distribution to model uncertainties in the spatial gains. More-
over, GP model is flexible to produce various shapes for the sample functions
by controlling its mean and covariance. This model also offers simplicity in its
manipulation. For instance, as it will be demonstrated in Section 3.2.1, when
additional estimations from spatial gains at a set of points are incorporated, up-
dating the model and deriving the posterior distribution across the entire space
is a straightforward process.

Through the statistical modeling of spatial gains, the spatial gains corre-
sponding to sensor positions become random variables. Consequently, the cri-
teria acquired in the previous section also transform into random variables. As
a result, their expected values are employed as the objective functions for op-
timization with respect to the sensor locations. Specifically, the SINR criterion
is expressed as

ĴSINR(XM ) = E

{
P∑
l=1

SINRl(f
∗
l ;XM )

}
, (17)

while the MSE criterion takes the form

ĴMSE(XM ) = E
{
Trace

(
AT

M (AMAT
M +Cn

MM )−1AM

)}
. (18)

The expectation is similarly applied in the cases where a subset of the sources
is to be estimated (9) and (14).

3. Optimization problem

To identify the optimal sensor locations, the criterion (based on SINR or
MSE) needs to be maximized with respect to the sensor positions across the
available space. When placing M sensors within a D-dimensional space, there
are M ×D optimization variables, which increase with the number of sensors.
The criterion includes local minima, necessitating a global optimization ap-
proach. Moreover, evaluating the criterion at specific sensor positions entails
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calculating the expected value, introducing additional computational complex-
ity. These factors collectively contribute to the high complexity of the opti-
mization problem, making it computationally infeasible to achieve an optimal
solution for practical applications.

In this section, approaches are discussed that render the optimization prob-
lem computationally solvable, albeit without the guarantee of achieving the
globally optimum solution. The performances of these approaches will be nu-
merically examined in Section 4. The first approach decomposes the optimiza-
tion problem into sub-problems, in each of which the position of a single sensor
is optimized. Two different methods are employed to solve these sub-problems.
The second approach considers a scenario in which the sensors are placed step
by step, and in each step, already placed sensors are utilized to gain new infor-
mation about the spatial gains and update the stochastic model. Additionally,
a method for estimating the spatial gains using sensor measurements and ob-
taining the prior distributions using these estimations is presented. In the third
approach, the sensor positions are updated simultaneously using the gradient of
the criterion to converge to a local optimum near the initial positions.

3.1. Greedy method
In the step by step placement approach, during each step, only the position

of N sensors is optimized, while previously placed sensors are assumed to be
fixed. The process begins with zero sensors placed. The optimization problem
that needs to be solved in each step has N ×D variables. Therefore, N can be
chosen to be low enough to ensure the sub-problem is computationally solvable.
Two methods for solving the global optimization sub-problem are discussed:
grid search and a gradient based global optimization method. Here, the focus
will be on the case where N = 1, but it can be readily generalized to N > 1.

3.1.1. Grid Search
Let XK−1 ≜ [x1,x2, . . . ,xK−1] represent the positions of the placed sensors.

In the K-th step, the position of the new sensor, xK , is being optimized. The
optimization problem in this step is given by

x∗
K = argmax

xK∈X
Ĵ(XK−1,xK), (19)

where the objective function can be based on either the SINR or MSE criteria.
Here, X denotes the available space to place the K-th sensor. A basic approach
to solve this optimization problem is to select a grid of points in the available
space, denoted as XT = [x1,x2, . . . ,xT ], and evaluate the objective function at
each point to find the maximum value.

As described in Section 2.3, evaluating the objective function at each point on
the grid requires obtaining an expected value. However, obtaining a closed form
expression for the expectation is not straightforward. Therefore, averaging over
Monte Carlo realizations is employed to approximate the expected value. The
spatial gain samples are obtained from their distributions and used to generate
samples of the function for which the expected value is required. Subsequently,
the average of these samples is used as an estimate for the expected value.
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3.1.2. Gradient based global search
The objective function in the sub-problem (19) contains various local optima,

and relying solely on a single gradient-based optimization method may lead to
a local optimum. To leverage the benefits of gradient based convergence for
finding the global optimum solution, a strategy is to initiate local optimizations
from multiple starting points, finding the local optima near each starting point,
and subsequently selecting the optimal one among them. For this purpose,
starting points are chosen on a grid, and the gradient of the objective function is
used for local optimization. The grid size should be sufficiently large to ensure
that no local optimum is missed. However, the number of required starting
points in this method to achieve the same performance as the pure grid search
is significantly lower than the number of points needed to evaluate the function
in the grid search approach. This will be demonstrated by the numerical results
in Section 4.3.

