
HAL Id: hal-04687320
https://hal.science/hal-04687320

Submitted on 4 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Big data stream processing
Ovidiu-Cristian Marcu, Pascal Bouvry

To cite this version:
Ovidiu-Cristian Marcu, Pascal Bouvry. Big data stream processing. University of Luxembourg. 2024.
�hal-04687320�

https://hal.science/hal-04687320
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


Big data stream processing

Ovidiu-Cristian Marcu and Pascal Bouvry

Abstract This chapter provides students, industry experts, and researchers a high-
level and comprehensive overview of the end-to-end architectures of big data stream
processing pipelines, designed to keep them informed of the latest advancements
and best practices in the field. It explores crucial components such as source in-
gestion, state and storage mechanisms, stream query processing, and distributed
streaming. Streaming architectural pipelines manage continuous data flows from
various sources, necessitating efficient ingestion, processing, and storage systems.
These systems are vital for applications that require real-time data processing, in-
cluding fraud detection, IoT monitoring, patient health tracking, and e-commerce
personalization. By integrating edge, cloud, and high-performance computing envi-
ronments, big data stream processing ensures low latency and high throughput. Each
section of this chapter delves into the most critical topics in stream processing, ref-
erencing recent literature for further exploration and offering insights into ongoing
technological developments.

1 Introduction

Stream processing (SP) serves as a fundamental real-time component of Big Data
systems, facilitating efficient data management and rapid insight extraction [62]. Its
application spans various sectors, including real-time fraud detection, algorithmic
trading, IoT monitoring in smart homes and industrial setups, and telecommuni-
cations quality assurance. Additionally, SP is critical in health care for real-time
patient monitoring and in retail for personalized e-commerce recommendations and

Ovidiu-Cristian Marcu
University of Luxembourg, Luxembourg, e-mail: ovidiu-cristian.marcu@uni.lu

Pascal Bouvry
University of Luxembourg, Luxembourg, e-mail: pascal.bouvry@uni.lu

1



2 Ovidiu-Cristian Marcu and Pascal Bouvry

dynamic pricing. The ability of SP to handle continuous data flows with low latency
is essential for contemporary data-centric applications.

Streaming and data streams form a core part of the digital continuum, integrat-
ing Edge, Cloud, and High-Performance Computing (HPC) to enable the real-time
processing of high-volume data [72]. As per ETP4HPC SRA5 [1], streaming is in-
dispensable for handling extreme data volumes and connects various systems and
sources to meet scientific and commercial processing needs. This is increasingly
important as modern computing frameworks like Lambda and Kappa architectures
integrate streaming with batch processing and database analytics (evolving into lake-
houses) to boost the flexibility and analytical capabilities of Big Data infrastructures.

Federated architectural use cases necessitate a comprehensive end-to-end
streaming pipeline. In the modern realm of advanced computing, integrating Cloud
and HPC resources is essential for managing large-scale projects like Destination
Earth (DestinE) and the Square Kilometre Array (SKA). These projects emphasize
the need for a federated architecture that efficiently handles vast data volumes through
integrated data lakes.

DestinE aims to develop a highly accurate digital twin of the Earth, requiring
robust data streaming and movement solutions to support its complex simulations
across federated EuroHPC infrastructures. The project focuses on establishing a
data lake with a unified metadata schema to ensure seamless data integration and
interoperability across various HPC systems. This setup facilitates effective data
acquisition and preprocessing, vital for the mobility of code and data within the
federated framework.

The SKA project, set to be the world’s largest radio telescope, underscores the
importance of federated data lakes in managing a continuous stream of 10 terabits per
second of raw data, eventually generating 350 petabytes of data products annually.
It adopts an in situ and online data processing approach within centralized HPC
systems to optimize data flow and minimize the need for extensive data movement.
This approach improves data locality by keeping data close to its point of origin while
utilizing nearby computing resources, thus supporting extensive data streaming and
integration on a global scale.

These examples illustrate the increasing demands on federated environments to
support large-scale, data-intensive projects by improving data streaming capabilities,
ensuring efficient data integration, and maintaining system scalability and interop-
erability across geographically dispersed infrastructures.

Over the past three decades, SP systems and languages have undergone consider-
able evolution (see references). Today, advanced frameworks like Spark Streaming
and Flink are fully integrated into cloud-based lakehouse architectures, such as those
offered by Confluent and Databricks, and within proprietary systems like Google’s
BigLake. Meanwhile, on-premises SP alternatives frequently focus on integrating
with Kafka to manage partitioned stream ingestion and storage.

Source ingestion, the initial step in SP, involves integrating data from sensors, logs,
and other real-time sources into the pipeline. Efficient data collection is supported
by techniques such as publish-subscribe models and scalable ingestion systems, in-
cluding Kafka and KerA. Following ingestion, the focus shifts to state and storage



Big data stream processing 3

management, which support the real-time requirements of SP. Internal state manage-
ment is often handled by systems like Apache Flink, while external storage solutions
like Pravega offer dynamic partitioning and elasticity. Additionally, techniques for
workload-aware state management and the use of persistent memory significantly
enhance the efficiency and scalability of SP applications. Managing backpressure
and ensuring data consistency are critical in high-throughput environments.

Stream query processing involves applying continuous queries to data streams,
supported by SQL-based frameworks and custom query languages. Distributed
streaming architectures, leveraging systems such as Kafka, Flink, and Spark Stream-
ing, ensure scalability and fault tolerance. The chapter also reviews scaling strategies,
i.e., scale-in, scale-out, and scale-up techniques, as well as benchmarking tools and
fault recovery mechanisms. SQL on streams extends traditional SQL capabilities to
real-time data flows, enabling complex queries over streaming data, allowing users
to apply familiar SQL syntax to process and analyze data in motion, making SP
more accessible to developers who might not be specialized in streaming technolo-
gies. Frameworks like Apache Flink, Apache Kafka Streams, and Spark Streaming
provide robust support for stream SQL, including a wide range of SQL operations
like joins, windows, and aggregations.

Each of the sections below highlights key concepts and terms, offering a gateway
to more in-depth technical and research-oriented literature. For those interested
in further exploration, relevant state-of-the-art references are provided to enhance
understanding and knowledge in these specific areas.

2 Background on Ingestion and Storage for Stream Processing

Stream ingestion involves acquiring real-time data streams for immediate process-
ing or storage. This critical initial step in collecting continuously generated data
from sources like IoT devices, sensors, and logs, allows for real-time data analysis.
Storage systems in streaming pipelines are designed to accommodate both real-time
and historical data. They must satisfy low-latency access to incoming data streams
for real-time analytics and efficiently query batch data for comprehensive insights.
This dual requirement underscores the need for advanced storage solutions that can
manage high data throughput and support complex queries, often with low latency.

For many applications such as predictive analytics, combining real-time stream
data with historical data is essential for making informed decisions. Storage systems
must therefore provide mechanisms to seamlessly access and integrate these diverse
data types. For a detailed review of specific storage and ingestion systems in support
of SP, readers are directed to a comprehensive study [48] that characterizes various
systems based on both functional (partitioning, metadata, search support, message
routing, backpressure support) and non-functional aspects (high availability, dura-
bility, scalability, latency vs. throughput).



4 Ovidiu-Cristian Marcu and Pascal Bouvry

2.1 Data Ingestion: Stream Approaches

”The Many Faces of Publish/Subscribe” [23] provides an extensive analysis of
publish-subscribe communication paradigms. This communication model works by
allowing subscribers to express interest in an event or a pattern of events and receive
notifications when these events occur. The system fully decouples the communicating
entities in terms of time, space, and synchronization, which enhances flexibility and
scalability, while storage plays a critical role in handling asynchronous messages and
ensuring data persistence for delayed processing. Topic-based systems (e.g., Apache
Kafka [22]) allow subscribers to receive messages based on a specific topic, while
content-based ones allow subscribers to receive messages based on the content of
the messages, requiring more complex filtering mechanisms.

KerA [78], a scalable and unified stream ingestion and storage engine, employs
a dynamic partitioning strategy to enhance data ingestion for SP. It addresses the
limitations of static stream partitioning used by systems like Apache Kafka, which
often trades performance for simplicity. KerA dynamically creates stream partitions
according to the load, improving ingestion throughput, reducing processing latency,
and increasing scalability. The push-based [79] integration of KerA with Apache
Flink, a modern SP engine, facilitates efficient data flow management from ingestion
to processing, in a unified ingestion-processing streaming architecture. Streaming
data are actively sent to Flink consumers as soon as they become available in KerA,
instead of the conventional pull-based method where stream sources repeatedly
requests data, potentially over network. A push-based approach will minimize latency
and can maximize throughput by eliminating frequent data requests and waiting
times, making the streaming pipeline more efficient in processing real-time data
streams.

