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Abstract Forest tree dieback inventory has a crucial role in improving forest8

management strategies. This inventory is traditionally performed by forests9

through laborious and time-consuming human assessment of individual trees.10

On the other hand, the large amount of Earth satellite data that is publicly11

available with the Copernicus program and can be processed through advanced12

deep learning techniques has recently been established as an alternative to field13

surveys for forest tree dieback tasks. However, to realize its full potential, deep14

learning requires a deep understanding of satellite data since the data collec-15

tion and preparation steps are essential as the model development step. In this16

study, we explore the performance of a data-centric semantic segmentation ap-17

proach to detect forest tree dieback events due to bark beetle infestation in18

satellite images. The proposed approach prepares a multisensor data set col-19

lected using both the SAR Sentinel-1 sensor and the optical Sentinel-2 sensor20

and uses this dataset to train a multisensor semantic segmentation model. The21

evaluation shows the effectiveness of the proposed approach in a real inventory22

case study that regards non-overlapping forest scenes from the Northeast of23

France acquired in October 2018. The selected scenes host bark beetle infes-24

tation hotspots of different sizes, which originate from the mass reproduction25

of the bark beetle in the 2018 infestation.26
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1 Introduction29

Forests and woodlands cover roughly one-third of Earth’s surface and play a30

critical role in providing many ecosystem services, including carbon sequestra-31

tion, water flow regulation, timber production, soil protection, and biodiversity32

conservation. However, the accelerating pace of climate change and its impact33

on species distribution and biome composition are leading to an increase in34

various types of disturbances, whether biotic, abiotic, or a combination of both,35

which are now affecting this vital natural resource and resulting in forest loss.36

Consequently, the decline in key forest ecosystem services is becoming more37

and more apparent. Among all the disturbances, insect infestations and disease38

outbreaks (e.g., bark beetle infestations) can induce massive tree dieback and,39

subsequently, significantly disrupt ecosystem dynamics [18]. This is why forest40

surveillance is crucial to monitor, quantify and possibly prevent outbreak dis-41

eases and enable foresters to perform informed decision-making for effective42

environmental management. Nevertheless, common strategies used to evaluate43

the health of forested regions primarily rely on laborious and time-consuming44

field surveys [8]. Consequently, they are restricted in their ability to cover ex-45

tensive geographical areas, thereby preventing large-scale analysis across vast46

territories. To this end, the substantial amount of remote sensing informa-47

tion collected today via modern Earth observation missions constitutes an48

unprecedented opportunity to scale up forest dieback assessment and surveil-49

lance over large areas. As an exemplar, the European Space Agency’s Sentinel50

missions [7] provide a set of quasi-synchronous synthetic aperture radar (SAR)51

and optical data, systematically acquired worldwide, at high spatial (order of52

10m) and temporal (an acquisition up to every five/six days) resolution. This53

information can be of paramount interest to support large-scale forest dieback54

assessment and surveillance systems.55

While the research community is investigating the benefit related to ex-56

ploiting multisensor remote sensing information via recent deep learning ap-57

proaches [23,29], there is still the necessity to design effective and well-tailored58

approaches to get the most out of multisensor remote sensing information [22].59

This is the case for the large-scale assessment of tree dieback events induced60

by insect infestations and disease outbreaks where, to the best of our litera-61

ture survey, existing works (e.g., [4,8,9,15,17,45]) mainly focus on optical data62

analysis, while no works exist that achieve improvements by leveraging mul-63

tisensor remote sensing data (e.g., SAR and optical data). In particular, the64

literature studies to monitor bark beetle infestation in optical data pay high65

attention to both the data engineering step, through the synthesis of spectral66

vegetation indices, and the model development step, through the test of vari-67

ous machine learning and deep learning algorithms. On the other hand, similar68

to research communities where data play a major central role (e.g., computer69

vision, machine learning, information retrieval), also researchers coming from70

the remote sensing field are investing efforts towards more systematic and ef-71

fective exploitation of available data sources. To this end, research actions in72

this direction have been proposed under the umbrella of data-centric Artificial73
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Intelligence (AI) [43]. Under this movement, the attention of researchers and74

practitioners is gradually shifting from advancing model design (model-centric75

AI) to enhancing the quality, quantity and diversity of the data (data-centric76

AI). Moreover, when remote sensing data are considered, the data-centric AI77

perspective is even more important since it can steer the community towards78

developing a methodology to provide further improvements related to the use79

of highly heterogeneous information to ameliorate the generalization ability80

with impact on real-world relevant problems and applications [38]. Neverthe-81

less, the two perspectives (model-centric and data-centric AI) play a comple-82

mentary role in the larger remote sensing deployment cycle, since standard83

approaches still struggle to manage and exploit valuable data coming from84

different and heterogeneous sources as, for instance, in the case of leveraging85

multisensor complementary information.86

With the objective to find a trade-off between data-centric and model-87

centric achievements in remote sensing and map bark beetle-induced tree88

dieback events in remote sensing data adopting a semantic segmentation ap-89

proach (e.g., categorization of pixels into a class), in this paper, we pro-90

pose DIAMANTE (Data-centrIc semAntic segMentation to mAp iNfestations91

in saTellite imagEs): a data-centric semantic segmentation approach to train92

a U-Net like model from a labelled remote sensing dataset prepared using both93

SAR Sentinel-1 (S1) and multi-spectral optical Sentinel-2 (S2) remote sens-94

ing data sources. In particular, for the model development, we compare the95

achievements of several multisensor data fusion schema that are performed96

via early, middle or late stages fusion in an underlining U-Net architecture97

[37]. The U-Net is considered thanks to its wide versatility and increasing98

popularity, as well as due to the fact that it has been recently used to map99

bark beetle-induced tree dieback in Sentinel-2 images [4,5,45]. In addition, in100

this study, we consider that model recycling is one of the achievements to be101

evaluated in developing a data-centric AI approach. Hence, we start a prelimi-102

nary investigation of how the multisensor fusion approaches considered in this103

study may allow us to train a semantic segmentation model for bark beetle104

detection, which still achieves good performance in a future data setting. The105

following are the main contributions of this work:106

– The definition of a remote sensing data collection and curation pipeline107

to prepare multisensor, Sentinel-1 and Sentinel-2 images of forest areas for108

which the ground truth map of the bark beetle infestation is available at a109

specific time. The defined pipeline pays particular attention to the quality110

of the Sentinel-1 and Sentinel-2 data prepared for the model development.111

– The adoption and comparison of several multisensor data fusion schemes112

to combine Sentinel-1 and Sentinel-2 data via early, middle or late stages113

fusion considering the underlying U-Net architecture.114

– The extensive assessment of our proposal using a ground truth map of tree115

dieback induced by bark beetle infestations in the Northeast of France in116

October 2018. The evaluation examines the performance of models trained117

and tested using images acquired over non-overlapping scenes in the same118
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period, as well as the temporal forecasting and transferability of the model119

to an upcoming data setting.120

The rest of the manuscript is organized as follows. Related literature is re-121

viewed in Section 2. The proposed methodology is described in Section 4 while122

the study site and the associated multisensor remote sensing dataset are in-123

troduced in Section 3. Section 5 reports the experimental evaluation and it124

discusses the related findings. Section 6 concludes.125

2 Related work126

This related work overview is organised into two main fronts. Firstly, we delve127

into recent remote sensing studies that incorporate machine learning and deep128

learning to map bark beetle infestation in Sentinel-1 (S1) and Sentinel-2 (S2)129

images. On the other front, we address the recent achievements of the data-130

centric artificial intelligence paradigm in remote sensing applications.131

2.1 Bark beetle detection in remote sensing132

Remote sensing studies to map forest stress related to bark beetle attacks133

have mainly focused on the analysis of Sentinel-2 data [16]. These studies are134

mainly inspired by the analysis conducted in [1] to explore the effect of several135

forest disturbances sources (comprising bark beetle infestation) on S2 data.136

This study shows that the bark beetle infestation, which may affect the bio-137

physical and biochemical properties of trees, is commonly visible via Sentinel-2138