Assume that in the K-th step of the greedy method, the positions of the
placed sensors XK−1 are fixed, and the position of the new sensor in a D-
dimensional space is denoted as xK = (x1

K , x2
K , ..., xD

K)T . The gradient of
the objective function with respect to the position of the new sensor, de-
noted as ∇xK

Ĵ(XK−1,xK) ∈ RD, should be computed for being used in lo-
cal optimization. Let us define j(XK−1,xK) as the spatial stochastic pro-
cess whose expected value at the sensor positions represents the criterion:
Ĵ(XK−1,xK) = E {j(XK−1,xK)}. The interchange of the expectation and gra-
dient operations yields ∇xK

Ĵ(XK−1,xK) = E {∇xK
j(XK−1,xK)}. The deriva-

tive of j(XK−1,xK) with respect to xd
K itself constitutes a spatial stochastic

process, for d = 1, 2, ..., D. In Appendix A, the methodology for generating
samples of these stochastic processes for the SINR criterion is outlined, and a
similar approach can be applied to the MSE criterion.

By averaging over the samples of ∇xK
j(XK−1,xK), an estimate for its ex-

pected value is obtained, which represents the gradient of the criterion. This
gradient is used in a gradient ascent (GA) method for local optimization starting
from the initial points. Assuming x

(0)
K is the initial point in the GA algorithm,

the update rule in the t-th step of the algorithm is given by

x
(t)
K = x

(t−1)
K + µ

(t)
GAE

{
∇xK

j(XK−1,x
(t−1)
K )

}
, (20)

where µ
(t)
GA denotes the step size of the GA algorithm. If, at any step, x(t)

K lies
outside the available sensor space, it is projected back into the available space.

The fact that the gradient is the expectation of a stochastic process allows
us to employ a stochastic gradient ascent (SGA) algorithm. In each step of
SGA, a single sample from the stochastic process, where the gradient represents
its expected value, is used instead of the full estimation of the gradient. This
approach may not lead to a increase in the objective function at every step, but
overall, it can converge to a stationary point. In the literature, the convergence
of the SGA algorithm to a stationary point is shown under some strong as-
sumptions on the objective function [23]. In this paper, as with many machine
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learning models employing SGA as the optimization algorithm, the convergence
will be verified numerically. The update rule for the variable sensor position xK

in the t-th step of SGA is then

x
(t)
K = x

(t−1)
K + µ

(t)
SGA∇xK

ĵ(XK−1,x
(t−1)
K ), (21)

where ∇xK
ĵ indicates one sample of the stochastic process.

3.2. Sequential approach
Recall the greedy method, wherein sensors are placed step by step. In cer-

tain applications, previously placed sensors may be utilized to acquire new in-
formation about the spatial gains, which can then improve the placement of
the remaining sensors. This is called sequential approach in [17]. Here, first
the updating rule of the stochastic model based on the estimation provided by
the placed sensors is presented. Subsequently, a BSS estimation method for the
spatial gains using sensor data is discussed.

3.2.1. Stochastic model update
Let us assume that the placed sensors at the positions XK−1 =

[x1,x2, ...,xK−1] have provided an estimate of the spatial gains at XK−1, de-
noted by zp(XK−1) for the p-th source. The estimation error vp(XK−1) is as-
sumed to be Gaussian and independent of the spatial gains. For p = 1, 2, ..., P ,
we have

zp(XK−1) = âp(XK−1) + vp(XK−1). (22)

Assuming that xK is the new sensor position and XK
∆
= [XK−1,xK ], because of

the joint normal distribution of the random vector
[
zp(XK−1)
âp(XK)

]
, the posterior

distribution of âp(XK) is given by

âp(XK)|zp(XK−1) ∼ N (mp
a|z,C

p
a|z), (23)

with

mp
a|z = E {âp(XK)|zp(XK−1)} = m

ap

K +

C
ap

KK−1(C
ap

K−1K−1 +Cv
K−1K−1)

−1(zp(XK−1)−m
ap

K−1)
(24)

and

Cp
a|z = E

{
∥âp(XK)−mp

a|z∥
2
2 |zp(XK−1)

}
=

C
ap

KK −C
ap

KK−1(C
ap

K−1K−1 +Cv
K−1K−1)

−1(C
ap

KK−1)
T ,

(25)

where m
ap

K represents the mean of âp(XK), C
ap

K−1K−1 represents the covari-
ance matrix of âp(XK−1), and C

ap

KK−1 represents the cross-covariance between
âp(XK) and âp(XK−1), all of which are obtained from the GP model. The ma-
trix Cv

K−1K−1 denotes the covariance matrix of the estimation error vp(XK−1).
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Having obtained the posterior distribution of the spatial gains for the placement
of the new sensor, the criterion will be computed by averaging over Monte Carlo
realizations based on this distribution, and the optimization problem at each
step of the placement is

x∗
K = argmax

xK∈X
Ĵ(XK |z1(XK−1), ..., zP (XK−1)). (26)

3.2.2. BSS estimation method
One approach to estimate spatial gains involves utilizing sensor measure-

ments and applying a BSS technique to separate the sources, followed by es-
timating the mixing matrix. In some applications, such as EEG experiments,
this method would be the only practical way of the spatial gains estimation.
There could be several reasons for this limitation: it is not possible to deacti-
vate the propagation of all sources except the intended one for measuring its
propagation attenuation, or it is not straightforward to model the propagation
environment to estimate the gains. This estimation method can also be used
to gain the prior information of the spatial gains to estimate the parameters of
the GP model (i.e. the mean and the covariance functions).

