
HAL Id: hal-04687350
https://hal.science/hal-04687350

Preprint submitted on 4 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Enhancing Clinical Data Warehouses with Provenance
and Large File Management: The gitOmmix Approach

for Clinical Omics Data
Anita Burgun, Maxime Wack, Adrien Coulet, Bastien Rance

To cite this version:
Anita Burgun, Maxime Wack, Adrien Coulet, Bastien Rance. Enhancing Clinical Data Warehouses
with Provenance and Large File Management: The gitOmmix Approach for Clinical Omics Data.
2024. �hal-04687350�

https://hal.science/hal-04687350
https://hal.archives-ouvertes.fr


Enhancing Clinical Data Warehouses with Provenance and Large File
Management: The gitOmmix Approach for Clinical Omics Data
Maxime Wack1,2,3,4, Adrien Coulet1,2, Anita Burgun1,2,5, Bastien Rance1,2,3,⋆

1 Centre de Recherche des Cordeliers, Inserm, Université Paris Cité, Sorbonne Université, Paris,
France
2 Inria Paris, Paris, France
3 Department of Biomedical Informatics, Hôpital Européen Georges Pompidou, AP-HP, Paris,
France
4 Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, IHU FOReSIGHT, 75012
Paris, France
5 Imagine Institute, Inserm UMR 1163, Université Paris Cité, Paris, France

⋆ corresponding author: bastien.rance@aphp.fr

Abstract

Background Clinical data warehouses (CDWs) are essential in the reuse of hospital data in
observational studies or predictive modeling. However, state-of-the-art CDW systems present two
drawbacks. First, they do not support the management of large data files, what is critical in medical
genomics, radiology, digital pathology, and other domains where such files are generated. Second,
they do not provide provenance management or means to represent longitudinal relationships be-
tween patient events. Indeed, a disease diagnosis and its follow-up rely on multiple analyses. In
these cases no relationship between the data (e.g., a large file) and its associated analysis and
decision can be documented.

Method We introduce gitOmmix, an approach that overcomes these limitations, and illustrate
its usefulness in the management of medical omics data. gitOmmix relies on (i) a file versioning
system: git, (ii) an extension that handles large files: git-annex, (iii) a provenance knowledge
graph: PROV-O, and (iv) an alignment between the git versioning information and the provenance
knowledge graph.

1



Results Capabilities inherited from git and git-annex enable retracing the history of a clinical
interpretation back to the patient sample, through supporting data and analyses. In addition, the
provenance knowledge graph, aligned with the git versioning information, enables querying and
browsing provenance relationships between these elements.

Conclusion gitOmmix adds a provenance layer to CDWs, while scaling to large files and being
agnostic of the CDW system. For these reasons, we think that it is a viable and generalizable
solution for omics clinical studies.

Keywords: phenotyping, clinical texts, feature extraction, reproducible computing, open science

Graphical abstract

digital pathology

2



1 Introduction

Background With the rise of personalized medicine, patient omics data such as RNA or whole
genome sequencing (WGS) enrich traditional clinical data, and by consequence find their place in
electronic health records (EHR) and clinical data warehouses (CDW) [1, 2, 3]. In this perspective,
CDWs enriched with omics data offer an alternative to prospective cohorts for translational studies,
i.e., studies typically searching for genotype – phenotype associations such as genetic profiling of
sub-groups of diseases or drug responses [4, 5].

CDW-based translational platforms present two main drawbacks that motivated this work. The
first drawback is the lack of management of data provenance. These platforms record patient events
(such as observations, interventions, decisions) about patients in chronological order, but they
seldom explicitly record historical relationships between these events. Accordingly, the questions
“what are the observations that supported this decision?”, and inversely “what decisions were made
from this observation?” can not be answered by these systems. The second drawback is the lack of
management of large data files. Relating a clinical decision, such as a diagnosis, to the content of
a large file, such as the files of a whole-genome sequencing, remains difficult with CDWs. However,
these two functionalities are crucial for the management of clinical omics studies.

In computer science, data provenance is defined as the documentation of where data comes
from, and how it was transformed [6]. Among other aspects, provenance facilitates reproducibility
in research [7], i.e. the ability to obtain the same results by applying the same procedure to the
same data [8]. For this reason, standards and tools for data provenance have been developed [9, 10]
and widely adopted in fields such as bioinformatics [11, 12], but only parsimoniously diffused to
medical informatics. However, provenance and reproducibility are crucial for applications such as
clinical decision support tools and their successful transfer to clinical practice. This is particularly
true when results are generated from prone-to-error biotechniques, potentially requiring several
runs before confirming their validity. One reason for the lack of data provenance management in
medical informatics is its absence from CDW systems. Most successful CDW models and their
implementation, such as the i2b2 star model [13], the OMOP Common Data Model (CDM) [14],
or the eHOP model in France [15] are not supporting detailed provenance.

The management of large files, i.e., larger than several hundred megabytes, or longer than 10
thousand lines, is also limited in CDWs. This is mainly due to their use of relational database
management systems, which are not designed to handle large files. When such files are supported,
they are usually stored aside from the CDW, and the CDW stores an unique reference such as an
URL to the file. This is prone to inconsistencies and missing data, as file location and availability
rely on independent file management systems, not synchronized with the CDW.

