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Loss-induced modal selection by a resistive
wiremesh

Svetlana Kuznetsova,a) Yves Aurégan, and Vincent Pagneuxb)

Laboratoire d’Acoustique de l’Université du Mans (LAUM),

UMR 6613, Institut d’Acoustique - Graduate School (IA-GS), CNRS, Le Mans Université,

Avenue O. Messiaen, 72085 LE MANS CEDEX 9, France

This work examines the impact of local losses produced by a resistive wiremesh on the modes
of an acoustic cavity. In the 1D case, we demonstrate the ability to selectively affect the
modes, ranging from being completely unaffected by the wiremesh to being fully absorbed
by it. This effect can be used to filter the cavity modes. In the 2D case, we discuss the effect
of wiremesh rotation on the cavity modes. A new type of modes that are localized on the
wiremesh with a purely imaginary eigenfrequency has been identified. These findings show
that wiremeshes are ultrabroadband lossy metasurfaces offering a simple and straightforward
way to explore passive non-Hermitian systems.
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I. INTRODUCTION

The study of non-Hermitian systems has gained sig-
nificant attention in recent years due to their potential
applications in wave control (Ghatak et al., 2020; Mc-
Donald and Clerk, 2020; San-Jose et al., 2016). Losses
can be used not only to absorb waves, as is traditionally
done (Huang et al., 2023; Mei et al., 2012; Merkel et al.,
2015; Wang et al., 2023; Yang and Sheng, 2017), but also
to improve transmission in some cases (Cerjan and Fan,
2016).

Metamaterial absorbers that use subwavelength res-
onators can provide up to perfect absorption near the
resonance frequencies when carefully adjusted parame-
ters are used (Romero-Garćıa et al., 2016), making them
useful for controlling waves in a duct or in a cavity. One
potential drawback of this application of the subwave-
length resonators is that its effectiveness is limited to a
narrow frequency range centered around the metamate-
rial resonance frequency.

In the case of a cavity, it may be beneficial to control
multiple modes. To achieve this, a subwavelength device
that is active over a wide range of frequencies is required.
Broadband absorption can be achieved by avoiding reso-
nance, as demonstrated by metallic conductive films (Li
et al., 2015; Nimtz and Panten, 2010) which allow for
total absorption using the concept of coherent perfect
absorption (CPA). Similarly, ultrathin millimetric resis-
tive sheets offer the same potential in the field of airborne
acoustics (Coutant et al., 2020; Farooqui et al., 2022; In-
gard, 2009). Often referred to as wiremesh, these resistive
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nique Hauts-de-France, UMR 8520 - IEMN - Institut dElectronique
de Microelectronique et de Nanotechnologie, F-59000 Lille, France
b)vincent.pagneux@univ-lemans.fr

sheets are efficient across a wide range of frequencies, in-
cluding static flow applications such as filtration. They
maintain their efficiency at high frequencies as long as the
wavelength is larger than the thickness of the mesh. Re-
sistive sheets can be viewed as ultra-thin non-Hermitian
metasurfaces.

In this paper, we present the impact of the resis-
tive wiremesh inserted inside the acoustic cavity on the
wavenumbers and structure of its modes. We first fo-
cus on the 1D case and derive the dispersion relation
and the following properties of the trajectories of the
wavenumbers in the complex plane with the variation of
the wiremesh impedance. As the losses are localized, the
modal behavior is expected to strongly depend on the po-
sition of the wiremesh. This study complements the find-
ings of reference Farooqui et al., 2022, which only analy-
ses the wiremesh at the centre of the cavity. Next, we will
consider the 2D case, where additional degrees of freedom
are introduced to affect the modes. These degrees of free-
dom include the rotation of the wiremesh and the aspect
ratio of the cavity. Incidentally, we will demonstrate that
the wiremesh supports a new type of mode, which we re-
fer to as ”extraordinary viscous modes”. These modes
are located around the resistive metasurface and have a
purely imaginary wavenumber.

