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Abstract 17 

Over the last decades, the intensification of agriculture has resulted in an increasing use of 18 

pesticides, which has led to widespread contamination of non-target ecosystems in agricultural 19 

landscapes. Plants and arthropods inhabiting these systems are therefore chronically exposed 20 

to, at least, low levels of pesticides through direct pesticide drift, but also through the 21 

contamination of their nutrient sources (e.g. soil water or host/prey tissues). Pesticides 22 

(herbicides, acaricides/insecticides and fungicides) are chemical substances used to control 23 

pests, such as weeds, phytophagous arthropods and pathogenic microorganisms. These 24 

molecules are designed to disturb specific physiological mechanisms and induce mortality in 25 

targeted organisms. However, under sublethal exposure, pesticides also affect biological 26 

processes including metabolism, development, reproduction or inter-specific interactions even 27 

in organisms that do not possess the molecular target of the pesticide. Despite the broad current 28 

knowledge on sublethal effects of pesticides on organisms, their adverse effects on trophic 29 

interactions are less investigated, especially within terrestrial trophic networks. In this review, 30 

we provide an overview of the effects, both target and non-target, of sublethal exposures to 31 

pesticides on traits involved in trophic interactions between plants, phytophagous insects and 32 

their natural enemies. We also discuss how these effects may impact ecosystem functioning by 33 

analyzing studies investigating the responses of Plant-Phytophage-Natural enemy trophic 34 

networks to pesticides. Finally, we highlight the current challenges and research prospects in 35 

the understanding of the effects of pesticides on trophic interactions and networks in non-target 36 

terrestrial ecosystems. 37 
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Graphical abstract 44 

45 

1. Introduction46 

The capacity of pesticides to increase yield and to regulate crop production, their low cost and 47 

easy usage have contributed to their worldwide spread (Popp et al., 2013). This expansion of 48 

pesticide use, urged by agrochemical industries, led to a shift in agricultural practices, rooting 49 

pesticides as a standard and unavoidable solution for efficient food production (Clapp, 2021). 50 

This technological lock-in in agricultural activities has led to the global current consumption of 51 

two to three million tons of pesticides annually (Popp et al., 2013; Sharma et al., 2019). 52 

Pesticides are chemical substances classified into three main categories, herbicides, 53 

insecticides/acaricides and fungicides that control pests, such as weeds, phytophagous 54 

arthropods and pathogenic fungi, respectively. Each category includes several modes of action 55 

designed to target specific proteins and related physiological or biochemical processes. In 56 

addition to the rising concern of resistant pest outbreaks that make pesticides less efficient (Bass 57 

et al., 2015; Neve et al., 2014), a major concern relative to pesticide use is the wide 58 

contamination of terrestrial and aquatic ecosystems (Arias-Estévez et al., 2008; Björklund et 59 

al., 2011; Silva et al., 2019). 60 

In agricultural and related adjacent ecosystems, trophic systems involving plants, phytophages 61 

and their arthropod natural enemies have great ecological and economic importance (Gurr et 62 

al., 2003; Ives et al., 2000; Wilby and Thomas, 2002). In fact, several phytophagous arthropods 63 

are agricultural pests, annually causing crop losses ranging from 5 to 50% (Gurr et al., 2003; 64 
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Oliveira et al., 2014). Natural enemies, whether they are predatory arthropods or parasitoid 65 

insects, induce the death of phytophagous insects by killing them either directly, or indirectly, 66 

as a result of their development on or into their hosts (Eggleton and Gaston, 1990).  These Plant-67 

Phytophage-Natural enemy (hereafter mentioned as PPNe) trophic systems are based on 68 

nutrient and energy flows (nitrogen compounds, sugars, lipids, water) circulating vertically 69 

from a trophic level to another (Stam et al., 2014). Species within these systems also interact 70 

through chemical signals involving non-volatile and volatile organic compounds (VOCs) 71 

perceived by upper trophic levels (Stam et al., 2014; Unsicker et al., 2009). The tight links 72 

between plants, phytophagous insects and natural enemies lead to bottom-up and top-down 73 

regulations of populations through the modulation of abundance and/or quality of interacting 74 

species between trophic levels. For example, a decrease in plant quality can reduce the fitness 75 

of phytophagous insects and therefore their availability and/or quality as hosts/preys for natural 76 

enemies (Bottom-up regulation; Stenberg, 2015; Zaugg et al., 2013). On the other hand, natural 77 

enemies can reduce phytophage populations to densities at which plants experience low levels 78 

of herbivory and therefore display an increased fitness (Top-down regulation ; Halaj and Wise, 79 

2001; Zaugg et al., 2013). Such capacity of natural enemies to improve yield is crucial for 80 

agrosystems and is used in biocontrol strategies (Roudine et al., 2023; Rutledge et al., 2004; 81 

Stiling and Cornelissen, 2005). This regulation process also relies on mutualistic interactions 82 

between plants and natural enemies, plants providing protective habitats, food subsidies, and 83 

attractive signals allowing natural enemies to increase their efficiency to control pests (Quispe 84 

et al., 2017; Tylianakis et al., 2004; Unsicker et al., 2009). 85 

In agricultural landscapes, terrestrial PPNe trophic systems are chronically exposed to a wide 86 

diversity of pesticides and related degradation products, either directly in crop fields or in non-87 

target adjacent refuge ecosystems such as field margins, vegetated buffer strips, or flowering 88 

strips (Björklund et al., 2011; Krutz et al., 2005; Serra et al., 2013). These contaminations may 89 
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occur through spray drift during application or through subsequent runoffs in soil water (Loewy 90 

et al., 2011). On the one hand, edaphic contaminations resulting from leaching lead to exposure 91 

and contamination of the trophic system through pesticide transfer from the plant to upper 92 

trophic levels (Calvo-Agudo et al., 2019; Goulson, 2013; Stapel et al., 2000). On the other hand, 93 

spray-drift leads to direct deposition of pesticides onto organisms, and consequently to tissue 94 

contamination due to diffusion through plants’ or insects’ cuticle (Balabanidou et al., 2018; 95 

Wang and Liu, 2007).  96 

Numerous studies on terrestrial PPNe organisms reported the effects of high doses of pesticides, 97 

mainly field application rates, and focused on target-related effects, i.e. the effects on the 98 

specific biological processes targeted by pesticides in the targeted phyla (e.g., herbicides 99 

inhibiting photosynthesis in plants, insecticides inhibiting nervous activity in insects) (Guedes 100 

et al., 2016). Many studies also examined the effects of a wide range of pesticides at lower 101 

doses on target organisms and, to a lesser extent, on non-target organisms, among various taxa 102 

(reviewed in Parween et al., 2016; Teder and Knapp, 2019; Table S1). These lower doses 103 

usually remain non-lethal or sublethal (i.e. leaving a majority of individuals alive), and therefore 104 

lead to more discrete effects such as physiological disturbances, impairments in development 105 

and reproduction, or changes in behavior. However, reviews on the effects of pesticides rarely 106 

focus on species interactions and trophic system functioning, especially in terrestrial food webs, 107 

despite available empirical data on individuals’ traits that are key to trophic interactions. Our 108 

aim is to review the effects of sublethal and non-lethal pesticide exposures on PPNe food webs 109 

by analyzing relevant features of each trophic level in the context of trophic interactions and, 110 

when available, the responses of interacting organisms (Table S1). Indeed, understanding the 111 

impacts of a stress on biotic interactions is essential to link individual trait responses to 112 

community/food web responses (Gross et al., 2009; Schmitz et al., 2015). This review provides 113 

a better understanding of the cascading effects of pesticides between trophic levels and of the 114 
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consequences on trophic system functioning. First, it focuses on the few studies examining the 115 

effects of pesticides on PPNe networks, mainly at high doses. The review then reports how 116 

exposures to lower, sublethal doses of pesticides may alter host/prey selection by phytophages 117 

and natural enemies and, more generally, how they may modulate the emission of signals that 118 

regulate interactions between species. Then, it analyzes how sublethal pesticide exposures may 119 

affect attack and defense mechanisms of PPNe organisms, and how they impact hosts’/preys’ 120 

nutritional value while considering the consequences on upper trophic levels. It last assesses 121 

how such exposures may affect the dynamics of the populations of each trophic level and 122 

therefore of the trophic system functioning. It finally discusses the implications of the outlined 123 

results in the scope of agriculture, pesticide use and pest management strategies. 124 

2. Methodology (509 words)125 

To identify the studies investigating the effect of pesticides on PPNe interactions and complete 126 

trophic networks, a first literature search was carried out by using keyword-based screening in 127 

the publication databases (Google scholar, web of knowledge, etc.): pesticides (OR herbicide 128 

OR insecticide OR fungicide) AND trophic interaction (OR trophic network OR trophic chain). 129 