Consider K placed sensors measuring Ns samples. According to (2), the
measurements can be expressed as

y(XK , t) = AK(XK)s(t) + n(XK , t), t = 1, ..., Ns, (27)

where AK(XK) = [a1(XK),a2(XK), ...,aP (XK)] ∈ RK×P represents the mix-
ing matrix. This estimation is carried out when the number of placed sensors
is greater than or equal to the number of sources (K ≥ P ).

The estimation process comprises two stages. In the first stage, the objec-
tive is to find a transformation matrix to reduce measurement dimensionality
while minimizing noise influence. This is achieved through Principal Compo-
nent Analysis (PCA), in which the rows of the transformation matrix are chosen
to be the eigenvectors of the covariance matrix of the measurements [24].

In the second stage, a BSS method for noisy measurements, like fastICA
[24], separates the sources and estimates the mixing matrix blindly, providing
an estimation of the spatial gains for all the sources at the sensor positions. This
estimation is modeled as zp(XK) in (22) for use in the placement procedure.
The estimation error vp(XK) is approximated as a Gaussian random vector
with zero mean, and its variance is estimated numerically by repeating the
estimation of the spatial gains for independent generation of them with the
same GP parameters and obtaining the sample variance of the error.

3.3. Refining sensor positions from initial points
In the third approach sensor locations are simultaneously updated using the

gradient of the objective function. As described in Algorithm 1, in each iteration,
the positions of the sensors are updated one by one based on the gradient of the
criterion with respect to the position of the corresponding sensor. It is important
to note that the sensor positions will be refined, ultimately converging to a local
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optimum of the criterion near the initial points. Hence, the choice of initial
points greatly influences the quality of the optimization outcome.

Algorithm 1

Input: Initial sensor positions X
(0)
M = [x

(0)
1 , ...,x

(0)
M ].

Output: Refined sensor positions.
1:For t = 1 : T
2: For k = 1 : M
4: X

(t)

k̄
← [x

(t)
1 ,x

(t)
2 , ...,x

(t)
k−1,x

(t−1)
k+1 , ...,x

(t−1)
M ]

3: x
(t)
k ← x

(t−1)
k + µ

(t)
GAE{∇xk

j(X
(t)

k̄
,x

(t−1)
k )}

5: Return X
(T )
M = [x

(T )
1 , ...,x

(T )
M ]

4. Numerical Experiments

In this section, numerical results will be presented to assess the performance
of the proposed optimal sensor placement methods. The general experimen-
tal setup is detailed in Section 4.1. Section 4.2 will compare the proposed
criterion with other sensor placement methods, including SNR based criteria
[16, 17] and classical approaches such as entropy [25] and mutual information
(MI) [26, 27] criteria. Section 4.3 will evaluate and compare different optimiza-
tion approaches. Finally, in Section 4.4, the impact of the model parameters on
the output performance will be examined. In addition, Section 4.5 illustrate the
interest and the behavior of the proposed method on actual brain-computer in-
terface (BCI) data. The simulations in this section are done in Matlab-R2017b
on a Windows 7 operating system, with a 2.2 GHz Core i7 processor and 8 GB
DDR3 memory.

4.1. Experiment setup
The sources are to be placed in a 2-dimensional space within a square defined

by x ∈ [0, 1]2. The covariance matrix of the GP model for the spatial gains of the
sources is assumed to have the form given by (16). Both the variance parameter
σu and the smoothness parameter ρu for all sources are equal. They are denoted
with a subscript u to signify their association with the uncertainty regarding
the spatial gains.

The mean function for each source, which provides the prior knowledge, is
generated as a sample function from a GP model with a zero mean function and
the covariance function parameters σa and ρa for all sources. The smoothness
parameter ρa is selected to be consistent with the smoothness of the covariance
function for the spatial gains, ρu. Note that the mean function can take other
forms; however, for simplicity, it is generated in this way. The noise covariance
function is also assumed to have the squared exponential form: Cn(x,x′) =
σ2
nexp(−∥x − x′∥2/(2ρ2n)). In practical experiments, it is more likely that the

noise is less correlated than the spatial gains. Therefore, in all simulations, the
ratio of the smoothness parameter of the noise to that of the spatial gains is set

13



as ρn/ρa = 0.2. The impact of this ratio will be examined in Section 4.4. The
sigma parameter for both the spatial gains and the noise is set to σa = σn = 1
(i.e., input SNR is 0dB).