II. MODES OF THE 1D CAVITY WITH AN INSERTED

WIREMESH

A. Dispersion equation

We consider the eigenmodes of a cavity of length L
with Neumann boundary conditions on the walls and an
embedded wiremesh placed at x = d (Fig. 1). The cavity
if filled with air characterized by the speed of sound c0
and density ρ0. At x ∈ [0, d[ (region 1) and x ∈]d, L] (re-
gion 2) the pressure obeys the Helmholtz equation (con-
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FIG. 1. 1D cavity with a wiremesh (red dashed line).

vention exp(−iωt))

d2p

dx2
+ k2p = 0 (1)

with dp/dx = 0 at x = 0 and x = L, and where k = ω/c0
is the wavenumber and ω the frequency. The wiremesh is
a very thin resistive sheet responsible for the dissipation;
it is typically made of stainless-steel fabric of less than
one millimeter thickness (Coutant et al., 2020; Farooqui
et al., 2022; Ingard, 2009). It supports the continuity
of the velocity (and consequently the derivative of the
pressure) and introduces a pressure drop as

p2(d+)− p1(d−) =
iz

k

dp1,2
dx

(d), (2)

dp2
dx

∣∣∣∣
d+

=
dp1
dx

∣∣∣∣
d−
,

where z is the impedance normalized by ρ0c0. The re-
sistance z is a positive real number (remarkably inde-
pendent of the frequency as long as the wavelength is
much larger than the mesh thickness) that characterizes
the lossy effect of the wiremesh and which ”microscopi-
cally” originates from the viscous friction of the oscilla-
tory acoustic creeping flow in the pores. With equations
(1), (2) and hard wall boundary conditions we have the
eigen-problem of the cavity with wiremesh, with eigenval-
ues k and eigenmodes p. Note then that, if k is an eigen-
value, so is −k∗ (where ∗ means complex conjugation), a
property reminiscent of the non-Hermitian particle-hole
symmetry recently studied for systems with loss and gain
(Ge, 2017). This property will be of peculiar interest for
the ”extraordinary viscous modes” with purely imaginary
wavenumbers that will appear in the following; indeed
due to this k → −k∗ symmetry they are robust in the
sense that they can leave the imaginary axis only when
coalescing.

When z = 0 we have the modes of an empty cavity
with the wavenumbers k0n = πn/L. In the opposite case
when z = ∞ the wiremesh corresponds to an hard wall
and we have two separated cavities of lengths d and L−d
with eigenfrequencies k1n = πn/d and k2n = πn/(L −
d) correspondingly. Without loss of generality, we will
consider in the following that d < L/2 and thus we refer
to the sub-cavity of the length d (region 1) as a small
one, and to the sub-cavity of the length L− d (region 2)
as the large one.

When the resistance of the wiremesh varies between
these two limiting cases (z ∈]0,∞[), the solutions of the

Helmholtz equation in each sub-cavities take the form

pn(x) =

{
p1n(x) = A1ncos(knx) x ∈ [0, d[

p2n(x) = A2ncos(kn(x− L)) x ∈]d, L]

(3)
Then, using the coupling conditions (2) we obtain

A1nsin(knd) = A2nsin(kn(d− L)), (4)

A1ncos(knd)−A2ncos(kn(d− L) = izA1nsin(knd)),

which leads to the following dispersion relation

D(k) = sin(knL) + izsin(knd)sin(kn(d− L)) = 0. (5)

The unknown of this equation is the complex wavenum-
ber kn which is a function of z and d. Fixing d and
increasing z from 0 to∞ one should obtain the evolution
of kn from k0n to one of the k1p or k2p.

B. Wiremesh in the middle of the cavity

We first remind here the results when the wiremesh
is in the middle of the cavity (d = L/2)(Farooqui et al.,
2022). In this particular case, due to the symmetry of
the problem all the modes can be divided into the sym-
metric and anti-symmetric ones. The solutions for the
symmetrical modes are not perturbed by the wiremesh
since they have a zero derivative in the middle of the
cavity (zero acoustic velocity is not producing friction at
the wiremesh). The mode wavenumbers without loss are
preserved and remain on the real axis. On the opposite,
the solutions for the antisymmetric modes are strongly
affected by the wiremesh as its impedance grows: they
acquire an infinite imaginary part for the very specific
value z = 2. It means that, for this very specific value of
the impedance, the antisymmetric modes are completely
absorbed by anechoicity. For z > 2, the mode wavenum-
bers reappeared in the form of an antisymmetric com-
bination of eigenmodes of the left and right sub-cavities
(Farooqui et al., 2022) which approach the real axis when
z →∞.