Backpressure is a critical flow control mechanism in high-throughput streaming
systems (like Apache Kafka, Apache Flink, and Apache Spark), designed to prevent
the processing components from being overwhelmed when the rate of incoming
data surpasses the system’s processing capacity. Backpressure ensures data is pro-
cessed at a manageable rate, safeguarding against data loss and system overload.
Implementation strategies include rate limiting, buffer management and dynamic
rescaling.

2.2 Storage Management in Support of Fast data

Internal state in Apache Flink [5] refers to the stream data managed by processing
operators that reflect the history of incoming data streams. This state is essential for
functions like aggregations, windows, and joins, which require knowledge of past
data to compute results. Flink’s management of state for large-scale applications is
complex, integrating state directly into the SP workflow, and utilizes a consistent,
distributed snapshot mechanism to handle state across its distributed architecture.



Big data stream processing 5

This allows Flink to provide strong consistency guarantees (”exactly-once”) and fault
tolerance.

Exposing the internal state of stream processors for analytics, monitoring, and
debugging purposes presents both opportunities and challenges [16]. While this
visibility enables advanced operational functionalities, it incurs a performance over-
head. The added latency (milliseconds of delay), must be considered when designing
systems that require real-time data processing capabilities.

External storage for streaming state. The storage manager for streams (SMS)
system [2] is designed to address the rigorous performance requirements of data-
intensive SP through a general-purpose, tunable storage management framework.
SMS integrates knowledge of data access patterns, such as updates and queries,
into its framework, to handle the dynamic nature of SP, which often involves rapid
changes in data state and frequent queries.

Workload-aware stream state management [8] involves configuring state back-
ends tailored to the specific state requirements of each SP operator. This approach
leverages the fact that many streaming operators are instantiated once and are long-
running, allowing their state types, sizes, and access patterns to be either inferred
at compile time or learned during execution. The main goal is to optimize state
management to reduce latency and increase throughput by eliminating inefficiencies
found in general-purpose, one-size-fits-all state management systems (e.g., that rely
on LSM-based key-value stores to manage the state of long-running computations).

FlowKV [42] is introduced as a persistent store designed to handle the large-
scale state management needs of streaming applications, specifically tailored for SP
engines (SPE). Unlike traditional key-value stores, FlowKV utilizes insights from
streaming applications, aligning data storage with the semantic requirements of data
access within SP. It systematically categorizes window operations, which are fun-
damental to SP, based on their data access patterns. These are then optimized with
specialized in-memory and on-disk structures to match these patterns, enhancing
performance efficiency significantly. FlowKV differentiates itself by employing a
semantic-aware approach, where data access patterns dictated by window operations
guide the structure and optimization of storage solutions.

Cloud stream storage solutions typically offer elasticity, scalability, and high
throughput to handle real-time data processing efficiently. These systems support
dynamic scaling of resources to meet varying loads, ensuring that storage capacity
and processing power each adjust as needed without manual intervention. This is
essential for applications like live video streaming, real-time analytics, and IoT data
processing, where data flows can be unpredictable and highly variable. The BigLake
[77] system enhances Google BigQuery’s storage for both batch and streaming data,
creating a unified multi-cloud lakehouse architecture that supports high-throughput
stream ingestion. It provides scalable, real-time data processing capabilities with
fine-grained access control, ensuring consistent governance and security across all
data formats.

Pravega [24, 25], a novel open-source elastic stream storage system, stands out
for its auto-scaling capabilities which allow to dynamically adjust data stream par-
allelism in response to workload changes. Pravega integrates smoothly with Apache



6 Ovidiu-Cristian Marcu and Pascal Bouvry

Flink to enable advanced real-time analytics and has built-in transaction support that
ensures data integrity. Its scalable architecture is designed to handle high throughput
and provide strong consistency guarantees, making it suitable for applications that
cannot tolerate data loss or anomalies.

Utilizing HPC hardware for SP is a more recent trend that uses co-design of
system and application logic to maximize performance of stateful SP.

”Efficient State Management with Persistent Memory” [26] explores the potential
of Persistent Memory (PMem), such as Intel Optane, to significantly enhance state
management in data SP systems. A benchmarking framework, PerMA-Bench, is de-
veloped to assess the performance of PMem across various configurations, providing
insights into its behavior under different conditions. The thesis also introduces Viper,
a hybrid PMem-DRAM key-value store optimized for PMem’s unique capabilities,
demonstrating performance improvements in data insertion and retrieval operations.
Furthermore, it explores the integration of PMem into larger systems like SP engines,
showcasing its advantages over traditional setups. The research emphasizes PMem’s
role in bridging the gap between volatile memory and persistent storage.

Stateful SP refers to the capability of a SPE to maintain state across multiple input
data records. This allows for complex computations where the outcome depends not
just on the current record, but also on previously received data. Such state is typically
maintained in memory for low-latency access and can be used for various operations
like aggregations, windowing, or pattern detection, enhancing the SP engine’s ability
to handle complex, real-time analytics.

Remote Direct Memory Access (RDMA) enhances mutable stream state sharing
in distributed systems by bypassing the CPU, thereby reducing latency and CPU
load. Its low-latency, high-throughput capabilities improve state synchronization
across nodes, crucial for stateful SP systems. By enabling direct memory access
between nodes without CPU involvement, RDMA minimizes synchronization time,
maintaining state consistency and supporting real-time performance and scalability
in modern SP architectures where timely state updates are essential. The work titled
”Rethinking Stateful Stream Processing with RDMA” [32] discusses the integration
of RDMA to significantly enhance the performance of stateful stream processing.
The authors introduce ”Slash”, a novel SPE that leverages RDMA to optimize the
execution of distributed streaming computations. Unlike traditional SPEs that often
rely on costly data re-partitioning and struggle with the real-time constraints of stream
processing, Slash utilizes RDMA to efficiently share mutable state across nodes,
reducing the latency and overhead associated with state synchronization. Recent
advancements in stream processing have led to the development of general-purpose
partitioned stateful operators on GPUs, which maintain and update internal state
partitioned by key, facilitating scalable data stream management on heterogeneous
architectures [41]. WindFlow [40] accelerates pipelines of interconnected operators
by efficiently moving and keeping data on the GPU.



Big data stream processing 7

2.3 Future Challenges

The evolution of SP systems (SPS) hinges on efficiently integrating many-core CPUs,
GPUs, RDMA, persistent memory and advanced networking for real-time stream
ingestion, state management and low-latency stateful processing. Effective state
management is core to SPS efficiency, particularly through workload-aware strate-
gies, dynamically adjusts storage and computation to workload demands, optimizing
performance and reducing resource overhead. Distributing and synchronizing state
across nodes via sharding and state replication is essential for consistency and
reliability in distributed scalable SPS.

Handling the temporal aspects of data, particularly the order of streams and
out-of-order data, is a fundamental challenge in stream processing. Implementing
effective strategies to manage time skew and reordering mechanisms is essential
to ensure accurate and timely data analysis, all while leveraging HPC hardware.
Access patterns such as update, share, read, and query within stream processing
require robust implementations to support real-time SP. Techniques like event time
processing, windowing functions, and stateful operators will have to be revised.

Overall, rethinking stream processing to leverage HPC hardware will foster more
robust, energy-efficient and performant SPS.

3 Execution Architectures for Stream Processing

The architectural design of SPS significantly influences their ability to handle large-
scale, real-time data streams effectively on the digital continuum. This section ex-
plores various execution architectures that cater to diverse operational demands
and scalability requirements in SP. The focus is on understanding different scaling
strategies such as scale-in, scale-out, and scale-up, and their implications on system
performance and fault tolerance.

Scaling strategies ensure that SPS can adapt to fluctuating data volumes and
processing loads. Scale-in techniques optimize resource usage within a single node,
enhancing its ability to handle large states efficiently. Scale-out strategies involve
distributing the workload across multiple nodes to improve throughput and resilience,
while scale-up approaches focus on increasing the capacity of existing hardware to
handle more extensive workloads.

3.1 Single-node execution

Scabbard [17] addresses the challenges of implementing fault tolerance in single-
node multi-core SPE. Single-node SPEs can process hundreds of millions of tuples
per second but traditionally lack built-in fault tolerance, which limits their practi-
cal use despite their high performance. The challenge is to achieve fault tolerance



8 Ovidiu-Cristian Marcu and Pascal Bouvry

with exactly-once semantics without significantly impacting performance, given
the constrained I/O bandwidth typical of single-node systems. Scabbard introduces
a novel fault-tolerance mechanism that integrates stream and state persistence opera-
tions directly into the query workload and the operator dataflow graph. By persisting
data after high-selectivity operators that discard irrelevant data, Scabbard reduces
the volume of data that needs to be persisted.

