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Explaining a probabilistic prediction on the simplex

with Shapley compositions

Paul-Gauthier Noé∗, Miquel Perelló-Nieto†, Jean-François Bonastre∗, Peter Flach†

Abstract

Originating in game theory, Shapley values are widely used for explaining a machine learning
model’s prediction by quantifying the contribution of each feature’s value to the prediction.
This requires a scalar prediction as in binary classification, whereas a multiclass probabilistic
prediction is a discrete probability distribution, living on a multidimensional simplex. In such
a multiclass setting the Shapley values are typically computed separately on each class in
a one-vs-rest manner, ignoring the compositional nature of the output distribution. In this
paper, we introduce Shapley compositions as a well-founded way to properly explain a multiclass
probabilistic prediction, using the Aitchison geometry from compositional data analysis. We
prove that the Shapley composition is the unique quantity satisfying linearity, symmetry and
efficiency on the Aitchison simplex, extending the corresponding axiomatic properties of the
standard Shapley value. We demonstrate this proper multiclass treatment in a range of scenarios.

Remark This work is published in the proceedings of ECAI 2024. The present document gathers
the full paper with the supplementary material. For citing this work, please refer to the version in
the ECAI’s proceeding.
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1 Introduction

Many machine learning approaches are regarded as black-boxes, making them unreliable for real-life
applications where the model’s predictions need to be understood or explained. In recent years,
the interest in more interpretable models and explainability methods has therefore increased in the
machine learning literature [5, 18]. One group of approaches, known as local explanation, aims to
measure the contribution of each input feature’s value to the computation of the model’s output.
Shapley values are widely used for this purpose [28, 8], especially since the release of the SHAP
toolkit [20]1.

Shapley values were introduced in cooperative game theory where a group of players work together
to maximise a payoff. A set of Shapley values distributes the payoff over all the players according to
their individual contribution to the total. The Shapley value is the unique quantity that satisfies
a set of desired axiomatic properties [26]. For explaining a machine learning model’s prediction,
features are treated as players and the scalar output of the model as the total payoff.

The Shapley value is designed for a one-dimensional function’s codomain. In game theory, the
characteristic function takes a coalition of players and gives a payoff. In machine learning, for a given
instance, the characteristic function takes a group of features and gives a scalar output measuring how
the prediction changes when the values of the features are considered. For a two-class probabilistic
classification, the prediction is essentially a scalar since the probabilities for the two classes sum to
one. Therefore, the Shapley value framework can simply be applied to the logit transform of one of
the probabilities2.

For more than two possible classes the output of the model is a discrete probability distribution
or the output of a softmax function as commonly used by neural networks. Hence the output lives
on a (D − 1)-dimensional simplex, where D is the number of classes. In this case, the Shapley value
framework cannot be directly applied. Of course, one can compute Shapley values on each output
probability separately, but this ignores the structure of the simplex where the relative values between
the probabilities is what really matters, rather than the absolute value of a single probability.

This paper presents Shapley composition as an extension of the Shapley value to the space of
discrete probability distributions, using the Aitchison geometry of the simplex from the field of
compositional data analysis. Compositional data [2, 23] are vectors – known as compositions – living
on a simplex (not necessarily a probability simplex). Compositional data analysis has been applied to
geological and chemical data, for example, but also to discrete probability distributions [10, 11, 22].
In the present paper, the probability distributions given by a classifier will be treated as compositional
data in order to extend the Shapley value to multiclass classification.

Figure 1 shows a synthetic example to provide some intuitions. It shows a 2-dimensional space
isomorphic to the 3-class-simplex where each point is a probability distribution also visualised as
a histogram. The maximum probability regions, for each class, are clearly visible and separated
by dashed black rays. Importantly, this space of probability distribution is additive thanks to the
Aitchison geometry. The vectors show how the contribution of each feature changes – in an additive
manner – the probability distribution (the ordering of the features can be chosen freely but the final
point is fixed).

In the example, the base distribution (the average prediction over all data3) is modified by
the contribution ϕ̃1 of the first feature. This goes mostly against class 2 such that the resulting
distribution has the lowest probability for class 2. The angle between ϕ̃1 and the class-3 direction
being the lowest among the classes, the resulting distribution has the highest probability for this

1https://shap.readthedocs.io/en/latest
2The logit maps the domain ]0, 1[ to the additive real line R.
3Note that this does not need to be the uniform distribution, i.e., the origin.
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class. The second feature moves the distribution into the class-1 region, perpendicular to the class-3
direction. The probability for class 1 is now maximum by reducing the probability for class 2, keeping
the relative weight for class 3 unchanged. The third feature moves the distribution away from class 1.
The resulting distribution being on the class-3 direction, the probability is maximum for class 3 and
uniform for the other two.

We fully formalise the approach in this paper, making the following contributions:

• We define Shapley composition as a principled multidimensional extension of the Shapley value
to the probability simplex,

• We prove that the Shapley composition is the unique quantity satisfying the set of desired
properties known as linearity, symmetry and efficiency on the simplex equipped with the
Aitchison geometry,

• We demonstrate the advantages of Shapley compositions for explaining a multiclass probabilistic
prediction in machine learning.

The paper is structured as follows. Section 2 briefly reviews related work. Section 3 recalls the
standard definition of the Shapley value and its use in binary classification. Section 4 presents
the necessary tools from compositional data analysis: in particular, the Aitchison geometry of the
simplex and the isometric log-ratio transformation. Section 5 defines the Shapley composition as
an extension of the Shapley value framework to the multidimensional simplex using the Aitchison
geometry. Section 6 shows with intuitive examples and visualisations how Shapley compositions can
be used for explaining multiclass probabilistic predictions. Section 7 provides a short discussion and
concludes the paper4.

p̃1

p̃2
+1

+
1

c̃(1)c̃(2)

c̃(3)

base
prediction

ϕ̃1
ϕ̃2

ϕ̃3

Figure 1: A synthetic example of a Shapley composition-based explanation. This shows a 2-
dimensional space isomorphic to the 3-class simplex where each point is a probability distribution as
visualised with the histograms. The dashed black rays separate the maximum probability regions for
each class and the dashed coloured vectors show the direction in favour of one class and against the
other two. The space is additive such that the features’ contributions {ϕ̃i}{1,2,3} translate the base
distribution to the prediction.

4The code and Jupyter notebooks are available on the github page: https://github.com/orgs/

shapley-composition.
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2 Related work

There is a plethora of methods in the literature to explain and better understand predictive models.
They focus on different aspects of the task, from possible dataset biases, the feature importance with
respect to the target, the parameters of a model after training, or the model predictions [27]. Some
methods explain the influence of the features on the model’s performance: e.g., Permutation Feature
Importance for random forest [7], which was later extended to the model agnostic Model Reliance
[13]. Other methods focus on how individual features influence the model’s predictions: e.g., Local
Interpretable Model-agnostic Explanations (LIME) [25], Individual Conditional Explanation [16],
Partial Dependence-based Feature Importance [17], Marginal Effect [6], Accumulated Local Effect
[6], and Shapley value-based approaches [28, 8, 20].