multi-spectral imagery. In particular, the chlorophyll degradation and nitro-139

gen deficiency lead to an increase in reflectance spectrum in the visible re-140

gion (particularly, red and green bands). Changes caused by the reduction141

of chlorophyll and leaf water have also an effect on Near Infrared (NIR) and142

Water vapor bands, while diseased and insect attacks affect red-edge bands.143

This analysis has boosted a plethora of studies [4,5,8,9,15,17,25,26,45] that144

explore the ability of various spectral vegetation indices to enhance the ac-145

curacy of decision models trained on Sentinel-2 data. Notice that explored146

spectral vegetation indices mainly combine red, green, NIR and SWIR (short147

wave infrared) bands.148

Regarding the classification algorithms used to map bark beetle infesta-149

tions in Sentinel-2 images, the most recent studies have mainly used machine150

learning algorithms such as Random Forest [4,5,8,9,25], Support Vector Ma-151

chine [4,9,15] and XGBoost [4,5]. Instead, [4,5,45] explore the performance of152

deep learning algorithms under semantic segmentation settings such as U-Net153

[4,5,45] and FCN-8 [4]. To handle the data imbalance situation, [4,5,15] use a154

cost-based learning strategy in combination with Random Forest and Support155

Vector Machine, while [4,5] use the Tversky loss in combination with U-Net156

and FCN-8. Finally, some studies consider Sentinel-2 time series data to train157

either Random Forest [5,8,17] or U-Net models [5].158
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On the other hand, only recently, few remote sensing studies have started159

exploring the potential of Sentinel-1 data to detect bark beetle infestations.160

Sentinel-1 data are traditionally used in deforestation detection on [21]. How-161

ever, [22] has recently hypothesized that the joint exploitation of Sentinel-1 and162

Sentinel-2 satellite information can disclose useful information to detect bark163

beetle infestation hotspots. In particular, this study finds significant differences164

between Sentinel-1 values measured in infested and healthy sites, respectively.165

Similar conclusions are drawn in [2]. However, [2,22] perform a statistical166

analysis of Sentinel-1 data distribution without exploring how the use of the167

Sentinel-1 information can contribute to learning accurate decision models to168

characterise bark beetle infestations. In general, based on the literature survey,169

[22] highlights that significant research effort is still needed to explore the full170

potential of multisensor data in insect-induced forest disturbance mapping. In171

this direction, [25] shows that the joint analysis of Sentinel-1 and Sentinel-2172

data marginally contributes to improving the performance of Random For-173

est models. This conclusion has been recently confirmed also by [28] where174

poor performances have been achieved for bark beetle infestation mapping175

exploiting only Sentinel-1 radar data and negligible amelioration by the joint176

exploitation of multisensor (Sentinel-1 and Sentinel-2) data considering both177

Bayesian and Random Forest classification models. Notably, in [28], the multi-178

sensor data are stacked in a single feature vector that is used as input space179

for training a classification model. This corresponds to an early fusion schema180

that concatenates pixel-wise the feature vectors which are acquired with the181

Sentinel-1 and Sentinel-2 sensors before starting the training stage.182

On the other hand, some recent studies have started to investigate how to183

combine multisensor remote sensing data (e.g., Sentinel-1 and Sentinel-2 data)184

for the underlying task of land use land cover mapping under a semantic seg-185

mentation setting [39]. The authors of [29] have surveyed recent deep learning186

architectures developed to handle multisensor data comprising Sentinel-1 and187

Sentinel-2 data. However, this survey mainly considers problems of change188

detection and biomass estimation without any attention to bark beetle detec-189

tion problems. In addition, this study points out that the majority of deep190

neural architectures trained with multisensor satellite data adopt an early fu-191

sion mechanism to concatenate pixel-wise data acquired with the Sentinel-1192

and Sentinel-2 satellites. The output of the concatenation step is subsequently193

used as input space for the deep neural model development. In particular, the194

authors of both [31] and [41] learn a U-Net model for land cover classifica-195

tion and flood detection via an early fusion of the Sentinel-1 and Sentinel-2196

data. The authors of [3] introduce the Principal Component Analysis (PCA)197

to combine stacked Sentinel-1 and Sentinel-2 imagery before training a U-Net198

model for the downstream task of tropical mountain deforestation delineation.199

On the other hand, a few studies have recently started the investigation of late200

fusion mechanisms to combine Sentinel-1 and Sentinel-2 data through a deep201

learning architecture. For example, the authors of [24] describe a two-branch202

architecture that separately extracts features from data acquired with the two203

distinct satellites and perform the late convolutional fusion before the final de-204
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cision. A similar late fusion schema is also investigated in [19] for a problem of205

urban change detection. This study describes an architecture composed of two206

separate, identical U-Net architectures that process Sentinel-1 and Sentinel-2207

image pairs in parallel, and lately fuses extracted features from both sensors208

at the final decision stage. A middle fusion mechanism is introduced in [6] to209

perform the fusion of Infrared-Red-Green (IRRG) images and Digital Surface210

Model (DSM) data extracted from the Lidar point cloud through a SegNet211

model. Middle fusion is performed at the encoder layers with a simple sum-212

mation. Imagery data fusion schemes are also discussed in the survey paper213

[46].214

In any case, to the best of our knowledge, no previous studies have been215

proposed yet to explore the opportunity of combining Sentinel-1 and Sentinel-216

2 data via modern deep learning architecture (i.e., U-Net) for the downstream217

bark beetle detection task. In addition, this is the first study that frames218

the investigation of different multisensor fusion schemes (i.e., early fusion,219

middle fusion and late fusion) in a U-Net development step performed under220

the umbrella of data-centric AI. On the other hand, neither previous studies221

have experimented with a fusion mechanism that operates at the encoder222

level of semantic segmentation models trained on Sentinel-1 and Sentinel-2223

data, nor these studies have started the investigation of achievements of data224

fusion schemes for model development done under the possible lens of model225

recycling.226

2.2 Data-centric artificial intelligence in remote sensing227

Data plays a fundamental role in several remote sensing problems, comprising228

satellite imagery-based forest health monitoring. As a consequence, the emerg-229

ing data-centric artificial intelligence paradigm [44] has recently started receiv-230

ing attention in remote sensing where the big satellite image collections (e.g.,231

the Earth Sentinel-1 and Sentinel-2 image collections acquired via the Coper-232

nicus programme) are freely available. [38] describes the main principles of the233

data-centric artificial intelligence paradigm in geospatial data applications by234

highlighting that data acquisition and curation should receive as much atten-235

tion as data engineering and model development and evaluation. This study236

describes one of the first data-centric remote sensing pipelines experimented237

for land cover classification in satellite imagery. [35] describes a data-centric238

approach that uses deep feature extraction to prepare a Sentinel-2 dataset to239

improve the performance of insect species distribution models. [12] describes a240

data-centric approach that combines semantic segmentation and Geographical241

Information Systems (GIS) to obtain instance-level predictions of wind plants242

by using free orbital satellite images. Specifically, this study achieves an im-243

provement of the model performance by including the wind plant shadows244

to increase the mapped area and facilitate target detection. [11] investigates245

the application of iterative sparse annotations for semantic segmentation in246

remote-sensing imagery, focusing on minimizing the labor-intensive and costly247
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data labeling process. Finally, [40] describes a data-centric approach for RGB248

imagery dataset creation that reduces annotation ambiguity for RGB images249

by combining semi-supervised classification and clustering. To the best of our250

knowledge, no previous studies have explicitly defined a data-centric semantic251

segmentation approach that pays specific attention to the data curation step,252

in addition to the model development step, to support bark beetle infestation253

mapping considering multisensor remote sensing data provided by Sentinel-1254

and Sentinel-2 satellites.255

3 Study area and data preparation256

This section describes the pipeline realised to prepare the datasets used to257

train and test the semantic segmentation models. We used Microsoft Plane-258

tary Computer1 that provides the API to access petabytes of environmental259

monitoring data comprising Sentinel-1 and Sentinel-2 images from 2016 to the260

present. Datasets are accessed via Azure Blob Storage. The study site de-261

noted as Northeast France, situated in the northeastern region of France, is262

predominantly covered by coniferous forests. In 2018 and 2019, a significant263

proliferation of bark beetles occurred, leading to an estimation by the French264