Darwin [27] introduces a new paradigm in SP that aims to maximize hardware
utilization on single and multi-node systems while supporting large recoverable
states and crash recovery. Traditional scale-out systems like Apache Flink and Spark
Streaming, while effective in handling large datasets, often lead to resource inefficien-
cies due to their reliance on extensive clusters. Darwin proposes scale-in processing
to overcome these inefficiencies by fully utilizing existing hardware without requiring
scale-up or extensive scale-out, thereby reducing infrastructure needs. Darwin sup-
ports recoverable, larger-than-memory states through advanced storage techniques
and integration with modern storage technologies like Persistent Memory (PMem),
which bridges the gap between the speed of DRAM and the persistence of SSDs.

Discussion. Single-node SPS suit complex event processing (CEP) when priori-
tizing low latency and resource-constrained environments, especially with improve-
ments in fault tolerance and processing efficiency. In contrast, scale-out/up archi-
tectures are better for handling large data volumes and complex processing needs.
They enhance CEP functionalities across distributed nodes, improving resource effi-
ciency and system resilience. The reference [12] underscores this by discussing the
integration of CEP with modern execution architectures in SPS, highlighting a shift
towards hybrid models that merge CEP with SP.

3.2 Scale-out Stream Processors

Hazelcast Jet [19] is designed as a high-performance, low-latency distributed SPE
aimed at managing low-latency processing tasks across scale-out environments.
Jet focuses on achieving low-latency processing times, particularly at the 99.99th
percentile. Jet leverages Hazelcast’s In-Memory Data Grid (IMDG) that serves as a
highly available and distributed in-memory storage system, while Jet and the IMDG
are designed to maximize data locality by partitioning data in a way that aligns with
the distribution of the computation tasks.

The transition from Apache Storm to Twitter Heron [57] was driven by the
need to overcome Storm’s limitations in high-scale environments like Twitter. Storm
grouped multiple SP components (spouts and bolts) within a single JVM process,
complicating debugging, especially under variable loads or hardware failures. Heron
introduced a process-per-component approach, enhancing debugging and resource
allocation. It also implemented an advanced backpressure system to manage data
flow and stabilize performance under high loads. Additionally, Heron streamlined
the management of deployments with better cluster integration tools, reducing op-



Big data stream processing 9

erational overhead and improving resource efficiency and scalability through better
integration with systems like Mesos and YARN.

Apache Flink [67] and Apache Spark Structured Streaming [68] represent two
different approaches to SP, which are characterized primarily by their handling of
data - either processing one record at a time or in mini-batches. Apache Flink
processes data in a true streaming fashion, meaning it processes records individually
as they arrive. This approach allows Flink to handle event time processing more
naturally and efficiently. Flink’s architecture supports full SP capabilities, where
each event is handled as it comes, and window operations can be applied flexibly
based on the event time, ingestion time, or processing time. This results in lower
latency processing because there’s no need to wait for a batch to fill up before
processing begins. In contrast, Apache Spark Structured Streaming processes data
using a micro-batch approach, where incoming streams of data are treated as a
series of small batches. This allows Spark to leverage its fast batch processing
capabilities to handle streaming data. While this approach simplifies the integration
of batch and streaming data models, it inherently introduces higher latency due to
the batching interval. However, Spark Structured Streaming also supports event-
time aggregation and windowing, which can handle out-of-order data or late data by
specifying watermark delays.

3.3 Scale-up Engines

StreamBox [45] introduces several novel features to scale up SP efficiently on a
multi-core machine, emphasizing the parallelism and memory hierarchy of modern
hardware. StreamBox organizes out-of-order records into epochs delineated by
watermarks, which define the temporal bounds of the data. It introduces a novel
concept of processing epochs out-of-order within each transform, allowing more
flexibility and parallelism in handling stream data. StreamBox is designed to steer
streams to optimize NUMA (Non-Uniform Memory Access) locality. It organizes
pipeline state based on the output window size, placing records that fall within the
same windows contiguously in memory.

WindFlow [44] introduces several novel features for optimizing SP on many-core
systems, focusing on a unified approach to maximize both throughput and latency.
WindFlow uses a formalized software engineering approach based on assembling
customizable building blocks. These building blocks, which are recurring dataflow
compositions of interconnected activities, allow developers to easily express opti-
mizations and tailor the system to specific needs. WindFlow leverages parallel build-
ing blocks to optimize the use of many-core architectures. This includes strategies
like operator pinning, which assigns specific operations to specific cores, improving
performance by taking advantage of the hardware’s capabilities.



10 Ovidiu-Cristian Marcu and Pascal Bouvry

4 Processing Over Clouds and HPC Data-centers

This section illustrate effective strategies for managing streaming across multi-site
clouds, with a particular focus on the challenges and solutions related to data in-
gestion, transfer, and movement. It aims to provide insights into optimizing data
handling within distributed cloud environments and HPC data centers, for enhanc-
ing efficiency and scalability in processing large datasets across geographical and
architectural boundaries.

4.1 Data Movement

To enhance the capabilities of applications that integrate real-time and batch data, the
unified architecture proposed in [6] aims to optimize these processes across multi-
site clouds. By merging the functionalities of stream ingestion and file transfer into
a single framework, the architecture supports both low-latency operations for small-
sized datasets and high-throughput activities for large data volumes. This approach
help users by reducing the complexity associated with managing distinct systems for
different data types and scales. The SciStream [7] architecture focuses on facilitating
fast memory-to-memory data streaming between federated scientific instruments,
crucial for processing high-throughput data efficiently in real-time. It addresses
the limitations in traditional data transfer methods that involve intermediate file
systems, which can significantly slow down data processing due to high disk latency.
JetStream [3] proposes an innovative approach to streaming across multi-site clouds
by leveraging batch-based data transfers, optimizing for both latency and bandwidth
utilization. JetStream’s core innovation lies in its ability to adapt the size of event
batches in real-time, based on cloud conditions and network parameters.

4.2 Data Management Across the Digital Continuum

NebulaStream [31] presents a specialized IoT data management system designed
to handle the complex requirements of IoT environments. It integrates the diverse
and distributed nature of IoT devices into a coherent framework that enables efficient
data streaming and management. The article ”IoT Stream Processing and Analytics
in the Fog” [55] highlights the advantages of fog computing in improving data SP for
IoT applications. Fog computing reduces latency and enhances network capacity by
processing data closer to its sources, like IoT devices. The survey ”Complex Event
Recognition in the Big Data Era” [61] addresses the challenges and methodologies
of complex event recognition (CER) across geo-distributed environments, empha-
sizing the management of large-scale, disparate data sources in real time. One major
challenge highlighted is communication scalability. Efficient strategies are needed



Big data stream processing 11

to manage the extensive data transfer between distributed nodes to minimize latency
and optimize resource utilization.

5 Performance Benchmarking in Stream Processing

Performance benchmarking in SPS is crucial to understand the capabilities and
limitations of various frameworks under different workloads and scenarios. Key
performance metrics such as latency, throughput, scalability, and fast recovery can
provide a comprehensive picture of system performance and robustness of a SPS.
Latency measures the time taken for a data point to travel through the SPS from
source-entry to sink-exit. Factors affecting latency include network delays, process-
ing time at each stage, and the efficiency of data management within the system.
Throughput refers to the amount of data processed per unit of time. It is influenced
by the system’s ability to parallelize tasks, the efficiency of the algorithms used,
and the underlying hardware capabilities. Scalability is the ability of a system to
handle increasing amounts of workload without compromising on performance. It
can be measured in terms of system capacity to grow either vertically (scale up) or
horizontally (scale out). Key considerations include the system’s architecture, data
partitioning strategies, and load balancing mechanisms. This benchmark [63] intro-
duces the concept of sustainable throughput to measure the long-term performance
of stream data processing systems without causing increased latency due to back-
pressure. The ability to recover quickly from failures is vital for maintaining high
availability and data integrity. Fast recovery metrics focus on the time it takes for the
system to resume operations at normal performance levels after a disruption. This
involves fault tolerance techniques, state management efficiency, and the robustness
of data replication strategies.

5.1 Shuffling and Data Distribution

Data shuffling in SP refers to the redistribution of SP state across different processing
nodes or tasks. Shuffling helps distribute data more evenly across the cluster, enhanc-
ing load balancing and preventing bottlenecks. By redistributing state across different
nodes, shuffling can increase the fault tolerance of the system as it ensures that the
failure of a single node does not lead to significant data loss. The ”ShuffleBench”
[21] benchmark addresses the critical aspects of data shuffling in distributed SPE,
emphasizing how shuffling impacts performance and scalability across different sys-
tems, specifically with configurations for Apache Flink, Hazelcast, Kafka Streams,
and Spark Structured Streaming. ShuffleBench tests frameworks by re-partitioning
streams to align with stateful operations.

In [53] authors propose two main scalability metrics for SPS: the Resource De-
mand Metric and the Load Capacity Metric. These metrics assess how resource



12 Ovidiu-Cristian Marcu and Pascal Bouvry

demands and processing capabilities change with varying loads and resources, aim-
ing to standardize scalability assessments in SP. Additionally, a Lag Trend Metric
measures the backlog of unprocessed messages, supporting real-time processing
requirements.