Objective and motivation Our objective is to design an approach that allows storing large data
files involved in clinical diagnoses and decisions, the relations between these data and diagnoses and
decisions, as well as potential relations between clinical diagnoses and decisions; and to provide ways
to query those relations and access the underlying data.

A common issue is to identify links between facts. For example, identifying patients with a
liver metastasis within a cohort of lung cancer patients. This group of patients is not simply the
set of patients with both diagnoses, as proof of the causal link between the original tumor and
metastasis is necessary. Our approach should enable querying that specific relation unambiguously
as well as retrieving the supporting data (e.g., the digital pathology images of the primary lesion),
and analyses (e.g., the search for variants in sequencing data associated with the disease progres-

3



sion tracking) for that relation. Accordingly, it would help identifying patients satisfying complex
inclusion criteria by querying the CDW in a more clinically meaningful way.

A core requirement of translational research is to access data obtained from high-throughput
experiments and associated clinical data. Our approach should enable finding all the observations
related to a condition and its longitudinal follow-up, as well as retrieving the corresponding data.
More generally, it would allow the query of longitudinal information to access follow-up results or
decision (or inversely to past data that motivated a decision).

Proposed solution gitOmmix allows provenance tracing, large file management, and the en-
coding of longitudinal relationships in CDWs, by combining: (i) the file versioning system git and
its git-annex extension to manage large file histories, (ii) a knowledge graph to encode provenance
metadata, (iii) a data model providing an alignment between these two systems, mapping data
with metadata.

The rest of the article is organized as follow: Section 2 presents the building bricks of our
approach ; Section 3 presents gitOmmix itself ; Section 4 illustrates its use for the management of
clinical omics studies.

2 Material

2.1 Semantic Web tools for data and provenance

The Semantic Web proposes a set of standards and tools that facilitate sharing, linking, and
processing data by associating them with formally defined semantics [16]. This work relies on
three Semantic Web standards: RDF (Resource Description Framework) [17], SPARQL (SPARQL
Protocol And RDF Query Language), and PROV-O (PROV Ontology). RDF, the Semantic
Web standard for encoding knowledge graph, is a data model that represents data in the form
〈subject, predicate, object〉 triples, to describe a binary relation associating a subject and an ob-
ject. SPARQL is a query language for RDF knowledge graphs [18]. PROV-O is a standard ontology
recommended since 2013 by the W3C for the encoding of provenance metadata [10]. PROV-O is
built around three main concepts: Entities, Activities, and Agents. Entities represent physi-
cal or virtual objects, such as data sets or atomic elements of data. Entities can be generated or
modified by Activities. Activities are realized by Agents. Entities can also be directly attributed
to Agents. (Figure 1a)

Adopting Semantic Web technologies provides additional tools contributing to the adherence to
the FAIR principles [19].

2.2 git and git-annex

git is a distributed open-source file versioning system created in 2005 to support the Linux kernel
development and now ubiquitously used in software development [20]. git traces historical changes
within files in a directory, called a repository. It uses a directed acyclic graph (DAG) structure,
the git graph, to record repository states, called commits. Because repositories are distributed and
thus need to follow independent changes in various locations, branching and merging of histories
is permitted, and is a core mechanism of collaborative development in software engineering. File
additions, removals, or modifications are recorded in commits, which are accompanied by a commit
message describing the changes assigned to a commit author. Commits are uniquely identified in

4



a repository by a cryptographic hash code, which can be seen as a signature of the content of the
commit. Any commit in the history of a repository and its associated files can be retrieved from
the corresponding unique commit hash code.

git has originally been designed to trace changes in source code files, usually relatively small text
files, but does not scale to large files. git-annex, a third-party extension to git, has been created to
overcome this limitation and handle large files [21]. git-annex stores the designated files contents
aside from the git repository and takes over the management of those files, while still recording the
historical information by tracing a reference to the file within git. It provides its own operations
for adding and retrieving files, supporting a range of popular efficient file-hosting back-ends. The
stored reference is a cryptographic hash of the file content, making git-annex a content-addressable
file store: any change in a file has the consequence of modifying its cryptographic hash, enabling
the unique identification of multiple versions of the same file.

3 Methods - gitOmmix

We designed gitOmmix with three main components:

• a data model that records and semantically links clinical data and decisions that are related
in term of provenance,

• a system that traces changes in data, pointing at their up-to-date clinical interpretations,

• an association between the data model and the system to ensure a progressive encoding of
data provenance, at the time of data changes.

We defined a set of operations to build, manage, and query patient data history represented with
the gitOmmix data model.

The gitOmmix data model uses the PROV-O concepts of Entities, Agents, and Activities,
and various possible relations between those concepts.

We use them to represent clinical data and their provenance relations: the Agent concept repre-
sents data providers, which can either be a human or a machine; the Activity concept represents
analyses, software runs or other methods that produce one data element; the Entity concept rep-
resents any data element recorded in a CDW, associated or not with files. We extend entities into
five subtypes: patients, samples, data, results, and diagnoses. Patients and samples are considered
as data elements because in the context of a CDW, they are indeed identifier of patients or sam-
ples. Sample is a general naming encompassing identifiers of biological samples, but also of images
or audio recordings. Diagnoses can be any kind of clinical decision, but we restrict our study to
diagnoses only, for simplicity.