In all the figures, to obtain the mean and standard deviation of the plotted
values, 100 Monte Carlo simulations are performed, in each of which a new
generation of the spatial gains from the GP model is used. Note that when
calculating the output SINR and MSE at the placed sensor positions, the linear
estimator vector of fp and the unmixing matrix of B (described in Section 2.2)
are obtained from the available estimation of the spatial gains at the sensor
positions, not their real values. In the sequential approach, the BSS estimation
or the perfect estimation (i.e., true spatial gains) is employed, while in the greedy
method, the mean of the GP is employed as the available estimation. Moreover,
in any experiment that the grid search is used, 20 Monte Carlo realizations
are employed to obtain the expected value in the evaluation of the objective
function.

4.2. Comparing with other sensor placement methods
4.2.1. Single source extraction

The recent works of [16] and [17] have focused on optimal and robust sensor
placement for extracting a single source from noisy measurements. In [16], the
placement criterion is based on the expectation of the SNR of the extracted
signal. In [17], the criterion is the probability that the SNR exceeds a certain
threshold, and it is showed that the latter criterion is more robust against un-
certainties in the spatial gains compared with the former one. To compare the
proposed criteria with these works, an experiment is conducted in which there
are 5 sources with additive noise. The objective is to extract one source from
the noisy mixed measurements. Therefore, the proposed SINR and MSE criteria
are employed, assuming that the subset of the desired sources includes only a
single source.

Additionally, two other classical sensor placement criteria are incorporated:
entropy and MI [25, 26, 27]. These criteria assume that each point in space
corresponds to certain stochastic variables (spatial gains in our problem), and
aim to sample among them optimally. The entropy criterion chooses the most
informative points by maximizing their entropy, and the MI criterion ensures
that the selected points best represent the rest by maximizing the mutual in-
formation between them and the remaining points [22].

In this experiment, the sigma parameter of the uncertainty is σu = 0.3, and
the smoothness parameters are set to ρa = ρu = 0.05. Similar to the methodol-
ogy used in [17], a sequential approach is employed, assuming perfect estimation
of the spatial gains at each step (i.e., no error is introduced). The optimization
is conducted using a grid search with a grid size of 40 × 40. Fig. 2 shows the
output SINR of the extracted source with respect to the number of the sen-
sors placed using these 5 criteria. It can be observed that the proposed SINR
and MSE criteria have the same performance in this experiment, achieving the
highest SINR for each number of placed sensors. With 15 placed sensors, the
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Figure 2: Performance comparison of the proposed criteria with previous source extraction
criteria, robust and expected SNR, and classical criteria, MI and entropy. The SINR of the
extracted source is ploted versus the number of the placed sensors, and the sequential approach
with perfect estimation of the spatial gains in each step is used. The curves (resp. shadows)
represent the average value (resp. standard deviation around the mean) obtained from Monte
Carlo simulations.

proposed criteria yields a mean SINR of 20.1 dB. In contrast, the robust SNR
criterion yields 18.5 dB, the expected SNR criterion yields 17.3 dB, the MI crite-
rion yields 11.0 dB, and the entropy criterion yields 11.1 dB. Looking at it from
another perspective, to attain a mean SINR of 15 dB, only 5 sensors are needed
using the proposed criteria, whereas the robust and expected SNR criteria re-
quire 8 and 10 sensors, respectively. The SNR-based criteria are constrained to
extract a single source. In the presence of other sources, they exhibit inferior
performance compared with the SINR criteria, as they do not leverage infor-
mation about the remaining spatial gains. Both the MI and entropy criteria
demonstrate similar, significantly poorer performance than the other criteria in
terms of output SINR. This may be attributed to their neglect of noise effects,
as they primarily focus on acquiring samples that yield most information about
spatial gains.

4.2.2. Source separation
In this experiment, two proposed criteria, SINR (Eq. (17)) and MSE (Eq.

(18)), are compared with the classical criteria, MI and entropy. The model
parameters are set to σu = 0.3, ρa = ρu = 0.05. For optimization, a greedy
method with a grid search of size 40 × 40 is employed, assuming the existence
of P = 3 sources. Figs. 3a and 3b depict the average of the SINRs of the sepa-
rated sources and their output MSE, respectively, with respect to the number
of placed sensors. It can be observed that the MSE and SINR criteria exhibit
nearly identical performances, both surpassing the classical criteria. After plac-
ing 15 sensors, the SINR and MSE criteria yield the mean averaged SINRs of
16.8 dB and 16.5 dB, respectively, whereas the MI and entropy criteria both
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(a) Average SINR criterion (b) MSE criterion

Figure 3: The performances of the SINR and MSE criteria in sensor placement for source
separation are compared with the classical sensor placement criteria. Two measures are used
to assess the quality of source separation: (a) Average of the SINRs of the separated sources.
(b) MSE of the source separation. The curves (resp. shadows) represent the average value
(resp. standard deviation around the mean) obtained from Monte Carlo simulations.

yield the mean averaged SINRs of 10.6 dB. The mean output MSE for the
SINR and MSE criteria after placing 15 sensors reaches 0.057 and 0.054, re-
spectively, while for the MI and entropy criteria, it reaches 0.246 and 0.251,
respectively. It is evident that the SINR criterion yields slightly better results
when the performance measure is the averaged SINR (Fig. 3a). Conversely, the
reverse holds true when the measure is MSE (Fig. 3b). This outcome aligns
with expectations, as each criterion is designed to optimize its respective per-
formance measure. Furthermore, the closely matched performances of these two
criteria suggests a high degree of similarity between them. Given this similarity,
and to avoid repetition, we will exclusively employ one of the two criteria in
the remaining experiments. We choose the SINR criterion because obtaining its
gradient is simpler than for the MSE criterion.