5.2 Fault Fast Recovery

Strategies for achieving fault tolerance include: 1) replication - data or processing
tasks are replicated across multiple nodes, ensuring that if one node fails, others can
take over without loss of data or processing capability; 2) checkpointing - regularly
saving the state of a SP pipeline so that it can be recovered from a known good point,
minimizing the amount of work lost due to a failure; 3) rebalancing - dynamically
redistributing data and tasks across available nodes to adapt to changes in the cluster,
such as node failures. [20] further discusses fault recovery strategies and their
impact on the performance and scalability of SPE like Kafka Streams, Flink, and
Spark Structured Streaming by leveraging ShuffleBench.

Runtime adaptation in SP refers to the ability of a system to adjust its behavior
in response to changing workload conditions and system dynamics without human
intervention. Self-adaptation mechanisms for dynamic workloads include scalability
adjustements, dynamic repartitioning, query and state optimizations, backpressure
and resource allocation, and impacts fault-recovery.

5.3 Existing Benchmarks

DSPBench [59] is a comprehensive benchmark suite for evaluating data SPS in dis-
tributed environments, featuring 15 applications from diverse domains like finance
and social networks. It provides detailed workload characterization for each applica-
tion, facilitating system comparisons on metrics like memory usage and processing
cost.

The evaluation of streaming processing frameworks in [60] evaluates Flink, Kafka
Streams, and Spark Streaming to process data streams with different workloads. It
compares these frameworks on latency, throughput, and resource consumption across
several scenarios including burst data handling and complex event processing. Cus-
tom parameter tuning and optimization strategies are applied to each framework to
assess performance under varied conditions, offering insights into which framework
might be best suited for specific use cases or performance criteria.

Kafka Streams employs a recovery mechanism that leverages Kafka’s strong
durability and replication features. It uses Kafka’s log to manage and recover state,
enabling fault recovery across distributed systems. When a node or instance fails,
Kafka Streams can recover its state from these logs, ensuring minimal downtime and
data loss. This recovery process is inherently linked to Kafka’s ability to reassign



Big data stream processing 13

and rebalance partitions among available instances, which can impact recovery time
and system performance [15]. A benchmark study [65] on Kafka topic partitioning
proposes a methodology to optimize the number of partitions and brokers, crucial
for managing data flows in ML/AI analytics within fog computing environments.
The study introduces two heuristics for balancing resource use and performance,
evaluated through simulations and real-world Kafka cluster experiments.

The benchmark [66] compares message queuing systems including Kafka, Rab-
bitMQ, RocketMQ, ActiveMQ, and Pulsar, emphasizing throughput, latency, and
usage scenarios. The evaluation uses a standardized, reproducible testing frame-
work to ensure fairness. Key insights include each system’s strengths and suitable
application contexts based on their performance metrics and architectural features.

The study [69] provides a systematic mapping of performance in distributed SPS
(DSPS), detailing challenges in achieving high-performance and Quality of Service.
It discusses various DSPSs and their performance metrics, highlighting the need
for better benchmarks. The paper underscores the diversity in DSPS performance,
influenced by execution environments and use cases, and calls for a unified approach
to evaluating DSPS performance.

In [71], a catalog of SP optimizations are discussed, including a detailed exam-
ination of trade-offs and assumptions, aimed at enhancing system optimization and
guiding engineering decisions.

6 SQL and Continuous Queries on Streams

This section explores the historical development of SQL in the context of stream-
ing data and highlights the challenges encountered when extending SQL principles
to continuous data flows. We discuss various models and frameworks designed to
facilitate continuous queries on streaming data, examining their functionalities and
contributions to real-time data processing. Additionally, we relate on optimizations
to enhance the efficiency and performance of streaming SQL queries, such as incre-
mental query merging and resource sharing optimization.

In 2001, a significant advancement in the field of continuous queries over data
streams [11] was made by proposing a flexible architecture for defining and evalu-
ating these queries. This work addressed semantic issues, efficiency concerns, and
identified open research topics, forming the foundation for the Stanford STREAM
project aimed at improving data stream management

In 2002, the topic of streaming models to support queries [10] was extensively
discussed. This research addressed the fundamental need for a new data processing
model, where data arrives in multiple, continuous, rapid, time-varying streams. The
paper reviewed past work relevant to data stream systems, explored stream query
languages, and highlighted the new requirements and challenges in query processing,
providing a comprehensive overview of the field and setting the stage for future
developments in data stream management systems.



14 Ovidiu-Cristian Marcu and Pascal Bouvry

In the paper ”One SQL to Rule Them All” [14], the authors propose integrating
robust streaming capabilities into the SQL standard. This includes the use of time-
varying relations to manage both static tables and streaming data. The approach
leverages event time semantics and introduces minimal keyword extensions to
handle the materialization of query results. The proposed enhancements aim to
utilize the full breadth of standard SQL semantics for SP while ensuring efficient
and effective real-time data analysis .

In [28], the paper discusses advanced techniques for optimizing streaming
queries. These include methods to improve cache utilization and eliminate redundant
computations. In the context of SP, incremental query merging [29] is a technique
designed to enhance resource sharing and efficiency. This method focuses on identi-
fying and maintaining opportunities for sharing among numerous concurrent stream
queries by capturing semantic information to enable merging even when there are
syntactic differences between queries.

In [30], the paper presents a novel technique for integrating streams and history
tables in a relational database system to support ad hoc queries. This approach
leverages a specialized ring-buffered relation, enabling efficient query processing
that combines ephemeral streams with persistent historical data. In [33], the authors
present various algorithms designed for windowed aggregations and joins on
DSPS.

In [34] authors propose a language named Seraph that supports native streaming
features for property graph query languages. They formally define Seraph’s se-
mantics by integrating SP with property graphs and time-varying relations, treating
time as a first-class citizen. Seraph aims to address the lack of continuous query
evaluation capabilities in existing graph query languages and is designed to handle
real-time data analysis and management.

In Grizzly [36], an adaptive query compilation approach optimizes runtime per-
formance for SP by continuously adapting to changing data characteristics. Through
Just-In-Time (JIT) compilation, Grizzly dynamically adjusts query execution, com-
bining various profiling techniques to optimize code for modern hardware.

The paper ”Declarative Languages for Big Streaming Data” [37] provides an
extensive overview of SQL-like languages in modern SPE such as Apache Kafka,
Apache Spark, and Apache Flink. These languages, including KSQL, Flink SQL,
and Spark SQL, play a crucial role in facilitating SP by simplifying the development
and maintenance of streaming applications. The paper discusses how these systems
interpret, execute, and optimize continuous queries, highlighting the balance between
expressiveness and simplicity. Additionally, it addresses the open research challenges
and future directions in the domain of declarative languages for big streaming data
processing.

In [38], the authors develop a comprehensive framework to evaluate GPU-
accelerated stream join algorithms (SJAs). They explore various configurations
and parameters, such as join algorithms, parallelization strategies, and GPU types,
to identify performance characteristics. Their findings highlight significant perfor-
mance variations based on these configurations, providing guidelines for selecting
optimal SJAs for different use cases. In [39], the authors present ”Slider,” a hardware-



Big data stream processing 15

conscious algorithm designed for sliding window aggregation on GPUs. Slider
optimizes GPU performance by selecting appropriate primitives and kernel config-
urations based on query parameters to addresses under-utilization issues of GPUs in
SP.

FineStream, a SP framework for integrated CPU-GPU architectures, elimi-
nates data transmission overhead between CPU and GPU by using a unified memory
approach, allowing efficient data processing and fine-grained cooperation between
CPUs and GPUs [43]. The framework employs fine-grained scheduling to assign
query operators to the most suitable processor (CPU or GPU) based on performance
characteristics, in contrast to traditional methods that might schedule all operators
to a single processor. FineStream demonstrates significant performance improve-
ments, primarily due to its ability to co-run operators and minimize data movement
overhead. It dynamically adjusts to varying workloads by profiling performance and
redistributing resources, ensuring optimal CPU and GPU utilization and maintaining
high throughput and low latency even under fluctuating workloads. FineStream sup-
ports SQL-based queries with common relational operators like projection, selection,
aggregation, group-by, and join, requiring fine-grained operator-device placement
for optimal performance [43].

In the context of querying continuous data streams, significant advancements have
been made in developing algorithms capable of real-time processing with limited
resources. The foundational approach involves processing data items in a single pass
and maintaining concise synopses, such as sketches and samples, to estimate query
results efficiently. These methods provide approximate results with probabilistic error
bounds, ensuring timely insights without extensive computational overhead [73].

The efforts to standardize SQL on streams [13] have produced insightful prelim-
inary lessons, indicating that more time is required for the community to fully grasp
and evaluate the diverse solutions currently available in the market. Despite over two
decades of work by the community, the complexity and diversity of streaming SQL
solutions necessitate a period of learning and adaptation. The variety in existing
solutions underscores the need for a gradual approach to standardization, allowing
the community to benefit from the practical experiences and validations of these
evolving solutions. Thus, while the goal of standardizing SQL for streaming data
remains crucial, it is evident that a deeper engagement with the variety of market so-
lutions (including open-source) is essential for a robust and effective standardization
process.