The most central relation of PROV-O, linking Entities together, is was- DerivedFrom. The
relation wasRevisionOf is also used in the specific case of derivations that are data modifications.
Figure 1a illustrates these concepts and relations, and their use to represent data elements of a
CDW and how one might derive from another. This derivation is a many-to-many relation, as a
sample can generate multiple data elements, and multiple results can lead to a single diagnosis. This
relation between two entities is the atomic block that is repeated to build sequences of data elements
derived from a patient, as illustrated in Figure 1b. In our model, a diagnosis wasDerivedFrom a
result, which wasDerivedFrom some data, which wasDerivedFrom a sample, which wasDerivedFrom

a patient. In this figure and throughout the rest of the article, we adopt the PROV-O prescribed

5



patient

sample 1 sample 2

data 1 data 2

result 1 result 2

diagnosis 1

commit

branch head(b)

usedused

wasAttributedTowasAttributedTo Agent

ActivityEntity

Entity

wasGeneratedBywasGeneratedBy
wasInvalidatedBywasInvalidatedBy

wasAssociatedWithwasAssociatedWith

wasRevisionOfwasRevisionOf
wasDerivedFromwasDerivedFrom

(a)

Figure 1: The gitOmmix data model. (a) Derivation (or revision) relationship between two data
elements of a CDW, represented with concepts and relationships of the PROV-O ontology. (b)
Sequence of data elements deriving one from each other, as a repeat of the pattern showed in (a).
The bottom left schema illustrates the correspondence between a sequence represented with PROV-
O (on the left) and a git commit graph (on the right).

6



Simple New data

usedused

(wasInvalidatedBy)(wasInvalidatedBy)

wasGeneratedBywasGeneratedBy
wasRevisionOfwasRevisionOf

Update data

usedused

(wasInvalidatedBy)(wasInvalidatedBy)

wasGeneratedBywasGeneratedBywasRevisionOfwasRevisionOf

Update diagnosis Combine diagnoses

Diagnosis layer

Sample layer

Patient history

Figure 2: Overview of the possible events composing a patient history in gitOmmix. Nodes are
commits, edges commit branching associated with a provenance type from PROV-O. Default type
of relation is wasDerivedFrom, except when otherwise specified. Blue, green and red are data, results
and diagnoses, respectively.

shapes to distinguish between Entities, Activities and Agents. In addition we use different colors
to distinguish entities: blue for data, green for results, and red for diagnoses. Other entities are
kept blank.

For a more concrete example, a diagnosis of diabetes (an ICD10 code in the CDW), was derived
from a laboratory result of high blood glucose concentration (a LOINC code), which in turn was
derived from a blood glucose analysis (identified by an internal lab number), which was derived
from a blood sample (a nursing procedure code).

In the specific case of modifications, updates or invalidations of diagnosis, results or data, the
wasDerivedFrom relation is replaced by wasRevisionOf. Providers and methods can optionally be
added to further document the derivation relationship between entities. Accordingly, an entity E1

wasAttributedTo a provider P , which wasAssociatedWith a method M . E1 wasGeneratedBy M ,
which used a previous entity E2. For example, E1 is a WGS assay attributed to a lab technician P ,
themselves associated with a short read sequencing ‘, which generated the sequence files E1 using
the patient sample E2.

Implementing patient data history with git In gitOmmix, we propose to rely on the git
versioning system to trace patient data elements and associated clinical decisions. Each patient is
represented with its own single git repository, the git commit graph progressively built with new
data, changes, and interpretations. Small and large data files associated with patients observa-

7



tions are referenced and relationships between data elements and decisions are implemented using
commits and git branching mechanisms. To facilitate maintaining this structure, we describe two
“layers”: a sample layer for the histories of data derived from every sample acquired from the
patient (e.g., a biological sample, an image, or an audio file), and a diagnosis layer for the relations
between clinical decisions. These two layers are illustrated in Figure 2.

The sample layer encompasses sample branches. Each new sample acquisition is materialized
by a new git branch in the patient’s git graph. Each data and result derived from a sample is
sequentially added to that sample branch as new commits. Multiple revisions of these data or
results can be added to a sample branch, possibly invalidating a previous version.
The second layer encompasses diagnosis branches. Clinical diagnoses are materialized by new
branches on top of the sample branches, following a different construction rule. Diagnosis commits
can derive from one or multiple results (thus from multiple sample branches) using the git branch
merging function. Such a merge represents the joint contribution of multiple results to a single
diagnosis. Diagnoses can be further revised, combined, or invalidated by new merges of new results
or diagnoses.

In git, branches are pointers to the latest commit in that branch, called the HEAD. In a sample
branch, the HEAD points to the most up-to-date information and data related to that sample. In
a diagnosis branch, the HEAD points to the most up-to-date diagnosis.

Alignment between the data model and patient git graph Sequences of provenance re-
lations represented with the data model can be aligned to git commit graphs, as illustrated in
Figure 1b. In this alignment, each PROV-O Entity corresponds to a commit in the git graph, and
derivation relationships between Entities corresponds to parent-child commit relationships.

