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Abstract
The automatic translation of speech into pictogram terms
(Speech-to-Pictos) represents a novel NLP task with the poten-
tial to enhance communication for individuals with language
impairments. Recent research has not explored the adapta-
tion of state-of-the-art methods to this task, despite its signif-
icance. In this work, we investigate two approaches: (1) the
cascade approach, which combines a speech recognition system
with a machine translation system, and (2) the end-to-end ap-
proach, which tailors a speech translation system. We compare
state-of-the-art architectures trained on an aligned speech-to-
pictogram dataset, specially created and released for this study.
We conduct an in-depth automatic and human evaluation to an-
alyze their behavior on pictogram translation. The results high-
light the cascade approach’s ability to generate relevant transla-
tions from everyday read speech, while the end-to-end approach
achieves competitive results with challenging acoustic data.
Index Terms: automatic speech recognition, machine transla-
tion, speech translation, pictograms, augmentative and alterna-
tive communication.

1. Introduction
Alternative and Augmentative Communication (AAC) encom-
passes tools and strategies to facilitate communication for in-
dividuals facing language impairment [1]. These disorders af-
fect various language abilities, from speech production to lis-
tening, reading, and writing. Genetic diseases, autistic spec-
trum disorders, and intellectual deficits can be the cause of it.
In AAC, pictograms serve to convey messages in everyday life
situations. It is a graphic representation associated with a con-
cept (object, person, action, etc.) [2], offering benefits to vi-
sualize syntax, manipulate words, and facilitate language ac-
cess [3]. Moreover, pictograms are widely utilized resources
among medical institutes, caregivers, and families 1. From a
social perspective, a 2021 French Red Cross survey identified
stress reduction, increased autonomy, and positive well-being
for AAC users. However, the study identifies various environ-
mental barriers that limit its use and dissemination. The sur-
vey specifically mentions a lack of awareness among caregivers
about the potential of AAC and the difficulty of accessing tools
(lack of information, training, financial resources, and time).

We believe that implementing speech-to-pictograms trans-
lation systems, a task we will refer to as Speech-to-Pictos
(S2P), could help address these challenges. As printed in
Table 1, the S2P system predicts a sequence of terms (pic-
tos tokens), each associated with a unique ARASAAC 2 pic-
togram (arasaac pictos), from an audio segment.

1https://arasaac.org/world
2https://arasaac.org/

Table 1: Illustration of the S2P task, with the audio segment as
input, and output the sequence of terms (pictos tokens).

audio
transcript j’ai fait une découverte incroyable
pictos tokens passé je faire une découverte incroyable

arasaac pictos

Automatic translation from french speech to a sequence of
pictograms was studied for the first time by Vaschalde et al. [4].
Their methodology adapts the Text2Picto system [5] by inte-
grating four modules: an Automatic Speech Recognition (ASR)
system, a simplification system, a word sense disambiguation
model, and a module to display the sequence of pictograms. The
preliminary study does not report automatic or human evalua-
tions. To our knowledge, there exists no other studies exploring
the translation of speech into pictograms for French.

Contributions:
1. We introduce two approaches to automatically translate

speech into pictogram terms, cascaded and end-to-end.
2. We construct and release two freely available corpora of

aligned speech-text-pictograms for this task.
3. We implement and publish state-of-the-art Automatic Speech

Recognition (ASR), Machine Translation (MT), and Speech
Translation (ST) models adapted to the datasets 3.

4. We present both an automatic and an original human evalua-
tion for the S2P task, which yield competitive results with a
cascade approach for our target group.

2. Proposed methods
In this work, we explore both cascade and end-to-end ap-
proaches for the Speech-to-Pictos (S2P) task, focusing on state-
of-the-art models presented in the following sections.