National Forestry Office in late April 2019 that approximately 50% of spruce265

trees in France were infested, contrasting with the typical rate of 15% for dead266

or diseased trees under normal circumstances. Notably, preceding 2018, there267

were no instances of substantial windthrows in this area, suggesting that the268

observed regional-scale attacks were likely spurred by the hot summer droughts269

experienced in 2018. Satellite data covering the Northeast France study site270

consists of a Synthetic Aperture Radar (SAR) image acquired via the Sentinel-271

1 sensor and an optical multi-spectral image acquired via the Sentinel-2 sensor.272

3.1 Sentinel-1 and Sentinel-2 data collection273

The Sentinel-1 satellite constellation collects polarization data via a C-band274

synthetic-aperture radar instrument. The C-band denotes a nominal frequency275

range from 8 to 4 GHz (3.75 to 7.5 cm wavelength) within the microwave276

(radar) portion of the electromagnetic spectrum. Imaging radars equipped277

with C-band are generally not hindered by atmospheric effects. They are capa-278

ble of imaging in all-weather (even through tropical clouds and rain showers),279

day or night. The constellation is composed of two satellites (Sentinel-1A and280

Sentinel-1B), and it offers a 6-day exact repeat cycle. This means that, over281

the same geographical area, one SAR can be accessed every 6 days. Due to282

the nature of the radar signal, the raw information needs calibration correc-283

tion related to the terrain topography. For this reason, we adopt the level-1284

Radiometrically Terrain Corrected (RTC) product available via the Microsoft285

1 https://planetarycomputer.microsoft.com/
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Table 1: Sentinel-1 band description

Band Spatial Resolution Wavelength Band Name

VV 10 m C Band / 3.75 − 7.5 cm Vertical-Vertical
VH 10 m C Band / 3.75 − 7.5 cm Vertical-Horizontal

Planetary platform2. This product provides SAR images at 10m of spatial res-286

olution. Here we consider the two polarizations VV (Vertical-Vertical) and VH287

(Vertical-Horizontal). In particular, VV is a mode of radar polarisation where288

the microwaves of the electric field are oriented in the vertical plane for both289

signal transmission and reception by means of a radar antenna. VH is a mode290

of radar polarisation where the microwaves of the electric field are oriented in291

the vertical plane for signal transmission and where the horizontally polarised292

electric field of the back-scattered energy is received by the radar antenna.293

The list of Sentinel-1 bands considered in this study is reported in Table 1.294

The Sentinel-2 satellite constellation retrieves multi-spectral radiometric295

data (13 bands) in the visible, near infrared, and short wave infrared parts296

of the spectrum through two satellites (Sentinel-2A and Sentinel-2B). The297

Sentinel-2 constellation permits covering the majority of the Earth’s surface298

with a repeat cycle of 5 days. The optical imagery is acquired at high spatial299

resolution (between 10m and 60 m) over land and coastal water areas. The mis-300

sion supports a broad range of services and applications such as agricultural301

monitoring, emergency management or land cover classification. Similarly to302

the SAR signal, also the optical signal collected by the Sentinel-2 sensors re-303

quires corrections. To this end, we adopt the level 2A product available via304

the Microsoft Planetary platform 3 that provides atmospherically corrected305

surface reflectances. Here we consider all the multi-spectral bands at a spatial306

resolution of 10m. While bands B2, B3, B4 and B8 are originally at a spatial307

resolution of 10m, for all the other bands we downscale them at 10m of spa-308

tial resolution via the nearest-neighbor resampling based interpolation [34].309

This technique selects the value of the pixel that is nearby the surrounding310

coordinates of the intended interpolation point. Finally, we ignore the B10311

(SWIR – Cirrus) band that is reserved for atmospheric corrections. The fi-312

nal list of Sentinel-2 bands considered in this study is reported in Table 2.313

In particular, for each Sentinel-2 band, we report the spatial resolution, the314

central wavelength, and the band name. The central wavelength refers to the315

midpoint wavelength at the centre of the spectral band range (barycenter)316

that the satellite sensor captures. For example, for the B1 band that captures317

wavelengths from 433 to 453 nanometers (nm), the central wavelength is 443318

nm.319

2 https://planetarycomputer.microsoft.com/dataset/sentinel-1-rtc
3 https://planetarycomputer.microsoft.com/dataset/sentinel-2-l2a
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Table 2: Sentinel-2 band description.

Band Spatial Resolution Central Wavelength Band Name

B1 60 m 443 nm Coastal aerosol
B2 10 m 490 nm Blue
B3 10 m 560 nm Green
B4 10 m 665 nm Red
B5 20 m 705 nm Red edge 1
B6 20 m 740 nm Red edge 2
B7 20 m 783 nm Red edge 3
B8 10 m 842 nm Near Infrared Narrow

B8A 20 m 865 nm Narrow Near Infrared Narrow
B9 60 m 940 nm Water vapor

B11 20 m 1610 nm SWIR 1
B12 20 m 2190 nm SWIR

3.2 Multisensor data alignment320

Let us consider a collection of scenes in Northeast France for which we know321

the coordinates of each scene geometry and the timestamp in which scenes322

were observed using both Sentinel-1 and Sentinel-2 sensors. For each scene, we323

perform two geospatial queries to select a Sentinel-1 and a Sentinel-2 image324

acquired in a given time interval. The two queries are performed over the325

Sentinel-1 and Sentinel-2 collections, respectively, using the coordinates of the326

selected scenes and the selected time interval as query filters. The queried327

Sentinel-1 and Sentinel-2 images are recorded in the World Geodetic System328

1984 ensemble using metric units. As each query may return a resultset of329

images, we adopt a pipeline to select a representative image from each resultset.330

In particular, images are downloaded from Planetary using the STAC API.4331

For each scene in the study area, we first retrieve the Sentinel-2 image of the332

scene in a given month by formulating a STAC API query with the parameters333

"catalogue", "bbox" and "datetime" set as follows: the value "sentinel-2-l2a" is334

used as "catalogue", the "list of the coordinates of the four vertices of the335

rectangular box of the scene" is used as value for "bbox", and the "date inter-336

val from the first day to the last day of a given month" is used as value for337

"datetime". As the Sentinel-2 satellite may record images of the Earth every338

five days, the resultset of such query may contain several Sentinel-2 images339

recorded in the sentinel-2-l2a catalogue, covered by the given bbox, and ac-340

quired by the satellite within the selected datetime interval. The motivation341

for querying the sentinel-2-l2a catalogue with a time interval (one month in342

this study) is that cloud cover, shadows and defective pixels are among the343

main issues that may affect the Sentinel-2 imagery. The assumption for the344

success of a model development step performed with Sentinel-2 images is that345

images have to be as much as possible cloud and defective pixels-free. For this346

reason, we query Sentinel-2 imagery on a time interval (of one month in this347

study), to improve the possibility of choosing low-affected Sentinel-2 images348

in terms of clouds and defective pixels. Hence, we select the Sentinel-2 image349

4 https://planetarycomputer.microsoft.com/docs/quickstarts/reading-stac/
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of the resultset that achieves the lowest value of "cloud index". If several im-350

ages achieve the minimum value of the cloud index in the resultset, then we351

select the most recent Sentinel-2 image of this selection. The cloud index is352

computed based on the output of the Scene Classification Level (SCL) algo-353

rithm [30]. This information is also recorded as a band in the sentinel-2-l2a354

catalogue. Specifically, the SCL algorithm uses the reflectance properties of355

imagery bands to establish the presence or absence of clouds or defective pix-356

els in an image. In this way, it identifies clouds, snow and cloud shadows thus,357

generating a classification map, which consists of three different cloud classes358

