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Abstract: Urbanization profoundly alters environmental conditions for organisms, particularly
through the urban heat island (UHI) effect, which elevates temperatures in city centers. This study
examines the influence of urban environmental variables on rove and ground beetle communities.
We sampled 36 grasslands in Rennes (northwestern France), yielding 3317 and 505 staphylinid and
carabid adult individuals, respectively, belonging to 121 and 60 species, respectively. Staphylinid
and carabid communities are not primarily affected by temperature-related variables. Staphylinids,
often overlooked in urban ecology, showed species composition variation to be influenced by habitat
and temperature, whereas their functional diversity was positively correlated with herbaceous
vegetation height only. In contrast, carabid communities exhibited no significant relationship with the
tested environmental variables. This study underscores the taxon-dependent nature of ectotherm’s
responses to thermal environments. Although a further investigation into species-specific traits,
and particularly dispersal capacities in staphylinids, is needed to advance our understanding of
urbanization’s impact, our results indicate that functional diversity in staphylinid assemblages can
be favored by locally reducing the mowing frequency or increasing the cutting height within urban
green spaces.

Keywords: activity density; Staphylinidae; Carabidae; functional diversity; taxonomic diversity;
urban heat island

1. Introduction

Urbanization strongly influences the environmental conditions experienced by city-
dwelling organisms at landscape and local scales [1–4]. In particular, climatic conditions
are altered through the proliferation of heat-absorbing materials and the canyon-like mor-
phology of streets, leading to an increase in mean temperatures within city centers, as
commonly referred to as the urban heat islands (UHI) phenomenon [5,6]. Investigations
on urban-dwelling arthropods are essential to draw a representative assessment of the
footprint left by urbanization on biodiversity [7] and notably by the UHI. For example, in
a recent study, [8] highlighted that spider communities responded differently to environ-
mental factors measured at the landscape (i.e., within buffers of a 100 m radius around
study sites) and at the local scale (i.e., at the study site). This was also true regarding
the temperature, with warming at the landscape scale (i.e., the atmospheric UHI) acting
more as an environmental filter on species, than local temperature (i.e., measured near the
ground) [8].

Diversity 2024, 16, 504. https://doi.org/10.3390/d16080504 https://www.mdpi.com/journal/diversity

https://doi.org/10.3390/d16080504
https://doi.org/10.3390/d16080504
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diversity
https://www.mdpi.com
https://orcid.org/0000-0002-5562-2232
https://orcid.org/0000-0001-8383-805X
https://orcid.org/0000-0003-4313-4925
https://doi.org/10.3390/d16080504
https://www.mdpi.com/journal/diversity
https://www.mdpi.com/article/10.3390/d16080504?type=check_update&version=2


Diversity 2024, 16, 504 2 of 13

Among beetle dwellers of the soil surface, staphylinids and carabids are the most
abundant groups in European ecosystems and are recognized as valuable biological in-
dicators of anthropic pressures [9–11]. Along urbanization gradients, both groups are
highly diverse and respond rapidly to urban environmental stressors, such as habitat
loss or fragmentation [12–15]. Further, as ectothermic animals, beetles are likely to be
constrained by temperature variations induced by UHI [16,17]. Although staphylinids can
reach abundance levels similar to those of spiders [18], the deficit of community ecology
studies focusing on this taxon may be explained by the complex identification of individu-
als at the species level. Moreover, the knowledge about species’ ecology and life history
remains much more limited than for carabids [13], making functional approaches less
straightforward. If carabids have been extensively investigated in the urban context [19],
staphylinids were mainly studied in agricultural landscapes due to their potential for crop
protection, and only a few studies aimed to test how this taxon is constrained by the urban
environment [13–15,20].

Studies conducted on urban woodlots have shown that the community composition
of both staphylinid and carabid beetles can be affected by landscape fragmentation within
the urban matrix [13,14,21]. At the local scale (i.e., the woodlot patch scale), the increase
in disturbance frequency (e.g., through management measures) was hypothesized to ho-
mogenize urban forest patches, removing microhabitats needed by some specialist carabid
species [12]. Regarding staphylinids, the intensification of management practices in urban
green spaces was associated with a decrease in species richness, doubtlessly due to a reduc-
tion of plant debris, preventing the establishment of phytodetriticol species and leading to
biotic homogenization [15]. Responses to microhabitat structure are particularly expected
in staphylinids because they harbor hyper-diver feeding habits, and many species are
microhabitat specialists depending on particular structures such as dead wood or carcass
for decomposers or even the presence of fungi in the case of fungivorous species [18].