The sensor positions chosen by the four criteria using the greedy method,
along with the real spatial gains of the three sources, are shown in Fig. 4. No-
tably, both the SINR and MSE criteria have led to the placement of some sensors
at the same locations, while some others are placed in close proximity. However,
distinct placements are also observed. On the other hand, the entropy criterion
resulted in sensors being positioned far apart, with extending some of them to
the borders. This characteristic can be considered a drawback of the entropy
criterion, as sensors typically gather information from their surroundings, mak-
ing a sensor at the boundary less efficient in utilizing sensed data [27]. Note that
the sensor positions determined by the MI and entropy criteria remain fixed in
each generation of the spatial gains from the GP model. This is because these
two criteria solely depend on the covariance function of the GP, without uti-
lizing the prior knowledge provided by the mean function. This limitation is a
significant drawback of these criteria.

In Fig. 5, the averaged SINR of the sources is plotted after placing 15 sensors,
as a function of the number of existing sources. It is evident that an increase in
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Figure 4: Contour plots show the real spatial gain values for each of the three sources. The
positions of 12 sensors, determined by four criteria, are indicated on the plots.

the number of sources leads to a decrease in the averaged SINR. This decline can
be attributed to the fact that in the estimation of each source, the remaining
sources act as interference. As the number of sources increases, the power of
this interference correspondingly rises, leading to a reduction in the averaged
SINR.

4.3. Evaluating different sensor placement and optimization approaches
4.3.1. Gradient based optimization: gradient ascent vs. stochastic gradient as-

cent
Two local optimization methods, gradient ascent (GA) and stochastic GA

(SGA), were presented in Section 3.1.2 to be used in the steps of the gradient
based global optimization. Fig. 6 compares the convergence of these methods
from the starting points chosen on an 8× 8 grid. The contour plot displays the
SINR objective function for placing the second sensor (K = 2) across a 2-D
space. The variable positions x(t)

K in all iterations are represented by black dots.
The model parameters are set to σu = 0.3, ρa = ρu = 0.05 and P = 3. The
step size of SGA is chosen to be smaller than that of GA due to the inaccuracy
of the steps in SGA. This implies the need for more steps in SGA compared
with GD to converge to a local maximum. On the other hand, computing the
update direction in GA requires a higher computational cost than in SGA, as
it involves averaging over several samples of the gradient instead of using just
one.
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Figure 5: Influence of the number of sources on the averaged SINR for 15 sensors. The curves
(resp. shadows) represent the average value (resp. standard deviation around the mean)
obtained from Monte Carlo simulations.

Figure 6: Comparison of gradient ascent and stochastic gradient ascent algorithm for optimal
sensor placement. The contour plot illustrates the SINR objective function for K = 2. The
initial points of the local optimization algorithm (x(0)

K ) are denoted by red plus signs, while
the updates of the variable position in different iterations (x(t)

K ) are represented by black dots.
Two algorithms for local optimization: (a) GD with a step size of µ

(t)
GA = 0.0002, executed

over 30 iterations, with averaging performed over 5 Monte Carlo simulations in each iteration.
(b) SGD with a step size of µ(t)

SGA = 0.00008, executed over 80 iterations.
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Figure 7: Comparing the accuracy obtained by the gradient based global optimization using
SGA with the grid search using different grid sizes. The gradient based global optimization
method achieves the accuracy similar to that of a 40 by 40 grid search.

4.3.2. Grid search vs. gradient based global optimization
In this experiment, two global optimization methods introduced in Sec-

tion 3.1 are compared for solving the optimization problem at each step of
the greedy method. In the grid search, 20 Monte Carlo realizations are used
to obtain the expectation in the evaluation of the SINR criterion at each point
on the grid. For the local optimization step of the gradient based global opti-
mization method, the SGA algorithm with 60 iterations is employed. During
the initial 45 iterations, the step size is set as µ

(t)
SGA = 2 × 10−4 for a rapid

convergence, and in the final 15 iterations, it is adjusted to µ
(t)
SGA = 5×10−5 for

a more precise convergence. The starting points for the gradient based global
optimization method are selected on an 8 × 8 grid. These method parameters
are determined empirically through multiple simulations to optimize the per-
formance. The model parameters are set as follows: ρa = ρu = 0.05, σu = 0.3,
and P = 3. In Fig. 7, a comparison is made between the resulting averaged
SINR values obtained using the SGA based global optimization and the grid
search with different grid sizes. Additionally, Table 1 provides a comparison of
the required time for placing 15 sensors using these algorithms.