Then, a more specific literature search was performed to identify the studies focusing on non-130 

lethal and sublethal effects at lower doses on single or interacting organisms by using the 131 

following keywords: pesticides (OR herbicide OR insecticide OR fungicide) AND low (OR 132 

non-lethal OR sublethal OR residual) AND dose (OR concentration OR level). 133 

This screening of the literature allowed to collect a panel of studies ranging from 1970 to 2023 134 

that were then sorted according to several criteria. First, only publications assessing the 135 

responses of land plants, terrestrial herbivorous arthropods and/or arthropod natural enemies 136 

were kept. Second, empirical studies using ecologically relevant exposure routes for 137 

investigating consequences on trophic interactions (i.e. through food consumption for insects 138 

or root uptake for plants) were selected. Third, publications investigating traits relevant in the 139 
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scope of trophic interactions (cues for other trophic levels, attack/defense mechanisms, 140 

metabolism and physiology related to quality as hosts, population features) or directly assessing 141 

the responses of interacting organisms to pesticides were considered. This procedure excluded 142 

numerous studies that only assessed survival/damage responses of organisms to pesticide 143 

exposure such as standardized dose-response studies for ecotoxicological assays. Finally, 144 

publications investigating pesticide effects on organisms surviving doses inducing high 145 

mortality rates in arthropods (>LC30 i.e.  above the concentration inducing 30% of mortality 146 

within the population) or high damages/impairments in plants (>EC30 i.e. above the 147 

concentration inducing an effect on individuals within the population) were excluded, even if 148 

doses were described as low (Cutler et al., 2022; Jalal et al., 2021). These thresholds of lethality 149 

(arthropods) and growth inhibition/damage (plants) are commonly used in ecotoxicological 150 

assays and considered relevant to characterize the intensity of pesticide effects on a given 151 

species (Calow and Forbes, 2003; Hill et al., 2000). Studies of non-target effects considering 152 

high doses, sometimes equivalent to field rates, were conserved as the effects remained  mainly 153 

sublethal or even non-lethal (García et al., 2002; Saska et al., 2016; Schneider et al., 2009). 154 

Selected literature was then categorized by “type of organism”, corresponding to the trophic 155 

level on which the study focused, and by the number of interacting trophic levels (Bredeson et 156 

al., 2015; Deng et al., 2019; Tran et al., 2004; Yao, 2015; Table S1). For instance, several 157 

studies assessed the responses of a single trophic level or of more trophic levels but not 158 

necessarily in interaction (Cordeiro et al., 2013; Ricupero et al., 2020). When the responses of 159 

different trophic levels were assessed, the study was accounted once for each level (Figure 4, 160 

5). In addition, the species, pesticide and dose were filled out for each study. Concerning the 161 

effects on traits, they were characterized based on the main highlights summarized in the 162 

publication abstract, and categorized following the different sections of this review (Figure 4; 163 

Table S1). 164 
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3. What can we draw from responses of complete PPNe systems to pesticides at field 165 

rates?166 

Most of the current literature on the effects of low pesticide doses focuses on one to two 167 

organisms at most, usually in controlled conditions and without involving interactions. Only 168 

few studies assessed the effects of low doses of pesticides on interacting organisms and only 169 

two focused on complete PPNe trophic systems (Table S1; Bredeson et al., 2015; Uhl et al., 170 

2015). There are a few more studies investigating the effects of pesticides on PPNe systems at 171 

field doses, which are generally partially lethal to one organism of the network (Table S1). 172 

Here, we summarize the effects of pesticides on complete PPNe trophic systems, to better 173 

understand how pesticides could affect their functioning. 174 

Studies carried out on various PPNe systems investigated the effects of insecticides at field rates 175 

(Bommarco et al., 2011; Calvo-Agudo et al., 2019; Douglas et al., 2015; Kampfraath et al., 176 

2017; Zhang et al., 2016) but also at lower doses (Bredeson et al., 2015; Uhl et al., 2015). 177 

Imidacloprid applied on soil at field rates, reduced both the fitness of the phytophagous insect, 178 

Nemobius sylvestris (Orthoptera: Trigonidiidae), feeding on Fragaria vesca plantlets 179 

(Rosaceae) and the predation efficiency of its spider natural enemy, Pisaura mirabilis (Araneae: 180 

Pisauridae) (Uhl et al., 2015). Similar effects were found in response to lower rates of 181 

insecticides, equivalent to those found in field margins, suggesting that insecticides may induce 182 

negative effects  at both field application and residual levels (Bredeson et al., 2015; Uhl et al., 183 

2015). Several studies carried out on various PPNe models however showed that edaphic 184 

exposure to field-rate insecticides could significantly reduce plant biomass and fitness as well 185 

as natural enemy efficiency without affecting phytophages (Bommarco et al., 2011; Douglas et 186 

al., 2015; Kampfraath et al., 2017). This bypass is thought to be due to a lower sensitivity of 187 

phytophages to chemical stress compared to their natural enemies (Jonsson et al., 2012; 188 

Monsreal-Ceballos et al., 2018). Indeed, phytophages are frequently exposed to natural toxic 189 
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compounds (see section 5.2.1.2) which often leads to increased pesticide tolerance, mostly 190 

through detoxication or sequestration mechanisms (Alyokhin and Chen, 2017; Heckel, 2014). 191 

Nevertheless, opposite effects were also reported in one field study on a wheat-aphid-parasitoid 192 

system, where insecticide seed coating decreased aphid infestation with no significant impact 193 

on ladybird, hoverfly and parasitoid populations (Zhang et al., 2016). In addition, sequestration 194 

and accumulation of insecticides or of their degradation products in specific tissues or 195 

byproducts of phytophages may lead to an acute exposure of natural enemies. Calvo-Agudo et 196 

al. (2019) observed an negative effect of plant exposure to insecticides on parasitoid fitness 197 

through pesticide circulation from the plant up to aphid honeydew. 198 

In the meantime, a few field studies focused on the effects of herbicides on arthropod 199 

communities, to assess their non-target effects on trophic networks (Albajes et al., 2009; 200 

Atwood et al., 2018; Kampfraath et al., 2017). Glyphosate treatment in herbicide-tolerant corn 201 

fields led to significant shifts in both primary and secondary consumer communities, which 202 

could ultimately disturb ecosystem functioning (Albajes et al., 2009). While leafhopper and 203 

aphid phytophagous insects as well as mymarid parasitoids were more abundant on herbicide-204 

treated plots, phytophagous thrips and ichneumonid parasitoids were predominant in untreated 205 

plots. Moreover, natural enemies were significantly harmed by an herbicide (2,6-206 

dichlorobenzonitrile, DCBN), either through bottom-up effects or directly via non-target effects 207 

of the herbicide and its degradation products, while phytophagous insects such as aphids 208 

seemed to be much less affected (Kampfraath et al., 2017). 209 

Most of these studies underline that, in complete PPNe systems, exposure of plants to field rates 210 

of pesticides can lead to deleterious effects on phytophages, but mostly on natural enemies, 211 

even when they are exposed only through the food chain (Calvo-Agudo et al., 2019; Douglas 212 

et al., 2015; Kampfraath et al., 2017). However, depending on the considered molecule and its 213 

dose, the effects observed can strongly differ in terms of traits, species, and trophic level 214 
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affected. It thus seems that, even though pesticide effects are still observed under lower rates 215 

of pesticide exposure (Bredeson et al., 2015; Uhl et al., 2015), studies at field rates are not 216 

sufficient to provide a comprehensive understanding of how terrestrial trophic systems react to 217 

sublethal doses of pesticides. Due to the scarcity of studies on complete PPNe systems under 218 

low pesticide exposure, and the bias toward studies on insecticides compared to other pesticides 219 

(Table S1), it is necessary to consider the numerous studies carried out on single organisms or 220 

2-partner interaction systems exposed to sublethal rates of pesticides to better understand how 221 

they affect trophic interactions. This can be achieved by focusing on pesticide effects on traits 222 

that shape interactions within trophic networks (e.g. host/prey cues for the upper trophic level, 223 

attack/defense mechanisms, host/prey quality…).  224 
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4. How sublethal doses of pesticides affect cues for patch and host/prey selection within 225 

PPNe systems: from the emission of chemical and physical cues to their perception 226 

4.1. Pesticide effects on olfactory cues in plants and phytophages 227 

Plants emit Volatile Organic Compounds (VOCs) in species specific mixtures characterized by 228 

their composition and concentration (Aartsma, 2017; Anderson and Anton, 2014). These 229 

cocktails of volatile compounds give cues to arthropods, including phytophages and natural 230 

enemies, about the location and physiological state of plants. Moreover, under phytophagy, 231 

VOC profiles can change due to active defense responses from plants. Their effects range from 232 

phytophage repelling to natural enemy attraction (Aartsma, 2017; Bernasconi et al., 1998; 233 

Clavijo McCormick et al., 2012; Das et al., 2013; Heil, 2008; Moraes et al., 2001; Sarkar et al., 234 

2014). Insects also emit VOCs, such as pheromones involved in intraspecific communication 235 

(e.g. sexual, aggregation and alarm) and kairomones associated to activity byproducts (e.g. 236 

feces and secretions such as honeydew), that can be used by natural enemies for host/prey 237 

location and choice (Benelli et al., 2014; Lewis et al., 1976) . Here, we report how low doses 238 

of pesticides alter olfactory cues emitted by plants and phytophages, and how they disturb the 239 

perception of these cues by natural enemies. 240 

Sublethal doses of pesticides alter the spectrum of VOCs emitted under phytophagy and 241 

therefore disrupt attraction of natural enemies (Figure 1). This can occur through their impact 242 

on plant metabolism. For example, exposure of maize to non-lethal, field rates of glyphosate 243 

led to a significant decrease in the emission of shikimic acid derivatives such as indole, known 244 

to attract natural enemies (Aljbory and Chen, 2018; D’Alessandro et al., 2006). However, 245 

several studies underlined that herbicides could also increase herbivore-induced VOC 246 

production by plants and attract natural enemies (Rao, 1996; Rao et al., 1999; Xin et al., 2012). 247 