7 Related Work: Surveys

The role of SP in the edge-to-cloud continuum is explored in [4], highlighting the
integration of IoT Edge devices with Cloud/HPC systems to balance trade-offs in
data analytics and machine learning workflows. A comprehensive chapter on large-
scale SP is provided in [9], covering major design aspects, programming models,
and runtime concerns for scalable (distributed) SPS.



16 Ovidiu-Cristian Marcu and Pascal Bouvry

The most recent surveys on the evolution of SP and querying on CPU/GPU ar-
chitectures are detailed in [46] and [47], respectively. The survey in [46] provides
a comprehensive overview of the advancements in SPS, covering fundamental as-
pects such as out-of-order data management, state management, fault tolerance,
high availability, load management, elasticity, and reconfiguration. It discusses
the evolution from the first generation of SPS, focusing on in-order processing, to
the second generation, which embraces out-of-order processing and efficient state
management. The survey also highlights future trends and open research problems,
emphasizing the increasing integration of SP with cloud services and edge comput-
ing.

The survey in [47] focuses on the performance implications and optimizations
of SP on heterogeneous CPU-GPU environments. It explores the challenges and
opportunities presented by utilizing GPUs for SP tasks, such as leveraging their par-
allel processing capabilities to enhance throughput and reduce latency. The survey
delves into various techniques for optimizing query execution on hybrid architec-
tures, including load balancing, efficient memory management, and specialized
algorithms tailored for GPU acceleration. Additionally, it provides insights into
the design considerations for developing SP frameworks that can seamlessly operate
across both CPUs and GPUs, ensuring efficient resource utilization and improved
performance.

In [35], authors review various window types in SP for effective data aggregation.
Key types include Tumbling, Sliding, and Session Windows, essential for managing
the unbounded nature of data streams by segmenting them into manageable chunks.

To ensure consistent service levels in SPS, runtime adaptation [18] strate-
gies such as topology and deployment adaptation, processing adjustments, overload
management, and fault tolerance enhancements to maintain service amid variable
workloads and conditions are categorized within a comprehensive taxonomy that
guides future research to develop robust distributed SPS [18].

[51] presents a comprehensive review on the self-adaptation in SPS, focusing on
the automation of execution management in SPS. This involves dynamic adaptations
like adjusting pipeline operator parallelism and batch sizes in response to fluctuating
data streams, ensuring efficiency without human intervention. The study establishes
a taxonomy for classifying self-adaptive mechanisms and outlines future research
directions in enhancing SP adaptiveness, emphasizing the need for validated, efficient
self-adaptive SPS.

The article [52] proposes a comprehensive model for distributed data-intensive
systems including SP, integrating key design and implementation choices into a
unified framework. [54] offers a thorough examination of parallelization and elas-
ticity within SP, detailing adaptable parallelism techniques for handling dynamic
data streams of varying intensity. The survey outlines methods to adjust parallelism
levels based on fluctuating workloads and resource availability, aiming to guide
future improvements in SPS’s scalability and responsiveness.

[58] discusses resource management and scheduling in DSPS, addressing the
challenges of deploying systems that meet quality of service requirements while
minimizing resource costs. The survey outlines a comprehensive taxonomy covering



Big data stream processing 17

resource provisioning, operator parallelization, and task scheduling. It explores the
integration of these strategies within cloud environments under specific service
level agreements, highlighting the need for efficient, dynamic resource management
strategies to support the variable demands of SP applications.

[64] provides a comprehensive survey on machine learning for streaming data,
emphasizing incremental learning, online learning, and data stream learning. These
approaches are crucial for applications where models must continually update from
a constant data flow without multiple passes over the data, addressing the big data
characteristics of velocity and volume. The paper highlights the transition of these
methods from research to industry applications, noting the necessity for efficient
and adaptive learners that can handle real-time data processing challenges. Key
challenges in the field are detailed, including handling concept drifts, i.e., changes
in the underlying data distribution over time, and the need for robust preprocessing
methods in streaming environments. The work serves as a critical review of the
current state of the art and outlines significant research opportunities and open
challenges in both supervised and unsupervised learning contexts for streaming
data.

[75] provides an updated overview of machine learning in the context of data
streams, emphasizing the need for ongoing development due to rapidly changing
industrial and academic landscapes. Unlike prior surveys, this work takes a criti-
cal, contemporary approach, addressing the evolving assumptions and challenges
within data stream learning. The authors revisit fundamental definitions in the field,
such as supervised data-stream learning, and incorporate modern considerations like
concept drift and temporal dependence.

[70] surveys SP languages, essential for real-time big data applications, exploring
the development and features of these languages, focusing on their evolution to handle
continuous data flows efficiently.

[74] provides a detailed survey on distributed data SP frameworks, delineating
the architecture of SPS which include layers such as ingestion, processing, storage,
management, and output. They explore various SP engines and assess their capabil-
ities to handle the unique demands of streaming data, such as low latency and fault
tolerance. The survey also outlines a taxonomy and comparative study of major SP
engines like Storm, Spark Streaming, Flink, and Kafka Streams, emphasizing their
design, functionalities, and application in different industries

[76] survey on transactional SP (TSP) discusses the integration of real-time
stream management with transactional (ACID) properties. It explores the evolution of
TSP systems, emphasizing their ability to handle streaming data with the robustness
of database systems. Various TSP requirements and methodologies are examined,
highlighting the need for both real-time processing and transactional integrity. The
paper reviews different approaches to TSP, including integration challenges and
design trade-offs, underscoring the complexity of merging streaming data capabilities
with transactional consistency.

The tutorial [49] discusses the evolution and future directions of SPS, includ-
ing discussions on partitioned state, processing guarantees, and state management
strategies, detailing the transition from systems without explicit state management



18 Ovidiu-Cristian Marcu and Pascal Bouvry

to systems that regard state as a first-class citizen. The survey [50] reviews the
state-of-the-art research on optimizing data stream processing systems (DSPSs) by
leveraging modern hardware capabilities.

Overall, these works comprehensively cover the eight rules for real-time stream
processing [56], such as low-latency data flow (keep data moving), SQL on streams
querying, handling data imperfections (delayed, out of order, missing), ensuring
predictable outcomes, integrating stored (historical) and streaming data, guaran-
teeing safety and availability, achieving scalability automatically, and maintaining
real-time response, providing a holistic overview of current advancements and future
directions in the field.

8 Conclusion

Big data stream processing (BDSP) effectively integrates with modern computing
architectures, such as cloud and edge computing, enhancing real-time data process-
ing capabilities to meet growing demands. This integration supports advancements
in stream ingestion, state management, and distributed processing, which are cru-
cial for the efficiency and scalability of big data applications. Notably, frameworks
like Apache Flink and Pravega have made significant progress in managing both
internal and external states, providing robust solutions for handling dynamic data
streams. The integration of Persistent Memory and RDMA has significantly im-
proved performance and resource efficiency in BDSP, enhancing the management
of large-scale, stateful operations. Additionally, workload-aware state management
and elastic scaling help BDSP systems stay resilient and performant under varying
loads. Under standardization, SQL on streams represents a significant step towards
making real-time data processing more accessible to a broader range of users.

This chapter helps readers gain a comprehensive understanding of the current
landscape and emerging trends in BDSP. By exploring the discussions on various
frameworks, technologies, and methodologies, practitioners and researchers can
make informed decisions about the best approaches and tools for their specific
streaming needs. As the field continues to evolve, the collaboration between academia
and industry will be crucial in driving further advancements. Future research and
development efforts should focus on enhancing the interoperability, fault tolerance,
energy efficiency, and security of BDSP systems to meet the ever-growing needs of
diverse application domains.

9 Acknowledgment

This work is partially funded by the SnT-LuxProvide partnership on bridging clouds
and supercomputers and by the Fonds National de la Recherche Luxembourg (FNR)
POLLUX program under the SERENITY Project (ref.C22/IS/17395419).