It can be observed that the accuracy of the SGA is comparable to that of
a 40 × 40 grid search, while its runtime is reduced by a factor of 8, making it
comparable to that of a 15× 15 grid search. This indicates that SGA provides
significant computational efficiency compared with the grid search. Note that
the number of grid points in the grid search grows exponentially with the di-
mension of space or the number of placed sensors at each step of the greedy
method. Therefore, for higher space dimensions or a greater number of placed
sensors, the efficiency of the gradient based optimization will become even more
pronounced.
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Table 1: Required Time for Placing 15 Sensors

Method SGA Grid search
10×10 16×16 20×20 40×40

Time(s) 12.4 5.2 15.7 24.8 103.2

Figure 8: Effect of simultaneously updating the sensor positions from 4 different initial po-
sitions onto the SINR. Improvement of the resulting averaged SINR is plotted against the
number of iterations of the algorithm.

4.3.3. Refining sensor positions from initial points
In this experiment, the optimization approach outlined in Section 3.3 is eval-

uated, wherein sensor positions are updated step by step from an initial point
using the gradient of the objective function. The model parameters utilized are
ρa = ρu = 0.05, σu = 0.3, and P = 3.

Fig. 8 compares the effect of different starting sensor positions on the mean
of the resulting averaged SINR during the iterations of Algorithm 1, which aims
at adjusting the sensor positions. When the initial positions are derived from
the output of the greedy method with SGA, it is evident that the algorithm does
not lead to an improvement in sensor positions. This indicates that these initial
positions are already situated at a local optimum of the objective function with
respect to all sensor positions. However, when the initial positions are derived
from the output of the greedy method employing a 16 × 16 grid search, the
algorithm refines the sensor positions and converges to a local optimum close
to the initial points, but cannot reach the performance achieved by the SGA.
Furthermore, it is observed that the algorithm shows greater enhancement in
the initial points chosen based on the MI criterion compared with those chosen
using the entropy criterion. This observation can be attributed to the fact that
some initial points from the entropy criterion are positioned at the borders of the
available space. As a result, the local optima near them are less optimal than
those identified by the MI criterion. This experiment highlights the effective
performance of the SGA in our problem.
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(a) (b)

Figure 9: Comparing the sequential approach, where perfect or BSS estimation of the spatial
gains is performed in each step, with the greedy method, where the knowledge about the spatial
gains remains constant across steps. Two cases are considered: (a) Low level of uncertainty
with σu = 0.3, and (b) High level of uncertainty with σu = 0.8.

4.3.4. Greedy method vs. sequential approach
As described in Section 3.2, the distinction between the greedy method and

the sequential approach lies in the availability of an estimation of the spatial
gains at the placed sensor positions at each step. This estimation is utilized
to update the stochastic model of the spatial gains in the sequential approach,
whereas it is not available in the greedy method. In this experiment, two types of
estimations are considered for the sequential approach: the BSS method outlined
in Section 3.2.2 and perfect estimation. In the case of perfect estimation, there
are no errors in the estimation of the spatial gains. This case is included to
evaluate the impact of BSS estimation errors on the performance of the sensor
placement.

Additionally, an oracle case is considered, which assumes no uncertainty
about the spatial gains and treats them as deterministic. This can serve as
an upper bound for the resulting averaged SINR of the proposed method, and
specified by the solid (blue) curve in Fig. 9.

For this experiment, the smoothness parameters are set to ρa = ρu = 0.05,
the number of sources is P = 3, and two levels of uncertainty are simulated. The
low uncertainty level has σu = 0.3, while the high uncertainty level has σu = 0.8.
As illustrated in Fig. 9a, under the low uncertainty level of the spatial gains,
the BSS estimation in the sequential approach does not provide a significant
advantage compared with the greedy method (without gain estimation). This
can be attributed to the fact that the uncertainty and the BSS estimation error
fall within similar ranges. However, under the high uncertainty level of the
spatial gains in Fig. 9b, the information provided by the BSS gain estimation
leads to a higher averaged SINR, increasing it from 11.1 dB to 14.4 dB for 15
placed sensors. The gap between the perfect and BSS gain estimations illustrates
the effect of the error in BSS estimation.
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Figure 10: Influence of the spatial gain smoothness. The curves (resp. shadows) represent the
average SINR value (resp. standard deviation around the mean) obtained from Monte Carlo
simulations.

4.4. Impact of model parameters
4.4.1. Smoothness of the spatial gains

Fig. 10 illustrates the resulting averaged SINR for the sensor placement using
the greedy method with different smoothness levels of the spatial gains, when
the ratio of the smoothness parameter of the noise to the spatial gains is fixed to
ρn/ρa = 0.2. The other model parameters are set as follows: ρu = ρa, σu = 0.3,
P = 3. Decreasing ρa reduces the smoothness of the spatial gains, thereby
increasing their variability within the available space, resulting in an increase in
the averaged SINR. This aligns with the fundamental moral notion of diversity
in BSS. Furthermore, at a high smoothness level, the output averaged SINR
saturates faster as the number of placed sensors increases. It appears that the
capacity of the space for accommodating sensors decreases with the increase in
the smoothness of the spatial gains.