2.1. Cascade approach

The cascade approach consists of an ASR system and an MT
system. The transcription provided by the ASR system is the
entry point for the MT system, whose goal is to translate a
source language sentence X = (x1, ..., xn) (the French tran-
scription) into the target language sentence Y = (y1, ..., yn)
(the picto tokens sequence). For the S2P task, the target lan-
guage is the “pictographic language” corresponding to the se-

3The code is released at https://github.com/
macairececile/speech-to-pictograms



quence of terms (single word, multi-word expression, or entire
sentence), each associated with an ARASAAC pictogram.
Automatic speech recognition. Impressive results have been
demonstrated in downstream speech tasks with the applica-
tion of self-supervised learning (SSL) [6, 7]. We consider
Wav2Vec 2.0 [8], which learns robust speech representations
from a large collection of unlabeled data. The architec-
ture is based on convolutional layers and Transformers [9].
Wav2vec 2.0 is then fine-tuned on labeled data with a Con-
nectionist Temporal Classification (CTC) loss [10]. Recent
works have introduced massively multimodal and multilin-
gual models, achieving competitive ASR results without the
need for a fine-tuning step. Whisper [11] employs the Trans-
former architecture [9] trained in a weakly supervised pre-
training fashion with 680,000 hours of multilingual labeled
data (from 100 languages). SeamlessM4T 4 is a multimodal
and multilingual machine translation model covering a hun-
dred languages. The architecture combines a Transformer tex-
tual encoder-decoder NLLB, a Conformer-based W2v-BERT
2.0 speech encoder [12], a Text-to-Unit encode-decoder and
a HiFi-GAN unit-vocoder [13]. SeamlessM4T preserves ele-
ments of prosody and vocal style in all covered languages.
Machine translation. The MT landscape explores different ap-
proaches. Ott et al. [14] present NMT, a sequence-to-sequence
machine translation Transformer model trained from scratch.
The architecture takes a common vocabulary for each language
pair, and the data are tokenized into sub-word units using the
Byte-Pair Encoding (BPE) algorithm. Recent works investi-
gate pre-training approaches. Liu et al. [15] introduce mBART,
a sequence-to-sequence auto-encoder model pre-trained on a
large-scale monolingual data in multiple languages with the
BART objective [16]. This work emphasizes its advantage for
languages not present in the pre-training data. Raffel et al. [17]
propose T5, an encoder-decoder model with a transfer learning-
based approach. Each textual data is treated as a text-to-text
problem, enabling the model to perform multiple tasks (docu-
ment summarization, machine translation, etc.) through a single
model. The pre-training includes both supervised and unsuper-
vised training on 20 TB of textual data from English, French,
Romanian, and German languages. Finally, Costa-jussà 5 intro-
duce NLLB, a massively multilingual Transformer-type model
capable of automatically translating into 200 languages. This
linguistic coverage can be beneficial between two related lan-
guages through interlinguistic transfer [18].

2.2. End-to-end approach

The second approach adapts end-to-end Speech Translation
(ST) systems to our task. An ST model performs a direct
translation from an audio sequence in a source language s =
(s1, ..., s|s|) to the text y = (y1, ..., y|y|) in the target language.
End-to-End ST circumvents the need for intermediary text and
reduces the risk of error propagation.

In this work, we seek to leverage a system suitable for low-
resource contexts. A recent work by Ye et al. [19] present
ConST based on a contrastive learning approach. It aims to en-
code similar audio and textual representations in a close space.
Comprising four modules, ConST integrates a vocal encoder
using Wav2Vec 2.0 representations, a lexical embedding layer,
and a Transformer encoder-decoder. The reported BLEU scores
on MUST-C [20] demonstrate state-of-the-art performance, es-
pecially for low-resource language pairs.

4https://arxiv.org/abs/2312.05187
5https://arxiv.org/abs/2207.04672

3. Experiments
3.1. Dataset construction

We construct a dataset 6 from a pre-existing spontaneous speech
corpora to train our approaches. Another dataset is built to
evaluate this task. Each corpus C is a tuple (s, x, y) where
s = (s1, ..., s|s|) is the audio segment, x = (x1, ..., x|x|) is
the transcription, and y = (y1, ..., y|y|) is the pictogram terms
translation.

Propicto-orféo is built upon the aligned speech/text data
from the Corpus d’Étude pour le Français Contemporain
(CEFC) [21]. We extracted 290,036 audio segments, represent-
ing 233 hours. From the transcriptions, we applied the method
of Macaire et al. [22] to generate a pictogram-based translation,
following specific rules and a restricted lexicon. Propicto-orféo
covers multiple spontaneous speech situations, such as meetings
and conversations in various domains.