We implement this alignment by reusing the structure git offers to associate metadata to com-
mits. Indeed, every commit has an author, a date, and a message composed of a subject and a
body. We use the author and date to record the provider and date, respectively. The message sub-
ject records the entity type and its id in the following form: type:id (e.g., patient:123467890,
diagnosis:ICD10 I10); and the message body records the associated metadata, encoded in turtle
RDF. For example, when adding a biopsy sample to a patient, the following RDF pattern is written
into the commit message body:

:sample:{sampleId}

a prov:Entity ;

a :sample ;

prov:generatedAtTime xsd:dateTime:{date} ;

prov:wasDerivedFrom :patient:{patientId} ;

rdf:label "{sampleId}" ;

prov:wasAttributedTo :provider:{providerId} ;

prov:wasGeneratedBy :method:biopsy .

:provider:{providerId}

a prov:Agent ;

a :provider .

:method:biopsy

a prov:Activity ;

8



a :method ;

prov:startedAtTime xsd:dateTime:{date} ;

prov:wasAssociatedWith :provider:{providerId} ;

prov:used :patient:{patientId} .

Using this commit metadata, the formal representation of provenance is preserved and closely
associated with the corresponding data files, with the relationships between entities mirrored in
the git graph structure. Concatenating all the commit message bodies of a particular git history
builds the corresponding RDF knowledge graph by incrementally adding nodes and relations. The
resulting knowledge graph has the advantage of offering query and reasoning facilities beyond those
provided by git alone.

Examples of patient data histories Figure 2 illustrates the possible events in a patient history
and their representation in gitOmmix .

The ‘Simple’ box in Figure 2 illustrates the trivial case of a diagnosis obtained from a single
sample and a single biomedical analysis. A sample branch is created (blank node); a data file is
added with a commit (blue node); a result is added with a new commit (green node). Next, a
diagnosis is added on top of the result by the creation of a new diagnosis branch (red node). Target
nodes are the HEAD of their respective branch.

The ‘New data’ box in Figure 2 illustrates the case of new data or results obtained from the
same sample. Those are added sequentially, accumulating the information produced from a single
sample in the same history. The graph structures of the RDF and git graphs can slightly differ
here, as the git history stays linear while the RDF graph splits, as data always derives from the
sample.

The ‘Update data’ box in Figure 2 illustrates the case of data or results updating or replacing pre-
vious ones Those are added sequentially, as in the previous case, with the use of the wasRevisionOf
relation intead of wasDerivedFrom. In the case of invalidation, the invalidated entity is additionally
documented with a temporal relationship invalidatedAtTime, and optionally with a relationship
to the method it wasInvalidatedBy. Note that multiple entities of the same kind can be invali-
dated at once by a single new entity. In all those cases, accessing the repository “at” a diagnosis
gives access to all the files in the version that was used to lead to that diagnosis.

The ‘Update diagnosis’ and ‘Combine diagnoses’ boxes in Figure 2 illustrate when a diagnosis
emerges from the combination of multiple exam results, possibly originating from multiple sam-
ples, and from previous partial or erroneous diagnoses. This is achieved in git using the merge
operation to combine entities contributing to this diagnosis. In both the update and combine cases
a new diagnosis branch is created. The update diagnosis case is useful for aggregating more in-
formation related to a single diagnosis, or combining previous partial or symptomatic diagnoses
into an etiological diagnosis. The combined diagnoses case can be used to signal that multiple
co-existing diagnoses are related through a syndromic diagnosis. The new diagnosis can either stay
unchanged when new analysis stay compatible with that diagnosis, or a different one derived from
the additional information.

Figure S1 in Supplementary Data shows the actual git graph (a) and PROV graph (b) of the
implementation of these operations in gitOmmix . A script listing all the gitOmmix commands
needed to build this repository is provided with the software package.

9



(a) (b) (c)

Figure 3: The three types of queries enabled by gitOmmix: (a) Provenance, (b) Up-to-date, and
(c) Clinical timeline queries.

4 Results

We implemented gitOmmix as a set of operations and queries that can be called from a command
line interface. These commands are mostly abstractions over the underlying git commands managing
the repositories.

Editing git graphs and associated provenance gitOmmix allows users to formulate sim-
ple commands such as “add the NGS assay files of this patient’s lung biopsy”. Each command
triggers a series of git operations and enriches the commit metadata with provenance. Note that
gitOmmix only enriches the git graph and metadata and does not suppress any of it, following
the philosophy of version control systems. Accordingly, gitOmmix provides operations to add,
revise, or invalidate elements (patients, samples, data, results, diagnoses). These operations can
be combined to enable more complex ones, such as “add the variant calling result derived from
the NGS assay of this lung biopsy, and makes it revise the inconclusive pathology report produced
earlier”.

Queries with gitOmmix gitOmmix provides three main types of queries, illustrated in Figure
3. (1) retrieving the provenance of any entity in the patient history. This is supported by the
simple fact that visiting a repository “at” a commit accesses all the files accumulated up to that
commit. Large files stored in the annex are downloaded on demand only. git logging facilities
enable provenance to be further narrowed to specific entities, time periods, providers, etc. Figure
3(a) illustrates this type of query listing all the data that contributed to an input diagnosis.