We base our work on the Shapley value framework as one of the most well-founded feature
influence methods. Inherently two-class, it has been applied to multiclass problems by explaining the
influence of the features in a one-vs-one or one-vs-rest manner [32, 19], hence losing information that
can be obtained by properly considering the full distribution. Utkin et al. [29, 30] explicitly consider
the classifier output as a probability distribution, and measure the change in prediction in terms
of statistical distance or divergence rather than in terms of difference between scalar predictions.
However, even if this approach can measure the strength of a feature’s value effect, it loses its
directional information.

A recent work presented by Franceschi et al. [14] (later extended [15]) introduces stochastic
characteristic functions to deal with models that output a random variable. With a categorical
random variable, their approach can be used for explaining a multiclass classifier by allowing
probabilistic statements about the likelihood of a feature to flip the decision from one class to another.
In contrast, the approach we propose does not require an additional stochastic process but does
not permit such a probabilistic statement. Instead, our approach is geometrical, by measuring how
a feature moves the prediction on the probability simplex. In this way, it constitutes a natural
extension of the standard Shapley value to the simplex for multiclass applications.

3 The Shapley value in machine learning

This section briefly recalls Shapley values as used for explaining features’ contribution on a scalar
prediction in machine learning. Let f : X → R be a learned model one wants to locally explain where
f(x) is the prediction on the instance x ∈ X ⊂ Rd. Let Pr be the probability distribution of the
data over X (usually unknown but approximated by empirical averages). Let S ⊆ I = {1, 2, . . . d} be
a subset of indices where d is the number of features. xS refers to an instance x restricted to the
features with indices in S.

When an instance x is observed, the expected value of the prediction is simply E[f(X) | x] = f(x).
However, when only xS is given with S ≠ I, there is uncertainty about the non-observed features
and the expected prediction given xS is computed as EPr[f(X) | xS ] =

∫
x∈X f(x)Pr(x | xS)dx. The

change in prediction when the values of the features indexed by S are observed is measured by the
characteristic function:

vf,x,Pr : 2
I → R,
S 7→ EPr[f(X) | xS ]− EPr[f(X)],

(1)

where 2I is the set of all subsets of I. The contribution of the feature indexed by i /∈ S to the
prediction, given the known values for the features indexed by S, is given by:

cf,x,Pr(i, S) = vf,x,Pr(S ∪ {i})− vf,x,Pr(S). (2)
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The total contribution of the ith feature is computed by averaging this quantity over all possible
coalitions S as follows:

ϕi (f,x,Pr) =
1

d!

∑
π

cf,x,Pr(i, π
<i), (3)

where π is a permutation of the set I of indexes and π<i is the set of indexes before i in the ordering
given by π. For better clarity, “f,x,Pr” or simply “x,Pr” will be dropped from the equations.

This quantity is known as the Shapley value for the ith feature. It originates from cooperative
game theory and is the unique quantity respecting a set of desired axiomatic properties [26, 28]:

Linearity with respect to the model:
α, β ∈ R, ∀i ∈ I, ϕi (αf + βg) = αϕi (f) + βϕi (g);

Symmetry:
∀S ⊆ I\{i, j}, v (S ∪ {i}) = v (S ∪ {j})⇒ ϕi = ϕj ;

Efficiency: The “centered” prediction is additively separable with respect to the Shapley values:

f(x)− EPr[f(X)] =

d∑
i=1

ϕi (f,x,Pr) . (4)

Efficiency ensures that the change in prediction when the features are observed is distributed among
them. In other words, the cumulative sum of the Shapley values moves the averaged prediction (also
called base prediction) to the actual one.

The Shapley value is designed for a characteristic function with a scalar codomain. For explaining
machine learning models which output multidimensional discrete probability distributions, like
in multiclass classification, one could explain each output dimension separately, resulting in a
one-vs-rest comparison. However, this approach ignores the relative information between each
probability and ignores the compositional nature of the discrete probability distributions. Indeed,
the probabilistic output of a classifier lives on a multidimensional simplex. The latter is the sample
space of compositional data briefly reviewed in the next section.

4 Compositional data

Compositional data carries relative information. Each element of a composition describes a part of
some whole [23], such as vectors of proportions, concentrations, and discrete probability distributions.
An D-part composition is a vector of D non-zero positive real numbers that sum to a constant k.
Each element of the vector is a part of the whole k. The sample space of compositional data is the
(D − 1)-dimensional simplex:

SD =

{
x = [x1, x2, . . . xD]T ∈ R∗D

+ |
D∑
i=1

xi = k

}
. (5)

In a composition, only the relative information between parts matters and John Aitchison introduced
the use of log-ratios of parts to handle this [2]. He defined several operations on the simplex which
leads to what is called the Aitchison geometry of the simplex.
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4.1 The Aitchison geometry of the simplex

Only the relative information between the parts of a composition matters. Compositions are therefore
scale-invariant. This is materialised by the closure operator defined for k > 0 as:

C (x) =
[
kx1

∥x∥1
,
kx2

∥x∥1
, . . .

kxD

∥x∥1

]T
∈ SD, (6)

where x ∈ R∗D
+ and ∥x∥1 =

∑D
i=1|xi|.

Aitchison defined on the simplex the following three operations [3]:

Perturbation: x⊕ y = C ([x1y1, . . . xDyD]), seen as an addition between two compositions;

Powering: α⊙ x = C ([xα
1 , . . . x

α
D]), seen as a multiplication by a scalar α ∈ R;

Inner product:

⟨x,y⟩A =
1

2D

D∑
i=1

D∑
j=1

log
xi

xj
log

yi
yj

. (7)

In this paper, since we are interested in classification problems where the set of classes represents a set
of exhaustive and mutually exclusive hypotheses, the output of a probabilistic classifier is a discrete
probability distribution over the set of classes. We therefore restrict ourselves to the probability
simplex where k = 1.

4.2 The isometric log-ratio transformation

A (D − 1)-dimensional orthonormal basis of the simplex, referred to as an Aitchison orthonormal
basis, can be built. The projection of a composition into this basis defines an isometric isomorphism
between SD and RD−1. This is known as an isometric log-ratio (ILR) transformation [12] and allows
to express a composition into a Cartesian coordinate system preserving the metric of the Aitchison
geometry. Within this real space, the perturbation, the powering and the Aitchison inner product
are respectively the standard addition between two vectors, the multiplication of a vector by a scalar,
and the standard inner product.

Given a composition p = [p1, . . . pD]
T ∈ SD we write its ILR transformation as p̃ = ilr (p) =

[p̃1, . . . p̃D−1]
T ∈ RD−1. The ith element p̃i of p̃ is obtained as: p̃i = ⟨p, e(i)⟩A where the set

{e(i) ∈ SD}1≤i≤D−1 forms an Aitchison orthonormal basis of the simplex. The basis can be obtain
through the Gram-Schmidt procedure or by building a sequential binary partition [12, 9]. Examples
are discussed in Section 6.2.

In the introductory example of Figure 1, the 2-dimensional ILR space isomorphic to the 3-class
probability simplex was constructed as follows:

p̃1 =
1√
2
log

p1
p2

, p̃2 =

√
2

3
log

√
p1p2

p3
.