C. Wiremesh not in the middle of the cavity

In the case d < L/2, the symmetry of the cavity
is broken and generically all the mode wavenumbers are
leaving the real axis as z is increased from zero, visiting
in the lower half complex plane (the lossy region with the
chosen convention exp(−iωt)). Similarly to the symmet-
ric case, the behavior of complex wavenumbers can be
split into two types of trajectories (Fig. 2): i) the contin-
uous one (in black) displaying a typical resonance trap-
ping behavior (Dittes, 2000; Persson et al., 1998, 2000)
that forms an open loop, first leaving the real axis but
then returning back to it and being less absorbed when
increasing the loss, ii) the trajectories (in red and blue)
which acquire an infinite Im(k) as z = 2, infinitely ab-
sorbed, and then reappear and return to the real axis.
Surprisingly, there is a critical impedance value which is
the same (z = 2) as in the symmetric cavity where some
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(a) (b)

FIG. 2. Curves of k in the complex plane obtained by chang-

ing z in the calculation of wavenumbers for (a) d = 0.3L and

(b) d = 0.37L. The green circles (k2n) and asterisks (k1n) cor-

respond to their final positions at z →∞. The blue lines are

the trajectories which go to Im(k)→ −∞ as z → 2−, the red

ones are the returning trajectories coming from Im(k) → ∞
as z → 2+.

mode wavenumbers go to infinity. It will be discussed in
the next subsection.

The numerical solutions of the equation (5) are
shown in Fig. 2 for (a) d = 0.3L and (b) d = 0.37L,
z ∈ [0, 5] where the green asterisks and circles correspond
to k1n and k2n. All wavenumbers begin their trajectories
vertically in the k-plane because in the vicinity of z = 0,
the wavenumber is given by

knL = πn+ i
z

2
(cos(2πnd/L)− 1) +O(z2). (6)

where z � 1.
The trajectories that remain finite return on the real

axis (resonance trapping) as a solution for the large sub-
cavity k2n when z → ∞. We observe that the k0n so-
lution at z = 0, having a finite continuous trajectory,
evolves towards the nearest sub-cavity solution on the
real axis as z increases. The closeness between the initial
k0n and final k1n, k2n is determined by the position d of
the wiremesh. Changing d, one changes the distance be-
tween the initial and final wavenumbers, which is accom-
panied by the interchanges of the trajectories behaviors.
This is seen from the comparison of Fig. 2(a) and (b). In
(a) the trajectory of the first mode of the empty cavity
is finite, while in (b) it goes to infinity and its place is
taken by the second mode. The dashed black lines are
the vertical asymptotes

In Fig. 3 is shown the evolution of the profiles of the
mode of Fig. 2(b) (d = 0.37L) when z is going from 0 (no
wiremesh) to +∞ (rigid wall limit). Each column corre-
sponds to the 5 lowest order modes for different values of
z labeled at the top of each column. For z = 0, one obvi-
ously observes the modes of the empty cavity. The arrows
between the plots help to follow by continuity each mode
individually as z is growing. To remove the ambiguity
introduced by the solutions passing through infinity and
to be able to track the modes validly, we have regular-
ized the problem by introducing a very small tilt of the
wiremesh in a 2D problem. Indeed, as we shall see in
Section III), no solution then goes to infinity but only
takes a larsge value of Im(k).

Very close to the singular behavior, for z = 2 ±
0.0025, some modes (Fig. 3(g,l,n)) appear to be located at
the wiremesh (whose position of is indicated by a dotted

black vertical line). We are facing the singular modes dis-
appearing at z = 2. For z → ∞ (Fig. 3(p-t)), kn → k1p
or k2p and the mode is localized in one of the two sub-
cavities if k1p 6= k2p.

1. Modes with infinite Im(k)

When z → 2, for the singular modes, the diverging
imaginary part of k can be approximated by Im(k) ≈
1
2d ln |z/2− 1| and consequently their characteristic lo-
calization length can be introduced as ll = 1/Im(k) =
2d/ ln |z/2− 1|. The mode is becoming more and more
confined with z → 2 and completely disappears at z = 2
with ll = 0.