Indeed, low doses of 2,4-Dichlorophenoxyacetic acid (2-4D), an herbicide acting as homolog 248 

of auxin phytohormone, strongly promoted defense pathways in rice and led to higher 249 
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production of defensive VOCs such as the sesquiterpenes (E,E)-a-farnesene and (E)-b-250 

caryophyllene (Xin et al., 2012). Application of 2,4-D therefore increased the attraction of the 251 

natural enemies of the leafhopper Nilaparvata lugens (Hemiptera: Delphacidae) (Xin et al., 252 

2012). This attraction of natural enemies could occur by directly affecting plant metabolism 253 

and related VOC biosynthesis, but also by modulating plant signaling pathways, especially 254 

those involved in plant defenses (see section 5.2). 255 

Inhibition of phytophage pheromone or kairomone production by pesticides has been rarely 256 

documented (Table S1). Exposure to sublethal doses of thiacloprid (neonicotinoid) and 257 

azinphosmethyl (organophosphate) insecticides, but also to non-lethal doses of several 258 

herbicides such as diclofop, led to a decrease in the quantity of pheromones produced by female 259 

moths (Lepidoptera: Tortricidae and Noctuidae) (Navarro-Roldán and Gemeno, 2017; Trimble 260 

et al., 2004; Hanin et al., 2008 respectively). Since parasitoids often use sex pheromones to 261 

locate their host, a pesticide-induced shift in quantity or quality of these olfactory cues may 262 

disrupt host-parasitoid interactions (Hardie et al., 1991; Powell et al., 1993). Concerning 263 

kairomones, no study has to our knowledge reported direct effects of pesticides on their 264 

production nor their composition. However, given that pesticides can alter insects’ metabolism 265 

(see section 6.2), the quantity and composition of these insect activity byproducts are also likely 266 

to be altered. 267 

4.2. Pesticide effects on visual and contact cues in plants and phytophages  268 

In most arthropod species, visual and contact cues become critical over short distances because 269 

VOCs generally do not provide information precise enough for the discrimination of individuals 270 

close to each other (Bernays and Chapman, 1994; Morehead and Feener, 2000). Moreover, 271 

these additional cues allow to precisely assess the quality of the host/prey (Bernays and 272 

Chapman, 1994; Mackauer et al., 1996; Muratori et al., 2006; Prokopy and Owens, 1983). 273 
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While cues’ assessment modalities vary within both phytophages and natural enemies, size 274 

remains a determining factor in host/prey choice (Bernays and Chapman, 1994; Mackauer et 275 

al., 1996; Muratori et al., 2006). Any detrimental effect of sublethal doses of pesticides on plant 276 

and phytophage size could therefore decrease attraction of upper trophic levels and alter trophic 277 

interactions (Figure 1, Lauro et al., 2005; Lacoume et al., 2006). 278 

Plant growth is inhibited by sublethal rates of herbicides from very different families, including 279 

synthetic auxins like 2-4 D, photosynthesis inhibitors like triazines and phenylureas, or even 280 

inhibitors of specific metabolic pathways such as glyphosate (Baillard et al., 2021; Boutin et 281 

al., 2004; Colquhoun et al., 2012; Florencia et al., 2017; Marrs and Frost, 1997; Mateos-Naranjo 282 

and Perez-Martin, 2013; McCown et al., 2018; Ramel et al., 2009; Scholtes et al., 2019; Sulmon 283 

et al., 2004). Fungicides and insecticides were also shown to have non-target deleterious effects 284 

on plant height and mass, even at low doses (Çavuşoğlu et al., 2012b; Duran et al., 2015; Serra 285 

et al., 2013, 2015). An increase of plant growth was however observed punctually, for 286 

fungicides from the benzimidazole family, due to pesticide structural similarities with growth-287 

promoting phytohormones such as cytokinins (García et al., 2002; Schruft, 1970; Thomas, 288 

1974, 1973). 289 

Several pesticides decrease the size of phytophagous insects, even at low doses (Bohnenblust 290 

et al., 2013; Daniels et al., 2009; Hahn et al., 2014; Li et al., 2010; Müller, 2017; Müller et al., 291 

2019). For example, exposure to a sublethal dose of thiamethoxam insecticide (neonicotinoid) 292 

led to a decrease of Rhopalosiphum padi growth (Hemiptera: Aphididae) (Daniels et al., 2009). 293 

Such effect on phytophage size was also demonstrated for non-target compounds such as 294 

herbicides and fungicides (Bohnenblust et al., 2013; Clements et al., 2018; Hahn et al., 2014) 295 

and could be explained by direct but still unknown pesticide actions on phytophage (Clements 296 

et al., 2018) and/or by indirect effects related to host plant quality. 297 
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Among other visual cues used by arthropods for host/prey recognition, color often drives 298 

host/prey choice, both by phytophages and natural enemies. For example, chlorophyll and 299 

carotenoid contents signal plant quality as a host (high chlorophyll content being attractive and 300 

high carotenoid content being repellent ; Archetti, 2000; Sauvion et al., 2013; Schaefer and 301 

Rolshausen, 2006; Zhong et al., 2019). For most insects, bright colors often indicate toxicity 302 

and pale colors usually reflect poor nutritional status (Langley et al., 2006; Libbrecht et al., 303 

2007; Taylor et al., 2014; Théry and Gomez, 2010). Thus, host/prey color set its attractivity for 304 

phytophages and natural enemies (Langley et al., 2006; Libbrecht et al., 2007). 305 

Pigment contents contributing to plant color can be modified by pesticides (Table S1, Figure 306 

1). For example, sublethal levels of glyphosate reduced chlorophyll contents, leading to 307 

yellowing and to decreased phytophage attraction (Mateos-Naranjo and Perez-Martin, 2013; 308 

Munoz-Rueda et al., 1986; Serra et al., 2015; Zhong et al., 2019). Similarly, other herbicides 309 

inducing leaf bleaching, such as photosynthesis inhibitors of the triazine (e.g. atrazine), 310 

phenylurea (e.g. isoproturon), and bipyridyl (e.g. paraquat) families, could also affect host 311 

choice by phytophages (Dodge, 1990). Concerning non-target effects, the insecticides 312 

cypermethrin and deltamethrin, as well as the fungicide tebuconazole, decreased chlorophyll 313 

and carotenoid contents in several plant species (Çavuşoğlu et al., 2012a; Duran et al., 2015; 314 

Serra et al., 2013). However, these effects seem at least species-dependent, as low doses of 315 

tebuconazole were found to increase chlorophyll and carotenoid contents in Lolium perenne 316 

(Poaceae) (Serra et al., 2015). 317 

In insects, color results from endogenous compounds synthesized from small metabolites such 318 

as tryptophan or dopamine (melanin and ommochromes), or from exogenous compounds 319 

mainly acquired from plants (carotenoids and flavonoids) (Hashimoto et al., 2021; Moran and 320 

Jarvik, 2010; Sloan and Moran, 2012). To date, no direct effect of pesticides on insect color has 321 

been recorded. However, stresses such as starvation and cold temperature alter body color to 322 
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paler shades in aphids due to energy reallocation processes (Wang et al., 2019; L. Zhang et al., 323 

2021). It is thus possible that sublethal doses of pesticides could lead to similar body color 324 

alterations because of the energetic cost related to chemical stress responses (Castañeda et al., 325 

2009). 326 

Many natural enemies, and especially predators, also rely on movement to find hosts/prey 327 

(Théry and Gomez, 2010). Most neurotoxic insecticides induce paralysis or death at field rates 328 

and decrease insect mobility at sublethal doses, which could reduce their localization by natural 329 

enemies (Boiteau and Osborn, 1997; Jung et al., 2018; Lee et al., 2013; Silva Barros et al., 330 

2020). For example, doses between LC10 and LC30 of the neurotoxic insecticides carbaryl, 331 

chlorpyrifos and thiacloprid led to a significant decrease in the mobility of Halyomorpha halys 332 

(Hemiptera: Pentatomidae) (Lee et al., 2013). In some rare cases, mobility however increased 333 

but only for a short time after an acute sublethal exposure to insecticides such as dianizon and 334 

phosmet (Lee et al., 2013). 335 

In the last steps of host/prey selection by both phytophages and natural enemies, contact cues, 336 

mostly linked to cuticle texture and composition, determine whether or not the host/prey is 337 

suitable (Lang and Menzel, 2011; Ramaswamy, 1988; Sauvion et al., 2013). Sublethal doses of 338 

pesticides were shown to deeply modify both chemical and structural patterns of plant and 339 

insect cuticle, yet the importance of such alteration on trophic interactions remain to be 340 

assessed. For example, texture of eucalyptus’ leaf cuticle was damaged by drift exposure to 341 

commercial formulations of glyphosate, and field rates of the herbicide EPTC altered the 342 

composition of epicuticular waxes in Brassica oleacera (Brassicaceae) (Flore and Bukovac, 343 

1978; Tuffi Santos et al., 2009). The insecticide diflubenzuron, led to an alteration of cuticle 344 

elasticity and firmness by inhibiting chitin synthesis and deposition, even at low doses (Ishaaya, 345 