Hence, the x-axis compares the probabilities for classes 1 and 2, the y-axis compares the probability for
class 3 with the geometric mean of p1 and p2, and the origin corresponds to the uniform distribution,
i.e., the neutral element for the perturbation. Note that the perturbation can be seen as a Bayesian
update: the perturbation of a prior by a likelihood function gives the posterior. In the space of
isometric log-ratio transformed distributions, the Bayes update is a vector translation.
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5 Shapley composition on the simplex

In this section we will use the Aitchison geometry to extend the Shapley value from Section 3 to
the simplex for explaining a multiclass probabilistic prediction. Let f : X → SD be a learned model
which outputs a prediction on the (D − 1)-dimensional probability simplex SD. In order to properly
consider the structure of the simplex and the relative information between the probabilities, the
model’s output is treated as compositional data using the operators from the Aitchison geometry of
the simplex. We therefore rewrite the characteristic function and the contribution of Equations 1
and 2 as follows:

vf ,x,Pr : 2
I → SD,

S 7→ EA
Pr[f(X) | xS ]⊖ EA

Pr[f(X)].
(8)

cf ,x,Pr(i, S) = vf ,x,Pr(S ∪ {i})⊖ vf ,x,Pr(S), (9)

where a ⊖ b is the perturbation a ⊕ ((−1)⊙ b) which corresponds to a subtraction between two
compositions, and where the A in superscript highlights the fact that the expectation is taken with
respect to the Aitchison measure. This can be computed as: EA[Y ] = ilr−1 (E [ilr (Y )]), where EA

refers to the expectation with respect to the Aitchison measure while E refers to the expectation
with respect to the Lebesgue measure [23].

The Shapley quantity expressing the contribution of the ith feature’s value on a prediction can
be expressed on the simplex as the composition ϕi given by:

ϕi (f ,x,Pr) =
1

d!
⊙
⊕
π

cf ,x,Pr(i, π
<i). (10)

We call this quantity Shapley composition. Note that the average is here with respect to the Aitchison
geometry, i.e. with perturbations and a powering rather than sums and a scaling.

The following is the main theoretical result of the paper.

Theorem 1. The Shapley composition is the unique quantity that satisfies the following properties
on the Aitchison simplex:

Linearity with respect to the model:
α, β ∈ R, ∀i ∈ I,
ϕi (α⊙ f ⊕ β ⊙ g) = α⊙ ϕi (f)⊕ β ⊙ ϕi (g);

Symmetry:
∀S ⊆ I\{i, j}, v (S ∪ {i}) = v (S ∪ {j})⇒ ϕi = ϕj;

Efficiency:
d⊕

i=1

ϕi (f ,x,Pr) = f(x)⊖ EA
Pr[f(X)]. (11)

A proof of this result is given in Appendix A. Shapley compositions are thus the natural
multidimensional extension of the Shapley value framework on the Aitchison simplex. In the next
section we give a number of compelling examples of how this can be used to explain multiclass
probabilistic predictions.

7



6 Explaining a multiclass prediction with Shapley composi-
tions

Given a probabilistic prediction f(x) ∈ SD, the Shapley composition ϕi (f ,x,Pr) describes the
contribution of the ith feature value to the prediction. The efficiency property shows how the
probability distribution is perturbed from the base distribution EA

Pr[f(X)], i.e. the expected prediction
regardless of the current input, to the actual prediction f(x). In the standard Shapley formulation
recalled in Section 3, the prediction is one-dimensional such that the Shapley quantity is a scalar.
In applications where there are more than two possible classes, the prediction is multidimensional
such that the Shapley quantity (the Shapley composition) is too. Both live in the same space: the
probability simplex. In this section, we discuss how the set of Shapley compositions can be analysed
to better understand the contribution and influence of each feature’s value on the prediction.

6.1 Visualisation in an isometric-log-ratio space

The Shapley compositions can be visualised in a (D − 1)-dimensional Euclidean space isometric
to the simplex with the ILR transformation presented in Section 4.2. As we will see, this space is
intuitive since it is a standard real vector space and it is additive. In what follows, we discuss some
examples of Shapley composition-based explanations in an ILR space.

−2 0 2

−3

−2

−1

0

1

2

3
Class composition:

setosa
versicolor
virginica

Shapley composition:
sep. length
sep. width
pet. length
pet. width

base

prediction

Max. proba.
region boundaries

ILR1

IL
R2

Figure 2: The sum of the Shapley compositions in an ILR space from the base distribution to the
prediction for the classification of an Iris instance.
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6.1.1 Three classes

Our first illustration uses the well-known Iris classification dataset consisting of a set of flowers
described by 4 features: sepal length and width, and petal length and width. The aim of the
classification task is to predict to which of the three species (setosa, versicolor and virginica) a flower
belongs.

In the present example, a Support Vector Machine (SVM) with a radial basis function (rbf)
kernel is used as a classifier. Pairwise coupling [31] is used to obtain a probabilistic prediction.
Figure 2 shows the explanation of the classifier prediction for one versicolor instance where the
Shapley compositions move the distribution from the base to the prediction. Having the highest
norm, the petal width and length are the features contributing the most to the prediction and move
the base distribution into the versicolor maximum probability region (maximum probability region
boundaries are the dashed gray rays). Class-compositions are represented by coloured dashed vectors.
A class-composition is defined as a unit norm composition going straight to the direction of one
class and uniformly against all the others (see Appendix B for a formal definition). Note that the
class-compositions are not mutually orthogonal. This is because a positive contribution toward one
class has necessarily to lead to a negative contribution toward at least another class to preserve the
structure of the simplex.

The Shapley composition for the petal length is almost orthogonal to the virginica class-
composition: for this instance, this feature does not contribute to the weight of the predicted

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

pet. length pet. width sep. length sep. width

higher lower
base value

0.01
f(x)

0.3 0.4 0.5 0.6 0.7 0.8

pet. widthpet. lengthsep. length

higher lower
base value

0.83
f(x)

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

pet. width pet. lengthsep. widthsep. length

higher lower
base value

0.16
f(x)

Setosa

Versicolor

Virginica

Figure 3: Visualisation of the Shapley values for each class in a one-vs-the-rest manner for the
same instance as in Figure 2, obtained using the SHAP toolkit [20]. The red/blue bars represent
positive/negative contributions of each feature on the prediction.
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probability for this class. Having a Shapley composition going straight to the opposite direction of
one class-composition would suggest that the corresponding feature’s value contributes to rejecting
this class. This is somewhat the case for the sepal length. However, because its Shapley composition
has a low norm, this feature contributes little to the prediction.

Alternatively, one could analyse this instance by applying the standard Shapley value in a one-vs-
rest manner, explaining the feature contributions separately for each class. Figure 3 shows how each
explanation is usually visualised with the SHAP toolkit [20]. The prediction is explained for each
class one-by-one independently from one another, which makes it hard to appreciate the influence
of one feature on the full distribution. Moreover, there is no guarantee that the intermediate full
distribution remains on the simplex. In contrast, with our approach, the influence of one feature’s
value on the full prediction can be analyse with a single quantity, the Shapley composition, in a
single coherent and easily interpretable plot.