(including cirrus), together with six additional classes covering shadows, cloud359

shadows, vegetation, not vegetated, water and snow land covers. For a can-360

didate Sentinel-2 image, the index of cloud is computed as the percentage of361

imagery pixels that the SCL algorithm recognises as noise, defective, dark,362

cloud, cloud shadow or thin cirrus.363

Given the Sentinel-2 image retrieved for a given scene in the given month,364

then we formulate the STAC API query to retrieve the Sentinel-1 image that365

is co-located in space and time with this Sentinel-2 image. The new query366

is performed by setting the "bbox" parameter as in the query performed to367

obtain the Sentinel-2 image while setting "catalogue" equal to "sentinel-1-rtc"368

and "datetime" equal to the "interval from three days before the date of the369

Sentinel-2 image and three days after the date of the Sentinel-2 image". The370

time interval of this query depends on the fact that we would extract a Sentinel-371

1 image that should be roughly co-located in time with the Sentinel-2 image.372

On the other hand, Sentinel-1 images are collected every three days with any373

weather by using a technology not affected by clouds or weather. In addition,374

we note that noise has been already removed from the Sentinel-1 images that375

are recorded in the "sentinel-1-rtc" catalogue of Planetary thanks to the appli-376

cation of the Radiometrically Terrain Corrected (RTC) process. This process377

has been performed before recording the images in the "sentinel-1-rtc" cata-378

logue by using the Ground Range Detected (GRD) Level-1 products produced379

by the European Space Agency with the RTC processing performed by Cat-380

alyst 5. Hence, we limit to search the Sentinel-1 images potentially collected381

before and after the Sentinel-2 image and select the Sentinel-1 image that is382

the closest in time to the respective Sentinel-2 image.383

3.3 Ground truth data, datasets and statistics384

We use the ground truth map of the bark beetle infestation hotspots that385

caused tree dieback in the Northeast of France in October 2018.6 This map386

was commissioned by the French Ministry of Agriculture and Food to Sertit387

5 https://catalyst.earth/
6 https://macarte.ign.fr/carte/3bd52aa2b6422a3a58b5086576f91080/Foyers+de+

scolytes+dans+les+pessi\%C3\%A8res+et+les+sapini\%C3\%A8res+du+Nord-Est+de+la+
France,+automne+2018-printemps+2019
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Fig. 1: Location of the centroids of the study 87 scenes in the Northeast of
France area. The red circles correspond to scenes considered for training se-
mantic segmentation models, while the blue circles correspond to scenes con-
sidered for evaluating semantic segmentation models.

(University of Strasbourg), to assess the damage in spruce forests of the North-388

east of France following the 2018 bark beetle outbreak. The remote sensing389

company WildSense assessed and fixed the infestation hotspot polygons of this390

map. In particular, to avoid mixed reflectance from various causes in discol-391

oration and defoliation of conifer, WildSense manually selected 87 squared,392

imagery tiles, covering spruce forestry areas fully under bark beetle attacks393

in October 2018. The scenes of the final collection cover 1004020 pixels at 10394

square meters resolution. The size of the scenes varies from 27×16 to 296×319395

pixels at 10 square meters resolution, while the percentage of infested ter-396

ritory per scene varies from 0.35% to 34.4% of the scene surface. The total397

percentage of damaged territory of the entire scene collection is 2.92%. For398

the experimental evaluation of this research work, we consider 71 scenes (cov-399

ering 772844 pixels at 10 squared meters resolution) as training scene set and400

16 scenes (covering 231176 pixels) as testing scene set. A map of the study401

scene location and their partitioning in the training set and testing set is de-402

picted in Figure 1. In addition, WildSense identified an extra scene covering403

spruce forestry areas fully under bark beetle attacks, according to a ground404

truth map acquired in March 2020. The geographic location of this scene is405

shown in Figure 2. This scene is a tile with size 205×135 covering 27675 pix-406

els with 10 squared meters as spatial resolution with a percentage of infested407

territory equal to 3.55%.408
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Fig. 2: Location of the scene for which the ground truth mask of the bark
beetle infestation was acquired in March 2020. The yellow patches map the
forest areas with tree dieback caused by the bark beetle.

In this study, we prepare four multisensor, satellite datasets populated409

with both the Sentinel-1 and Sentinel-2 images acquired for each scene in410

the study area in the Northeast of France. Hence, each dataset is populated411

with 87 Sentinel-1 images and 87 Sentinel-2 images roughly co-located in time412

within the same month. Specifically, the four multisensor satellite datasets were413

obtained by considering Sentinel-1 and Sentinel-2 images acquired monthly for414

the 87 study scenes in July 2018, August 2018, September 2018 and October415

2018, respectively. We partition each imagery dataset into a training set and416

a testing set by using the same split ratio for each month. In particular, as417

mentioned above, we select 71 multisensor images as the training set and 16418

multisensor images as the testing set for each of these four datasets. Notably,419

the multisensor images assigned to the four training sets were acquired for the420

same 71 training scenes although in different months. Similarly, the multisensor421

images assigned to the four testing sets were acquired for the same 16 testing422

scenes although in different months.423

The dataset collected in October 2018 – the time at which the ground truth424

map of the bark beetle-induced tree dieback of the study scenes was produced –425

is elaborated to analyse the ability to map bark beetle-induced tree dieback in426

October, while datasets collected for the same scenes from July to September427

2018 are elaborated to analyse the ability to predict as earlier as possible signs428

related to the bark beetle infestation (before trees start dying). Notice that429

the analysis of satellite imagery data collected in October 2018 follows some430

communications with foresters reported by [8], according to the beginning of431
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the autumn, i.e., October in this study, may be considered the most suitable432

period for proactive measures, i.e., for looking for areas of infested trees and433

removing them from the forest before next spring. On the other hand, the anal-434

ysis of satellite imagery data collected in July, August and September 2018435

is done to explore the performance of the proposed approach in predicting436

where bark beetle infestation disturbance events are likely to cause future tree437

dieback. This evaluation is done according to the considerations reported in438

[27] that the early detection symptoms of bark beetle infestation, which com-439

prise the presence of entrance holes, resin flow from entrance holes and boring440

dust that occur when the beetles attack the tree, penetrate the bark, and ex-441

cavate mating chambers and breeding galleries that can be observed through442

terrestrial fieldwork inventory. So, counting on manually produced labels in443

the summer months may help the training of semantic segmentation models444

for automated early detection in scenes uncovered by the forestry fieldwork.445

Figure 3 shows the box plots of Sentinel-1 and Sentinel-2 data collected in446

the datasets prepared for this study. All bands are plotted independently of447

each other for the two opposite ground truth classes (“damaged” and “healthy”).448

The box plots show that the range of both Sentinel-1 and Sentinel-2 data449

changes over time. Sentinel-2 data, particularly B5, B6, B7, B8, B8A and B9,450

show a greater divergence between the opposite classes than Sentinel-1 data,451

over all the datasets. So, this visual data exploration confirms the general idea452

that Sentinel-2 contains the most important information to recognize bark453

beetle infestation hotspots, while Sentinel-1 data can be considered ancillary454

data that may be used to support analysis of Sentinel-2 data, to gain accuracy455

in the bark beetle infestation inventory.456

In addition, Figure 4 shows the results of the bivariate correlation analysis457

performed by computing the Spearman’s rank correlation coefficient between458

Sentinel-1 and Sentinel 2 bands in images acquired between July and October459

2018. Spearman’s rank correlation coefficient is a non-parametric measure of460

rank correlation that assesses how well the relationship between two compared461

variables can be described using a monotonic function. It varies between -1 and462