In order to get some hints about this singular be-
havior, let us propose an heuristic analysis of the mode
structure. First we can remark that each mode pn can
be separated into an odd (subscript o) and an even (sub-
script e) part with respect to x = d:

pon =



1
2 sin(knd) (izcos(kn(x− d))− 2sin(kn(x− d))) ,

when x < d

− 1
2 sin(knd) (izcos(kn(x− d)) + 2sin(kn(x− d))) ,

when x > d

(7)

pen =
1

2
(2cos(knd)− izsin(knd))cos(kn(x− d)). (8)

where it has been chosen that the coefficients A1n = 1 in
eq. 2. Of course, this decomposition is only defined for
x ∈ [0, 2d].

It can be shown perturbatively that pen → 0 when
z → 2 (except the points x = 0 where pen → 1/4). On
the opposite, the odd parts pon grow exponentially in
space toward the wiremesh when z → 2 with |pon(d−)| →
(2
√
|z/2− 1|)−1 (while at x = 0, pon = 3/4). Thus,

in the limit z → 2, pon becomes much larger than pen
and singular modes are dominantly odd with respect to
x = d. One can introduce a virtual cavity of length 2d
and the singular modes are close to the odd eigenmodes
of the virtual cavity with Im(k) → −∞ and Re(k) →
(2n− 1)π/2d (Farooqui et al., 2022). After disappearing
at z → 2− singular modes reappear for z → 2+ with
Re(k) ≈ 2nπ/2d and evolve to the eigenmodes of the
smaller sub-cavity k1n when z →∞.

We can remark that the mode exhibited in Fig. 3
(q) corresponds to the one, which came from Re(k) = 0,
Im(k) = −∞ when z = 2. Taking into account the rela-
tions (3), (4) and putting z → ∞, one obtains that the
ratio of the pressures in the large and small subcavities
is d/(L − d). For z > 2, it has a purely imaginary wave
number and it belong to the family of extraordinary vis-
cous modes that we will described in Section III.

Globally, we would like to summarize what we ob-
served for the evolution of the spectrum when going from
no wiremesh (z = 0) to opaque wiremesh (z → +∞).
When the wavenumber k eigenvalue remains finite for
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FIG. 3. The pressure profiles (solid lines – real part, dashed lines – imaginary part) of the lowest order eigenmodes of the

cavity for different values of z. Left and right bars – the initial (z = 0) and final (z → ∞) spectra. The dashed line indicates

the position of the wiremesh. The arrows indicate the evolution of the modes with the increase of z.

any z (displaying a resonance trapping behavior), it is
tending for z → +∞ to a mode in the large cavity (k2n).
For the eigenvalues that are diverging for z → 2, in con-
trast, they are tending to a mode of the small cavity (k1n)
when z → +∞. We have observed this behaviour for all
the cases we have studied and it remains for us an open
problem to explain it.

2. Exceptional points of the spectrum

The form of the dispersion relation (5) allows us to
expect some peculiarities if the ratio d/L is rational. In-
deed, it can be shown that, if d/L = m/n with m,n ∈ N,
then the spectrum of the eigenvalues k is periodic in
the direction parallel to the Re(k)-axis with the period
nπ/L and is additionally mirror symmetric with respect
to pnπ/2L where p ∈ Z (for more details, see Appendix
B and C in the supplementary material). It is illustrated
in Fig. 4 for d/L = 1/3, 1/4, 2/5 with the periods of the
patterns thus equal to Re(k)L/π = 3, 4 and 5 respec-
tively.

It appears that this structure and symmetry of the
spectrum make it possible to obtain exceptional points
(EPs) with d/L = m/n and additional restriction on
m and n. To find these EPs, we use the property that
they are double solution of the dispersion relation (5) and
hence correspond to the solutions kEP of the system

D(k) = 0, (9)

D′(k) = 0.

FIG. 4. Trajectories of the complex wavenumbers for (a) d =

L/3, (b) d = L/4, (c) d = 2L/5, the shaded area corresponds

to one period of the trajectory pattern. The green letters

correspond to the m/n ratio – Odd-Odd, Odd-Even, Even-

Odd.