We construct a dataset for evaluation, Propicto-eval, a cor-
pus of read speech with 62 unique speakers, containing 3,011
sentences. The sentences are derived from children’s stories,
everyday situations, and sentences from the medical domain.
These contexts are relevant as they mirror the types of inter-
actions of our target audience. The dataset creation involved
a three-step process: gathering sentences from publicly avail-
able ARASAAC PDFs, conducting a recording campaign span-
ning six months to get the corresponding audio, and generating
pictogram translations using the method of Macaire et al. [22].
This process was overseen by the Data Protection Officer to en-
sure compliance with data protection rights.

3.2. Training details

Dataset pre-processing. We split the Propicto-orféo data into
training, validation, and test sets, following an 80/10/10 distri-
bution. We remove punctuation and convert transcriptions to
lowercase. Each audio segment has a sampling rate of 16kHz
with an upper duration limit of 30 seconds to maximize down-
stream performance. We select a subset of Propicto-eval com-
prising 100 sentences from 62 speakers with an equal distribu-
tion of female and male voices for evaluation. Data details are
outlined in Table 2.

Table 2: Distribution of data into three sets (train, development,
test) of Propicto-orféo and Propicto-eval.

Propicto-orféo Propicto-eval
# utterances # hours # utterances # minutes

train 231,374 192 — —
development 28,798 18 — —
test 29,011 23 100 6

ASR training and inference. We use the SpeechBrain
toolkit [23] and the provided recipe 7 to fine-tune the
Wav2Vec2.0 model on Propicto-orféo, with a French pre-
trained Wav2vec 2.0 model LeBenchmark/wav2vec2-FR-7K-
large [24]. Audio segments of less than 3 seconds and longer
than 10 seconds were excluded from the training to avoid empty
audio segments and overfitting scenario (representing 45h). The
training is performed with 4 Nvidia V100 GPUs with 32 GB of

6https://www.ortolang.fr/market/corpora/
propicto

7https://github.com/speechbrain/speechbrain/
tree/develop/recipes/LibriSpeech/ASR/CTC



memory each. We employ the latest released Whisper model
namely Whisper large-v3 [11] and follow the steps provided by
the whisper repository 8 for inference. Finally, we use the Hug-
gingFace Transformers library [25] to run the SeamlessM4T-
Large v2 model for ASR, setting the target language to French
(‘fra’).
MT training. We use two toolkits for MT, Fairseq [26] and
HuggingFace [25]. All experiments are performed on a single
Nvidia V100 GPU with 32 GB of memory. We adapt the recipe
provided by Fairseq to train the NMT model from scratch. A to-
kenization step with BPE segments the text into sub-word units.
A vocabulary of 10,000 tokens is generated. The same toolkit
is employed to fine-tune the mbart-large-cc25 model learned
from 25 languages. We adapt the suggested recipe9 for translat-
ing from English into Romanian to our data. The T5-large and
NLLB-200 (facebook/nllb-200-1.3B) models are fine-tuned by
using the recipe10 from HuggingFace for MT.
S2P training. We follow the pipeline integrated to Fairseq
to train ConST11. The pre-trained French Wav2vec 2.0
model LeBenchmark/wav2vec2-FR-7K-base is initialized as the
speech encoder, for computational reasons. A single Nvidia
V100 GPU with 32 GB of memory is employed. The main
parameters of each model12 are described in Table 3.

Table 3: Main parameters of ASR, MT and ST models for train-
ing and inference with the number of parameters, the learning
rate, the batch size, the number of epochs and the total running
time on Propicto-orféo training data.

Model # params lr # batch # epochs # time (h)

Whisper 1550M — — — —
SeamlessM4T 2.3B — — — —
Wav2Vec2-LeBenchmark 318,7M 1e-4 8 30 22.5

NMT 51M 5e-4 8 40 1.25
mBART25 610M 3e-5 8 40 18
T5-large 220M 2e-5 32 40 16
NLLB-200 600M 2e-5 32 40 30.5

ConST 150M 1e-4 8 40 100

4. Results and Discussion
4.1. ASR models

In the first set of experiments, we assess the performance of in-
ference models in Table 4. Table 4 presents the Word Error Rate
(WER) [27] on Propicto-orféo and Propicto-eval test sets. On
Propicto-orféo, the WER with both the Whisper and Seamless
models is recorded at 37.69 and 46.50, respectively. In con-
trast, the WER on Propicto-eval remains below 10%. This dis-
crepancy suggests that inference models, having predominantly
trained on read speech, therefore poorly generalize when ap-
plied to challenging corpora. In the second phase of our experi-
ments, our objective is to contrast these results with a fine-tuned
Wav2Vec2.0 approach on spontaneous speech (see Table 5).
This approach, with a WER of 27.56 on the test set, demon-
strates its effectiveness in handling spontaneous situations char-
acterized by overlaps and disfluencies.