2001; Wei et al., 2013). Sublethal doses of a pyrethroid insecticide also induced shifts in the 346 

hydrocarbon composition of adult leaf beetles’ cuticle (Müller, 2017). 347 
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In summary, visual and contact cues used by insects for host/prey selection are broadly altered 348 

by sublethal doses of pesticides (Figure 1). While target pesticides mainly lead to decreased 349 

attractivity, other pesticides often have opposite effects. However, these non-target effects are 350 

far less studied (Figure 4), less consistent among the current literature, and the underlying 351 

mechanisms are still unknown. Overall, sublethal effects of pesticides on visual and contact 352 

cues are likely to disturb trophic interactions by interfering with host/prey recognition/selection, 353 

mostly by making exposed organisms less appealing (Figure 1, 3). 354 

4.3. Pesticide effects on cue perception and signal integration 355 

The effects of pesticides on the responses of natural enemies to various cues (mostly olfactory) 356 

have been thoroughly studied (Figure 1, Table S1). For example, nearly non-lethal doses (< 357 

LC5) of the neonicotinoid imidacloprid significantly reduced the ability of the parasitoid 358 

Nasonia vitripennis (Hymenoptera: Pteromalidae) to locate its host through olfactory cues 359 

(Tappert et al., 2017). Higher sublethal doses however have contrasted outcomes, with exposure 360 

to deltamethrin decreasing the time spent on a kairomone patch while chlorpyrifos increased it 361 

(Delpuech et al., 2005; Komeza et al., 2001; Salerno et al., 2002). The ability of natural enemies 362 

to perceive VOC signals emitted by plants can also be impaired by sublethal doses of pesticides 363 

(Liu et al., 2012, 2010; Teodoro et al., 2009). For example, the predatory mite Iphiseiodes 364 

zuluagai (Arachnida: Phytoseiidae) is unable to recognize a plant previously infested by its prey 365 

after an exposure to sublethal doses of the acaricide febutatin oxide (Teodoro et al., 2009). 366 

Concerning behaviors related to other cue perception, the pyrethroid lambda-cyhalothrin 367 

reduced the occurrence of host-tapping behavior by Neochrysocharis formosa (Hymenoptera: 368 

Eulophidae) and thus its ability to assess host size (Tran et al., 2004). 369 

While studies on phytophage olfaction are scarce, insecticides were often shown to reduce 370 

pheromone perception, which could underline a general impairment of olfactory faculties 371 

(Wang et al., 2011; Zhou et al., 2005). By contrast, the only study investigating the effects of 372 
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sublethal doses of pesticides on plant VOC perception by phytophages did not report any 373 

modification of insect responses to plant odors (Lalouette et al., 2016). 374 

Altogether, the results presented in this section underlined that the responses of natural enemies 375 

to host/prey signals could be impaired by sublethal exposure to at least insecticides (Table S1, 376 

Figure 1, Figure 3). Moreover, since detrimental effects on cue emission (making hosts/preys 377 

less appealing) and perception tend to have synergistic outcomes, it seems that sublethal doses 378 

of pesticides could effectively alter trophic interactions. 379 
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Figure 1: Main effects of sublethal doses of pesticides on host/prey recognition mechanisms 381 

and attack/defense mechanisms in land plants, phytophages and natural enemies. While grey 382 

arrows represent interactions within PPNe networks, blue arrows represent the effects of 383 

sublethal doses of pesticides on traits involved in those interactions. Flat-head arrows indicate 384 

an overall decrease of the trait, while point-head arrows indicate an increase. Dashed white 385 

arrows indicate a lack of knowledge on the effects. The effects of pesticides on each trait, 386 

represented by the different pictograms, are indicated in the associated inserts, with (+), (-) and 387 

(?) depending on the effect (increase, decrease, no known effect respectively).  388 

Jo
urn

al 
Pre-

pro
of



20 
 

5. How sublethal doses of pesticides alter attack and defense mechanisms in organisms 389 

within trophic networks 390 

5.1. Pesticide effects on insect attack behaviors  391 

5.1.1. Phytophage feeding behaviors 392 

Feeding mechanisms in phytophages are well known to be impaired by insecticides, which 393 

primary role is to limit phytophagy (Table S1). Whereas some insecticides are specifically 394 

designed to prevent feeding (Ishaaya, 2001), neuroactive insecticides, mainly represented by 395 

neonicotinoids, generally impair behavior in phytophagous insects (Table S1). For instance, 396 

wheat seed treatment with neonicotinoid insecticides reduced both probing and feeding in 397 

Sitobion avenae (Hemiptera: Aphididae) (Miao et al., 2014). Even at low doses, this decrease 398 

in feeding behavior has been observed in many phytophagous insects exposed to a variety of 399 

insecticides (Chen et al., 2017; He et al., 2013; Jacobson and Kennedy, 2014; Li et al., 2010; 400 

Okano, 2009; Seo, Mi Ja et al., 2009; Stamm et al., 2013; Wolz et al., 2021; Yuan et al., 2017). 401 

Moreover, sublethal rates of insecticides can simply affect insect mobility, and therefore their 402 

ability to colonize new plants (Boiteau and Osborn, 1997; Lee et al., 2013; Silva Barros et al., 403 

2020). Without impairing nervous activities, pesticides can also have non-target effects on 404 

phytophage attack behaviors, even at low doses. For example, the herbicide atrazine induced 405 

gut lesions in insects that are thought to increase feeding behavior by a decrease in satiety 406 

(Behmer, 2009; Ganassi et al., 1996). Therefore, the non-target effects of other types of 407 

pesticides on feeding mechanisms remain to be studied more extensively since they may lead 408 

to unexpected increases in feeding behaviors. 409 

5.1.2. Attack and foraging behaviors of natural enemies   410 

Low doses of pesticides can decrease the attack behaviors of predators and parasitoids. 411 

Insecticides, by affecting nervous activity, impact prey capture in predators and oviposition 412 

rates in parasitoids (Claver et al., 2003; Desneux et al., 2004; Longley and Jepson, 1996; 413 
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Martinou and Stavrinides, 2015; Shang et al., 2021; Singh et al., 2004; Tooming et al., 2017; 414 

Tran et al., 2004; Yao, 2015). For instance, , the predation rate of coccinellid, carabid and mite 415 

predators decreased after being sprayed with sublethal levels of neuroactive insecticides 416 

(Martinou and Stavrinides, 2015) but also after consuming contaminated preys (Singh et al., 417 

2004; Tooming et al., 2017; Yao, 2015). Sublethal doses of neuroactive insecticides also 418 

decrease host parasitism rates of several parasitic wasps (Desneux et al., 2007; Sheng et al., 419 

2021; Stapel et al., 2000; Tran et al., 2004). Despite such effects of neuroactive insecticides 420 

could be expected, these results highlight the extent of the action spectrum of these molecules, 421 

which goes far beyond the targeted phytophagous species, with significant consequences on 422 

trophic interactions (Figure 1). However, to our knowledge, the effects of other pesticides such 423 

as fungicides, herbicides, or non-neuroactive insecticides on attack behaviors in natural enemies 424 

remain unknown. 425 

5.2. Pesticide effects on host physiological defense mechanisms and enemy virulence  426 

5.2.1. Plant defenses against phytophages and phytophage counter-attack  427 

Action of phytophagous insects being usually deleterious to plants, plant species evolved 428 

mechanisms in order to defend themselves against these negative biotic interactions (War et al., 429 

2012). To counter-attack these mechanisms, phytophages in return can avoid or deter many 430 

plant defenses through physiological alteration processes. For instance, several phytophages are 431 

able to either degrade or sequestrate plant toxins, therefore suppressing one of the main defenses 432 

of their host (Heckel, 2014). Here we review how pesticides can alter herbivore-induced plant 433 

defenses and the responses of phytophages to these defense mechanisms. 434 

5.2.1.1. Plant defense mechanisms against phytophages 435 

Constitutive plant defenses include various mechanisms leading to non-preference by 436 

phytophages. These mechanisms include physical barriers but also constitutively emitted 437 
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repellent chemicals. Indeed, some plants emit specific, unappealing VOCs to reduce 438 

phytophage attraction, especially among Solanaceae (Unsicker et al., 2009). This mechanism 439 

is affected by sublethal doses of herbicides. For example, the herbicide chlorosulfuron 440 

decreased the constitutive biosynthesis of unappealing sucrose esters by secretory cells within 441 

tobacco trichomes (Kandra and Wagner, 1990). Moreover, sublethal rates of herbicides may 442 

alter the efficiency of physical barriers such as trichome density (Levin, 1973). Sublethal doses 443 

of carbamate herbicides thus disrupted microtubule formation in Allium cepa (Liliaceae), which 444 

can lead to reduced trichome growth, as shown in Arabidopsis thaliana (Brassicaceae) 445 

(Giménez-Albian, 1997; Mathur and Chua, 2000). 446 

Antibiosis is an inducible, post-contact or post-consumption defense during which plants alter 447 

their chemical and nutritional content in order to affect insect physiology, behavior and survival 448 

(Sauvion et al., 2013). Because it requires the production of secondary metabolites not only 449 

useless for growth and reproduction but potentially toxic for the plant, this strategy is highly 450 

energy consuming, and not constitutive (Prasad, 2022; Ramaroson et al., 2022; Sauvion et al., 451 

2013). Antibiosis mechanisms are generally triggered by molecules called elicitors that are 452 

found in the saliva of phytophages, or by signal molecules coming from damaged cell walls. 453 

These signals activate two different signaling pathways, either the jasmonate/ethylene pathway 454 

or the salicylate pathway, depending on the type of aggressor (chewing insects and sap-sucking 455 

insects respectively) (De Vos and Jander, 2009; Thaler et al., 2012). Each response pathway 456 

leads to the production of a large array of secondary metabolites and proteins. 457 