It can be shown that the real parts of kEP satisfy the fol-
lowing equations (see Appendix A in the supplementary
material)

Re(kEP )(L− 2d) = π/2(2p+ 1), (10)

Re(kEP )2d = π(2m+ 1),

with p,m ∈ N. Eliminating Re(kEP ) for these last equa-
tions, it leads to the following condition for the position
d of the wiremesh in order EPs to exist:

dEP /L =
2m+ 1

2p+ 1 + 2(2m+ 1)
=
M

N
, (11)

being the particular ratio of two odd numbersM = 2m+1
and N = 2p+ 1 + 2(2m+ 1). At an EP, using eq. (11),
we have also that

Re(kEP )L/π = (2m+ 1) + p+ 1/2. (12)
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FIG. 5. (a) Pressure in the cavity excited by the point source

at x = 0 for z = 0 (black dotted line), z = 2 and d = L/3

(blue), d = L/5 (green) and d = L/25 (red), (b) log(|p|)
measured at x = L. The black lines correspond to d/L from

(a).

From the illustrative point of view, the situation is de-
picted on Fig. 4 (a) for d/L = 1/3 when varying the
resistance z from 0 to +∞. The spectrum has the pe-
riod 3π/L and the EPs are appearing for Re(kEP ) =
(3/2 + p)π/L with p = 0, 1, 2, ... .

In contrast to what described previously, when the
d/L is not a ratio of odd/odd numbers, the EPs do not
occur, as is illustrated on Fig. 4 (b), (c) for d/L = 1/4 (ra-
tio odd/even) and d/L = 2/5 (ratio even/odd). Remark
that since the 0-th mode does not ”feel” the wiremesh,
the same insensitivity applies to the (n+1)-st modes due
to the periodicity.

At this point, it is important to note that the charac-
teristics of the studied wavenumber eigenvalues can effec-
tively select cavity modes. Indeed, by simply changing
the position d one can select the desired modes (with
zero imaginary wavenumber) to be unperturbed by the
wiremesh while all the others will be absorbed. To in-
vestigate this phenomenon, we take a point source posi-
tioned at x = x0 in the cavity and we solve the Helmholtz
equation

d2p/dx2 + k2p = Qδ(x− x0).

It is the Green function response. The resulting pressure
can then be expressed as follows:

p(x) =


p1(x) = A1cos(kx), x ∈ [0, x0],

p2(x) = A2cos(k(x− d)) +B2sin(k(x− d)), x ∈ [x0, d[,

p3(x) = A3cos(k(x− L)), x ∈]d, L].

The additional boundary conditions at x = x0 read

p2(x0) = p1(x0), p′2(x0)− p′1(x0) = Q. (13)

If one measures the pressure at the right end x = L,
putting the point source at the left end x0 = 0 one ob-
tains

p3(L) =
Q

kD(k)
(14)

with D(k) given by the dispersion relation eq. 5. This
is illustrated in Fig. 5(a) where we plot p3(L) as a func-

tion of the wavenumber for z = 2. The dashed line cor-
responds to the empty cavity, while the blue and the
green lines correspond to d/L = 1/3 and d/L = 1/5
respectively. Then all the modes, except the 3rd (for
d/L = 1/3) and the 5th (for d/L = 1/5) ones (and their
multiples) are strongly suppressed. One might expect
that taking a sufficiently large n will lead to the suppres-
sion of all the modes in the range Re(k)L/π ∈ (1, n− 1),
which would conflict with the fact that as d → 0 we
should restore the empty cavity modes. Actually, the de-
crease in selection efficiency with the decrease of the ratio
d/L is resolving this apparent paradox, and Figure 5(a)
shows the case where d/L = 1/25, represented by the red
curve, where the peaks of the suppressed modes are not
so well suppressed and still noticeable.

In Fig. 5(b), that gives a global point of view, we plot
the pressure (log(|p|)) defined in eq. (14) as a function of
d/L and Re(k), where the lines in figure (a) correspond
to the horizontal cuts to the plot (black lines). We see
the bright sharp peaks attributed to the modes insen-
sitive to the wiremesh. As d decreases, the residues of
the empty cavity modes become more evident, as shown
in Fig. 5(a). The white hyperbolas represent the depen-
dence d/L = n/(kL/π) corresponding to the cancella-
tion of the derivative of the pressure at the wiremesh
in the empty cavity, i.e. the case where the acoustic
mode is not feeling the mesh if in addition it is satisfying
k(L− d) = mπ with m integer.