4.4.2. Noise smoothness to spatial gain smoothness ratio
In this experiment, the ratio of the smoothness parameter of the noise to

the smoothness parameter of the spatial gains (ρn/ρa) is varied from 0.1 to 10,
and the averaged SINR after placing 15 sensors using the SINR and MI criteria
is plotted in Fig. 11. The other model parameters are set as ρu = ρa = 0.05,
σu = 0.3, P = 3, and the sequential approach with perfect gain estimation
is employed. It can be observed that as the ratio exceeds 1 and the noise
becomes smoother than the spatial gains, the resulting averaged SINR of the
SINR criterion begins to increase. In this scenario, the criterion selects sensor
locations that are in close proximity to each other, at a distance where the noise
signals exhibit high correlation, while the spatial gains have lower correlations.
This enables the effective suppression of the noise signal without compromising
the source signals, resulting in a high achievable output SINR.
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Figure 11: Influence of the ratio between the smoothness of the noise and the smoothness
of the spatial gain. The curves (resp. shadows) represent the average value after placing 15
sensors (resp. standard deviation around the mean) obtained from Monte Carlo simulations.

4.5. Real-data verification: P300-based BCI dataset
The proposed method was applied to actual EEG data from the BCI

database by [28] to evaluate the impact of optimal sensor placement on the
performance of the BCI system. The database includes recorded EEG data
from 54 subjects across 2 sessions, using 62 electrodes placed on the scalp. This
setup provides a diverse range of subjects with high spatial resolution. The BCI
experiment based on the P300 event-related potential (ERP) [29] implemented
in the database follows a typical 36-symbol Row-Column speller design. The
objective is to detect P300 ERPs in the EEG signal and use them to specify
the spelled symbol. To enhance the detectability of P300 ERPs, we employ
the xDAWN algorithm [30]. This algorithm decomposes the EEG signals into
a linear mixture of sources of interest plus additive noise and designs optimal
spatial filters to estimate the sources. According to this model, the EEG signal
is expressed as

X = DA′WT +N′, (28)

where the columns of X ∈ RNt×Ns represent the recorded EEG signals using Ns

electrodes in Nt time samples. The columns of DA′ ∈ RNt×I specify I sources
of interest, the columns of W ∈ RNs×I denote the source gains in electrodes,
and N′ ∈ RNt×Ns denotes the noise signal. The matrices DA′ and W can be
learned using the training data, as explained in [30]. The sources of interest are
estimated and utilized as classification features to detect the P300 ERPs. The
optimal placement method aims to predict the sensor positions that provide the
best estimation of sources.

For each subject, the training data from the first session is used to obtain
the model parameters, and then the optimal electrodes are selected based on
the model. The number of sources is chosen as I = 2, as it has been shown that
2 sources provide sufficient features for classification in P300 spellers [30]. To
estimate the parameters of the model, samples of the stochastic process of the
spatial gains are required. To achieve this, a sliding window with a length equal
to half of the time samples (Nt/2) is used to select segments of the signal, and
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Figure 12: BCI accuracy obtained from electrodes configured using three placement ap-
proaches, averaged over 40 subjects

each selected segment is used to obtain one sample for the spatial gains using
the xDAWN algorithm. For each subject, a total of 10 samples of the stochas-
tic process are obtained at 62 electrode locations (Ŵ(1),Ŵ(2), ...,Ŵ(10)). The
columns of Ŵ(i) are normalized so that the corresponding source signals have
unit variances. The mean of the stochastic process is estimated by averaging
these samples, and the parameters of the isotropic covariance function are ob-
tained using the least-squares estimation of the Gaussian variogram [31]. The
noise covariance matrix is estimated using the noise signal samples obtained with
the xDAWN algorithm from the entire training data, as Cn = 1

Nt
N′TN′. With

this information, the optimal electrode positions are predicted using the SINR
criterion and the greedy optimization method. Note that the available electrode
positions are limited to the locations of the 62 electrodes used in the database.
The chosen electrode positions from the training data of the first session are
used to linearly estimate the sources in the second session. Subsequently, the
estimated sources serve as features for a Bayesian linear discriminant analysis
(BLDA) classifier [32, 33]. The classification accuracy is compared with the ac-
curacy obtained from random electrode placement and the standard electrode
configurations commonly used in P300-based BCI systems [32, 34, 35]. The
standard 4-electrode configuration includes Fz, Cz, Pz, and Oz electrodes. In
the 8-electrode configuration, P3, P4, P7, and P8 electrodes are added. The
16-electrode configuration includes 8 additional electrodes: C3, C4, O1, O2,
CP1, CP2, FC1, and FC2. Fig. 12 compares the classification accuracy ob-
tained from these three electrode placement approaches. For each subject, the
classifier is trained and tested using the second session data, and the reported
accuracy is the average of 40 subjects. Optimal electrode placement results in
higher accuracy than standard placement, especially when the number of sen-
sors is below 6. With 4 placed electrodes, the accuracy obtained by optimal
sensor placement is 97.0%, while it is 70.3% by standard placement. With 8
placed electrodes, the accuracy is 98.5% and 97.8% respectively. Both optimal
and standard placements achieve higher accuracy than randomly placing the
electrodes on the scalp.
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5. Conclusion