6.1.2 Four classes

In a four-class example, the simplex is 3-dimensional. We illustrate this with a simple handwritten
digit recognition task5. It consists of classifying an 8× 8 image as representing one of the digits 0, 1,
2 or 3. Since there are 64 pixels, considering each pixel as a feature would correspond to 64 Shapley
compositions. Moreover, the pixels will be highly correlated. Since our goal here is to provide simple
illustrative examples, we reduce the number of features to 6 using a principal component analysis for
better clarity and conciseness. An SVM with a rbf kernel and pairwise coupling is again used as a
probabilistic classifier. A similar analysis as before can be applied here but within a 3-dimensional
plot as illustrated in Figure 4.

Class composition:
0
1
2
3

Shapley composition:
1st prin. comp.
2nd prin. comp.
3rd prin. comp.
4th prin. comp.
5th prin. comp.
6th prin. comp.

base

prediction

Figure 4: Shapley compositions in a 3-dimensional ILR space for a four classes digit recognition task.
The Shapley compositions are summed in the ILR space from the base distribution to the prediction.
The gray transparent walls mark out the four maximum probability decision regions.

5We use the scikit-learn’s digits dataset [24].
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To better understand how this space is divided into four regions–each representing the maximum
probability region for one class–one can think about the shape of a methane molecule. The hydrogens
correspond to the vertices and the carbon to the center of a tetrahedron i.e. a 3-dimensional simplex.
The relative positions of the class-compositions in the ILR space are the same as the bonds between
the carbon and hydrogen: the angles are ≈ 109.5◦. In this example, the tested instance is a 06.

6.2 More classes: groups of classes and balances

When more than three classes are involved, the dimensions of the ILR space cannot be visualised all
at once. However, 2 or 3-dimensional subspaces can still be visualised. In order to select the ILR
components to investigate, one needs to understand what they refer to. In this section, we briefly
discuss the interpretation of the ILR components.

A component of an ILR space can be interpreted as a balance, i.e. a log-ratio of two geometrical
means of probabilities [12, 9, 23]: one giving the central values of the probabilities in one group of
classes and one for another group of classes. Therefore, a balance is here comparing the weight of two
groups of classes. The set of balances is built such that they are geometrically orthogonal meaning
they provide non-redundant information7. This can be illustrated by a sequential binary partition or
bifurcation tree. Two examples are given in Figures 5 and 6. Figure 5 shows the bifurcation tree
corresponding to the basis obtained with the Gram-Schmidt procedure as in [12] which is the one
used in the examples of Figures 2 and 4 with respectively D = 3 and D = 4. Each node of the tree is
a balance, i.e., an ILR component. The first balance p̃1 compares the probability for class 1 with the
probability for class 2. Each next balance then recursively compares the probability for the next
class with the probabilities for the previous classes independently of all the others.

In some applications, one may be interested in particular comparisons of groups of classes not
necessarily given by a basis in the form of Figure 5. For instance, as in an example presented in [9],
if one wants to compare political parties or groups, it may be pertinent to have a balance comparing
left and right-wing groups. But sometimes there are no obvious relevant comparisons to study. In the
handwritten digit recognition problem, one may want to compare odd with even numbers or primes
with non-primes (although, being essentially a shape recognition problem, and the shape of the
numbers being independent of their arithmetic properties, such comparisons may not be pertinent).

p̃1

p̃2

p̃D−1

p1 p2 p3 . . . pD

Figure 5: Bifurcation tree corresponding to the basis obtained with the Gram-Schmidt procedure as
in [12] and used in the examples of Figures 2 and 4.

6More examples and better visualisations can be obtained from the Jupyter notebooks: https://github.com/

orgs/shapley-composition.
7Not to be confused with statistical uncorrelation [23].
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p̃8

p̃9

p̃2 p̃3p̃1

p̃5

p̃7

p̃4

p̃6

4 1 7 8 5 2 3 9 0 6

Figure 6: Bifurcation tree used in the 10-class digit recognition task discussed in Section 6.2 and in
Figure 7.

We use the basis of Figure 6 for a 10-class digit recognition task. In this example, the bifurcation
tree is obtained from the dendrogram of an agglomerative clustering of classes: for each class, the set
of predictions is modelled by a logistic-normal [4], with equal covariance, and classes are recursively
merged with respect to the Mahalanobis distance. Consider, in Figure 7, the third and fifth ILR
dimensions (p̃3 and p̃5). Effectively, we are saying that we are interested in comparing the probability
assigned for class 0 with the probability assigned for class 6, and in comparing the probability
assigned for class 1 with the group of probabilities assigned for classes 7 and 8. p̃3 depends only
on the probability for the digits 0 and 6, and p̃5 depends only on the probabilities for the digits 1,
7 and 8. The class-compositions for the other digits have a zero projection within this subspace
and are therefore discarded in Figure 7. The class-compositions for 0 and 6 are orthogonal to the
class-compositions for classes 1, 7 and 8. Indeed, the set of classes making the balance p̃3 and the set
of classes making p̃5 have no intersection.

In contrast, in the example of Figure 2, p̃1 is comparing the probabilities for the class setosa with
the probability for the class versicolor and p̃2 is comparing the probabilities for the class virginica
with the group of probabilities for setosa and versicolor. In Figure 2, the class-compositions are
exhaustively present and are therefore geometrically dependent and none of them are orthogonal.
In Figure 7, the classes are not all represented such that the class-compositions projections can be
orthogonal. In other words, since we look at only a subspace of an ILR space, we are not looking at
the full probability distribution.

In the example of Figure 7, since p̃5 is comparing 1 with the group of digits 7 and 8, the projection
on this line of the class-compositions for 1 goes in an opposite direction than the one for the class-
compositions for 7 and 8. The latter two are equal and half as long as the former. In this way, p̃5
compares the probability for 1 with the group of probabilities for 7 and 8 with the same weight. In
other words, in this subspace, the class-compositions for 7 and 8 are reweighted such that this group
of two classes has the same weight as the group made of the single class 1.

Within this space, Shapley compositions can be explored as in the examples of Figures 2 and 4,
keeping in mind that this is a subspace of a full ILR space.
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Figure 7: The sum of the Shapley compositions from the base to the prediction in the ILR subspace
made of p̃3 and p̃5 for a test instance from class 2. p̃3 compares the probability assigned for class
0 with the probability assigned for class 6 and p̃5 compares the probability assigned for class 1
with the group of probabilities assigned for class 7 and 8. The color dashed vectors represent the
class-compositions with non-zero projection.

6.3 Angles, norms and projections

An explanation can be summarised by sets of angles, norms and projections:

• The norm of a Shapley composition gives the strength of the contribution of the feature’s
value to the prediction. This measures the overall contribution of the feature, regardless of its
direction.

• The angle between two Shapley compositions informs about their orthogonality. Orthogonality
suggests that the features are non-redundant for the given instance. A negative angle would
suggest that the features have an opposite influence on the prediction.

• The projections of a Shapley composition on the set of class-compositions inform in favour of,
or against, which classes a feature’s value is contributing.