III. MODES OF A 2D CAVITY WITH AN INSERTED

WIREMESH

Now, to expand our investigation, leaving the 1D
case, we are going to examine a 2D cavity with hard
walls (Neumann boundary conditions) and a wiremesh
in the centre (see Fig. 6 (a)).

When the wiremesh is aligned with the y-axis, the
problem is a separable variable problem and we have
symmetric and anti-symmetric modes with respect to
x = L/2 just like in the analogous 1D case (Farooqui
et al., 2022). The symmetric modes do not feel the
wiremesh and they remain the same as in the empty cav-
ity. We will thus focus on the anti-symmetric wavenum-
ber eigenvalues that leave the real axis in the complex
plane. The dispersion relation for these anti-symmetric
modes is:

cot(kxL/2) =
iz

2k
kx, (15)

where k2 = k2x + (nπ/h)2.
The pressure distribution for the initial resistance

z = 0 shown in the eigenvalue trajectories is p(x, y) =
Acos(nπ/L)cos(mπ/h) with n,m ∈ N. The modes that
are uniform along the y-axis (m = 0) correspond to those
studied in the previous section for the 1D case, and we
will omit them in the following. The trajectories of the
modes with m = 1 are shown in Fig. 6(b). The symmet-
ric modes with respect to the horizontal x axis (even n)
do not feel the wiremesh and stay on the real axis (circles
in Fig. 6(b)). The modes with odd n are anti-symmetric
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FIG. 6. (a) Geometry of the 2D cavity with an inserted

wiremesh, (b) trajectories of the complex wavenumbers of the

modes (m, 1) for h/L =
√

5/π. The Re(p) and Im(p) fields

of the initial (1, 1) mode for (c), (d) z = 0.1, (e), (f) z = 2.5,

(g), (h) z = 5.

and move away from the real axis as z increases, be-
coming anti-symmetric counterparts of the correspond-
ing symmetric modes with the same wavenumber. The
higher is n the greater imaginary part the trajectory ac-
quires due to the increase of ∂p/∂x. In Fig. 6 (c) - (h) we
plot the real and imaginary parts of pressure spacial dis-
tribution for the mode (1,1) at the points marked by the
colored dots on the trajectory. We observe the evolution
of the x-axis dependence forming a clear discontinuity at
the wiremesh, while the y-axis dependence remains the
same.

It is important to note that, in a novel and unex-
pected way, there are an infinite number of ”extraordi-
nary viscous modes” whose wavenumber eigenvalues are
purely imaginary. To look for those modes, we can write

k2 = k2x + (πm/h)2 = −ε2, (16)

from which we can see that kx = iγ is purely imagi-
nary as well. Then the pressure takes the form p(x, y) =
Acos(mπy/h)cosh(γx). Then the dispersion relation (15)
for these anti-symmetric modes reads:

cot(γL/2) = −γz
2ε
. (17)

For each m ≥ 1, this equation has a single solution in the
range of z in [0, 2]. They lead to imaginary wavenumbers
going to −∞ on the imaginary axis as z increases from
0 to 2−. In contrast, for m = 0 there is only a solution
for z > 2. The corresponding wavenumber comes up the
imaginary axis to become a flat mode when z →∞. This
is illustrated in Fig. 7 for several lowest order modes,

m=1

m=2

m=3

m=0

FIG. 7. Solutions of the eq. 17 as functions of z. The modes

numbers m = 0, 1, 2, 3 are labeled next to the corresponding

curves. The red star indicates the extraordinary viscous mode

for m = 1 and z = 1.5.

(a) (b)

FIG. 8. Spacial distributions of p for (a) m = 1, (b) m = 2

modes with a purely imaginary k for z = 1.5.

where the red star is the case m = 1 for z = 3/2 displayed
as well in Fig. 6(b).

The spatial pressure distribution of the modes m = 1
and m = 2 is shown in Fig. 8, the case (a) matches the
star in Fig. 7. They are localized at the wiremesh and
the localization length decreases with the increase of m.
The trajectory of the mode m = 1 is shown as a blue
line in Fig. 6 for z < 2, the pressure field in Fig. 8(a)
corresponds to the red star on the line.