(2) retrieving the most up-to-date data, results, or diagnoses of a branch. As each sample and
diagnosis is represented as a branch containing its whole history, navigating to its HEAD returns
the most recent version of data, results, and diagnoses, as illustrated Figure 3(b). Chained with
the first operation, this enables retrieving the additional data that documents the evolution of a
diagnosis, e.g., a pathology report that documents the recurrence of a lung cancer.

(3) returning the timeline of a patient’s successive diagnoses. Because the RDF representation of
the provenance is represented in a piece-wise manner in the metadata of each entity, any subgraph
of provenance can be built by concatenating a selection of pieces. The resulting RDF can in turn
be returned, queried in SPARQL, or used to produce graph visualizations. The timeline operation

10



displayed in Figure 3(c) is implemented with a SPARQL query that only selects diagnoses and
diagnosis-diagnosis relations.

Indeed, in addition to these three common queries, gitOmmixsupports running arbitrary SPARQL
queries on patients histories.

A real-world clinical case We consider the previously published case report of a patient with
a metastatic HPV-induced high grade anal intraepithelial neoplasia (HGAIN) [22, 23]. We schema-
tized the git ommix graph associated with this patient history in Figure 4: (1) The patient was
diagnosed with an HGAIN during high-resolution anoscopy that led to the realization of a biopsy
and pathologist confirmation of the diagnosis, completed with PCR identification of HPV6, 11, and
16. (2) The HGAIN was subsequently surgically resected, with confirmed free resection margins.
(3) Two years later, the patient presented feverish back pains accompanied by weight loss, that
were misdiagnosed at first. After a couple of months and a new feverish episode, a new bone biopsy
conducted the pathologist to conclude to a diagnosis of squamous cell carcinoma (SCC) metastasis.
Further investigations using immunohistochemical and PCR assays detected HPV16 DNA in the
biopsy tissue. This allowed linking the vertebral lesion to the HGAIN despite the absence of other
signs of anal SCC contemporary to the metastasis diagnosis. (4) Furthermore, as the patient had
been participating in a research protocol that included the collection of plasma samples, those sam-
ples were retrospectively analyzed using quantitative digital droplet PCR, showing the presence of
HPV16 circulating DNA in increasing blood concentration between the two diagnoses. (5) Further
investigations using HPV capture and NGS showed that the exact same HPV16 subvariant was
detected throughout all samples, from the initial HGAIN to the vertebral metastasis.

The actual PROV graph generated for this example is shown in Figure S2 of Supplementary
Data.

Implementation An implementation of gitOmmix is available at https://www.github.com/gitOmmix/
gitOmmix as Open Source Software. It is implemented in bash and offers a user interface in the form
of a command-line tool which includes help and auto-completion. It relies on the command-line
versions of git, git-annex, the rapper and roqet command-line tools from https://librdf.org for
RDF file management, and graphviz [24] for graph visualization.

5 Discussion

Integration to clinical data warehouses gitOmmix is designed to enrich CDWs to enable
the support of data provenance and large files. Entities within a patient’s repository are uniquely
identified by an automatically generated identifier (a SHA1 hash of the git commit introducing
the entity). Thus, the pair (patient id, unique hash) is an unambiguous reference to an object
into an instance of gitOmmix. Accordingly, gitOmmix entities can be referenced in a CDW
by associating the corresponding unique hashes to observations (e.g., the sample associated to
the surgical procedure, the data file associated with a biological analysis, the full result report
associated with an image exam, the diagnosis associated with a stay in the billing system). In
observation-based models such as i2b2, this can be achieved by re-using an existing column to
store the associated hash. In other scenarios where no free column is available, adding a specific
column to the schema for this purpose is sufficient and does not interfere with the CDW. In CDWs
using the OMOP CDM, although a similar mechanism could be used, a cleaner implementation

11

https://www.github.com/gitOmmix/gitOmmix
https://www.github.com/gitOmmix/gitOmmix
https://librdf.org


1

T1N1M1

HPV+ HGAIN

Tumor sample

Blood sample

HPV16 Qv18158E SCC
T1N1M1

Figure 4: Example of a patient’s history in gitOmmix: (1) The patient is diagnosed with an HGAIN
from the examination of a biopsy, with evidence of HPV6, 11, and 16 infection. (2) The HGAIN is
resected with free resection margins and as such is coded as T1N0M0. (3) Later, a vertebral lesion
is identified as a SCC metastasis of unspecific origin then linked to the HGAIN after evidence
of HPV16 in the vertebral lesion. (4) HPV16 ctDNA in increasing quantities is retrospectively
detected on biobanked plasma samples. (5) A specific variant of HPV16 in its episomal form is
evidenced throughout all samples

12



using a new concept (e.g., “gitommix hash”) and a fact relationship linking the observation to
its gitOmmix hash would be preferable. It is consequently possible to navigate back and forth
between gitOmmix and the CDW as necessary, filtering on patient identifier and commit hash in
the observations table on the CDW side or targeting the commit hash on the gitOmmix side.