8https://github.com/openai/whisper
9https://github.com/facebookresearch/fairseq/

tree/main/examples/mbart
10https://huggingface.co/docs/transformers/

tasks/translation
11https://github.com/ReneeYe/ConST
12Please refer to the recipes quoted for full details of the parameters.

Table 4: Word Error Rate (%) reported on Propicto-orféo and
Propicto-eval test sets between two inference ASR models.

Model test – WER↓
Propicto-orféo Propicto-eval

Whisper large-v3 37.69 9.01
SeamlessM4T-Large v2 46.50 8.44

Table 5: Word Error Rate (%) reported on Propicto-orféo dev
and test sets with a fine-tuned approach.

Model dev test

Wav2Vec2.0-LeBenchmark 23.24 27.56

4.2. MT models

The results of the Machine Translation models are presented in
Table 6. We report the BLEU score with sacreBLEU [28] on
Propicto-orféo and Propicto-eval. The BLEU score was chosen
because it offers greater nuance than the PER (Picto Error Rate)
in a translation approach. The score is calculated by comparing
the sequence of predicted pictogram terms with the sequence of
source pictogram terms. For both corpora, mBART exhibits a
substantial deviation from the other models, with a difference
exceeding 12 BLEU points on Orfeo-picto. Moreover, NMT
model trained from scratch outperforms mBART. When apply-
ing the models trained on Propicto-orféo to Propicto-eval, the
results underscore the substantial contribution of multilingual
pre-trained models T5 and NLLB to this translation task.

Table 6: BLEU scores of the MT models on Propicto-orféo de-
velopment and test sets and Propicto-eval test set.

Model dev test
Propicto-orféo Propicto-eval

NMT 87.28 87.43 69.89

mBART25 75.26 75.62 60.09
T5-large 85.21 85.88 73.51
NLLB-200 86.32 86.92 79.25

4.3. Combining ASR and MT for cascade S2P

We assess the performance of our cascade approach for Speech-
to-Pictos translation by combining the ASR models with the
MT systems. Table 7 presents the BLEU scores on the test data
for each model combination with ASR inference models. The
performance of Propicto-orféo experiences a significant decline
when the translation system uses ASR system’s predicted tran-
scriptions as input to the MT model. In particular, we observe
a decrease of over 28 points in the BLEU score, reaching 58.82
with the combination of Whisper and NLLB-200. The ASR sys-
tem strongly influences the pictogram translation performance.
On Propicto-eval, the best BLEU scores are given by NLLB-
200 and T5-large with Whisper. We note a gap of 4.93 between
the two MT models, which could be explained by the larger
amount of data used to train NLLB, and therefore generalizes
better to unseen data.

Finally, we compare the performance of the fine-tuned ASR
approach with MT models on Propicto-orféo in Table 8. While



the NMT model performs the best in MT, NLLB-200 and T5-
large with Wav2Vec2.0 achieve the highest BLEU scores in our
cascade approach. We hypothesize that massively pre-trained
multilingual models are more robust when dealing with terms
distorted by the ASR system.

Table 7: BLEU scores on Propicto-orféo and Propicto-eval test
sets, with the combination of inference ASR models with the MT
models trained on the Propicto-orféo training data.

ASR model MT model test – BLEU↑
Propicto-orféo Propicto-eval

Whisper large-v3 NMT 58.07 68.23
mBART25 52.05 59.49
T5-large 57.80 72.25
NLLB-200 58.82 77.18

SeamlessM4T-Large v2 NMT 52.38 66.14
mBART25 48.71 56.66
T5-large 53.96 67.32
NLLB-200 54.86 71.56

Table 8: BLEU scores on Propicto-orféo test set by combining
Wav2vec2.0 ASR model with the MT models.