To give a few examples, for the Iris example of Figure 2, the norms for each Shapley composition
are ≈ 1.27, 1.02, 0.36 and 0.28 respectively for the petal width, length and sepal width and length,
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confirming the features’ importance one would expect from Figure 2. The projection of the petal
length’s composition on the virginica class-composition is ≈ 0.01 confirming the low influence of this
feature on the probability for this class. Finally, note that the cosine similarity between the Shapley
compositions for petal length and width is close to one (≈ 0.99) which confirms these features are
moving the distribution toward the same direction while the compositions for sepal and petal width
have a cosine similarity of 0.45 confirming they point to complementary directions.

6.4 Histograms and parallel coordinates

For a classification problem with at most 4 classes, an ILR space can be fully visualised within a
single figure. However, for more classes we cannot visualise the full ILR space and therefore have to
explore subspaces. In this section we discuss alternative visualisations.

The Shapley composition can be visualised using a bar plot like discrete probability distributions.
Figure 8 shows the Shapley compositions of the Iris classification example as histograms. Note that
in Figure 1, the histograms were showing the probability distributions as the successive perturbation
of the base by the features’ contribution. The histograms in this section refer to the visualisation of
Shapley compositions for each feature separately. A more uniform histogram reflects less contribution
of the feature’s value to the change of the probability distribution (e.g. the sepal length in Figure
8). In contrast, the Shapley compositions for the petal length and width have a high value for the
versicolor class, in comparison to the others. This confirms the contribution of these features toward
this class.

sep. length sep. width pet. length pet. width
0

0.2

0.4

0.6 setosa versicolor virginica

Figure 8: Shapley compositions visualised as histograms for the Iris classification example.

As another illustration, Figure 9 shows the Shapley compositions of the 10-class digit recognition
example. Here, and contrary to the visualisation of the compositions in an ILR space as in Section
6.2, one can analyse all parts of each composition within a single plot. In this example, the high
value for digit 2 for the first principal component confirms the contribution of this feature toward
this class.

Another way to visualise the full compositions is with parallel coordinates. After sorting the
features by their contribution (i.e. the norm of their Shapley composition), the successive perturbation
of the distribution can be visualised as probability lines from the base distribution to the prediction.
Figure 10 shows such a plot for the digit recognition example. With this visualisation, we can
compactly see how the probability distribution is transformed by each feature contribution from the
base distribution to the predicted one. In this example, the probability for digit 2 increases the most
with the contribution of feature 1. This feature does not contribute in the change of the probability
for digit 3 as suggested by the horizontal red segment. The next feature continues to increase the
probability for digit 2 while decreasing the others.
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Figure 9: Shapley compositions visualised as histograms for the ten classes digit recognition example.
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Figure 10: Parallel coordinates visualisation of the successive perturbation of the base distribution
by Shapley compositions (ordered by importance, i.e., norm). The final distribution on the right side
is the prediction.

6.5 The estimation algorithm

The estimation algorithm used in this work for computing the Shapley compositions is an adaptation
of Algorithm 2 in [28]. Since the resulting Shapley compositions are approximations, the efficiency
property does not necessarily hold. In order for the set of estimated Shapley compositions to respect
the efficiency property, each Shapley composition is adjusted following a similar method as in the
sampling approximation in the SHAP toolkit [20]8. We refer the reader to Appendix C and Appendix
D for more details.

Note that the Shapley composition framework can be applied on many different types of data,
such as images. However, the main limitation is algorithmic: the complexity of the algorithm
increases with the number of features, as with the standard Shapley value framework. Moreover, the
estimation algorithm assumes that the features are independent. Estimating Shapley values without
such assumption has been discussed in the literature [1]. We leave the exploration of estimation
algorithms of the Shapley compositions without the features-independence assumption and for data
with a large number of features for future work.

8https://github.com/shap/shap/blob/master/shap/explainers/_sampling.py
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7 Discussion and conclusion

The use of standard Shapley values for explaining multiclass machine learning models has been rarely
discussed in the literature. However, the computation of the Shapley values on each output dimension
one-by-one can be encountered. To be more precise, for an D-class problem (D > 2), it may first
sound natural to compute a Shapley value on the logit of the probability for each class resulting in a
D-dimensional vector of the Shapley values. Even if the efficiency property holds with the standard
addition, i.e. the sum of the element-wise logit of the base distribution with such vectors for each
feature is equal to the element-wise logit of the prediction, the path from the base to the prediction
may go out of the simplex, i.e., the space of probability distributions, which is counter-intuitive and
indeed incoherent. Moreover, such a strategy would require running D independent explanations
contrary to the Shapley composition approach which requires a single explanation process.

As far as we are aware, this paper is the first to propose an extension of the Shapley value
framework to the multidimensional simplex for explaining a multiclass probabilistic prediction in
machine learning. We saw how the formalisation of the standard Shapley value naturally extends
to the simplex using the Aitchison geometry. The resulting Shapley quantity is a composition
(distribution), i.e. a vector living on the probability simplex. It is referred as Shapley composition
and explicates the contribution of a feature’s value to a prediction. To be more precise, it tells how a
feature’s value moves the distribution from the base one to the predicted one on the simplex. We
saw that the Shapley composition is the unique quantity that satisfies the linearity, symmetry and
efficiency on the Aitchison simplex.

The Aitchison geometry gives to the simplex an Euclidean vector space structure. For explaining
a prediction, Shapley compositions can be visualised and analysed through angles, norms and
projections. They inform on both the strength and the direction of each feature’s value effect. Living
on the probability simplex, i.e. the same space as discrete probability distributions, the Shapley
compositions can also be visualised as histograms. Parallel plots of probabilities can also be visualised
to keep track of the change in the distribution induced by each feature’s value.

The literature about the use of Shapley values in machine learning is extensive. Many estimation
algorithms have been developed, many applications of the Shapley value have emerged, and large-scale
experiments have been conducted. In contrast, our paper presents limited experimental results as
simple proofs of concept and illustrations. However, the main contribution of this work is theoretical
and methodological. We believe this work lays proper foundations to foster the research in explainable
machine learning, especially for multidimensional and multiclass predictions.
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Appendix A Proof of the uniqueness of Shapley compositions
on the simplex

This section provides a proof of Theorem 1.

A.1 Linearity, symmetry and efficiency

Let’s first show that the Shapley composition statisfies the linearity, symmetry and efficiency.

Proof.

Linearity: Let’s consider the linear combination of predictions, or models, h(x) = α⊙ f(x)⊕ β ⊙
g(x).

EA
Pr[h(x) | xS ] = ilr−1 (EPr[ilr (α⊙ f(x)⊕ β ⊙ g(x)) | xS ]) ,

= ilr−1 (EPr[α ilr (f(x)) + β ilr (g(x)) | xS ]) ,

= ilr−1 (αEPr[ilr (f(x)) | xS ] + βEPr[ilr (g(x)) | xS ]) ,

= α⊙ ilr−1 (EPr[ilr (f(x)) | xS ])⊕ β ⊙ ilr−1 (EPr[ilr (g(x)) | xS ]) ,

= α⊙ EA
Pr[f(x) | xS ]⊕ β ⊙ EA

Pr[g(x) | xS ].