+1 with 0 implying no correlation, -1 implying an exact monotonic relationship463

with negative correlation and +1 implying an exact monotonic relationship464

with positive correlation. This correlation analysis shows that the Sentinel-1465

bands VV and VH are negatively correlated to the Sentinel-2 bands B1, B2,466

B3, B4, B5, B11 and B12, while they are positively correlated to Sentinel-2467

bands B7, B8, B8A and B9. The Sentinel-2 band B6 passes from showing a low468

negative correlation with the Sentinel-1 bands VV and VH in July to showing a469

low positive correlation with the same Sentinel-1 bands in August, September470

and October. In general, the intensity of the correlation between the Sentinel-2471

bands B6, B7, B8, B8A and B9 and the Sentinel-1 bands VV and VH increases472

from July to August, September and October. In any case, the correlation is473

close to zero independently of the sign, especially on the bands B6, B7, B8,474

B8A and B9, which are the Sentinel-2 bands that better separate the opposite475

classes in the box plot analysis of the same data. Hence, this visual inspection476

of the collected data confirms a limited correlation between Sentinel-1 and477
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(a) S1 Jul18 (b) S2 Jul18

(c) S1 Aug18 (d) S2 Aug18

(e) S1 Sep18 (f) S2 Sep18

(g) S1 Oct18 (h) S2 Oct18

Fig. 3: Box plot distribution of the polarization values measured for the
Sentinel-1 bands and the radiometric values measured for the Sentinel-2 bands
recorded in the datasets of Sentinel-1 and Sentinel-2 images acquired in the
study site in July, August, September and October 2018. Bands are plotted
independently with respect to the two opposite classes in the logarithmic scale.

Sentinel-2 data, which is one of the prerequisites for taking advantage of a478

multisensor approach in model development.479

Figure 5 shows the box plot of the cloud index of the Sentinel-2 images480

selected for this study. This plot shows the high quality of Sentinel-2 images481

selected in each month. In fact, we are unable to select images with a cloud482

index lower than 5% only in one image in August 2018 and two images in483
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(a) Jul18

(b) Aug18

(c) Sep18

(d) Oct18

Fig. 4: Spearman’s rank correlation coefficient computed between Sentinel-1
and Sentinel-2 bands in the images acquired in the study site in July, August,
September and October 2018

October 2018. We also note that differences between the box-plot quartiles are484

slightly higher in October 2018 than in the period July-September 2018. This485

depends on the expected increase in the frequency of cloudiness as autumn486

advances.487

Finally, we collect and prepare the pair of Sentinel-1 and Sentinel-2 images488

of the scene for which the ground truth map was acquired in March 2020. This489

pair of images is used in the evaluation stage only, to explore the transferabil-490

ity of the semantic segmentation model learned in October 2018 to subsequent491

periods. The Sentinel-2 image acquired for this scene in March 2020 and se-492

lected in this study has a low noise and cloud index equal to 0.16%. Finally,493
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Fig. 5: Box plot of cloud index of Sentinel-2 images acquired in the study site
in July, August, September and October 2018.

(a) S1 Mar20 (b) S2 Mar20

Fig. 6: Box plot distribution of the polarization values measured for the
Sentinel-1 bands and the radiometric values measured for the Sentinel-2 bands
recorded in the Sentinel-1 image and the Sentinel-2 image acquired in March
2020 for the scene seen in Figure 2. Bands are plotted independently to the
two opposite classes in the logarithmic scale.

Figure 6 shows the box plots of both Sentinel-1 and Sentinel-2 data collected494

in March 2020 for this scene. We note that the outliers of Sentinel-1 data are495

spread across a lower heat range than that observed in the images collected in496

the summer and autumn months of 2018. On the other hand, B5, B6, B7, B8,497

B8A and B9 of Sentinel-2 data still show a remarkable divergence between the498

opposite classes as in the images collected in the summer and autumn months499

in 2018.500

4 Semantic segmentation model development501

The model development step is performed by leveraging the aligned Sentinel-502

1 and Sentinel-2 images of scenes for which the ground truth mask of bark503

beetle infestation is available. Let us consider D = {(XS1, XS2, Y) |XS1 ∈504

RH×W ×2, XS2 ∈ RH×W ×12, Y ∈ RH×W ×1} a collection of labelled Sentinel-505

1 and Sentinel-2 images of forest scenes, where every ground truth mask Y506

is associated with the images XS1 and XS2, acquired from Sentinel-1 and507
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Fig. 7: Early fusion. Abbreviations: 2D Conv = 2D Convolutional layer;
BN=Batch Normalization; S1=Sentinel-1; S2=Sentinel-2

Sentinel-2 satellites, respectively. For each scene, H and W denote the spatial508

extent of the monitored scene in terms of scene height and scene width, respec-509

tively. The model development step trains a semantic segmentation network510

from D through a U-Net-like architecture that is also in charge of learning the511

data fusion.512

The U-Net architecture is composed of an encoder part and a decoder part.513

The encoder extracts features. It consists of multiple blocks, where each block514

is composed of a Batch Normalization layer and a 2D Convolutional layer515

followed by Max-Pooling for downsampling. At each downsampling step, the516

height and width of the tensor halves, while the number of channels remains517

unchanged. The decoder part upsamples the encoded feature maps to the518

original input shape. It consists of one transposed Convolutional layer for519

upsampling, followed by multiple blocks, each of which each block consists of a520

Batch Normalization layer and a 2D Convolutional layer. Skipping connections521

between the decoder part and the encoder part are used to propagate the522

spatial information from the earlier layers to the deeper layers to alleviate523

the vanishing gradients problem [42]. The final classification of each imagery524

pixel is obtained by using the Sigmoid activation function. The U-Net used in525

this study is trained via the Tversky loss, which is commonly used to handle526

imbalanced data [20].527

The data fusion mechanism is implemented through three different strate-528

gies, namely, Early fusion, Middle fusion and Late fusion, which are defined529

according to the general classification of multimodal data fusion methods re-530

ported in the survey of [46]. The Early fusion strategy is the first mechanism531

adopted in literature for the multimodal data fusion in the deep neural scenario532

[13]. It is implemented via a simple concatenation, performed at an early stage,533

of features from different modalities (i.e., sensors in this study). The concate-534

nation produces a single input space for the model development. In our study,535

the Early fusion strategy, shown in Figure 7, concatenates each pair of images536

XS1 and XS2 obtaining a single hypercube with dimension H × W × 14. A537

traditional U-Net architecture is trained on the newly stacked hypercubes.538

The Middle fusion strategy combines features learned with the separate539

branches of a multi-input deep neural network that takes data acquired from540
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Fig. 8: Middle fusion. Abbreviations: 2D Conv = 2D Convolutional layer;
BN=Batch Normalization; S1=Sentinel-1; S2=Sentinel-2

Fig. 9: Late fusion. Abbreviations: 2D Conv = 2D Convolutional layer;
BN=Batch Normalization; S1=Sentinel-1; S2=Sentinel-2

different modalities as separate inputs. The fusion is performed at an inter-541

mediate layer of the deep neural network. The output of this combination542

performed at the fusion layer is processed across the subsequent layers of the543

network until the decision layer. In our study, the Middle fusion strategy, de-544

picted in Figure 8 uses an architecture with two encoder branches, each taking545