Related works In a 2017 article [25], Murphy et al. described three methods for combining clin-
ical and genomic data within the i2b2 CDW. The first one involves integrating genomic results as
structured data using the Sequence Ontology. The second one uses the i2b2/tranSMART platform
with its ad hoc ontology and data storage mechanism. The third one uses a NoSQL database con-
taining functionally annotated results, linked to i2b2 via a custom i2b2 module. All those methods
involve transformations of the genetic results, making it impossible to access the primary data;
and do not embed links between results, making it impossible to track longitudinal relationships
between assays. Our solution is architecturally similar to the third method, in that it adds an
external layer to the CDW. However, it is more independent as it does not rely on a specific CDW
implementation and does not necessitate in-depth adaptation of CDW, but only relies on common
tools.

gitOmmix is compliant with any particular data schema or controlled vocabulary. It could be
added seamlessly to the first described method using the Sequence Ontology, linking each structured
result to its source data.
Various initiatives have tentatively added structured representations of genomic data in the OMOP
CDM, such as the genomic CDM (G-CDM) [26]. This complements gitOmmix by enabling further
structured representation of data hosted in gitOmmix.

Limitations The current implementation of gitOmmix is a proof of concept and for this reason
presents some limitation. First, it is local and centralized, and does not yet support the management
of shared and remote repositories, as permitted by git and git-annex and intended for gitOmmix.
Second, its interface is still rudimentary and limited to experienced users.

Advantages However, our solution has multiple advantages over previously described systems,
by giving the ability to integrate arbitrary large data and by enabling the representation of relations
between these data points. It does so without relying on an entirely new paradigm around data
representation in CDW, or needing heavy adaptations to the system currently in use. It acts as a
plug-in solution, agnostic from the CDW system in use, and is supported by standards and tools
that were originally designed to address the specific issues at hand: keeping record of file histories,
managing large files, and tracing provenance in a formal way.

gitOmmix, as well as the tools it relies on, is open source backed by open standards. This
allows to readily benefit from the capabilities of these tools, enabling powerful file management,
and clearly defined semantics, reasoning capabilities, and interoperability. Although our system
prescribes a general structure to its data model, it does not restrict the usage of additional features
from the underlying systems. For example, the base PROV-O triples generated for each entity
can be supplemented at will to construct richer provenance graphs. git-annex supports a diverse
collection of file storage back-ends to host arbitrary large files, locally or remotely, on-premise or
in the cloud, offering to benefit from efficient storage solutions.

Regarding scalability, as git-annex separates the management of large file from the management
of the repository, repositories themselves stay very light in term of memory and thus responsive

13



to query. And because each patient exists as its own git repository, operations can inherently
parallelized by running as many gitOmmix processes as needed.

Perspectives By enriching data with provenance metadata and enabling access to versioned
source data files, gitOmmix contributes to a better adherence to FAIR principles in the manage-
ment of complex clinical data. In particular, it ensures findability by assigning persistent and un-
ambiguous identifiers, providing rich metadata, and a standard way to search within this metadata;
accessibility by making source data available through git; interoperability by relying on standard
knowledge representations; and reusability by adding detailed provenance and allowing access to
all versions of the data.

For these reasons gitOmmix allows reproducibility and consistency in conducting translational
studies, particularly retrospective studies based on large data that are more and more routinely
collected during care. In addition, it may also benefit clinical care as it documents clinical decisions
explicitly and in a FAIR format [3].

On the technical side, using established standards and tools allows for the addition of features
supported by those tools. For example, git enables authors to cryptographically sign their commits,
which could be used to add a layer of security to the tracing of provenance. git repositories can
contain references to other git repositories using submodules. Using submodules could allow even
richer provenance tracing by directly referencing the actual analysis code, pipeline, or tool at the
version in which it was used to produce observations.

6 Conclusion

We introduce gitOmmix, a relatively simple and lightweight system combining semantic web, file
versioning, and content-addressable distributed file storage to represent and manage provenance
and large source data in clinical data warehouses. It includes all the functions required to build a
patient’s history graph and store associated files, navigate and query history using SPARQL, and
retrieve the specific files related to any event. We base our proposition on widely accepted systems
and a model leveraging the shared DAG structure underlying these systems.

We provide a proof of concept implementation demonstrating feasibility and practical use of
gitOmmix, and illustrate its use with real-word use case about diagnosis based on clinical omics
data. It is open to contributions and will be extended to support additional functions.