(12)

Similarly, EA
Pr[h(x)] = α⊙ EA

Pr[f(x)]⊕ β ⊙ EA
Pr[g(x)].

Therefore, vh,x,Pr(S) = α⊙ vf ,x,Pr(S)⊕ β ⊙ vg,x,Pr(S), meaning that v is linear with respect to
the model. The linearity of the contribution c naturally follows:

∀i ∈ I, ∀S ⊆ I\i,
ch,x,Pr(i, S) = vh,x,Pr(S ∪ {i})⊖ vh,x,Pr(S),

= (α⊙ vf ,x,Pr(S ∪ {i})⊕ β ⊙ vg,x,Pr(S ∪ {i}))⊖ (α⊙ vf ,x,Pr(S)⊕ β ⊙ vg,x,Pr(S)) ,

= α⊙ vf ,x,Pr(S ∪ {i})⊕ β ⊙ vg,x,Pr(S ∪ {i})⊖ α⊙ vf ,x,Pr(S)⊖ β ⊙ vg,x,Pr(S),

= α⊙ (vf ,x,Pr(S ∪ {i})⊖ vf ,x,Pr(S))⊕ β ⊙ (vg,x,Pr(S ∪ {i})⊖ vg,x,Pr(S)) ,

= α⊙ cf ,x,Pr(i, S)⊕ β ⊙ cg,x,Pr(i, S).
(13)

And the linearity of the Shapley composition:

∀i ∈ I, ϕi (h) =
1

d!

⊕
π

ch,x,Pr(i, π
<i),

=
1

d!

⊕
π

(α⊙ cf ,x,Pr(i, S)⊕ β ⊙ cg,x,Pr(i, S)) ,

= α⊙

(
1

d!

⊕
π

cf ,x,Pr(i, S)

)
⊕ β ⊙

(
1

d!

⊕
π

cg,x,Pr(i, S)

)
,

= α⊙ ϕi (f)⊕ β ⊙ ϕi (g) .

(14)

Thus, the Shapley composition is linear on the Aitchison simplex as a function of the prediction.

Symmetry is straightforward.
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Efficiency

d⊕
i=1

ϕi (f) =

d⊕
i=1

(
1

d!
⊙
⊕
π

c(i, π<i)

)
,

=
1

d!
⊙

d⊕
i=1

(⊕
π

(
v(π<i+1)⊖ v(π<i)

))
,

=
1

d!
⊙

d⊕
i=1


(⊕

π

v(π<i+1)

)
︸ ︷︷ ︸

Ai+1

⊖

(⊕
π

v(π<i)

)
︸ ︷︷ ︸

Ai

 ,

=
1

d!
⊙

d⊕
i=1

(Ai+1 ⊖Ai) ,

=
1

d!
⊙ (Ad+1 ⊖A1) , since we have a telescoping perturbation,

=
1

d!
⊙

((⊕
π

v(π<d+1)

)
⊖

(⊕
π

v(π<1)

))
,

=
1

d!
⊙

((⊕
π

v (I)

)
⊖

(⊕
π

v (∅)

))
,

= v (I)⊖ v (∅) , since d! is the number of permutation,

= f(x)⊖ EA
Pr[f(X)].

(15)

Thus, the Shapley composition is linear, symmetric and efficient.

A.2 Uniqueness

Let’s now show the uniqueness of the quantity satisfying the above three axiomatic properties on the
simplex. The proof is highly inspired by the proofs for the standard Shapley value in game theory
[26, 21]. We first need the following Definition and Lemma.

Let’s first consider the set GSD

d of composition-valued set functions. This can be seen, in
cooperative game theory, as the set of characteristic functions of games where the payoff, or worth, is
a composition rather than a scalar. The function from Equation 8 is such function.

For simplicity of the notation, let’s consider one isometric-log-ratio space RD−1 isomorphic to the

simplex SD. We therefore consider instead the set GRD−1

d of vector-valued set functions9:

GR
D−1

d = {ṽ : 2I → RD−1 | ṽ(∅) = 0}, (16)

where I = {1, 2, . . . d}. GRD−1

d is (2d−1)(D−1)-dimensional, since |2I | = 2d, and the −1 corresponds
to the empty set (with the constraint ṽ(∅) = 0), and D − 1 is the dimension of the functions’
codomain.

9The tilde refers to the isometric-log-ratio transformation of a composition.
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Definition. Let {ẽ(i)}1≤i≤D−1 be a linear basis of RD−1. The ith-vector-unanimity game (I, ṽ(i)
T ),

where T ⊆ I\∅, is defined such that:

∀S ⊆ I, ṽ
(i)
T (S) =

{
ẽ(i), if T ⊆ S
0, otherwise.

(17)

Lemma. The set {ṽ(i)
T ∈ GR

D−1

d | T ⊆ I\∅, 1 ≤ i ≤ D − 1} forms a linear basis of GRD−1

d .

Proof. There are (2d−1)×(D−1) ith-vector-unanimity games, the same number as the dimensionality

of GRD−1

d . We therefore just need to prove that they are linearly independent towards a contradiction.
Let’s assume that: ∑

T⊆I\∅
1≤i≤D−1

α
(i)
T ṽ

(i)
T = 0, and ∃ α

(i)
T ̸= 0. (18)

Let T0 be a set of minimal size in {T ⊆ I\∅ | ∃ α
(i)
T ̸= 0}.

Then, ∑
T⊆I\∅

1≤i≤D−1

α
(i)
T ṽ

(i)
T (T0) =

∑
T⊆T0

T ̸=∅
1≤i≤D−1

α
(i)
T ṽ

(i)
T (T0), (19)

because, by definition of the ith-vector-unanimity game, for all T ⊆ I\∅ not in T0, ṽ
(i)
T (T0) = 0.

And because, T0 is the minimal set in {T ⊆ I\∅} such that ∃ α(i)
T0
̸= 0, ∀T ⊂ T0 and 1 ≤ i ≤ D−1,

α
(i)
T = 0.
Then, ∑

T⊆I\∅
1≤i≤D−1

α
(i)
T ṽ

(i)
T (T0) =

∑
1≤i≤D−1

α
(i)
T0
ṽ
(i)
T0
(T0),

=
∑

1≤i≤D−1

α
(i)
T0
ẽ(i) ̸= 0,

(20)

because ∃ α
(i)
T0
̸= 0 and {ẽ(i)}1≤i≤D−1 are linearly independent.

This is indeed a contradiction. Therefore, the elements of {ṽ(i)
T ∈ GR

D−1

d | T ⊆ I\∅, 1 ≤ i ≤ D−1}
are linearly independent and form a linear basis of GRD−1

d .

Corollary. The set {v(i)
T = ilr−1

(
ṽ
(i)
T

)
∈ GSD

d | T ⊆ I\∅, 1 ≤ i ≤ D − 1} forms an Aitchison linear

basis of GSD

d ,

where v
(i)
T can be referred as a ith-composition-unanimity game.