In this paper, by assuming a linear mixing model of the sources with noisy
measurements, two criteria have been proposed as measures for the separation
quality to be optimized in the sensor placement process. To integrate the knowl-
edge and uncertainty about the spatial gains, they were modeled as GPs, result-
ing in stochastic forms for the proposed criteria and the optimization problem.
To efficiently solve the global optimization problem required in the placement
process, a gradient based optimization method has been used that provides sig-
nificantly greater computational efficiency compared with the previously used
grid search method.

Numerical results demonstrated the superiority of the proposed criteria com-
pared with the criteria of [16] and [17] in source extraction, as well as the clas-
sical sensor placement criteria in source separation. Additionally, we observed
that the SINR and MSE criteria yield similar performances in the numerical
experiments. The approach for updating sensor positions from specific initial
points improves the sensor positions, although the final separation quality is
highly dependent on the initial points chosen. The impact of smoothness model
parameters for spatial gains and noise was also explored.

As a real-world application of the proposed method, it was verified using
real data from a P300-based BCI dataset. The optimal placement method
demonstrated higher accuracy compared to standard locations. This leads to
the need for fewer electrodes in the BCI system to achieve a certain level of
accuracy, improving the ergonomics of the BCI by reducing the setup time and
facilitating the frequent use of the system.

The instantaneous mixing model of the sources has been addressed in this
paper. In applications where echo signals are present in the environment, such
as acoustic signals, the convolutive mixing model is relevant. A follow-up to
the current work could be to study the optimal sensor placement problem with
convolutive mixtures and noisy measurements.

Appendix A.

For the SINR criterion, the stochastic process j(XK−1,xK) is given by

j(XK−1,xK) =

P∑
l=1

âl(XK)T

×

 P∑
p=1,p̸=l

âp(XK)âp(XK)T +Cn
KK

−1

âl(XK),

(A.1)

where XK = [XK−1,xK ]. Among the spatial gains of the p-th source,
âp(XM ) = [â1p(x1), â

2
p(x2), ..., â

M
p (xK)], only âKp (xK) depends on xK . By

applying the chain rule, the partial derivatives of j(XK) with respect to xd
K
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(d = 1, 2, .., D for D-dimensional space) can be expressed as

(A.2)

∂j(XK)

∂xd
K

=
∂j(XK)

∂âK1 (xK)
.
∂âK1 (xK)

∂xd
K

+
∂j(XK)

∂âK2 (xK)
.
∂âK2 (xK)

∂xd
K

+ ...

+
∂j(XK)

∂âKP (xK)
.
∂âKP (xK)

∂xd
K

+
∑
i,j

∂j(XK)

∂[Cn
KK ]ij

.
∂[Cn

KK ]ij
∂xd

K

where [Cn
KK ]ij is the ij-th entry of the noise covariance matrix. The derivatives

∂j(XK)
∂âK

p (xK)
and ∂j(XK)

∂[CKKn]ij
can be simply obtained from (A.1). The derivatives of

the spatial gains are themselves Gaussian processes with the following parame-
ters

∂âKp (xK)

∂xd
K

∼ GP

(
∂map(xK)

∂xd
K

,
∂Cap(xK ,x′

K)

∂xd
K∂x′d

K

)
. (A.3)

The vector containing the spatial gains at the sensor positions and
the derivatives of the spatial gain at the new sensor position, vp =

[â1p(x1), â
2
p(x2), ..., â

M
p (xM ),

∂âM
p (xM )

∂x1
M

,
∂âM

p (xM )

∂x2
M

, ...,
∂âM

p (xM )

∂xD
M

]T , posses a joint
Gaussian distribution, for p = 1, 2, ..., P . The covariance between the spatial
gain at the point xK (k = 1, 2, ...,K) and the derivatives of spatial gain at the
point xK is given by

Cov

(
âkp(xk),

∂âKp (xK)

∂xd
K

)
=

∂Cap(xk,xK)

∂xd
K

, (A.4)

and the covariance between derivatives with respect to different dimensions
d1, d2 ∈ {1, 2, ..., D} is given by

Cov

(
∂âKp (xK)

∂xd1

K

,
∂âKp (xK)

∂xd2

K

)
=

∂Cap(x′
K ,xK)

∂x′d1

K ∂xd2

K

∣∣∣∣
x′

K=xK

. (A.5)

Now, through the distribution of the random vectors vp, their samples can
be generated for p = 1, 2, ..., P . Subsequently, utilizing (A.2), the samples of
∇xK

j(XK−1,xK) can be obtained.
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