Salicylate production can be activated by sublethal doses of herbicides (Alberto et al., 2018; Lu 458 

et al., 2018) but also by insecticides and fungicides (Bian et al., 2020; Ford et al., 2010). For 459 

example, in Arabidopsis thaliana (Brassicaceae), several genes involved in plant defense 460 

against phytophagy were upregulated under exposure to low doses of the herbicide atrazine 461 

(Alberto et al., 2018). Pesticide exposure could therefore act as a defense priming mechanism 462 
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that may lead to stronger defenses against phytophages, and especially sap-sucking insects 463 

(Figure 1). Another argument supporting this hypothesis is that sublethal doses of pesticides 464 

increase the emission of defensive VOCs known to be part of the salicylate and 465 

jasmonate/ethylene response pathways (Figure 1, Aljbory and Chen, 2018). However, these 466 

studies being focused on plants in absence of phytophagy, it remains to be determined if 467 

pesticide exposure could increase antibiosis defenses against phytophagous insects and actually 468 

reduce phytophagy. 469 

Pesticides, and more particularly herbicides, may disrupt plant inducible defenses by affecting 470 

the synthesis of secondary metabolites involved in antibiosis. On the one hand, several 471 

herbicides such as glyphosate specifically target key metabolic steps, synthetizing precursors 472 

of plant defensive compounds, such as flavonoids, alkaloids, phenols or gallic acids (Canal et 473 

al., 1987; Deng, 2005; Lydon and Duke, 1988), thus leading to a reduction of defensive 474 

compounds such as phenylpropanoids (Hollander and Amrhein, 1980). On the other hand, it 475 

seems that defensive compounds such as isoflavones and phenylpropanoids are overproduced 476 

in response to generic pesticide stress (i.e. photosynthesis inhibitors, phytohormone analogs, 477 

insecticides and fungicides not targeting plant defensive compound metabolic pathways), 478 

probably due to the oxidative stress it generates and/or the activation of salicylate/jasmonate 479 

signaling pathways as explained above (Dixon and Paiva, 1995; Kömives and Casida, 1982; 480 

Landini et al., 2003; Mahdavi et al., 2015; Ramel et al., 2009). For example, the herbicide 481 

lactofen, targeting chlorophyll biosynthesis pathway and leading to oxidative stress, increased 482 

the levels of defensive isoflavones in soybean (Landini et al., 2003). 483 

5.2.1.2. Phytophage responses to overcome plant defenses 484 

Most phytophagous insects have the ability to cope with toxins secreted by plants, either 485 

through sequestration or degradation (Heckel, 2014). Transcriptomic studies analyzing insect’s 486 

responses to pesticides allow understanding how pesticide exposure and the overcoming of 487 
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plant defenses interact. For example, in Sogatella furcifera (Hemiptera: Delphacidae), an LC15 488 

of the insecticide imidacloprid induced an overexpression of several Cytochrome P450 489 

monooxygenase genes from the CYP6 subfamily, as part of a pesticide degrading process (Yang 490 

et al., 2018). As some of these CYP6 subfamily genes were previously identified in other insect 491 

species to be involved in plant toxin detoxification (Rix et al., 2016; Schuler, 1996), pesticide 492 

exposure may also allow insects to better cope with plant toxins. From an evolutionary point of 493 

view, pesticide detoxication mechanisms observed in phytophages are thought to derive from 494 

plant toxin detoxication mechanisms, which could explain the tight links between responses to 495 

pesticides and plant toxins (Alyokhin and Chen, 2017). 496 

This review underlined both antagonisms and synergisms between responses to pesticides and 497 

responses to biotic interactions in plants and insects. However, due to the overlap between some 498 

biotic and pesticide stress responses, and with the exception of specific plant metabolism 499 

disruptors, it seems that pesticides induce chemical stress response pathways, which may 500 

promote at least plant antibiosis and phytophage detoxification processes. Nevertheless, the 501 

outcome of plant-insect interactions in this context remains unpredictable and largely 502 

undescribed (Figure 1). It is thus crucial to focus more on the effects of pesticides at the scale 503 

of defense/counter-attack mechanisms to better understand how sublethal pesticide exposures 504 

may reshape plant-phytophage interactions. 505 

5.2.2. Phytophage defenses against natural enemies 506 

Defense mechanisms of phytophagous insects against their natural enemies are slightly 507 

different depending on the type of enemy. While defense against parasitoids mainly rely on 508 

insect immunity, defense against predators generally mobilizes toxicity or escape strategies 509 

(Greeney et al., 2012; Gross, 1993). 510 
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In most phytophagous insect species, defense against parasitoids is feasible through two 511 

different mechanisms depending on the type of parasitism. Immune cells within the 512 

hemolymph, called hemocytes, kill the eggs and larvae of endoparasitoids through nodulation 513 

or encapsulation (Greeney et al., 2012; Salt, 1970) while defensive behaviors and molting allow 514 

phytophages to get rid of the eggs and larvae of ectoparasitoids (Gross, 1993). To our 515 

knowledge, no data has been published on the effects of pesticides on the nodulation or 516 

encapsulation processes in phytophagous species. However, in non-phytophagous insects, 517 

exposure to sublethal doses of insecticides usually reduces the encapsulation/nodulation 518 

success (Delpuech et al., 1996; James and Xu, 2012). Furthermore, sublethal doses of toxic 519 

plant extracts negatively affected nodulation against a pathogen in the phytophage Eurygaster 520 

integriceps (Heteroptera: Scutellaridae) (Zibaee and Bandani, 2010). More data are available 521 

concerning molting, which is impaired by growth regulator insecticides (Jia et al., 2022; Meng 522 

et al., 2020; W. Zhang et al., 2021). For example, expression of genes involved in ecdysis were 523 

repressed by an LC10 of the insecticide broflanilide the, which led to a decreased biosynthesis 524 

of molting hormone and, eventually, to failed molting (Jia et al., 2022). While the impact of 525 

such impairment on defense against ectoparasitoids was never assessed, failed molting is likely 526 

to increase phytophage sensitivity to these natural enemies. 527 

In aphids, several facultative endosymbionts are of particular importance in insect defense 528 

against various biotic stressors (Baumann, 2005; Engel and Moran, 2013). For example, the 529 

bacteria Hamiltonella defensa protects the pea aphid Acyrthosiphon pisum (Hemiptera: 530 

Aphididae) against its main parasitoid Aphidius ervi (Hymenoptera: Braconidae) (Oliver et al., 531 

2003). This bacteria is also known to help aphids to cope with insecticides (Li et al., 2021). 532 

Thus, despite endosymbiotic communities being deeply altered by pesticides (Shang et al., 533 

2021; Zeng et al., 2020), it is likely that H. defensa populations are selected and maintained in 534 

aphids under parasitoid pressure and pesticide contaminated environments. 535 
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The synthesis of secondary metabolites involved in defense against predators might also be 536 

affected by pesticides. For example, exposure of larvae of the leaf beetle Phaedon cochleariae 537 

(Coleoptera: Chrysomelidae) to sublethal doses of lambda-cyhalothrin led to an increased 538 

attraction of their ant predator Myrmica rubra (Hymenoptera: Formicidae) to their secretions 539 

(Müller et al., 2019). The authors hypothesized that it may be due to a reduction in the synthesis 540 

of defensive repellent compounds within larval secretions. 541 

Altogether, insect defenses, both against parasitoids and predators, seem to be reduced under 542 

exposure to sublethal doses of insecticides (Figure 1, Figure 3), yet the effects of other 543 

pesticides on this process remain unknown. Moreover, studies on the impact of pesticides on 544 

parasitoid virulence (i.e. ability to overcome hosts’ defenses) are lacking in order to assess 545 

precisely their effects on phytophage-natural enemy interactions. 546 

 547 

6. How sublethal doses of pesticides alter host nutritional quality and impact the upper 548 

trophic levels 549 

6.1. Pesticide effects on plant nutritional quality and impacts on phytophages 550 

From the perspective of phytophagous insects, plant quality is mostly driven by soluble sugar 551 

and amino acid contents as well as their bigger counterparts (polysaccharides and proteins). A 552 

high-quality plant is usually characterized by a high nitrogen content (i.e. high protein/amino-553 

acid contents) and easily accessible carbon resources (i.e. soluble sugars or storage 554 

polysaccharides such as starch). In addition, their contents in essential amino-acids to 555 

phytophages (i.e. that they cannot synthesize ; Brodbeck et al., 1987) also condition their quality 556 

as host plants. High quality plants may thus attract more phytophages and therefore suffer more 557 

damages than low quality plants (Awmack and Leather, 2002; Couture et al., 2010; Lindroth, 558 

2010; Sarfraz et al., 2006). However, phytophages may also consume more plant material when 559 

poor quality plants fail to provide adequate nutrients, which could be increased by a lower 560 
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ability of these plants to cope with phytophages’ attack (Berner et al., 2005; Lindroth, 2010; 561 

Lou and Baldwin, 2004). In this section we review how low doses of pesticides can induce 562 

metabolic shifts and modify host quality, and how these changes may affect the upper trophic 563 

levels. 564 

Host plant quality can be altered by low doses of pesticides (Table S1; Tafoya-Razo et al., 565 

2019). Indeed, whether herbicides, insecticides and fungicides, pesticides induce profound 566 

modifications of plant physiology, alter their metabolism, and activate stress responses (Serra 567 

et al., 2015; Sulmon et al., 2015). 568 

Firstly, plant quality is strongly affected by herbicides disrupting amino-acid biosynthesis. 569 