XS1 and XS2 as input, respectively. The output of these branches is fed into a546
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single decoder. The two encoder branches are mapped into a common feature547

space via a fusion operation and the fusion output is used for the skipping548

connections. Two fusion operators, named SUM and CONC, are considered in549

this work for the middle fusion. The SUM operator performs an element-wise550

summation between the outputs of two parallel blocks in the encoder parts.551

The CONC operator produces a single hypercube by stacking the outputs of552

two parallel blocks in the encoder parts. Subsequently, it employs a 2D Con-553

volutional layer to halve the channel size of the output hypercube. This is554

done to align with the number of channels of the corresponding decoder block555

for skipping connections. Both the concatenation [13,47] and the element-wise556

summation [33,36] are two common fusion operators used in the literature to557

fuse multimodal features enclosed in RGB images and Depth images by using558

CNN-based algorithms. We select these two operators for the Middle fusion559

strategy performed in this study since they implement two different mecha-560

nisms in terms of information retention. In particular, the concatenation op-561

erator (CONC) allows us to keep all the information from both Sentinel-1 and562

Sentinel-2 data, where each feature is entirely preserved. On the other hand,563

the summation operator (SUM) provides a more compact representation than564

the concatenation. In fact, it fuses the features originated from the two sensors565

into a single vector having the same size of the combined vectors. This opera-566

tor can be particularly useful when the features are aligned and represent the567

same spatial locations or attributes.568

The Late fusion strategy processes separately input data provided by each569

modality through distinct deep neural models, and their outputs are combined570

at the later stage, usually at the classification stage. In our study, the Late fu-571

sion strategy, illustrated in Figure 9, uses an architecture with two identical,572

parallel encoder and decoder paths that take as input XS1 and XS2, respec-573

tively. The outputs returned by the two decoders are stacked into a single574

hypercube and the Sigmoid activation function is employed in the final layer.575

Final considerations concern the expected behaviour of the three data fusion576

schemes. According to the discussion reported in [46], the Early fusion strategy577

is expected to better leverage cross-modal information interaction as early as578

possible in the learning stage. On the other hand, the Late fusion strategy is579

considered flexible, but it may lack sufficient cross-modal correlation. Finally,580

the Middle fusion strategy is expected to find a trade-off between Early fusion581

and Late fusion, with possible advantages in terms of final performances.582

5 Empirical evaluation and discussion583

5.1 Implementation details584

We implemented DIAMANTE in Python 3.0. The source code is available on-585

line.7 In this study, we consider a U-Net architecture optimized for satellite586

7 https://github.com/gsndr/DIAMANTE



20 Giuseppina Andresini et al.

images implemented using the Keras 2.15 and TensorFlow as back-end 8. Both587

encoder and decoder components of the different variants of U-Net architec-588

tures tested in this study are composed of five main blocks. In the encoder589

part, each block consists of 3 blocks containing a Batch Normalization layer590

and a 2D Convolutional layer, followed by a 2 × 2 Max-Pooling operation or591

downsampling. The stride of the Max-Pooling operation was set equal to 2.592

In the decoder part, each main block consists of a transposed Convolutional593

layer (for upsampling) followed by 3 blocks containing a Batch Normaliza-594

tion layer and a 2D Convolutional layer. The kernel size of each Convolutional595

layer was set equal to 3×3. In all hidden layers the Rectified Linear Unit func-596

tion (ReLU) was used as the activation function, while the Sigmoid activation597

function was used in the final semantic segmentation layer. The SUM operator598

was implemented using the Add layer available in TensorFlow.9 The training599

of the U-Net architectures was performed using imagery tiles of size 32 × 32600

extracted from the imagery scenes by using tiler library.10 Both Sentinel-1 and601

Sentinel-2 data were scaled between 0 and 1 using the Min-Max scaler (as it is602

implemented in the Scikit-learn 0.22.2 library) In addition, we considered a tile603

augmentation strategy to improve the performance of the U-Net architecture604

by using the Albumentations library 11. Specifically, we quintupled the number605

of training imagery tiles by creating new tiles applying traditional computer606

vision augmentation operators (i.e., Horizontal Flip, Vertical Flip, Random607

Rotate, Transpose and Grid Distortion). We used the tree-structured Parzen608

estimator algorithm to optimize hyper-parameters of U-Net architectures (i.e.,609

mini-batch size in {22, 23, 24, 25, 26}, learning rate between 0.0001 and 0.01610

and image augmentation in {True, False}), by using 20% of the training set611

as the validation set. In particular, the hyper-parameter configuration that612

achieves the highest F1 score on the minority class ("damaged") in the valida-613

tion set was automatically selected as the best semantic segmentation model.614

We performed the gradient-based optimisation using the Adam update rule.615

Finally, each U-Net model was trained with a maximum number of epochs616

equal to 150, using an early stopping approach to retain the best semantic617

segmentation model.618

5.2 Metrics619

To evaluate the accuracy of the semantic segmentation masks, we measured the620

following metrics: F1 score (F1) computed for the two opposite classes, Macro621

F1 score (Macro F1) averaged on the two opposite classes and Intersection-over-622

Union (IoU). Specifically, the F1 score measures the harmonic mean of Precision623

and Recall. The Precision= T P
T P +F P is the fraction of pixels correctly classified624

in a specific class (TP ) among pixels of the considered class (TP + FP ). The625

8 https://github.com/karolzak/keras-unet/tree/master
9 https://www.tensorflow.org/api_docs/python/tf/keras/layers/Add

10 https://github.com/the-lay/tiler
11 https://albumentations.ai/
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Recall= T P
T P +F N is the fraction of pixels correctly classified in a specific class626

(TP ) among pixels classified in the considered class (TP +FN). In this study,627

we computed the F1 score for the two opposite classes of both case studies:628

“healthy” (F1(h)) and “damaged” (F1(d)). Macro F1 measures the average of629

each F1 score value per class, that is, Macro F1= F 1(h)+F 1(d)
2 . The IoU score630

is the ratio of the intersected area to the combined area of prediction and631

ground truth, that is, IoU= T P
T P +F P +F N . This is commonly used to evaluate632

the accuracy of models trained in both semantic segmentation and object633

detection problems. All metrics are reported in percentages and computed634

on the images collected for the testing scenes. For each metric, the higher635

the value, the better the performance of the semantic segmentation masks636

predicted.637

5.3 Results638

The illustration of results is organised as follows. Section 5.3.1 presents the639

results achieved by processing the multisensor imagery dataset collected in the640

study area in October 2018. This analysis is done to evaluate the performance641

of the data fusion strategies at the same time the ground truth masks of the642

study scenes were created. Section 5.3.2 presents a temporal study where we643

explore the performance of the models trained and evaluated considering satel-644

lite images acquired in July, August and September 2018. This analysis is done645

to explore the ability of the considered data fusion strategies to learn a model646

capable to perform early detection of tree dieback phenomena. Finally, Sec-647

tion 5.3.3 illustrates the results achieved by considering multisensor semantic648

segmentation models trained from satellite images acquired in October 2018649

to predict the mask of tree dieback caused by a bark beetle infestation in a650

new scene located in the Northeast of France, but monitored in March 2020.651

This analysis explores the transferability over time of a semantic segmentation652

model.653

5.3.1 Performance Analysis654

In this Section, we analyse the performance of the semantic segmentation655

masks produced for the testing scenes of the Northeast France study by us-656

ing the multisensor semantic segmentation models trained via the three data657

fusion schemes illustrated in Section 4. As baselines, we consider the single-658

sensor semantic segmentation models trained with a traditional U-Net by pro-659

cessing either the Sentinel-1 images (S1 U-Net) or the Sentinel-2 images (S2660

U-Net) alone. With regard to the Middle fusion strategy, we report the results661

achieved with the two fusion operators: SUM and CONC. This evaluation was662

conducted by processing the dataset of images acquired in October 2018 for663

both the training and evaluation stages. The accuracy metrics measured on664

the semantic segmentation masks produced for the images of the testing scenes665

are reported in Table 3. As we expected, the output of the stand-alone use666
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Table 3: Accuracy performance of semantic segmentation produced with S1
U-Net, S2 U-Net, Early fusion U-Net, Middle fusion (SUM) U-Net, Middle fusion
(CONC) U-Net and Late fusion U-Net in the imagery collections acquired in
October 2018. The best results are in bold

Configuration F1(h) F1(d) IoU Macro F1

S1 U-Net 61.90 5.47 2.81 33.68
S2 U-Net 99.14 64.65 47.76 81.89
Early fusion U-Net 99.42 69.09 52.78 84.25
Middle fusion (SUM) U-Net 99.35 70.93 54.92 85.13
Middle fusion (CONC) U-Net 99.40 69.90 53.73 84.65
Late fusion U-Net 99.29 67.66 51.25 83.47

of Sentinel-1 images is unsatisfactory for this inventory task. In fact, the con-667

figuration S1 U-Net achieves the lowest performance in all accuracy metrics.668

Better performance can be achieved by processing Sentinel-2 images in place of669