Thus, any composition-valued set function v can be written with a unique set of alphas as:

∀S ⊆ I, v(S) =
⊕

T⊆I\∅
1≤i≤D−1

α
(i)
T ⊙ v

(i)
T (S). (21)

Let’s now prove that for any composition-valued set function v ∈ GSD

d , there is an unique set
{ϕk}1≤k≤d of composition-valued function that satisfies the three axiomatic properties.
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Proof. Let’s first show there is an unique set {ϕk}1≤k≤d of composition-valued function that satisfies

the three axiomatic properties for a powered ith-composition-unanimity game β ⊙ v
(i)
T where β ∈ R.

With the linearity and the efficiency axiomatic properties, we have10:⊕
k∈T

ϕk

(
β ⊙ v

(i)
T

)
= β ⊙ e(i), and ∀j /∈ T, ϕj

(
β ⊙ v

(i)
T

)
= u, (22)

where {e(i) = ilr−1
(
ẽ(i)
)
}1≤i≤D−1 forms an Aitchison linear basis of the simplex, and u ∈ SD is the

uniform distribution, i.e. the neutral element for the perturbation: u = ilr−1 (0).

Let (k, l) ∈ T 2, ∀S ⊆ I\{k, l}, we have β ⊙ v
(i)
T (S ∪ {k}) = β ⊙ v

(i)
T (S ∪ {l}). Therefore, due to

the symmetry, ϕk

(
β ⊙ v

(i)
T

)
= ϕl

(
β ⊙ v

(i)
T

)
such that ∀k ∈ T the ϕk are equal.

Thus,

∀k ∈ I, ϕk

(
β ⊙ v

(i)
T

)
=

{ β
|T | ⊙ e(i), if k ∈ T

u, otherwise.
(23)

Therefore, the set {ϕk}1≤k≤d of composition-valued function, respecting the axiomatic properties,
is uniquely defined for a powered ith-composition-unanimity game.

Finally, there is a unique set {ϕk}1≤k≤d that satisfies the three axiomatic properties for any
composition-valued set function since such function is uniquely represented by a linear combination
of ith-composition-unanimity games and the functions in {ϕk}1≤k≤d are linear with respect to the
characteristic function.

10In the core of the paper, the Shapley compositions are written as functions of a model. Here, without loss of
generality, they are written as functions of a characteristic function.
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Appendix B Class-compositions

A k-class-composition c(k) ∈ SD is defined as an unit norm composition going straight to the direction
of the kth class. This is a discrete probability distribution with maximum probability for the kth
class and uniform values for the others. The ith part of c(k) is:

c
(k)
i =

{
1− (D − 1)p, if i = k
p, otherwise,

(24)

where 0 < p < 1
D . We want the Aitchison norm of each class-composition to be one:

∀k ∈ {1, . . . D}, ∥c(k)∥A = 1 ⇐⇒

√√√√ 1

2D

D∑
i=1

D∑
j=1

(
log

c
(k)
i

c
(k)
j

)2

= 1,

for clarity,

we drop the superscript (k) from the equations,

⇐⇒

√√√√ 1

2D

D∑
i=1

(
(D − 1)

(
log

ci
p

)2

+

(
log

ci
1− (D − 1)p

)2
)

= 1,

⇐⇒

√
1

2D
2(D − 1)

(
log

p

1− (D − 1)p

)2

= 1,

since p <
1

D
and the norm is positive:

⇐⇒
√

D − 1

D
log

1− (D − 1)p

p
= 1,

⇐⇒ p =
exp

(
−
√

D
D−1

)
1 + (D − 1) exp

(
−
√

D
D−1

) .
(25)

To summarise, the ith part of a k-class-composition c(k) ∈ SD is given by:

c
(k)
i =

1

1 + (D − 1) exp
(
−
√

D
D−1

) ({1, if i = k

exp
(
−
√

D
D−1

)
, otherwise,

)
. (26)

In this way, c(k) is going straight to the direction of class k and uniformly against all the others with
a unit norm.
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Appendix C Estimation of the Shapley compositions

This section presents the estimation algorithm we used to estimate the Shapley compositions in our
experiments. The algorithm is an adaptation of Algorithm 2 in [28].

Let d be the number of features. We want to optimally distribute mmax drawn samples over the
d features. Let ϕ̂i be the estimation of the Shapley composition for the ith feature. We want to
minimise the sum of squared errors:

∑d
i=1 ∥ϕ̂i ⊖ ϕi∥2A.

Since ϕ̂i is a (Aitchison) sample mean we have:
˜̂
ϕi ≈ N

(
ϕ̃i,

1
mi

Σ(i)
)
and

˜̂
ϕi−ϕ̃i ≈ N

(
0, 1

mi
Σ(i)

)
where the tilde refers to the ILR transformation. Let∆i =

˜̂
ϕi−ϕ̃i and Zi = ∥ϕ̂i⊖ϕi∥A = ∥ ˜̂ϕi−ϕ̃i∥2 =

∥∆i∥2. The expectation of the sum of squared errors is:

E

[
d∑

i=1

Z2
i

]
=

d∑
i=1

E
[
Z2
i

]
,

=

d∑
i=1

E

d−1∑
j=1

∆2
ij

 ,

=

d∑
i=1

d−1∑
j=1

E
[
∆2

ij

]
,

=

d∑
i=1

d−1∑
j=1

1

mi
Σ

(i)
jj , since ∆ij ≈ N

(
0,

1

mi
Σ

(i)
jj

)
,

=

d∑
i=1

1

mi
trΣ(i).

(27)

When a sample is drawn, the feature for which the sample will be used for improving the Shapley

composition estimation is chosen to maximise trΣ(i)

mi
− trΣ(i)

mi+1 . Like in [28], this is summarised in
Algorithm 2.
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Algorithm 1 Adaptation of the Algorithm 1 from [28] for approximating the Shapley composition
of the ith feature, with model f , instance x ∈ X and m drawn samples.

Initialise ϕi ← ilr−1(0)
for 1 to m do
Randomly select a permutation π of the set of indexes I,
Randomly select a sample w ∈ X ,
Construct two instances:

• b1: which takes the values from x for the ith feature and the features indexed before i in
the order given by π, and takes the values from w otherwise,

• b2: which takes the values from x for the features indexed before i in the order given by π,
and takes the values from w otherwise.

ϕi ← ϕi ⊕ f(b1)⊖ f(b2)
end for
ϕi ← ϕi

m

Algorithm 2 Adaptation of the Algorithm 2 from [28] for approximating all the Shapley compositions
by optimally distributing a maximum number of samples mmax over the d features, with model f ,
instance x ∈ X and mmin the minimum number of samples for each feature estimation.

Initialisation: mi ← 0, ϕi ← 0, ∀i ∈ {1, . . . d},

while

d∑
i=1

mi < mmax do

if ∀i,mi ≤ mmin then

j = argmax
i

(
trΣ(i)

mi
− trΣ(i)

mi+1

)
,

else
pick a j such that mj < mmin,

end if
ϕj ← ϕj + result of Algorithm 1 for the jth feature and m = 1,
update Σ(j) using an incremental algorithm,
mj ← mj + 1

end while
ϕi ← ϕi

mi
, ∀i ∈ {1, . . . d}.
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Appendix D Adjustement of the estimated Shapley composi-
tions for efficiency

In practice, the computation of the Shapley values has an exponential time complexity and we do
not have necessarily access to the true distribution of the data. The Shapley values are therefore
approximated using estimation algorithms like for instance the one presented in the previous section.
However, since the obtained values are approximations, they do not necessarily respect the desired
efficiency property. This point is often overlooked in the literature. In this section, we write down
an adjustment strategy of the estimated Shapley compositions for them to respect the efficiency
property. This is a similar strategy as in the sampling approximation of the Shapley values in the
SHAP toolkit11.