To date, climatic variables were little considered to predict patterns of abundance,
diversity, or composition within staphylinid and carabid urban communities [7]. In this
study, we first compared the community compositions in both taxa across sampled on
36 urban grasslands, which were classified according to their environmental characteristics
at the landscape and local scales. Under the landscape scale, we dissociated the role of
atmospheric temperature (i.e., UHI-induced warming) from the role of habitat loss (i.e.,
the proportion of impervious surface). Landscape predictors are generally considered
upper-level filters that determine the permeability of the surrounding urban matrix for the
immigration of species from rural adjacent areas into cities [22,23]. Under “local factors”, we
distinguished microclimatic temperature (i.e., near-ground warming) from micro-habitat
structure (i.e., herbaceous vegetation height and cover). These local factors are intended
to determine habitat suitability and are related to species survival, reproduction success,
and abundance [23,24]. In a second step, we disentangled the effect of the landscape
factors from those of the local ones to explain activity density and diversity patterns within
staphylinid and carabid communities. In addition to taxonomic diversity indices, we
considered functional diversity to evaluate the relative weights of landscape and local-scale
predictors in shaping diversity patterns since species’ responses to their environment are
strongly linked to their functional traits [25].

2. Materials and Methods
2.1. Sampling Sites

We conducted this study in Rennes and its surroundings. Rennes is a city of 223,000 in-
habitants in northwestern France. Located 70 km from the sea, the city experiences a
temperate oceanic climate. In 2022, the mean annual temperature was 13.7 ◦C, with an
average winter temperature of 7.7 ◦C and an average summer temperature of 19.6 ◦C (data
from Saint-Jacques airport station). Despite its mild climate, Rennes frequently experiences
UHI events. From 2004 to 2019, intense UHI conditions (with temperatures exceeding
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4 ◦C above the rural surroundings) accounted for over 17% of the total nights, whereby in
certain months (i.e., September), this proportion increased to 30% [26].

We used sensors from Rennes Urban Network (https://run.letg.cnrs.fr, access on
1 June 2023) to characterize the atmospheric UHI. Since 2020, 30 DAVIS Vantage-Pro-2
automatic weather stations and 93 connected temperature sensors (Rising-HF- RHF1S001)
collect temperature data at 60 and 15 min frequencies, respectively, across the city center
and the peri-urban and rural areas of Rennes. We calculated the daily UHI intensity by
the difference between the minimum daily temperature data at a reference cold station
located outside the urban area (Melesse—about 11 km in the north of Rennes, 48◦12′18.1′′

N 1◦40′52.8′′ W) and the minimum daily temperature data recorded by all other sensors.
These discrete measures of daily UHI intensity were then interpolated by inverse distance
weighting to obtain maps of estimated values covering the entire city extent at 100 m
resolution [26]. We averaged the daily UHI intensity values for the whole study period
(from 1 March to 30 September 2022) to obtain a single raster map of mean atmospheric
UHI intensity (Figure 1).
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Figure 1. Study area and location of sampling sites. The mean atmospheric UHI (from 1 March to 
30 September 2022) is illustrated by a colored gradient ranging from purple (low intensity; Figure 1. Study area and location of sampling sites. The mean atmospheric UHI (from 1 March
to 30 September 2022) is illustrated by a colored gradient ranging from purple (low intensity;
minimum = 0 ◦C) to orange (high intensity; maximum = 3 ◦C). Grey areas in the background display
impervious surfaces.

To select appropriate sampling sites within the study area, we first performed a
spatial correlation analysis to identify areas where the proportion of built-up areas and the
atmospheric UHI intensity are not correlated [8]. We chose grasslands as a model ecosystem
because they represent 445 ha (i.e., 56%) of urban green spaces in Rennes [27], and urban
grasslands are known to support abundant ground-dwelling arthropod communities [24],
ensuring a suitable sampling size. We selected 36 grasslands belonging to public parks,
community gardens, green spaces adjacent to educational buildings, or private gardens.

https://run.letg.cnrs.fr
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This sampling site selection process enables us to distinguish the separate impacts of habitat
from temperature-related predictors [8].