Big data stream processing 19

References

1. Malms, M., Cargemel, L., Suarez, E., Mittenzwey, N., Duranton, M., Sezer, S., Prunty, C.,
Rossé-Laurent, P., Pérez-Harnandez, M., Marazakis, M., Lonsdale, G., Carpenter, P., Antoniu,
G., Narasimharmurthy, S., Brinkman, A., Pleiter, D., Haus, U.-U., Krueger, J., Hoppe, H.-
C., Haas, R. (2022). ETP4HPC’s SRA 5 - Strategic Research Agenda for High-Performance
Computing in Europe - 2022. Zenodo.
https://doi.org/10.5281/zenodo.7347009

2. Irina Botan, Gustavo Alonso, Peter M. Fischer, Donald Kossmann, and Nesime Tatbul. 2009.
Flexible and scalable storage management for data-intensive stream processing. In Proceed-
ings of the 12th International Conference on Extending Database Technology: Advances in
Database Technology (EDBT ’09). Association for Computing Machinery, New York, NY,
USA, 934–945.
https://doi.org/10.1145/1516360.1516467

3. Radu Tudoran, Alexandru Costan, Olivier Nano, Ivo Santos, Hakan Soncu, et al.. JetStream:
Enabling high throughput live event streaming on multi-site clouds. Future Generation Com-
puter Systems, 2016, 54, doi: 〈10.1016/j.future.2015.01.016〉.
https://inria.hal.science/hal-01239124

4. Daniel Rosendo, Alexandru Costan, Patrick Valduriez, and Gabriel Antoniu. 2022. Distributed
intelligence on the Edge-to-Cloud Continuum: A systematic literature review. J. Parallel
Distrib. Comput. 166, C (Aug 2022), 71–94. https://doi.org/10.1016/j.jpdc.2022.04.004

5. Paris Carbone, Stephan Ewen, Gyula Fóra, Seif Haridi, Stefan Richter, and Kostas
Tzoumas. 2017. State management in Apache Flink®: consistent stateful dis-
tributed stream processing. Proc. VLDB Endow. 10, 12 (August 2017), 1718–1729.
https://doi.org/10.14778/3137765.3137777

6. M. A. Tariq, O. -C. Marcu, G. Danoy and P. Bouvry, ”Towards Unified Data Ingestion and
Transfer for the Computing Continuum,” 2023 IEEE International Conference on Big Data
(BigData), Sorrento, Italy, 2023, pp. 1978-1981, doi: 10.1109/BigData59044.2023.10386254.

7. Joaquin Chung, Wojciech Zacherek, AJ Wisniewski, Zhengchun Liu, Tekin Bicer, Rajkumar
Kettimuthu, and Ian Foster. 2022. SciStream: Architecture and Toolkit for Data Streaming
between Federated Science Instruments. In Proceedings of the 31st International Symposium
on High-Performance Parallel and Distributed Computing (HPDC ’22). Association for Com-
puting Machinery, New York, NY, USA, 185–198.
https://doi.org/10.1145/3502181.3531475

8. Vasiliki Kalavri, John Liagouris. In support of workload-aware streaming state management.
In 12th USENIX Workshop on Hot Topics in Storage and File Systems (HotStorage 20),
USENIX Association, Jul. 2020.
https://www.usenix.org/conference/hotstorage20/presentation/kalavri.

9. Paris Carbone, Gábor E. Gévay, Gábor Hermann, Asterios Katsifodimos, Juan Soto, Volker
Markl, and Seif Haridi (2017). Large-Scale Data Stream Processing Systems. In: Zomaya, A.,
Sakr, S. (eds) Handbook of Big Data Technologies. Springer, Cham.

10. Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer Widom. 2002.
Models and issues in data stream systems. In Proceedings of the twenty-first ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems (PODS ’02). Association for
Computing Machinery, New York, NY, USA, 1–16. https://doi.org/10.1145/543613.543615

11. Shivnath Babu and Jennifer Widom. 2001. Continuous queries over data streams. SIGMOD
Rec. 30, 3 (September 2001), 109–120. https://doi.org/10.1145/603867.603884

12. Ariane Ziehn, Philipp M. Grulich, Steffen Zeuch, and Volker Markl (EDBT 2024).
Bridging the Gap: Complex Event Processing on Stream Processing Systems. Available:
http://dx.doi.org/10.48786/edbt.2024.39.

13. Sabina Petride, Dan Sotolongo, Jan Michels, Andrew Witkowski, Cara Haas, and Jim Hughes
(2023). “Lessons Learned from Efforts to Standardize Streaming In SQL.” arXiv preprint,
arXiv:2311.03476.



20 Ovidiu-Cristian Marcu and Pascal Bouvry

14. Edmon Begoli, Tyler Akidau, Fabian Hueske, Julian Hyde, Kathryn Knight, and Kenneth
Knowles. 2019. One SQL to Rule Them All - an Efficient and Syntactically Idiomatic Approach
to Management of Streams and Tables. In Proceedings of the 2019 International Conference
on Management of Data (SIGMOD ’19). Association for Computing Machinery, New York,
NY, USA, 1757–1772. https://doi.org/10.1145/3299869.3314040

15. Adriano Vogel, Sören Henning, Esteban Perez-Wohlfeil, Otmar Ertl, and Rick Rabiser
(2024). “High-level Stream Processing: A Complementary Analysis of Fault Recovery.” arXiv
preprint, arXiv:2405.07917.

16. J. Verheijde, V. Karakoidas, M. Fragkoulis and A. Katsifodimos, ”S-QUERY: Opening
the Black Box of Internal Stream Processor State,” 2022 IEEE 38th International Confer-
ence on Data Engineering (ICDE), Kuala Lumpur, Malaysia, 2022, pp. 1314-1327, doi:
10.1109/ICDE53745.2022.00103.

17. Georgios Theodorakis, Fotios Kounelis, Peter Pietzuch, and Holger Pirk. 2021. Scabbard:
single-node fault-tolerant stream processing. Proc. VLDB Endow. 15, 2 (October 2021),
361–374. https://doi.org/10.14778/3489496.3489515

18. Valeria Cardellini, Francesco Lo Presti, Matteo Nardelli, and Gabriele Russo Russo. 2022.
Runtime Adaptation of Data Stream Processing Systems: The State of the Art. ACM Comput.
Surv. 54, 11s, Article 237 (January 2022), 36 pages. https://doi.org/10.1145/3514496

19. Can Gencer, Marko Topolnik, Viliam Ďurina, Emin Demirci, Ensar B. Kahveci, Ali Gürbüz,
Ondřej Lukáš, József Bartók, Grzegorz Gierlach, František Hartman, Ufuk Yılmaz, Mehmet
Doğan, Mohamed Mandouh, Marios Fragkoulis, and Asterios Katsifodimos. 2021. Hazelcast
jet: low-latency stream processing at the 99.99th percentile. Proc. VLDB Endow. 14, 12 (July
2021), 3110–3121. https://doi.org/10.14778/3476311.3476387

20. Adriano Vogel, Sören Henning, Esteban Perez-Wohlfeil, Otmar Ertl, and Rick Rabiser (2024).
“A Comprehensive Benchmarking Analysis of Fault Recovery in Stream Processing Frame-
works.” arXiv preprint, arXiv:2404.06203.

21. Sören Henning, Adriano Vogel, Michael Leichtfried, Otmar Ertl, and Rick Rabiser. 2024. Shuf-
fleBench: A Benchmark for Large-Scale Data Shuffling Operations with Distributed Stream
Processing Frameworks. In Proceedings of the 15th ACM/SPEC International Conference on
Performance Engineering (ICPE ’24). Association for Computing Machinery, New York, NY,
USA, 2–13. https://doi.org/10.1145/3629526.3645036

22. T. P. Raptis and A. Passarella, ”A Survey on Networked Data Streaming With Apache Kafka,”
in IEEE Access, vol. 11, pp. 85333-85350, 2023, doi: 10.1109/ACCESS.2023.3303810

23. Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie Kermarrec. 2003.
The many faces of publish/subscribe. ACM Comput. Surv. 35, 2 (June 2003), 114–131.
https://doi.org/10.1145/857076.857078

24. Raúl Gracia-Tinedo, Flavio Junqueira, Brian Zhou, Yimin Xiong, and Luis Liu. 2023. Practical
Storage-Compute Elasticity for Stream Data Processing. In Proceedings of the 24th Interna-
tional Middleware Conference: Industrial Track (Middleware ’23). Association for Computing
Machinery, New York, NY, USA, 1–7. https://doi.org/10.1145/3626562.3626828

25. Raúl Gracia-Tinedo, Flavio Junqueira, Tom Kaitchuck, and Sachin Joshi. 2023. Pravega: A
Tiered Storage System for Data Streams. In Proceedings of the 24th International Middleware
Conference (Middleware ’23). Association for Computing Machinery, New York, NY, USA,
165–177. https://doi.org/10.1145/3590140.3629113

26. Lawrence Benson. Efficient State Management with Persistent Memory. Published online on
the Publication Server of the University of Potsdam: https://doi.org/10.25932/publishup-62563
https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-625637

27. Lawrence Benson, Tilmann Rabl. Darwin: Scale-In Stream Processing. CIDR 2022.
https://www.cidrdb.org/cidr2022/papers/p34-benson.pdf

28. Anand Jayarajan, Wei Zhao, Yudi Sun, and Gennady Pekhimenko. 2023. TiLT: A Time-
Centric Approach for Stream Query Optimization and Parallelization. In Proceedings of the
28th ACM International Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 2 (ASPLOS 2023). Association for Computing Machinery,
New York, NY, USA, 818–832. https://doi.org/10.1145/3575693.3575704