Sentinel-1 images. However, this evaluation study shows that the data fusion670

of Sentinel-1 and Sentinel-2 images can help us to improve the performance of671

the semantic segmentation model regardless of the type of data fusion strategy672

employed. In fact, the Early fusion U-Net, Late fusion U-Net and Middle fusion673

U-Net all achieve better performance than S2 U-Net that considers Sentinel-674

2 images only. More in detail, the best configuration in terms of F1(d), IoU675

and Macro F1 is achieved with the Middle fusion schemes having Middle fusion676

(CONC) U-Net as runner-up of Middle fusion (SUM) U-Net. These conclusions677

are consistent with the observations on the expected behaviour of the data678

fusion schemes reported in Section 4. Figures 10b-10g show the semantic seg-679

mentation masks of a sample testing scene predicted by the compared models,680

while Figure 10a shows the RGB image of this sample scene. The masks high-681

light how the use of a data fusion strategy helps us to reduce the number of682

false alarms in this case. Specifically, the bark beetle infestation masks pre-683

dicted using the multisensor U-net trained with both Early fusion and Middle684

fusion schemes show only one false infested patch, while the U-Net trained685

from Sentinel-1 data shows large extensions of false infested areas and the686

U-Net trained from Sentinel-2 data shows two false infested patches. Notably,687

the multisensor U-Net trained with Late fusion strategy removes one of the688

false patches discovered by S2 U-Net, but, at the same time, it alerts a new689

false patch that is undetected in the other masks. We note that the Late fusion690

strategy is the worst-performing fusion strategy of this experiment. This result691

suggests that although the Late fusion strategy may allow us to correct some692

false patches detected processing Sentinel-2 data only, it may also produce693

some artefacts at the decision level, which may cause false alarms unseen in694

the remaining configurations. Finally, the masks of this example show that the695

use of SUM operator performs better than the CONC operator in delineating696

the large damaged patch located on the left side of the scene.697
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(a) RGB (b) S1 U-Net F1(d)=5.80 (c) S2 U-Net F1(d)=64.72

(d) Early U-Net
F1(d)=69.98

(e) Middle fusion (SUM) U-
Net F1(d)=73.76

(f) Middle fusion (CONC) U-
Net F1(d)=69.34

(g) Late U-Net F1(d)=65.38

Fig. 10: RGB of the Sentinel-2 image acquired in October 2018 for a testing
scene of the study area in the Northeast of France (10a). Inventory masks of
tree dieback areas caused by bark beetle hotspots in this scene as they are
predicted by S1 U-Net (10b), S2 U-Net (10c), Early fusion U-Net (10d), (10g),
Middle fusion U-Net with operators SUM (10e) and CONC (10f) and Late fusion
U-Net trained on the imagery set acquired in October 2018 for the training
scenes of the study area.

5.3.2 Temporal Analysis698

To complete this investigation, we illustrate the results of a temporal study699

conducted to explore the accuracy performance of the semantic segmentation700

maps produced when the Sentinel-1 and Sentinel-2 images were acquired in701

the middle of summer (i.e., July 2018) and the late summer (i.e., August 2018702

and September 2018), while the ground truth map of the tree dieback was703

observed in early autumn (October 2018). This analysis is done to explore704

the performance of the presented data fusion strategies in the early detection705

of areas where bark beetle infestation disturbance events are likely to cause706

(near-)future tree dieback. The temporal snapshots of this experiment were707

selected according to the recent achievements of the analysis on the spectral708
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Table 4: Accuracy performance of the semantic segmentation models produced
with S1 U-Net, S2 U-Net, Early fusion U-Net, Middle fusion (SUM) U-Net, Middle
fusion (CONC) U-Net and Late fusion U-Net in the multisensor images acquired
with both Sentinel-1 and Sentinel-2 satellites from July 2018 to October 2018.
For each configuration, the best results are in bold, while the runner-up con-
figuration is underlined.

Imagery set Configuration F1(h) F1(d) IoU Macro F1

Jul18

S1 U-Net 73.53 4.03 2.06 38.68
S2 U-Net 97.23 30.18 17.78 63.71
Early fusion U-Net 98.26 31.49 18.69 64.87
Middle fusion (SUM) U-Net 98.39 36.46 22.29 67.43
Middle fusion (CONC) U-Net 98.13 35.27 21.41 66.70
Late fusion U-Net 98.36 34.20 20.63 66.28

Aug18

S1 U-Net 40.87 4.05 2.07 22.46
S2 U-Net 95.58 26.46 15.25 61.01
Early fusion U-Net 98.22 32.49 19.40 65.35
Middle fusion (SUM) U-Net 98.92 37.41 23.00 68.16
Middle fusion (CONC) U-Net 99.35 36.37 22.22 67.29
Late fusion U-Net 98.02 36.15 22.06 67.08

Sep18

S1 U-Net 72.66 5.26 2.70 38.96
S2 U-Net 99.32 58.92 41.77 79.13
Early fusion U-Net 99.14 63.42 46.44 81.28
Middle fusion (SUM) U-Net 99.35 64.28 47.36 81.81
Middle fusion (CONC) U-Net 99.29 63.16 46.15 81.22
Late fusion U-Net 99.28 64.99 48.14 82.14

Oct18

S1 U-Net 61.90 5.47 2.81 33.68
S2 U-Net 99.14 64.65 47.76 81.89
Early fusion U-Net 99.42 69.09 52.78 84.25
Middle fusion (SUM) U-Net 99.35 70.93 54.92 85.13
Middle fusion (CONC) U-Net 99.40 69.90 53.73 84.65
Late fusion U-Net 99.29 67.66 51.25 83.47

separability between the healthy and bark beetle attacked trees illustrated709

in [14]. In particular, this study shows that bark beetle attacks commonly710

occur in the summer, while the spectral separability between the two opposite711

classes ("Healthy" and "Damaged") increases moving from July to October. In712

addition, it highlights that a time span of approximately one month commonly713

occurs between the attack of the beetles to a tree and the development of the714

first symptoms (green-attack) in the tree. Hence, based on the conclusions715

drawn in this study, the green attack detection stage can reasonably arise in716

the summer period spanned from July to August. Based on these premises,717

the accuracy metrics measured on the semantic segmentation maps produced718

for the testing scenes of this study in each month between July and October719

2018 are reported in Table 4.720

These results show that the data fusion of Sentinel-1 and Sentinel-2 con-721

tinues to help us to gain accuracy also when the multisensor semantic seg-722

mentation model is trained to forecast tree dieback areas caused by the bark723

beetle infestation. Notably, Middle fusion (SUM) U-Net achieves the highest724

F1(d), IoU and Macro F1 in segmentation maps produced in experiments per-725

formed in July 2018, August 2018 and October 2018. The only exception is726
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Fig. 11: Comparison of the configurations: Macro F1 measured for S1 U-Net, S2
U-Net, Early fusion U-Net, Middle fusion (SUM) U-Net, Middle fusion (CONC)
U-Net and Late fusion U-Net, performed with the Friedman-Nemenyi test run
on Macro F1 measured in the temporal analysis performed from July 2018 to
October 2018 (computed pvalue = 0.013)

observed in the segmentation maps produced for the evaluation in Septem-727

ber 2018. However, also in the experiment conducted in September 2018, the728

Middle fusion (SUM) U-Net still achieves good performance by ranking as the729

runner-up of the Late fusion U-Net. To draw conclusive conclusions on the bet-730

ter data fusion strategy, we perform the Friedman-Nemenyi test to compare731

the Macro F1 measured for S1 U-Net, S2 U-Net, Early fusion U-Net, Middle732

fusion (SUM) U-Net, Middle fusion (CONC) U-Net and Late fusion U-Net on the733

multiple segmentation maps produced for the testing data of the multisensor734

datasets of this temporal analysis. This non-parametric test ranks the model735

configurations compared for each dataset separately, so the best-performing736

model is given a rank of 1, the second-best rank of 2 and so on. The results of737

the Friedman-Nemenyi test reported in Figure 11 shows that the test groups738

the configurations adopting a multisensor data fusion strategy as statistically739

different from the configurations that consider either Sentinel-1 data only (S1740