2.2. Arthropod Sampling

We sampled staphylinid and carabid beetles using three pitfall traps per sampling
site during a two-week period each month from March to September 2022. The traps were
strategically positioned 5 m apart in a triangular formation to optimize capture rates [28]
and were oriented towards the north, southeast, and southwest directions. Traps were
made of plastic cups measuring 85 mm in diameter and 115 mm in height. Each trap
was filled with 150 mL of saline solution (at a concentration of 100 g·L−1) to enhance
insect preservation, along with a drop of neutral soap to prevent floating. Following
each sampling session, staphylinid and carabid individuals were sorted and placed into
separate vials containing 70% ethanol for storage. Staphylinids were identified at the species
level [29,30], except for 12 species that have been considered morphospecies (Table S1).
Carabid individuals were identified at the species level [31]. To investigate the functional
responses of staphylinids and carabids, we retrieved trait information related to feeding
group and body size for each species from the literature (Tables S1 and S2). If feeding
information was unavailable for a particular species, we inferred based on the ecological
characteristics of other species within the same genus, where available. Otherwise, the
feeding group was categorized as unknown [32].

2.3. Community Indices

To compute community indices, the raw arthropod data were pooled by site to obtain a
total abundance value per species and site. Independently for staphylinids and carabids, we
first computed the total number of collected individuals per site (i.e., the activity density).
In addition, we computed the taxonomic diversity using the Hill numbers of orders q = 0,
1, and 2. This approach enables us to account for the possible influence of dominance
patterns, with indices of order Q0 being the most sensible to rare species (i.e., the actual
species richness) and Q2 the less sensible [33]. We used the equivalent indices to compute
the functional diversity but calculated them from functional data related to the species’
feeding group and body size. To do so, we computed a species’ functional distance matrix
on multiple traits using the Gower method [34] with the ‘daisy’ function of the ‘cluster’
R-package (version 2.1.6 [35]). Based on this, we computed functional diversity indices (of
orders q = 0, 1, and 2) to quantify the effective number of equally distinct virtual functional
groups, which can thus be considered ‘functional species’ [36]. Taxonomic and functional
diversity indices were computed using the R-package ‘iNEXT.3D’(version 1.0.5) [36]. To
correct for bias due to potential differences in sampling coverages among sampling sites, we
rarefied or extrapolated indices to reach a reference sampling coverage, using the function
‘estimate3D’ with a default value of ‘0.95’.

2.4. Environmental Variables

To describe the environment at the landscape scale, we calculated (1) the mean UHI
value and (2) the proportion of impervious surface within buffers of 100 m around each
study site. To compare several spatial scales, we also calculated these variables over larger
extents ranging from 100 m to 1 km from the sampling sites [2,37,38]. More precisely, we
considered concentric rings of areas between a 100 m and 200 m radius, between a 200 m
and 500 m radius, and between a 500 m and 1000 m radius around each sampling site.

At the local scale, we measured the near-ground temperature every 15 min during
each trapping session. To do so, we used a temperature sensor (Lascar EL-USB-2+; Tinytag
Talk 2 TK-4023) placed 5 cm above the ground surface, next to the north-headed pitfall trap
at each sampling site. As for the atmospheric UHI, we calculated the differences between
the daily minimum temperatures obtained from the station showing the lowest averaged
near-ground temperature (Cesson-Sévigné, 48◦06′36.6′′ N–1◦36′29.9′′ W) and that of each
of the other sites. We then averaged these daily differences throughout the study period to
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obtain a single near-ground temperature value by site. To quantify the habitat structure, we
also measured the percent cover of plant species and the height of the vegetation within the
triangle delineated by the three pitfall traps at each site and during each sampling session.
We then averaged the values to obtain one final value per site and per predictor.