Big data stream processing 21

29. Ankit Chaudhary, Steffen Zeuch, Volker Markl, Jeyhun Karimov. EDBT 2023. Incre-
mental Stream Query Merging. https://openproceedings.org/2023/conf/edbt/3-paper-69.pdf
http://dx.doi.org/10.48786/edbt.2023.51

30. Christian Winter, Thomas Neumann and Alfons Kemper. Relation-Based In-Database Stream
Processing. Joint Workshops at 49th International Conference on Very Large Data Bases
(VLDBW’23) — Second International Workshop on Composable Data Management Systems
(CDMS’23), August 28 - September 1, 2023, Vancouver, Canada. https://ceur-ws.org/Vol-
3462/CDMS7.pdf

31. Zeuch, S., Chatziliadis, X., Chaudhary, A. et al. NebulaStream: Data Management for the
Internet of Things. Datenbank Spektrum 22, 131–141 (2022). https://doi.org/10.1007/s13222-
022-00415-0

32. Bonaventura Del Monte, Steffen Zeuch, Tilmann Rabl, and Volker Markl. 2022. Rethinking
Stateful Stream Processing with RDMA. In Proceedings of the 2022 International Conference
on Management of Data (SIGMOD ’22). Association for Computing Machinery, New York,
NY, USA, 1078–1092. https://doi.org/10.1145/3514221.3517826

33. Verwiebe, J., Grulich, P.M., Traub, J. et al. Algorithms for Windowed Aggregations and
Joins on Distributed Stream Processing Systems. Datenbank Spektrum 22, 99–107 (2022).
https://doi.org/10.1007/s13222-022-00417-y

34. Rost, Christopher, Riccardo Tommasini, Angela Bonifati, Emanuele Della Valle, Erhard Rahm,
Keith W. Hare, Stefan Plantikow, Petra Selmer and Hannes Voigt. “Seraph: Continuous Queries
on Property Graph Streams.” International Conference on Extending Database Technology
(2024). http://dx.doi.org/10.48786/edbt.2024.21

35. Verwiebe, J., Grulich, P.M., Traub, J. et al. Survey of window types for aggregation in stream
processing systems. The VLDB Journal 32, 985–1011 (2023). https://doi.org/10.1007/s00778-
022-00778-6

36. Philipp M. Grulich, Breß Sebastian, Steffen Zeuch, Jonas Traub, Janis von Bleichert, Zongx-
iong Chen, Tilmann Rabl, and Volker Markl. 2020. Grizzly: Efficient Stream Processing
Through Adaptive Query Compilation. In Proceedings of the 2020 ACM SIGMOD Inter-
national Conference on Management of Data (SIGMOD ’20). Association for Computing
Machinery, New York, NY, USA, 2487–2503. https://doi.org/10.1145/3318464.3389739

37. Riccardo Tommasini, Sherif Sakr, Emanuele Della Valle, and Hojjat Jafar-
pour. EDBT 2020. Declarative Languages for Big Streaming Data. Slides at
http://streaminglangs.io/slides/edbt20.pdf. http://dx.doi.org/10.5441/002/edbt.2020.84

38. Dwi P. A. Nugroho, Philipp M. Grulich, Steffen Zeuch, Clemens Lutz, Stefano Bortoli, Volker
Markl. Benchmarking Stream Join Algorithms on GPUs: A Framework and its Application
to the State-of-the-art. In Letizia Tanca, Qiong Luo 0001, Giuseppe Polese, Loredana Caruc-
cio, Xavier Oriol, Donatella Firmani, editors, Proceedings 27th International Conference on
Extending Database Technology, EDBT 2024, Paestum, Italy, March 25 - March 28. pages
188-200, OpenProceedings.org, 2024. https://doi.org/10.48786/edbt.2024.17

39. Georgios Michas, Periklis Chrysogelos, Ioannis Mytilinis, and Anastasia Ailamaki.
2021. Hardware-Conscious Sliding Window Aggregation on GPUs. In Proceedings of
the 17th International Workshop on Data Management on New Hardware (DAMON
’21). Association for Computing Machinery, New York, NY, USA, Article 13, 1–5.
https://doi.org/10.1145/3465998.3466014

40. Gabriele Mencagli, Massimo Torquati, Dalvan Griebler, Alessandra Fais, and Marco
Danelutto. 2024. General-purpose data stream processing on heterogeneous ar-
chitectures with WindFlow. J. Parallel Distrib. Comput. 184, C (Feb 2024).
https://doi.org/10.1016/j.jpdc.2023.104782

41. G. Mencagli, D. Griebler and M. Danelutto, ”Towards Parallel Data Stream Processing on
System-on-Chip CPU+GPU Devices,” 2022 30th Euromicro International Conference on
Parallel, Distributed and Network-based Processing (PDP), Valladolid, Spain, 2022, pp. 34-
38, doi: 10.1109/PDP55904.2022.00014

42. Gyewon Lee, Jaewoo Maeng, Jinsol Park, Jangho Seo, Haeyoon Cho, Youngseok Yang, Tae-
geon Um, Jongsung Lee, Jae W. Lee, and Byung-Gon Chun. 2023. FlowKV: A Semantic-Aware



22 Ovidiu-Cristian Marcu and Pascal Bouvry

Store for Large-Scale State Management of Stream Processing Engines. In Proceedings of the
Eighteenth European Conference on Computer Systems (EuroSys ’23). Association for Com-
puting Machinery, New York, NY, USA, 768–783. https://doi.org/10.1145/3552326.3567493

43. F. Zhang, Chenyang Zhang, Lin Yang, Shuhao Zhang, Bingsheng He, Wei Lu , and Xiaoyong
Du. ”Fine-Grained Multi-Query Stream Processing on Integrated Architectures,” in IEEE
Transactions on Parallel and Distributed Systems, vol. 32, no. 9, pp. 2303-2320, 1 Sept. 2021,
doi: 10.1109/TPDS.2021.3066407

44. G. Mencagli, M. Torquati, A. Cardaci, A. Fais, L. Rinaldi and M. Danelutto, ”WindFlow:
High-Speed Continuous Stream Processing With Parallel Building Blocks,” in IEEE Transac-
tions on Parallel and Distributed Systems, vol. 32, no. 11, pp. 2748-2763, 1 Nov. 2021, doi:
10.1109/TPDS.2021.3073970

45. Hongyu Miao, Heejin Park, Myeongjae Jeon, Gennady Pekhimenko, Kathryn S. McKin-
ley, and Felix Xiaozhu Lin. StreamBox: Modern Stream Processing on a Multicore Ma-
chine. In 2017 USENIX Annual Technical Conference (USENIX ATC 17), pages 617–
629, Santa Clara, CA, July 2017. USENIX Association. ISBN 978-1-931971-38-6. URL:
https://www.usenix.org/conference/atc17/technical-sessions/presentation/miao.

46. Fragkoulis, M., Carbone, P., Kalavri, V. et al. A survey on the evolution of stream processing
systems. The VLDB Journal 33, 507–541 (2024). https://doi.org/10.1007/s00778-023-00819-
8

47. Viktor Rosenfeld, Sebastian Breß, and Volker Markl. 2022. Query Processing on Heteroge-
neous CPU/GPU Systems. ACM Comput. Surv. 55, 1, Article 11 (January 2023), 38 pages.
https://doi.org/10.1145/3485126

48. Ovidiu-Cristian Marcu, Alexandru Costan, Gabriel Antoniu, Marı́a S Pérez-Hernández, Radu
Tudoran, and Bogdan Nicolae. Storage and Ingestion Systems in Support of Stream Processing:
A Survey. [Technical Report] RT-0501, INRIA Rennes - Bretagne Atlantique and University
of Rennes 1, France. 2018, pp.1-33. hal-01939280v2

49. Paris Carbone, Marios Fragkoulis, Vasiliki Kalavri, and Asterios Katsifodimos. 2020.
Beyond Analytics: The Evolution of Stream Processing Systems. In Proceedings of
the 2020 ACM SIGMOD International Conference on Management of Data (SIG-
MOD ’20). Association for Computing Machinery, New York, NY, USA, 2651–2658.
https://doi.org/10.1145/3318464.3383131

50. Shuhao Zhang, Feng Zhang, Yingjun Wu, Bingsheng He, and Paul Johns. 2020. Hardware-
Conscious Stream Processing: A Survey. SIGMOD Rec. 48, 4 (December 2019), 18–29.
https://doi.org/10.1145/3385658.3385662

51. Adriano Vogel, Dalvan Griebler, Marco Danelutto, and Luiz Gustavo Fernandes. Self-
adaptation on parallel stream processing: A systematic review. Concurrency and Com-
putation: Practice and Experience, 2021. First published: 07 December 2021. DOI:
https://doi.org/10.1002/cpe.675910.1002/cpe.6759.