U-Net) or Sentinel-2 data only (S2 U-Net). In addition, the Middle fusion (SUM)741

U-Net achieves the highest rank by having the Middle fusion (CONC) U-Net as742

runner-up. Notably, these results of the comparative test support the conclu-743

sions already drawn in 5.3.1 and 5.3.3 on the superior performance of a Middle744

fusion strategy to combine Sentinel-1 and Sentinel-2 data for bark beetle in-745

festation detection.746

5.3.3 Transferability Analysis747

In this Section, we examine the accuracy of the semantic segmentation models748

learned in October 2018 when used to detect the tree dieback events caused749

by bark beetle infestations in March 2020. The accuracy metrics measured in750

this experiment are reported in Table 5. These results show that also in this751

evaluation scenario, the data fusion of Sentinel-1 and Sentinel-2 may help us752

to improve the performance of a semantic segmentation model even when it753

was trained on past images and used for mapping the bark beetle infestation754

in future images. The only exception is observed for the Late fusion strategy755



26 Giuseppina Andresini et al.

Table 5: Accuracy performance of semantic segmentation produced with S1
U-Net, S2 U-Net, Early fusion U-Net, Middle fusion (SUM) U-Net, Middle fusion
(CONC) U-Net and Late fusion U-Net in the pair of Sentinel-1 and Sentinel-2
images acquired in March 2020. The best results are in bold.

Configuration F1(h) F1(d) IoU Macro F1

S1 U-Net 82.04 13.55 7.27 37.22
S2 U-Net 96.20 42.18 26.73 69.20
Early fusion U-Net 98.07 50.43 33.72 74.25
Middle fusion (SUM) U-Net 98.03 49.45 32.84 73.74
Middle fusion (CONC) U-Net 97.65 55.49 38.40 76.57
Late fusion U-Net 96.00 41.08 25.85 68.54

that achieves lower performance than S2 U-Net. In general, the highest F1(d),756

IoU and Macro F1 are achieved with the Middle fusion (CONC) U-Net schema757

having Middle fusion (SUM) U-Net as runner-up. This confirms the conclu-758

sions on the better performance of the Middle fusion strategy already drawn in759

Section 5.3.1. Finally, Figures 12b-12g show the semantic segmentation masks760

predicted for the scene under evaluation. The RGB image of the scene in761

March 2020 is shown in Figure 12a. The extracts show that the data fusion762

schemes, except for Late fusion, allow us to reduce the extension of the false763

alarm areas detected. In both Early fusion and Middle fusion (SUM) schemes,764

the higher precision is achieved at the cost of a lower recall. Both data fusion765

configurations allow us to map correctly a percentage of the infested area that766

is lower than the one mapped processing Sentinel-2 data only. Instead, the767

use of the Middle fusion (CONC) strategy allows us to achieve the best trade-768

off between precision and recall in detecting the tree dieback areas caused by769

the bark beetle infestation. In general, these maps confirm the idea that also770

when the semantic segmentation model is trained on historical data, the main771

contribution to the correct detection of the bark beetle infestation is given772

by Sentinel-2 data, while Sentinel-1 data can aid in reducing false alarms and773

better delimiting infested areas.774

5.4 Considerations and Findings775

The experimental assessment highlights the general advantages of using mul-776

tisensor data over a single data source in various scenarios of bark beetle777

detection, including early disease detection and out-of-year temporal transfer.778

While Sentinel-1 alone is not suitable for the considered downstream mapping779

task, using Sentinel-2 alone yields satisfactory results. However, the combined780

use of these two publicly available and freely accessible remote sensing data781

sources provides the best overall results.782

More specifically, the joint use of Sentinel-1 and Sentinel-2 data signifi-783

cantly reduces false alarms and improves the delineation of infested areas in784

the resulting binary maps. Regarding the early detection of bark beetle attacks785

(Section 5.3.2), signs of the attack can be detected with reasonable accuracy786
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(a) RGB (b) S1 U-Net
F1(d)=13.55

(c) S2 U-Net
F1(d)=42.18

(d) Early U-Net
F1(d)=50.43

(e) Middle fusion
(SUM) U-Net
F1(d)=49.45

(f) Middle fusion
(CONC) U-Net
F1(d)=55.49

(g) Late U-Net
F1(d)=41.08

Fig. 12: RGB of the Sentinel-2 image acquired in March 2020 (12a). Inventory
masks of tree dieback areas caused by bark beetle hotspots in this scene as
they are predicted by S1 U-Net (12b), S2 U-Net (12c), Early fusion U-Net (12d),
Middle fusion U-Net with operators SUM (12e) and CONC (12f) and Late fu-
sion U-Net (12g) trained on the imagery set acquired in October 2018 for the
training scenes of the study area

.

one month before the acquisition of ground truth data (September 2018). How-787

ever, the disease’s early stages (before July 2018) are weakly detectable via788

satellite imagery.789

An additional challenge is represented by the out-of-year transfer of the790

model trained on 2018 data to 2020 data. Recent studies in the domain of791

remote sensing analysis have highlighted that spatial and temporal distribution792

shifts can hinder the direct deployment of a model trained on a particular793

area or time period to a different area or time period [10,32]. The results794

obtained in Section 5.3.3 confirm this point, indicating that there is still room795

for research activities in the way historical data can be leveraged in order to796

improve current mapping results.797

Finally, the comparison of the different approaches indicates that all fusion798

strategies are statistically significant compared to single source analysis, with799

the Middle fusion (SUM) U-Net model exhibiting the best average performance.800
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This finding underscores once more the importance of combining multisensor801

satellite data for mapping tree dieback induced by bark beetle infestation.802

6 Conclusion803

In this study, we investigate the effectiveness of a data-centric semantic seg-804

mentation approach to map forest tree dieback areas caused by bark beetle805

hotspots. First, we define a data-centric pipeline to collect and prepare im-806

ages acquired from both the SAR Sentinel-1 sensor and the optical Sentinel-807

2 sensor. Then, we explore the accuracy performance of several data fusion808

strategies, namely Early fusion, Middle fusion and Late fusion adopted for the809

development of a U-Net-like model combining both Sentinel-1 and Sentinel-2810

images acquired in the Northeast of France. Finally, we investigate the per-811

formance of the proposed strategies in multisensor imagery data acquired in812

Northeast of France with the map of bark beetle infestation available in Octo-813

ber 2018. We conducted the evaluation with imagery data prepared according814

to the data curation pipeline presented in this study. The experimental results815

show that multisensor data can actually help us to improve the ability of the816

U-Net model to detect tree dieback areas caused bark beetle infestations. The817

evaluation also explores the transferability of the output of the model devel-818

opment step, as well as the performance of the proposed approach in early819

detection of infestations that will cause tree dieback.820

As future work, we plan to continue the investigation of multisensor data821

fusion strategies in combination with ecological and weather data, as well tem-822

poral data trend information. In addition, we plan to extend the investigation823

of the transferability of the semantic segmentation model, trained with the824

described multisensor data fusion techniques to unseen data settings. In par-825

ticular, we intend to start a systematic exploration of some transfer learning826

approaches to obtain the transferability of a "general" semantic segmentation827

model trained for a specific disturbance agent to different disturbance agents.828

For example, we intend to investigate the transferability of a semantic seg-829

mentation model trained for mapping forest tree die-back hotspots caused830

by bark beetle infestation to perform the inventory of tree die-back hotspots831

caused by different families of fungal forest pathogens. In addition, we hope832

to be able to acquire large-scale data within the experimental phase of the EU833

project SWIFTT to be able of investigating, on large scale, the transferability834

of a semantic segmentation model trained in a geographic area to a different835

geographic area, in addition to a future time.836
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