2.5. Data Analysis
2.5.1. Community Composition Analysis

To compare the community composition among groups of sites sharing similar en-
vironmental characteristics, we performed a hierarchical clustering analysis based on all
scaled environmental variables. We used the ‘HCPC’ function and the ‘Ward’ method to
construct the tree in the ‘FactoMineR’ package (version 2.7) [39]. The optimal number of
clusters was determined according to the partition with the higher relative loss of iner-
tia [39]. Once the sites were grouped into clusters, we performed a silhouette analysis
to check the agreement of individual sites with their own cluster, using the ‘silhouette’
function from the ‘cluster’ package (version 2.1.6) [40]. The site classification resulted in
3 clusters of sites defined as ‘high vegetated rural’, ‘low vegetated rural’, and ‘low vegetated
urban’. The mean scaled values and standard deviations of environmental variables into
three clusters after the classification of sampling sites are reported in Appendix A.

We tested the difference in community composition among clusters of sites by using
non-metric multidimensional scaling (NMDS, Bray–Curtis dissimilarity, ‘vegan’ package)
and pairwise permutational multivariate analysis of variance (9999 permutations), using
the ‘pairwise.perm.manova’ function from the ‘RVAideMemoire’ package (version 0.9-83-3).

2.5.2. Community Diversity Analysis

To determine the main predictors of staphylinid and carabid community indices, we
conducted a variation partitioning analysis to separate the effects of habitat and temper-
ature at different spatial scales (i.e., landscape- or local-scale predictors) with the ‘vegan’
package (version 2.6-6.1 [41]). We separately sorted the response indices of staphylinids
and carabids among three independently analyzed response datasets: activity density,
taxonomic diversity (composed of three indices; Hill numbers of order q = 0, 1, and 2),
and functional diversity (composed of three indices; Hill numbers of order q = 0, 1 and 2).
Predictors were sorted among four datasets: local habitat (composed of two variables: veg-
etation cover and vegetation height), near-ground temperature, proportion of impervious
surface, and atmospheric UHI. In order to compare the effects of distinct landscape scales,
we separately ran the variation partitioning with the proportion of impervious surface and
the atmospheric UHI calculated within (1) a 100 m radius buffer around each sampling
site and concentric rings between (2) 100 m and 200 m radius, (3) 200 m and 500 m radius,
(4) 500 m and 1000 m radius. Since the local habitat dataset contained more than a single
predictor, we reported the adjusted R2 as an estimator of the explained variation to prevent
inflated R2 values [42]. We identified significant explanatory datasets by performing per-
mutation tests for redundancy analysis (RDA) using the ‘anova.cca’ function [43]. In case a
community dataset was significantly linked to an explanatory dataset, we additionally ran
a Generalized Linear Model (GLM) fitted with the involved variables to determine how
single community indices were linked to predictors.

All statistical analyses were performed in R version 4.0.3 [44].

3. Results

In total, 3317 staphylinid individuals of 121 species were collected with Tachyporus
hypnorum (N = 556), Drusilla canaliculate (N = 462), Mocyta gr. Fungi (N = 285) and Philonthus
cognatus (N = 217) being the dominant species. Regarding carabids, 505 individuals of
60 species were collected and included in the analysis, with Amara communis (N = 55),
Amara convexior (N = 53), and Bembidion properans (N = 46) being the dominant species. All
predictors were weakly correlated when buffers of 100 m radius or ring of extent 100–200 m
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were considered for computing landscape-scale predictors (r < 0.7) (Table S3). At larger
scales, impervious surface and UHI were strongly positively correlated (r > 0.8) (Table S3).

3.1. Community Composition

The results of NMDS showed that the community composition of staphylinids and cara-
bids differed among clusters (staphylinids: stress = 0.215, p = 0.005; carabids: stress = 0.210,
p = 0.003). The communities from the rural clusters were not significantly different from
each other but significantly differed from the ‘short vegetated urban’ cluster. In staphylin-
ids, the community composition was significantly structured by all the tested variables
(Figure 2). In carabids instead, none of the environmental variables explained the commu-
nity structure.
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Figure 2. Results of NMDS ordination (Bray–Curtis distance) based on staphylinid (left) and carabid
(right) datasets. The ‘High vegetated rural’ cluster contained sites with high herbaceous vegetation,
low near-ground temperature, low proportion of impervious surface, and weak UHI intensity.
The ‘Short vegetated rural’ cluster contained sites with high herbaceous vegetation, intermediate
near-ground temperature, low proportion of impervious surface, and weak UHI intensity. The
‘Short vegetated rural’ cluster contained sites with short herbaceous vegetation, low near-ground
temperature, a high proportion of impervious surface, and strong UHI intensity. Only significant
environmental variables are displayed (p < 0.05).