Sublethal doses of glyphosate thus disturb the synthesis of aromatic amino acids in plants 570 

(through inhibition of the shikimate pathway), which can consequently alter the acquisition of 571 

essential amino acids by phytophages such as phenylalanine, tryptophan and tyrosine (Antonio 572 

Carbonari et al., 2014; Brodbeck et al., 1987; Serra et al., 2015, 2013; Vivancos et al., 2011). 573 

However, these effects seem to depend on the considered species and timing of exposure. For 574 

example, a sublethal dose of glyphosate (10 times below field rates) induced a short-term 575 

increase of phenylalanine and tyrosine contents in sugarcane plants (Saccharum officinarum : 576 

Poaceae), followed by a decrease of these shikimate derivatives after seven days (Antonio 577 

Carbonari et al., 2014). In contrast, after seven days, similar glyphosate exposures strongly 578 

increased tryptophan contents, another shikimate derivative, in Cyperus rotundus (Cyperaceae) 579 

(Wang, 2001). Contents in other non-aromatic essential amino-acids also increased in response 580 

to glyphosate (Vivancos et al., 2011). 581 

Some herbicides do not directly target amino acid biosynthesis pathways but inhibit key steps 582 

of primary metabolism, such as photosynthesis and fatty acid biosynthesis, with consequences 583 

on metabolite contents (Nemat Alla et al., 2008; Singh et al., 1972; Tafoya-Razo et al., 2019). 584 

For example, herbicides inhibiting acetyl-coA carboxylase were found to deeply alter plant 585 
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metabolite contents, even at doses 10,000 times below the recommended field rate (Tafoya-586 

Razo et al., 2019). More generally, sublethal rates of these herbicides increase soluble amino-587 

acid contents (Hjorth et al., 2006; Nemat Alla et al., 2008; Singh et al., 1972). Some essential 588 

amino-acids (i.e. valine, leucine, isoleucine) were however found less abundant in chlorimuron-589 

ethyl treated wheat and maize shoots, underlining the occurrence of herbicide-specific patterns 590 

(Nemat Alla et al., 2008). Finally, sublethal levels of dicamba decreased plant global nitrogen 591 

contents while, as an auxin analog, this herbicide does not specifically target metabolic 592 

processes (Bohnenblust et al., 2013). 593 

Pesticides other than herbicides can also affect plant quality in a subtler way. For example, 594 

sublethal doses of the fungicide tebuconazole, equivalent to levels found in peri-agricultural 595 

systems, modified metabolic profiles of plant leaves and roots, especially sugar and amino-acid 596 

contents but also led to an accumulation of anti-oxidants (Serra et al., 2015, 2013). Insecticides 597 

also alter plant metabolism through non-target effects, leading in some cases to increases in 598 

amino-acid contents (Cesco et al., 2021; Mahdavi et al., 2015; Nemat Alla et al., 2008). For 599 

example, field rates of the insecticide diazinon, while being totally non-lethal to plants, induced 600 

shifts in sugar and amino-acid contents but also increased phenylpropanoid contents (secondary 601 

metabolites involved in stress response) (Mahdavi et al., 2015). 602 

Plant quality is strongly driven by plant interactions with micro-organisms, and especially 603 

symbionts (Babalola, 2010; Igiehon and Babalola, 2017; Turan et al., 2014). The effects of 604 

pesticides on plant-interacting micro-organisms, such as mycorrhizae and beneficial 605 

rhizobacteria, have been extensively studied and reviewed (Aloo et al., 2021; Chowdhury et al., 606 

2008; Hage-Ahmed et al., 2019; Hussain et al., 2009). There is no particular tendency towards 607 

beneficial or deleterious effects on mycorrhizae and there is a strong variation depending on 608 

the type of molecule, dose and soil characteristics (Hage-Ahmed et al., 2019). However, 609 

reviews concerning soil bacterial communities and especially beneficial bacteria underline clear 610 
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detrimental effects of pesticides and their degradation byproducts (Aloo et al., 2021; 611 

Chowdhury et al., 2008; Hussain et al., 2009), such as the inhibition of nitrogen fixation and 612 

phosphorus solubilization, which are essential metabolic processes in plant nutrient uptake (Das 613 

and Debnath, 2006; Das et al., 2016; Fox et al., 2007; Sannino and Gianfreda, 2001). Such 614 

effects on bacteria, alongside with the detrimental effects of pesticides on mycorrhizae, could 615 

have drastic consequences on plant quality and therefore on trophic networks they support. 616 

Altogether, sublethal doses of pesticides induce shifts in amino-acid and sugar contents in 617 

plants. While these changes generally seem to increase plant quality, predicting a detrimental 618 

or beneficial outcome for phytophagous insects is challenging (Figure 2). Indeed, most 619 

pesticides induce accumulation of secondary metabolites involved in generic stress responses, 620 

such as phenylpropanoids and antioxidants (Mahdavi et al., 2016; Serra et al., 2015, 2013), 621 

which is likely to be stressful to insects and could therefore compensate beneficial shifts in 622 

primary metabolite contents (Ramaroson et al., 2022). 623 

While metabolic studies on the effects of low doses of insecticides on plant-insect interactions 624 

are still lacking, previously mentioned plant metabolic changes due to sublethal doses of 625 

herbicides could explain detrimental developmental effects in phytophagous insects. For 626 

instance, the caterpillar Mamestra brassicae (Lepidoptera: Noctuidae) had a slower 627 

development when feeding on exposed Ranunculus acris (Ranunculaceae) plants with 628 

sulfonylurea at 10% of the recommended field rate (Hahn et al., 2014). Moreover, Gastrophysa 629 

polygoni (Coleoptera: Chrysomelidae) larvae feeding on chlorsulfuron-treated Fallopia 630 

convolvulus (Polygonaceae) displayed lower survival rates (Kjaer and Heimbach, 2001). 631 

However, such bottom-up effects of herbicides highly depend on the considered species and 632 

molecule, and could involve, in addition to a decrease in plant nutritional value, the induction 633 

of plant defenses, leading to either toxicity and/or repellence towards phytophages (Figure 1, 634 

see sections 4.1 and 5.2.1). 635 
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 636 

Figure 2: Main effects of sublethal doses of pesticides on the quality of plants, phytophages 637 

and related secondary food sources and potential cascading effects on natural enemies. 638 

Pesticide-induced changes in nutritional quality (inserts with arrow/question mark pictograms) 639 

and their potential effect on the upper trophic level (blue arrows) as well as pesticide 640 

contamination routes (red lines) are summarized here. Flat-head arrows indicate an overall 641 

negative effect on the upper trophic level, while point-head arrows indicate an overall positive 642 

effect. Dashed white arrows indicate a lack of knowledge on the effects of quality changes. 643 

  644 
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6.2. Effects of pesticides on natural enemies through their effect on plant and 645 

phytophage quality 646 

Overall, stress alter plant quality which results in a shift in phytophage fitness, which can either 647 

increase or decrease (see section 6.1). Moreover, plant quality conditions the quality of 648 

phytophage excretion products that can be consumed by natural enemies as secondary food 649 

sources (Crafts-Brandner, 2002). Some natural enemies also feed on plant resources such as 650 

nectar and pollen, which quality is linked to general plant quality (Pirotte et al., 2018; Silva et 651 

al., 2011). Therefore, low doses of pesticides are likely to affect the fitness of natural enemies 652 

through various bottom-up effects (Calvo‐Agudo et al., 2022; Stapel et al., 2000). 653 

Absence of toxicity is a major part of plant and phytophage quality, as primary and/or secondary 654 

food sources for natural enemies. Exposure to pesticides, either direct or through the resource, 655 

generally leads to pesticide contamination of tissues and products of plants and phytophagous 656 

insects, that can decrease the fitness of natural enemies (Figure 2). For example, spraying aphids 657 

with a combination of thiacloprid and deltamethrin insecticides at sublethal rates (lethal 658 

concentration of 10%) led to a significant decrease in population growth rates and parasitism 659 

rates in the parasitoid Aphidius flaviventris (Hemiptera: Aphididae) (Majidpour et al., 2020). 660 

Similar results were observed in predatory arthropods feeding on contaminated prey, with 661 

effects ranging from behavioral changes to fitness decreases (Schneider et al., 2009; Singh et 662 

al., 2004; Wanumen et al., 2016; Yao, 2015). Other studies remain nonetheless necessary, 663 

especially on the non-target effects of herbicides and fungicides, known to be deleterious to 664 

various natural enemies through direct exposure (Yokoyama and Pritchard, 1984; Youn et al., 665 

2003). 666 

Honeydew and feces produced by phytophagous insects, together with plant nectar, are 667 

important food subsidies for many natural enemies (Araj et al., 2011; Rahat et al., 2005; Tena 668 

et al., 2013; Wäckers et al., 2008). Exposure to herbicides can decrease and delay flowering, 669 
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even when used at less than 5% of field rate, therefore reducing the availability of floral nectar 670 

for natural enemies. Nevertheless, chronic exposure to sublethal doses of herbicides such as 671 

glyphosate induced an increase in soluble sugar contents in the floral nectar of several wild 672 

plants, meaning that the quality of plant nectar may increase after pesticide exposure (Russo et 673 

al., 2022). In addition, the nutritive quality and amount of honeydew and feces excreted by 674 

phytophages usually correlates positively with plant quality (Fischer et al., 2005; Fischer and 675 