52. Alessandro Margara, Gianpaolo Cugola, Nicolò Felicioni, and Stefano Cilloni. 2023. A Model
and Survey of Distributed Data-Intensive Systems. ACM Comput. Surv. 56, 1, Article 16
(January 2024), 69 pages. https://doi.org/10.1145/3604801

53. Sören Henning and Wilhelm Hasselbring. 2021. How to Measure Scalability of Distributed
Stream Processing Engines? In Companion of the ACM/SPEC International Conference on
Performance Engineering (ICPE ’21). Association for Computing Machinery, New York, NY,
USA, 85–88. https://doi.org/10.1145/3447545.3451190

54. Henriette Röger and Ruben Mayer. 2019. A Comprehensive Survey on Parallelization and
Elasticity in Stream Processing. ACM Comput. Surv. 52, 2, Article 36 (March 2020), 37
pages. https://doi.org/10.1145/3303849

55. S. Yang, ”IoT Stream Processing and Analytics in the Fog,” in IEEE Communications Maga-
zine, vol. 55, no. 8, pp. 21-27, Aug. 2017, doi: 10.1109/MCOM.2017.1600840.

56. Michael Stonebraker, Uǧur Çetintemel, and Stan Zdonik. 2005. The 8 requirements
of real-time stream processing. SIGMOD Rec. 34, 4 (December 2005), 42–47.
https://doi.org/10.1145/1107499.1107504

57. Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas Kedigehalli, Christopher Kellogg,
Sailesh Mittal, Jignesh M. Patel, Karthik Ramasamy, and Siddarth Taneja. 2015. Twitter



Big data stream processing 23

Heron: Stream Processing at Scale. In Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data (SIGMOD ’15). Association for Computing Machinery,
New York, NY, USA, 239–250. https://doi.org/10.1145/2723372.2742788

58. Xunyun Liu and Rajkumar Buyya. 2020. Resource Management and Scheduling in Distributed
Stream Processing Systems: A Taxonomy, Review, and Future Directions. ACM Comput. Surv.
53, 3, Article 50 (April 2020), 41 pages. https://doi.org/10.1145/3355399

59. M. V. Bordin, D. Griebler, G. Mencagli, C. F. R. Geyer and L. G. L. Fernandes, ”DSPBench: A
Suite of Benchmark Applications for Distributed Data Stream Processing Systems,” in IEEE
Access, vol. 8, pp. 222900-222917, 2020, doi: 10.1109/ACCESS.2020.3043948

60. G. van Dongen and D. Van den Poel, ”Evaluation of Stream Processing Frameworks,” in IEEE
Transactions on Parallel and Distributed Systems, vol. 31, no. 8, pp. 1845-1858, 1 Aug. 2020,
doi: 10.1109/TPDS.2020.2978480

61. Giatrakos, N., Alevizos, E., Artikis, A. et al. Complex event recognition in the Big Data era: a
survey. The VLDB Journal 29, 313–352 (2020). https://doi.org/10.1007/s00778-019-00557-w

62. Ali Davoudian and Mengchi Liu. 2020. Big Data Systems: A Software Engineer-
ing Perspective. ACM Comput. Surv. 53, 5, Article 110 (September 2020), 39 pages.
https://doi.org/10.1145/3408314

63. J. Karimov, T. Rabl, A. Katsifodimos, R. Samarev, H. Heiskanen and V. Markl, ”Bench-
marking Distributed Stream Data Processing Systems,” 2018 IEEE 34th International
Conference on Data Engineering (ICDE), Paris, France, 2018, pp. 1507-1518, doi:
10.1109/ICDE.2018.00169

64. Heitor Murilo Gomes, Jesse Read, Albert Bifet, Jean Paul Barddal, and João Gama. 2019.
Machine learning for streaming data: state of the art, challenges, and opportunities. SIGKDD
Explor. Newsl. 21, 2 (December 2019), 6–22. https://doi.org/10.1145/3373464.3373470

65. Theofanis P. Raptis, Claudio Cicconetti, and Andrea Passarella. Efficient topic partitioning
of Apache Kafka for high-reliability real-time data streaming applications. Future Gener-
ation Computer Systems, 2024. Institute of Informatics and Telematics, National Research
Council, Pisa, Italy. Received 19 September 2023, Revised 16 November 2023, Accepted 23
December 2023, Available online 8 January 2024, Version of Record 11 January 2024. DOI:
https://doi.org/10.1016/j.future.2023.12.02810.1016/j.future.2023.12.028.

66. G. Fu, Y. Zhang and G. Yu, ”A Fair Comparison of Message Queuing Systems,” in IEEE
Access, vol. 9, pp. 421-432, 2021, doi: 10.1109/ACCESS.2020.3046503

67. Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi, and Kostas
Tzoumas. Apache Flink™: Stream and Batch Processing in a Single Engine. IEEE Data
Engineering Bulletin, 2015. http://sites.computer.org/debull/A15dec/p28.pdf.

68. Michael Armbrust, Tathagata Das, Joseph Torres, Burak Yavuz, Shixiong Zhu, Reynold Xin,
Ali Ghodsi, Ion Stoica, and Matei Zaharia. 2018. Structured Streaming: A Declarative API for
Real-Time Applications in Apache Spark. In Proceedings of the 2018 International Conference
on Management of Data (SIGMOD ’18). Association for Computing Machinery, New York,
NY, USA, 601–613. https://doi.org/10.1145/3183713.3190664

69. A. Vogel, S. Henning, O. Ertl and R. Rabiser, ”A systematic mapping of performance in
distributed stream processing systems,” 2023 49th Euromicro Conference on Software En-
gineering and Advanced Applications (SEAA), Durres, Albania, 2023, pp. 293-300, doi:
10.1109/SEAA60479.2023.00052

70. Martin Hirzel, Guillaume Baudart, Angela Bonifati, Emanuele Della Valle, Sherif Sakr, and
Akrivi Akrivi Vlachou. 2018. Stream Processing Languages in the Big Data Era. SIGMOD
Rec. 47, 2 (June 2018), 29–40. https://doi.org/10.1145/3299887.3299892

71. Martin Hirzel, Robert Soul´e, Scott Schneider, Bu˘gra Gedik, and Robert Grimm. 2014. A
catalog of stream processing optimizations. ACM Comput. Surv. 46, 4, Article 46 (March
2014), 34 pages. DOI: http://dx.doi.org/10.1145/2528412

72. Stephens, R. A survey of stream processing. Acta Informatica 34, 491–541 (1997).
https://doi.org/10.1007/s002360050095

73. Garofalakis, M., Gehrke, J., Rastogi, R. (2016). Data Stream Management: A Brave New
World. In: Garofalakis, M., Gehrke, J., Rastogi, R. (eds) Data Stream Management. Data-
Centric Systems and Applications. Springer, Berlin, Heidelberg.



24 Ovidiu-Cristian Marcu and Pascal Bouvry

74. H. Isah, T. Abughofa, S. Mahfuz, D. Ajerla, F. Zulkernine and S. Khan, ”A Survey of Dis-
tributed Data Stream Processing Frameworks,” in IEEE Access, vol. 7, pp. 154300-154316,
2019, doi: 10.1109/ACCESS.2019.2946884

75. Jesse Read and Indrė Žliobaitė. Learning from Data Streams: An Overview and Update. 2023.
arXiv:2212.14720 [cs.LG].

76. Zhang, S., Soto, J. Markl, V. A survey on transactional stream processing. The VLDB Journal
33, 451–479 (2024).

77. Justin Levandoski, Garrett Casto, Mingge Deng, Rushabh Desai, Pavan Edara, Thibaud Hot-
telier, Amir Hormati, Anoop Johnson, Jeff Johnson, Dawid Kurzyniec, Sam McVeety, Prem
Ramanathan, Gaurav Saxena, Vidya Shanmugan, and Yuri Volobuev. 2024. BigLake: Big-
Query’s Evolution toward a Multi-Cloud Lakehouse. In Companion of the 2024 International
Conference on Management of Data (SIGMOD/PODS ’24). Association for Computing Ma-
chinery, New York, NY, USA, 334–346. https://doi.org/10.1145/3626246.3653388

78. Ovidiu-Cristian Marcu, Alexandru Costan, Gabriel Antoniu, Marı́a Pérez-Hernández, Bogdan
Nicolae, Radu Tudoran, Stefano Bortoli, ”KerA: Scalable Data Ingestion for Stream Process-
ing,” 2018 IEEE 38th International Conference on Distributed Computing Systems (ICDCS),
Vienna, Austria, 2018, pp. 1480-1485, doi: 10.1109/ICDCS.2018.00152.

79. Marcu, OC., Bouvry, P. (2023). In Support of Push-Based Streaming for the Comput-
ing Continuum. In: Nguyen, N.T., et al. Intelligent Information and Database Systems.
ACIIDS 2023. Lecture Notes in Computer Science(), vol 13996. Springer, Singapore.
https://doi.org/10.1007/978-981-99-5837-528