3.2. Density and Diversity Indices

Variation partitioning showed that only functional diversity was constrained by the
environment, and habitat structure was the only significant predictor in staphylinids.
This result was found with all spatial scales considered to calculate the proportion of
impervious surface and UHI datasets included in the analysis (Figure 3). In contrast, none
of the predictor datasets significantly explained the variance of carabids, neither in activity
density nor in taxonomic or functional diversity, with any of the scales considered to
calculate the proportion of impervious surface and the atmospheric UHI (Figure 3).

The GLMs related to staphylinid data indicated that the functional diversity indices
at orders q = 1 and q = 2 were significantly linked to the local habitat and that vegetation
height, not vegetation cover, positively affected the functional diversity index of order q = 1
(Figure 4a, coef. = 0.038, p < 0.001, adjusted R2 = 0.38) and q = 2 (Figure 4b, coef. = 0.035,
p < 0.001, adjusted R2 = 0.33).
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Figure 3. Venn diagrams displaying the results of variation partitioning analysis related to (a) the
activity density, (b) the taxonomic diversity, and (c) the functional diversity of staphylinids (left
column) and carabids (right column). The predictor datasets are represented by colored ellipses
where the proportion of impervious surface is dark green (upper left), the local habitat is light green
(upper right), the atmospheric UHI is dark blue (lower left), and near-ground temperature is light blue
(lower right). Results are given separately with impervious surface and UHI predictors calculated
within 100 m radius buffers, as well as concentric rings of 100–200 m breadth, 200–500 m breadth,
and 500–1000 m breadth. Variation proportions lower than 1% are not displayed. Significant results
are underlined.
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4. Discussion

This study explores which urban environmental variables affect staphylinid and
carabid beetle communities. These outcomes directly complement previous results obtained
on spiders in the same study area [8]. We show that unlike spiders, staphylinid and carabid
communities are not primarily affected by temperature-related variables. Staphylinids
remain to date rarely considered in urban ecology studies, although our sampling results
indicate their high potential as diverse and abundant arthropod model taxon for studying
urban grasslands’ fauna. If the species composition of staphylinids was already found
to be impacted by urbanization [13], our study provides new outcomes by investigating
the relative importance of underlying variables related to habitat and temperature at
multiple scales.

4.1. Density and Diversity Indices

Landscape variables (i.e., proportion of impervious surface and atmospheric UHI) had
no effects on staphylinids’ activity density and diversities (incl. taxonomic and functional).
Instead, we found the functional diversity of staphylinids to be positively linked to the
height of the herbaceous vegetation layer locally. This pattern was already identified in
other arthropods (e.g., spiders [45–47]), where local habitat predictors performed better in
predicting functional diversity than landscape predictors. It is interesting to note that the
pattern we observe only concerns the functional diversity indices giving little weight to
rare ‘functional species’. This indicates that common functional characteristics are more
diverse within staphylinid communities living in high vegetation and is not due to the
presence of a few individuals with particular ecological characteristics. The fact that the
functional diversity of staphylinids is favored by a high vegetation layer may be linked to
the increased diversity of vertical structures provided by grown vegetation. In particular,
complex vertical structures within the herbaceous vegetation may sustain more diverse
feeding groups within staphylinid communities than shortly-mown homogenous lawns.
For instance, high vegetation may offer more opportunities for phytophagous species to
feed directly on plants. Indirectly, higher vegetation may maintain a high moisture amount
at the ground level and favor the fungal development that is needed by fungivorous species
to feed. Further, high plants may host more prey (e.g., aphids), which might be beneficial
for predatory staphylinids.