To generalize our study, we now consider a non-
separable 2D geometry where the wiremesh is tilted at an
angle of α as shown in Fig. 9(a). Then, to find the spec-
trum of the cavity, separation of variables is not anymore
possible and some coupling should be observed between
the decoupled modes observed previously (i.e. between
modes with m=1,2,,3...). In Fig. 9(b) we plot the trajec-
tories of the wavenumber eigenvalues k when varying z,
for α = 0.1 rad. The modes that previously, when α = 0,
had Im(k) tending towards infinity, now remain finite
even though Im(k) can still take large negative values,
and they return to the real axis as z → ∞. Further-
more, the modes that were previously unaffected by the
wiremesh now depart from the real axis: unsurprisingly,
now all the modes are influenced by the presence of the
losses. The real and imaginary parts of pressure distribu-
tions are shown in Fig. 9(c) - (j) at the points on the tra-
jectory (1,0) marked by the colored dots. Starting from
the continuous distribution at z = 0 the mode rapidly
develops a discontinuity in both Re(p) and Im(p) and
mimics the behavior of the corresponding anti-symmetric
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FIG. 9. (a) Geometry of the 2D cavity with an inserted tilted

wiremesh, (b) Trajectories of the complex wavenumbers of the

cavity for α = 0.1 rad, h/L =
√

5/π. The Re(p) and Im(p)

fields of the initial (1, 1) mode for (c), (d) z = 0.1, (e), (f) z

= 2, (g), (h) z = 2.01, (i), (j) z = 5.

FIG. 10. Spacial distributions of p for (a) m = 1, (b) m

= 2 modes with a purely imaginary k for z = 1.5 when the

wiremesh is tilted.

mode for α = 0. Additional results are given in Appendix
D in the supplementary material for a tilted wiremesh
that is not in the middle of the cavity, breaking all the
spatial symmetry of the problem.

Interestingly, even when the wiremesh is tilted, there
are again ”extraordinary viscous modes” with purely
imaginary k (Re(k) = 0). Indeed, they are protected
by the k → −k∗ symmetry of the spectrum as long as
the value of the angle α is not large enough to provoke
the coalescence of two of them to leave the imaginary
axis. Their pressure distributions are shown in Fig. 10 for
m = 1 and m = 2. They replicate the behavior of their
analogues at α = 0 by being localized near the wiremesh.
The results demonstrate that the ”extraordinary viscous
modes” remain robust and unaffected even with a slight
tilt of the wiremesh. Overall, these modes look similar
to surface plasmon modes (Maier et al., 2007).

IV. CONCLUSIONS

In this work we have studied the impact of localized
losses represented by a flat wiremesh on the eigenmodes
of an acoustic cavity in one and two-dimensional con-
figurations. By varying the position and impedance of
the wiremesh, the cavity natural frequencies have very
rich and diverse behavior the complex plane with nega-
tive imaginary part. Some of these modes may have a
very large or even infinite negative imaginary part of the
wavenumber. Other modes are able to keep low loss due
to resonance trapping behavior. This study demonstrates
that absorption efficiency is non-monotonic with respect
to impedance. At the very specific value of z = 2, certain
modes are entirely absorbed, regardless of the symmetry
of the problem. By adjusting the wiremesh position, it
is possible to select the modes that remain undisturbed
while absorbing all others. This technique is an effective
tool for filtering cavity modes.

In the 2D case, the tilt of the wiremesh may be
used as an additional degree of freedom to affect the
modes. However, it is important to note that no modes
undergo complete absorption in this case. Instead, they
leave the real axis and return as the impedance of the
wiremesh grows. Despite this, tuning the impedance of
the wiremesh remains an efficient tool for selectively ma-
nipulating the absorption of modes. This demonstrates
the robustness of this filtering technique.

Finally, a new type of cavity mode with a purely
imaginary wavenumber has been identified. These ”ex-
traordinary viscous modes” are robust due to the k →
−k∗ symmetry of the spectrum and they are spatially lo-
calized close to the wiremesh and decrease exponentially
as they move away from it.
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