Abbreviations

CDW: Clinical Data Warehouse
ctDNA: circulating DNA
DAG: Directed Acyclic Graph
ddPCR: digital droplet Polymerase Chain Reaction
EHR: Electronic Health Record
FAIR: Findable, Accessible, Interoperable, Reusable
G-CDM: Genomic Common Data Model
HGAIN: High Grade Anal Intraepithelial Neoplasm
HPV: Human Papilloma Virus
i2b2: Informatics for Integrating Biology and the Bedside

14



ICD-10: International Classification of Diseases, 10th revision
LOINC: Logical Observation Identifiers Names and Codes
NLP: Natural Language Processing
NoSQL: non-SQL
OMOP CDM: Observational Medical Outcomes Partnership Common Data Model
OWL: Web Ontology Language
POC: Proof of Concept
PROV-O: Provenance Ontology
RDF: Resource Description Framework
RDFS: RDF Schema
SCC: Squamous Cell Carcinoma
SHA-1: Secure Hash Algorithm 1
SPARQL: SPARQL Protocol and RDF Query Language
WGS: Whole Genome Sequencing

Authors contributions

MW: conceptualization, software, visualization, writing (original draft, review and editing).
AC: supervision, conceptualization, writing (review and editing).
AB: writing (review and editing), validation, funding acquisition.
BR: supervision, conceptualization, funding acquisition, writing (editing and review)

Funding resources

We benefit from a government grant managed by the Agence Nationale de la Recherche under the
France 2030 program, reference ANR-22-PESN-0007 ShareFAIR.

Acknowledgments

Dr. Hélène Péré and Dr. David Veyer for the fruitful discussions about their inspiring clinical
projects. Linus Torvalds for creating linux and git, on which this contribution is based.

References

[1] V. Canuel, B. Rance, P. Avillach, P. Degoulet, A. Burgun, Translational research platforms
integrating clinical and omics data: a review of publicly available solutions, Briefings in Bioin-
formatics 16 (2) (2015) 280–290.

[2] A. Trifan, J. L. Oliveira, Patient data discovery platforms as enablers of biomedical and trans-
lational research: A systematic review, Journal of Biomedical Informatics 93 (2019) 103154.
doi:10.1016/j.jbi.2019.103154.

[3] A. J. Robertson, A. J. Mallett, Z. Stark, C. Sullivan, It Is in Our DNA: Bringing Electronic
Health Records and Genomic Data Together for Precision Medicine, JMIR Bioinformatics and
Biotechnology 5 (1). doi:10.2196/55632.

15

http://dx.doi.org/10.1016/j.jbi.2019.103154
http://dx.doi.org/10.2196/55632


[4] S. Pendergrass, M. D. Ritchie, Phenome-wide association studies: leveraging comprehensive
phenotypic and genotypic data for discovery, Current Genetic Medicine Reports 3 (2) (2015)
92–100.

[5] O. Lyudovyk, Y. Shen, N. P. Tatonetti, S. J. Hsiao, M. M. Mansukhani, C. Weng, Pathway
analysis of genomic pathology tests for prognostic cancer subtyping, Journal of Biomedical
Informatics 98 (2019) 103286. doi:https://doi.org/10.1016/j.jbi.2019.103286.

[6] R. Bose, J. Frew, Lineage retrieval for scientific data processing: a survey, ACM Comput. Surv.
37 (2005) 1–28.

[7] S. N. Goodman, D. Fanelli, J. P. A. Ioannidis, What does research reproducibility mean?, Sci-
ence Translational Medicine 8 (341) (2016) 341ps12–341ps12. arXiv:https://www.science.
org/doi/pdf/10.1126/scitranslmed.aaf5027, doi:10.1126/scitranslmed.aaf5027.

[8] F. C. Y. Benureau, N. P. Rougier, Re-run, Repeat, Reproduce, Reuse, Replicate: Transforming
Code into Scientific Contributions, Frontiers in Neuroinformatics 11 (2017) 69. doi:10.3389/
fninf.2017.00069.

[9] R. Ikeda, A. D. Sarma, J. Widom, Logical provenance in data-oriented workflows?, in: 2013
IEEE 29th International Conference on Data Engineering (ICDE), IEEE, 2013, pp. 877–888.

[10] T. Lebo, S. Sahoo, D. McGuinness, K. Belhajjame, J. Cheney, D. Corsar, D. Garijo, S. Soiland-
Reyes, S. Zednik, J. Zhao, PROV-O: The PROV Ontology, W3C recommendation 30.

[11] R. Almeida, W. da Silva, K. Castro, M. E. Walter, A. Araujo, M. Holanda, S. Lifschitz,
AProvBio: An architecture for data provenance in bioinformatics workflows using graph
database, in: 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM),
2017, pp. 2139–2144. doi:10.1109/BIBM.2017.8217989.

[12] V. W. Salazar, J. V. F. Cavalcante, D. de Oliveira, F. Thompson, M. Mattoso, BioProv - A
provenance library for bioinformatics workflows, Journal of Open Source Software 6 (67) (2021)
3622. doi:10.21105/joss.03622.

[13] S. N. Murphy, G. Weber, M. Mendis, V. Gainer, H. C. Chueh, S. Churchill, I. Kohane, Serving
the enterprise and beyond with informatics for integrating biology and the bedside (i2b2),
Journal of the American Medical Informatics Association : JAMIA 17 (2) (2010) 124–130.
doi:10.1136/jamia.2009.000893.

[14] E. A. Voss, R. Makadia, A. Matcho, Q. Ma, C. Knoll, M. Schuemie, F. J. DeFalco, A. Londhe,
V. Zhu, P. B. Ryan, Feasibility and utility of applications of the common data model to
multiple, disparate observational health databases, J. Am. Med. Inform. Assoc. 22 (3) (2015)
553–564.