Although we expected similar results to occur in carabids, the community compo-
sition analysis showed that assemblages are different from one site cluster to another,
whereby none of the tested environmental variables were significant predictors. This
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result, combined with the absence of relationships between diversity indices and any of
the predictor datasets, suggests that carabid communities are shaped by the environment,
but the environmental variables that we investigate here are not the determinant ones.
For example, many carabid species sampled in our study are herbivorous and vegeta-
tion composition may therefore be an important predictor to consider. A previous study
conducted in the same study area evidenced that carabid communities can be primarily
impacted by changes in the urban matrix at the landscape scale (i.e., 600 m, [21]). Because
of their limited dispersal abilities, carabids might be strongly subject to large-scale urban
filtering and become globally less abundant and diverse in urban areas but adapt to urban
environmental constraints [21]. However, we should be cautious when comparing these
results since in previous studies led in Rennes [48], carabids were sampled in urban wood-
lands, and patterns may diverge from grassland communities. In addition, it is important
to emphasize that the lack of responses observed in carabids in our study may also be
influenced by the relatively low number of individuals caught. Future work will be needed
to fully understand our non-significant results. For instance, since many sampled carabid
species are herbivorous, other habitat characteristics such as vegetation composition (but
also soil characteristics, biotic interactions) not included here might be determinant habitat
predictors [49].

4.2. Absence of Temperature Effect

Previous studies conducted in the same study area have shown that spiders were
primarily constrained by urban temperature variation [8]. Like spiders, staphylinids and
carabids are ground-dwelling predators occurring in urban grasslands. However, unlike
spiders, they did not respond to temperature. Differences in behaviors, interactions, and life
histories can modulate the response of terrestrial ectotherms to temperature increase [50–52].
However, contrasting physiological heat tolerance among taxonomical groups is expected
to be the main factor explaining inconsistent responses of arthropods to temperature
increase [53]. For example, warmer thermal conditions tend to support the fitness of
taxa tolerating a wide temperature range, whereas those with narrow thermal tolerance
breadth are more negatively affected [7]. A strong physiological variability among taxa can,
therefore, be expected to explain differences in terms of response strength. Staphylinid and
carabid beetle species from assemblages investigated here may, therefore, tolerate higher
temperatures or have a wider thermal tolerance breadth than spiders.

In addition to the effect of physiological thermal tolerances, the responses to tempera-
ture increase may be modulated by arthropods’ life-history traits. For example, dispersal
capacity has been demonstrated as a determinant factor affecting the direction of the rela-
tionship between body size variation and the UHI intensity among arthropod groups [54].
Recent results on spiders captured in Rennes have shown that the strength of the rela-
tionship between body size and the environmental temperature varied according to the
species’ capacity to disperse over long distances or not [55]. More precisely, this latest study
revealed that small species also able to aerially disperse were less affected by warming than
larger and less mobile wandering species. When brought in relation to the present results,
these outcomes suggest that the pattern variability observed among species belonging to
a particular taxon may explain that community-wide signals of response to warming can
be blurred by interspecific variations, making effect-prediction related to urban warming
challenging [7]. In light of our results, life histories of staphylinid and carabid species
belonging to sampled communities may be diverse [56,57], which may explain the lack of
signal at the community scale. Therefore, gathering information relative to dispersal (e.g.,
flying capacity, a poorly documented trait in staphylinids) may help to determine whether
patterns occur within high and low dispersers, independently.

In conclusion, our study brings new evidence that the responses of ectotherm com-
munities in terms of composition and diversity to the thermal environment are taxon-
dependent. Therefore, general patterns cannot be drawn regarding the effect of UHI or
near-ground temperature on the arthropod fauna. Our results suggest that reducing mow-
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ing frequency or increasing cutting height should promote the functional diversity within
staphylinid assemblages. Yet, the consideration of additional life-history traits (e.g., disper-
sal capacities) as potential predictors of the community-wide thermal response may enable
us to advance our mechanistic understanding. However, the difficulty of a multi-taxonomic
approach currently lies in the lack of information available on the functional traits of the
species making up arthropod communities. In particular, future research efforts should
be made to better document the life history traits of staphylinids, a reliable indicator of
environmental changes related to urbanization.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/d16080504/s1, Table S1: List of staphylinid species and corresponding trait
information relative to diet and body size (given in millimeters). The number of caught individuals
is indicated in column ‘N’; Table S2: List of carabid species and corresponding trait information
relative to diet and body size (given in millimeters). The number of caught individuals is indicated
in column ‘N’; Table S3: Matrix of correlations among predictors. ‘Imp’ refers to the proportions of
impervious surface and UHI to the mean urban heat island intensity. These variables are followed by
numbers indicating the size of buffers or rings considered to calculate their value. ‘Veg_cover’ and
‘Veg_height’ refer to the herbaceous vegetation cover and height, respectively. ‘Near-ground_tem’
refers to warming measured near the ground.
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