Shingleton, 2001; Whitaker et al., 2014). This means that an increase in plant quality in 676 

response to sublethal doses of herbicides (see section 6.1) could lead to an increase in honeydew 677 

and feces quality for natural enemies. However, He et al. (2013) and Chen et al. (2017) showed 678 

that exposure of hemipteran phytophages to sublethal doses of insecticides such as 679 

imidacloprid, bifenthrin and flupyradifurone led to a decrease in honeydew production. 680 

Therefore, despite a potential increase in quality, pesticide exposure of plant-phytophage 681 

systems may reduce secondary food source availability for parasitoids and consequently 682 

decrease their fitness (Damien et al., 2020, 2019). 683 

Food subsidies can also represent an additional source of toxicity for natural enemies. Indeed, 684 

soil application of pesticides leads to a significant contamination of plant nectar (Botías et al., 685 

2015; Cowles and Eitzer, 2017; Stoner and Eitzer, 2012), and is often shown to impair natural 686 

enemies, both in plant-natural enemy systems (Stapel et al., 2000) and in simulated interaction 687 

systems (i.e. feeding natural enemies with contaminated sucrose solution; Gao et al., 2021). For 688 

example, the treatment of cotton plants with different systemic insecticides led to disturbed 689 

foraging ability and reduced lifespan in the parasitoid Microplitis croceipes (Hymenoptera: 690 

Braconidae) after it fed on contaminated extrafloral nectar (Stapel et al., 2000). Moreover, 691 

quantifiable levels of neonicotinoids were present in the honeydew of the mealybug 692 

Planococcus citri (Hemiptera: Pseudococcidae) following rearing on plants either exposed 693 

through spraying or soil application (Calvo-Agudo et al., 2019; Quesada et al., 2020). This 694 
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honeydew contamination led to high mortality rates of parasitic wasps feeding on it (Calvo-695 

Agudo et al., 2019). Despite those studies were conducted using field application rates, it is 696 

likely that honeydew remains a source of exposure to residual levels of pesticides for non-target 697 

beneficial insects, even in non-crop systems (Calvo‐Agudo et al., 2022). 698 

In summary, pesticides induce changes in plant metabolism and, while these changes depend 699 

on plant species, pesticides and doses, they can still affect upper trophic levels. Whereas the 700 

observed shifts in plant nutritive metabolite contents suggest an increase in plant quality for 701 

phytophages, the associated increase in secondary metabolites and plant defenses may counter 702 

this benefit (Figure 2). Concerning natural enemies, pesticide exposure of plants can lead to an 703 

increase in the quality of food subsidies (i.e. nectar, honeydew and feces), but also a decrease 704 

in their availability. Moreover, it is clear that the consumption of host/prey contaminated with 705 

pesticides, but also of contaminated food subsidies, leads to deleterious effects on natural 706 

enemies (Figure 3).  707 
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7. A short note on sublethal pesticide effects at the population scale, with potential 708 

impact on trophic networks 709 

The different impacts of pesticides on plants previously reviewed are likely to affect plant 710 

populations and especially plant density and plant community structure, which, in plant-711 

phytophage interactions, usually define the carrying capacity of insect populations (Friess et 712 

al., 2017). Moreover, the impact of phytophagy on plants depends on the capacity of the 713 

phytophage to access food sources (location, choice, feeding behavior and resistance to plant 714 

defense), but also on the density of phytophages. Pesticides are designed to kill and therefore 715 

reduce population density. However, sublethal exposures have more complex and context-716 

dependent effects on populations as they can either be deleterious, neutral or induce hormesis. 717 

Hormesis consists in the biphasic response that some organisms display after exposure to stress, 718 

pesticides in our case, and that is characterized by a stimulation of the trait under sublethal 719 

doses, and an inhibition at higher doses. (Calabrese, 2018; Cutler et al., 2022; Guedes, 2022). 720 

Since these aspects of sublethal pesticide exposure have been extensively studied and reviewed, 721 

we will only quickly summarize them here. 722 

Sublethal doses of pesticides, mostly herbicides, are known to negatively affect plant population 723 

features, such as flowering intensity, seed production and seed quality, or even the efficiency 724 

of asexual reproduction (Albrecht et al., 2014; Andersson, 1996; Boutin et al., 2004; Egan et 725 

al., 2014; Melton et al., 1988; Pokhrel and Karsai, 2015; Riemens et al., 2009; Schmitz et al., 726 

2013). This generally leads to the decline in plant abundance observed in field studies 727 

investigating herbicide drift (Egan et al., 2014; Johnson et al., 2023; Schmitz et al., 2013). While 728 

hormetic effects have been observed frequently on plant growth, very few studies to this date 729 

showed that sublethal rates of pesticides could increase plant reproduction and therefore 730 

abundances (Pokhrel and Karsai, 2015). 731 
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In phytophages, sublethal pesticide exposure leads to a wide range of responses when it comes 732 

to fitness traits such as fecundity, longevity, development time and birth rate, which all 733 

modulate population size. While several studies underlined deleterious effects of pesticides on 734 

insect pests’ fitness traits (Table S1, Deng et al., 2019; Lashkari et al., 2007; Lutz et al., 2018; 735 

Mahmoodi et al., 2020; Saska et al., 2016), several studies reported hormetic effects of sublethal 736 

doses of pesticides, mostly insecticides (Table S1, Chelliah et al., 1980; Morse and Zareh, 1991; 737 

Christopher Cutler et al., 2005; Yu et al., 2010; Cho et al., 2011; Cordeiro et al., 2013; Ayyanath 738 

et al., 2015; Tang et al., 2015; Lu et al., 2016; Rix et al., 2016; Chen et al., 2017; Cao et al., 739 

2019; Deng et al., 2019; Ullah et al., 2020). Very few studies focused on non-target effects of 740 

pesticides on the fitness of phytophages and, while they seem usually deleterious (Bohnenblust 741 

et al., 2013; Clements et al., 2018; Saska et al., 2016), further work is required to know if these 742 

effects are consistent. 743 

Population features of natural enemies are negatively affected by pesticides, even at low doses 744 

through direct exposure or through the consumption of contaminated host/prey (Table S1, 745 

Yokoyama and Pritchard, 1984; Schneider et al., 2009; Rahmani and Bandani, 2013; Abedi et 746 

al., 2014; Maia et al., 2016; de Morais et al., 2016; Majidpour et al., 2020; Ricupero et al., 747 

2020). Cases of hormetic effects of sublethal doses of pesticides, mostly non-target, were often 748 

reported on natural enemies (Basana Gowda et al., 2021; Hou et al., 2023; Leite et al., 2015; 749 

Pratissoli et al., 2010; Ray et al., 2022; Wang et al., 2022). These short-term effects range from 750 

increased longevity and fecundity to higher parasitism and emergence rates, without 751 

demonstrated positive impact on their population growth rate and survival over generations. 752 

In summary, pesticide effects on land plants and insects go far beyond effects at the scale of the 753 

organism. Fitness traits are negatively affected by sublethal doses of pesticides in most 754 

organisms whether or not they are targeted by the molecule, leading to populations’ declines. 755 

However, some organisms, mostly phytophages and natural enemies to a lesser extent, 756 
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displayed an increase of their fitness in response to sublethal rates of pesticides, due to hormetic 757 

mechanisms. This phenomenon, alongside with the fact that species display different tolerance 758 

levels to pesticides, may have consequences on species dominance and abundance and therefore 759 

disturb plant and arthropod communities. 760 

Figure 3: (A) Summary of sublethal effects of pesticides on traits involved in interactions (grey 761 

arrows associated to their pictograms) between land plants (bottom), phytophages (middle) and 762 

natural enemies (top). Effects are synthesized by blue arrows/question mark pictograms and are 763 

detailed in the associated table (B). Each effect can be linked to the scheme and the 764 

corresponding traits thanks to circled blue digits. Capital letters between brackets refer to the 765 

type of pesticide concerned (H=Herbicide, I=Insecticide, F=Fungicide) 766 
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8. Conclusions and recommendations 768 

8.1. Conclusions 769 

Throughout this review, we highlighted that sublethal doses of pesticides induce a wide 770 

diversity of effects, mostly deleterious, on land plants and arthropods and on their interactions. 771 

Even at sublethal doses, pesticides disturb direct interaction mechanisms and behaviors (i.e. 772 

host/prey recognition, attack/defense; Figure 1, 3), as well as matter fluxes within trophic 773 

networks (Figure 2, 3). They  decrease fitness and population size of interacting organisms and 774 

may further contribute to biodiversity losses in agricultural landscapes (Figure 3). Pesticide 775 

effects highly depend on the considered molecule, with target effects being usually more 776 

deleterious (Figure 4). However, because non-target effects have received less attention, 777 

especially concerning phytophages, it is hard to assess their impact on trophic networks, (Figure 778 

4, Table S1). Finally, this review showed that interactions between pesticide effects observed 779 

at each trophic level remain unknown and seem hardly predictable in terms of compensation, 780 

additivity or antagonisms. For example, the outcome of sublethal pesticide exposures increasing 781 

both phytophage reproduction (thus phytophagy pressure on plants) and plant defenses against 782 

phytophages remains to be described (Figure 4). 783 

Sublethal rates of pesticides are likely to strongly disturb PPNe terrestrial trophic systems, and 784 

especially impair natural enemies (Figure 3, 4). A decrease in the effectiveness of phytophage 785 

control by natural enemies, even at low doses, could thus represent a significant cause of pest 786 

outbreaks, in addition to pesticide adaptations (resistance or tolerance). Therefore, while 787 

pesticides are currently the predominant mean for controlling pests in the short term (Clapp, 788 