Let {ϕ̂i}1≤i≤d be the estimated Shapley compositions (given by the Algorithm 2 in our experi-

ments). Let serr = f(x)⊖ f0 ⊖
d⊕

i=1

ϕ̂i, where f0 is the base distribution, be the error composition

on the pertubation of all Shapley compositions, i.e. the error that makes the efficiency property
unfulfilled. In order to respect the efficiency property, we want this error to be the neutral element
of the perturbation, i.e. the “zero” in the sense of the Aitchison geometry: the uniform distribution.
We could simply perturb each estimated Shapley compositions by 1

d ⊙ serr however this would move
each Shapley composition by the same amount while we want to allow the Shapley compositions
with a higher estimation variance (i.e. with a precision likely to be lower) to move more than the
Shapley compositions with a smaller estimation variance (i.e. with a precision likely to be higher).

The ith adjustment is therefore weighted by a scalar wi = w
(
tr
(
Σ(i)

))
, where w is an increasing

function, and where

d∑
i=1

wi = 1. Similarly to the SHAP toolkit implementation, we choose w as:

wi = w
(
tr
(
Σ(i)

))
=

vi

1 +

d∑
j=1

vj

, where vi =
tr
(
Σ(i)

)
ϵmax

j
tr
(
Σ(j)

) . (28)

The ith estimated Shapley composition is then asjusted as follow:

ϕ̂i ← ϕ̂i ⊕ (wi ⊙ serr) . (29)

In this way, when ϵ goes to zero12, the efficiency property is respected for the adjusted Shapley
compositions and more weight is given to the adjustments of the Shapley compositions with a higher
estimation variance.

11https://github.com/shap/shap/blob/master/shap/explainers/_sampling.py
12In our experiments, ϵ = 10−6.

24

https://github.com/shap/shap/blob/master/shap/explainers/_sampling.py


Acknowledgments

The work of PF and MPN was supported by TAILOR13, a European research network funded by the
EU Horizon 2020 research and innovation programme under GA No 952215. This work wouldn’t
have happened without a research visit of PGN at the University of Bristol made possible by the
TAILOR Connectivity Fund. The work of PGN and JFB was also supported by the LIAvignon chair.

We thank Telmo de Menezes e Silva Filho from the University of Bristol for suggesting parallel
coordinates to visualise Shapley compositions. We also thank the anonymous reviewers for helpful
comments.

References

[1] K. Aas, M. Jullum, and A. Løland. Explaining individual predictions when features are dependent:
More accurate approximations to shapley values. Artificial Intelligence, 298:103502, 2021.

[2] J. Aitchison. The statistical analysis of compositional data. Journal of the Royal Statistical
Society. Series B (Methodological), 44(2):139–177, 1982.

[3] J. Aitchison. Simplicial inference. In D. S. P. R. Marlos A. G. Viana, editor, Algebraic Methods
in Statistics and Probability, Contemporary Mathematics 287. American Mathematical Society,
2001.

[4] J. Aitchison and S. M. Shen. Logistic-normal distributions: Some properties and uses. Biometrika,
67(2):261–272, 1980.

[5] P. P. Angelov, E. A. Soares, R. Jiang, N. I. Arnold, and P. M. Atkinson. Explainable artificial
intelligence: an analytical review. Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery, 11(5):e1424, 2021.

[6] D. W. Apley and J. Zhu. Visualizing the Effects of Predictor Variables in Black Box Supervised
Learning Models. Journal of the Royal Statistical Society Series B: Statistical Methodology, 82
(4):1059–1086, 06 2020.

[7] L. Breiman. Random forests. Machine learning, 45(1):5–32, 2001. Publisher: Springer.

[8] A. Datta, S. Sen, and Y. Zick. Algorithmic transparency via quantitative input influence: Theory
and experiments with learning systems. In 2016 IEEE Symposium on Security and Privacy
(SP), pages 598–617, 2016.

[9] J. J. Egozcue and V. Pawlowsky-Glahn. Groups of parts and their balances in compositional
data analysis. Mathematical Geology, 37(7):795–828, 2005.

[10] J. J. Egozcue and V. Pawlowsky-Glahn. Evidence information in bayesian updating. Proc.
International Workshop on Compositional Data Analysis, 05 2011.

[11] J. J. Egozcue and P.-G. Vera. Evidence functions: a compositional approach to information.
SORT-Statistics and Operations Research Transactions, 1(2):101–124, Dec. 2018.

[12] J. J. Egozcue, V. Pawlowsky-Glahn, G. Mateu-Figueras, and C. Barcelo-Vidal. Isometric logratio
transformations for compositional data analysis. Mathematical geology, 35(3):279–300, 2003.

13https://tailor-network.eu

25

https://tailor-network.eu


[13] A. Fisher, C. Rudin, and F. Dominici. All models are wrong, but many are useful: Learning a
variable’s importance by studying an entire class of prediction models simultaneously. J. Mach.
Learn. Res., 20(177):1–81, 2019.

[14] L. Franceschi, C. Zor, M. B. Zafar, G. Detommaso, C. Archambeau, T. Madl, M. Donini, and
M. Seeger. Explaining multiclass classifiers with categorical values: A case study in radiography.
In H. Chen and L. Luo, editors, Trustworthy Machine Learning for Healthcare, pages 11–24,
Cham, 2023. Springer Nature Switzerland.

[15] L. Franceschi, M. Donini, C. Archambeau, and M. Seeger. Explaining probabilistic models with
distributional values. arXiv preprint arXiv:2402.09947, 2024.

[16] A. Goldstein, A. Kapelner, J. Bleich, and E. Pitkin. Peeking inside the black box: Visualizing
statistical learning with plots of individual conditional expectation. Journal of Computational
and Graphical Statistics, 24(1):44–65, 2015. Publisher: Taylor & Francis.

[17] B. M. Greenwell, B. C. Boehmke, and A. J. McCarthy. A simple and effective model-based
variable importance measure. arXiv preprint arXiv:1805.04755, 2018.

[18] D. Gunning, M. Stefik, J. Choi, T. Miller, S. Stumpf, and G.-Z. Yang. Xai—explainable artificial
intelligence. Science Robotics, 4(37):eaay7120, 2019. doi: 10.1126/scirobotics.aay7120.

[19] A. Lamens and J. Bajorath. Explaining multiclass compound activity predictions using counter-
factuals and shapley values. Molecules, 28(14), 2023.

[20] S. M. Lundberg and S.-I. Lee. A unified approach to interpreting model predictions. In I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors,
Advances in Neural Information Processing Systems 30, pages 4765–4774. Curran Associates,
Inc., 2017.

[21] R. B. Myerson. Game theory. Harvard university press, 1997.
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