ASR model MT model Propicto-orféo

Wav2Vec 2.0-LeBenchmark NMT 61.37
mBART25 55.49
T5-large 61.66
NLLB-200 62.48

4.4. End-to-end S2P

We conclude our experiments by presenting the BLEU scores
for the end-to-end speech translation model ConST on the
Propicto-orféo development and test sets, as well as the
Propicto-eval test set in Table 9. On clean data with a low Word
Error Rate, the cascade approach outperforms ConST, as de-
noted by the BLEU score on Propicto-eval test set. However, in
ecological acoustic conditions with Propicto-orféo, we observe
nearly identical results with the cascade approach. Hence, we
do not discount the potential of end-to-end approaches.

Table 9: BLEU scores on Propicto-orféo dev and test sets with
ConST, and on Propicto-eval test set, with the bracketed score
showing the highest BLEU with the cascade approach.

Model dev test
Propicto-orféo Propicto-eval

ConST 62.21 60.21 (62.48) 54.47 (77.18)

4.5. Human evaluation

We perform a human evaluation, as the BLEU score does not of-
fer precise insights into the specific behavior of each approach
in the context of pictogram translation. This evaluation is per-
formed by adapting an analytical framework MQM [29], which
gives guidelines and procedures for measuring translation qual-
ity13. It determines whether the proposed translation meets the
specifications agreed by the stakeholders. Each expert annotator
assigns to each identified error in the text (source and/or target)

13https://themqm.org/

a specific type and severity level. In this work, annotators had
the option to select from 12 types of errors (addition, omission,
unintelligible, etc.) and 4 severity levels (neutral, minor, major,
critical).

In this study, 100 randomly chosen sentences from the
Propicto-orféo test data were annotated by two expert annota-
tors from the project, along with the sentences from Propicto-
eval. Table 10 presents the Overall Quality Score (OQS) for
the top two cascade models based on the highest BLEU score,
and the end-to-end model ConST. OQS is calculated by multi-
plying the penalty score (resulting from the combination of the
number of errors per category and the severity level, weighted
accordingly) by the maximum value (usually 100). The transla-
tion system is not validated if the score is below the threshold
value. Based on various observations, stakeholders have de-
fined the limit for comprehension and usability of a translation
to two major errors and one minor error, which corresponds to
a threshold value of 89.

Table 10: Overall quality score computed on 100 randomly an-
notated sentences of Propicto-orféo, and the test set of Propicto-
eval of the two best cascade models and the end-to-end model.

Model OQS

Propicto-orféo Wav2Vec2 + CTC / T5-large-orféo 45.78
Wav2Vec2 + CTC / NLLB-200-orféo 44.56

ConST-orféo 62.62

Propicto-eval Whisper large-v3 / T5-large-orféo 75.29
Whisper large-v3 / NLLB-200-orféo 85.47

ConST-orféo 60.73

The best translation systems for Propicto-orféo and
Propicto-eval fall below the set threshold, thereby rejecting their
use with the target audience. This result can be attributed to cer-
tain behaviors, such as the inaccurate translation of named en-
tities, or the mistranslation of specific terms (mainly due to er-
rors introduced by the ASR systems). However, the OQS with
ConST on Propicto-orféo stands at 62.62, exhibiting a gap of
16.84 compared to the best-performing cascade model. While
automatic evaluation failed to validate the end-to-end approach,
human evaluation underscores its efficacy in real-world acous-
tic scenarios. For Propicto-eval, the cascade approach demon-
strates superior performance, with an OQS score nearly reach-
ing the threshold value, which confirms its effectiveness to read
speech in everyday situations. Future research could improve
results by addressing untranslated and poorly translated terms,
exploring novel end-to-end approaches, and employing genera-
tive systems for pictogram generation.

5. Conclusion
This article introduces two approaches for the automatic trans-
lation of speech into pictogram terms. We present data specifi-
cally designed for this task, encompassing various acoustic sce-
narios and domains. While the cascade approach demonstrates
superior results compared to the end-to-end approach but com-
petitive outcomes are observed with the latter on acoustically
challenging data. Consequently, we do not discount the end-to-
end approach for future exploration. Human evaluation exposes
several limitations, including the substantial impact of speech
recognition systems on translation and challenges in translat-
ing specific linguistic phenomena such as polylexical units and
named entities.
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