[15] J. Madec, G. Bouzillé, C. Riou, P. Van Hille, C. Merour, M.-L. Artigny, D. Delamarre, V. Raim-
bert, P. Lemordant, M. Cuggia, ehop clinical data warehouse: From a prototype to the creation
of an inter-regional clinical data centers network., Studies in Health Technology and Informatics
264 (2019) 1536–1537.

[16] T. Berners-Lee, J. Hendler, O. Lassila, The semantic web, Scientific American 284 (5) (2001)
34–43.

16

http://dx.doi.org/https://doi.org/10.1016/j.jbi.2019.103286
http://arxiv.org/abs/https://www.science.org/doi/pdf/10.1126/scitranslmed.aaf5027
http://arxiv.org/abs/https://www.science.org/doi/pdf/10.1126/scitranslmed.aaf5027
http://dx.doi.org/10.1126/scitranslmed.aaf5027
http://dx.doi.org/10.3389/fninf.2017.00069
http://dx.doi.org/10.3389/fninf.2017.00069
http://dx.doi.org/10.1109/BIBM.2017.8217989
http://dx.doi.org/10.21105/joss.03622
http://dx.doi.org/10.1136/jamia.2009.000893


[17] W3C, Resource Description Framework (RDF) Model and Syntax Specification,
https://www.w3.org/TR/PR-rdf-syntax/Overview.html, visited Aug. 22, 2024.

[18] T. W. S. W. Group, Sparql 1.1 overview, https://www.w3.org/TR/sparql11-overview/, visited
Aug. 9, 2023 (2013).

[19] M. D. Wilkinson, M. Dumontier, I. J. Aalbersberg, G. Appleton, M. Axton, A. Baak,
N. Blomberg, J.-W. Boiten, L. B. da Silva Santos, P. E. Bourne, et al., The FAIR Guid-
ing Principles for scientific data management and stewardship, Scientific data 3 (1) (2016)
1–9.

[20] L. Torvalds, Initial revision of “git”, the information manager from hell, README file, visited
Aug. 9, 2023 (2005).

[21] git-annex web page:, https://git-annex.branchable.com/, visited Aug. 9, 2023.

[22] H. Péré, R. Vernet, S. Pernot, J. Pavie, N. Robillard, J. Puech, S. Lameiras, M.-L. Lucas,
A. Nicolas, C. Badoual, B. Rance, L. Bélec, L. Weiss, M. Wack, D. Veyer, Episomal HPV16
responsible for aggressive and deadly metastatic anal squamous cell carcinoma evidenced in
peripheral blood, Scientific Reports 11 (1) (2021) 4633. doi:10.1038/s41598-021-84110-2.

[23] D. Veyer, J. Pavie, S. Pernot, M. Mandavit, S. Garrigou, M.-L. Lucas, L. Gibault, V. Taly,
L. Weiss, H. Péré, HPV-circulating tumoural DNA by droplet-based digital polymerase chain
reaction, a new molecular tool for early detection of HPV metastatic anal cancer? A case
report, European Journal of Cancer (Oxford, England: 1990) 112 (2019) 34–37. doi:10.

1016/j.ejca.2019.02.012.

[24] E. R. Gansner, S. C. North, An open graph visualization system and its applications to software
engineering, Software: Practice and Experience 30 (11) (2000) 1203–1233. doi:https://doi.
org/10.1002/1097-024X(200009)30:11<1203::AID-SPE338>3.0.CO;2-N.

[25] S. N. Murphy, P. Avillach, R. Bellazzi, L. Phillips, M. Gabetta, A. Eran, M. T. McDuffie, I. S.
Kohane, Combining clinical and genomics queries using i2b2 - Three methods, PloS One 12 (4)
(2017) e0172187. doi:10.1371/journal.pone.0172187.

[26] S. J. Shin, S. C. You, Y. R. Park, J. Roh, J.-H. Kim, S. Haam, C. G. Reich, C. Blacketer,
D.-S. Son, S. Oh, R. W. Park, Genomic Common Data Model for Seamless Interoperation
of Biomedical Data in Clinical Practice: Retrospective Study, Journal of Medical Internet
Research 21 (3) (2019) e13249. doi:10.2196/13249.

17

https://www.w3.org/TR/PR-rdf-syntax/Overview.html
https://www.w3.org/TR/sparql11-overview/
https://github.com/git/git/blob/e83c5163316f89bfbde7d9ab23ca2e25604af290/README
https://git-annex.branchable.com/
http://dx.doi.org/10.1038/s41598-021-84110-2
http://dx.doi.org/10.1016/j.ejca.2019.02.012
http://dx.doi.org/10.1016/j.ejca.2019.02.012
http://dx.doi.org/https://doi.org/10.1002/1097-024X(200009)30:11<1203::AID-SPE338>3.0.CO;2-N
http://dx.doi.org/https://doi.org/10.1002/1097-024X(200009)30:11<1203::AID-SPE338>3.0.CO;2-N
http://dx.doi.org/10.1371/journal.pone.0172187
http://dx.doi.org/10.2196/13249

	Introduction
	Material
	Semantic Web tools for data and provenance
	git and git-annex

	Methods - gitOmmix
	Results
	Discussion
	Conclusion