2021; Popp et al., 2013), their effects on adjacent systems may have considerable feedback 789 

impacts on agricultural production in the longer run (Dutcher, 2007; Mironidis et al., 2013; 790 

Schmidt et al., 2004). Moreover, these results question recent pest management strategies 791 

aiming at developing insecticides compatible with biocontrol (i.e. affecting pests but not 792 
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parasitoids; Torres and Bueno, 2018). Indeed, in addition to potential cryptic negative effects 793 

of such compounds on natural enemies, this review showed that pesticide effects were more 794 

generic and involved not only insecticides but also herbicides and fungicides. These two latter 795 

categories of pesticides also act as non-target and may impair biocontrol services. 796 

 797 

Figure 4: Sankey diagram summarizing the publications assessing sublethal effects of 798 

pesticides on plants, phytophages and natural enemies (191 publications listed in Table S1). 799 

When studies investigated different traits, different trophic levels or different types of 800 

pesticides, they were counted once for each, reaching a total of 222 occurrences. From left to 801 

right, publications are distributed across the type of pesticide (Target: n=183 or Non-target: 802 

n=39), the studied organism (Plant: n=74; Phytophage: n=68; Natural enemy: n=80), and the 803 

type of trait studied (Reproduction: n=72; Pop. = Population metrics: n=12; Physiology: n=34; 804 

Development: n=46; Attack/Defense: n=58). Path color roughly represents the effect, in terms 805 
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of decrease, increase, or unclear variation, of sublethal pesticide exposure on the considered 806 

trait. 807 

8.2. Recommendations  808 

As seen throughout this review, dose strongly influences the effects of pesticides on organisms, 809 

ranging from strong deleterious effects at sublethal yet high doses, to cryptic (e.g., metabolic 810 

shifts) or increases in their fitness generally occurring at low sublethal or non-lethal doses. 811 

While high sublethal doses (i.e. LC20-30) are quite well studied in the current literature, there is 812 

a lessened interest for lower doses (Table S1). It is therefore essential to consider a wider range 813 

of doses when studying sublethal effects of target and non-target pesticides on organisms, in 814 

order to investigate the complete range of responses organisms can display and to identify 815 

unexpected effects. Furthermore, while pesticide responses have frequently been undertaken at 816 

various scales (i.e. gene expression, metabolomics, macroscopic traits, and population features) 817 

in plants, insects deserve more attention to offer deeper insights into sublethal effects of 818 

pesticides, especially cryptic ones (Figure 4). 819 

A major challenge when reviewing sublethal pesticide effects on terrestrial organisms is the 820 

exposure method, which strongly differs between studied organisms (Figure S1). Natural 821 

enemies are generally exposed through direct application or by being reared on contaminated 822 

artificial surfaces, while phytophages are more generally exposed by being reared on 823 

contaminated plants and, for some studies, through an artificial food source (Figure S1). For 824 

plants, direct application is also the main exposure method (Figure S1). While direct application 825 

allows to control the dose of exposure, it lacks ecological relevance. Indeed, sublethal pesticide 826 

exposures mostly happen in peri-agricultural systems, where pesticides are located in the soil 827 

and in the atmosphere due to leaching and drift and then in PPNes due to trophic transfer. 828 

Therefore, soil and aerial exposures for plants as well as through the food chain for phytophages 829 

and natural enemies appear more relevant to understand how pesticides can affect trophic 830 

Jo
urn

al 
Pre-

pro
of



41 
 

interactions. To fill the knowledge gap on the real and precise dose to which organisms are 831 

exposed in vivo, quantifications of pesticides and of their degradation products in the organism 832 

tissues need to be carried out and linked to the observed effects. 833 

Another aspect lacking consideration when studying the sublethal effects of pesticides in the 834 

scope of trophic interactions or biocontrol, is that animals and plants are holobionts (Engel and 835 

Moran, 2013; Vandenkoornhuyse et al., 2015). Symbionts strongly drive indeed both PPNe 836 

trophic interactions and responses to pesticides (Frago et al., 2012; Hackett et al., 2013; Kikuchi 837 

et al., 2012; Oliver et al., 2012). Many studies focused on how bacterial and fungal symbionts 838 

may help plants and arthropods to cope with pesticides, but the consequences on processes such 839 

as metabolism and defense mechanisms remain uninvestigated, as the impacts on bottom-up / 840 

top-down species interactions (Kikuchi et al., 2012; Ramya et al., 2016). Therefore, future 841 

research on sublethal pesticide effects needs to broaden the range of considered species 842 

interactions, including microorganisms. 843 

This review highlighted that focusing on the responses of single organisms to single molecules, 844 

led to a current incapacity to understand how pesticides really disrupt ecosystem functioning, 845 

especially through their impact on biotic/trophic interactions (Calow and Forbes, 2003; Relyea 846 

and Hoverman, 2006). Our understanding of the impact of sublethal exposure to pesticides, 847 

both target and non-target, on trophic networks therefore remain superficial, both from an 848 

ecological and evolutionary point of view. Works on sublethal pesticide effects now need to be 849 

focused on biotic/trophic interactions within PPNe systems to acquire experimental and field 850 

data, and understand how biotic interactions are shaped by the expression of traits under 851 

pesticide exposure. Moreover, associating these works to modeling approaches could allow 852 

testing and improving current models in order to develop better prediction for pesticide risk 853 

assessment. Finally, sublethal pesticide effects on PPNe systems and biocontrol services now 854 

need to be considered at the landscape scale. Pesticide contaminations resulting from 855 
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conventional agriculture may indeed strongly impact biocontrol efficiency of organic farming 856 

systems together with the functioning of trophic networks unexploited by humans, also hosting 857 

beneficial organisms for many other ecosystem services: water quality, carbon and nitrogen 858 

recycling, pollination, etc. (Bloom et al., 2021; Knapp et al., 2023; Ricci et al., 2019). 859 

  860 
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Figure legends 873 

Figure 1: Main effects of sublethal doses of pesticides on host/prey recognition mechanisms 874 

and attack/defense mechanisms in land plants, phytophages and natural enemies. While grey 875 

arrows represent interactions within PPNe networks, blue arrows represent the effects of 876 

sublethal doses of pesticides on traits involved in those interactions. Flat-head arrows indicate 877 

an overall decrease of the trait, while point-head arrows indicate an increase. Dashed white 878 

arrows indicate a lack of knowledge on the effects. The effects of pesticides on each trait, 879 

represented by the different pictograms, are indicated in the associated inserts, with (+), (-) and 880 

(?) depending on the effect (increase, decrease, no known effect respectively). 881 

 882 

Figure 2: Main effects of sublethal doses of pesticides on the quality of plants, phytophages 883 

and related secondary food sources and potential cascading effects on natural enemies. 884 

Pesticide-induced changes in nutritional quality (inserts with arrow/question mark pictograms) 885 

and their potential effect on the upper trophic level (blue arrows) as well as pesticide 886 

contamination routes (red lines) are summarized here. Flat-head arrows indicate an overall 887 

negative effect on the upper trophic level, while point-head arrows indicate an overall positive 888 

effect. Dashed white arrows indicate a lack of knowledge on the effects of quality changes. 889 

 890 

Figure 3: (A) Summary of sublethal effects of pesticides on traits involved in interactions (grey 891 

arrows associated to their pictograms) between land plants (bottom), phytophages (middle) and 892 

natural enemies (top). Effects are synthesized by blue arrows/question mark pictograms and are 893 

detailed in the associated table (B). Each effect can be linked to the scheme and the 894 

corresponding traits thanks to circled blue digits. Capital letters between brackets refer to the 895 

type of pesticide concerned (H=Herbicide, I=Insecticide, F=Fungicide) 896 

 897 
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Figure 4: Sankey diagram summarizing the publications assessing sublethal effects of 898 

pesticides on plants, phytophages and natural enemies (191 publications listed in Table S1). 899 

When studies investigated different traits, different trophic levels or different types of 900 

pesticides, they were counted once for each, reaching a total of 222 occurrences. From left to 901 

right, publications are distributed across the type of pesticide (Target: n=183 or Non-target: 902 

n=39), the studied organism (Plant: n=74; Phytophage: n=68; Natural enemy: n=80), and the 903 

type of trait studied (Reproduction: n=72; Pop. = Population metrics: n=12; Physiology: n=34; 904 

Development: n=46; Attack/Defense: n=58). Path color roughly represents the effect, in terms 905 

of decrease, increase, or unclear variation, of sublethal pesticide exposure on the considered 906 

trait.  907 
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Supplementary Materials 1814 

Table S1: Summary of publications relevant in the scope of trophic interactions that assess the 1815 

effects of pesticides on terrestrial organisms (publications cited in this table are all listed in the 1816 

Bibliography section of the manuscript) with detailed information on the species studied, the 1817 

pesticide(s) tested, alongside with its effect and its effect dose, the way the organisms were 1818 

exposed and a brief summary of the observed effects. While two organisms are studied but 1819 

tested separately thus not in interaction, the “Number of interacting trophic networks” generally 1820 

indicates 1  1821 

Figure S1: Proportion in the current literature (191 publications listed in Table S1) of the 1822 

different types of exposure routes to pesticides for the three types of organisms considered in 1823 

this review. Color gradient roughly represents the ecological relevance of the exposure route, 1824 

yellow shades corresponding to methods closer to contaminations occurring within terrestrial 1825 

non-target trophic networks. 1826 
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