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Abstract

I consider an electoral competition model where each candidate is associated
with an exogenous initial position from which she can deviate to maximize her
vote share, a strategy known as flip-flopping. Citizens have an intrinsic preference
for consistent candidates, and abstain due to alienation, i.e. when their utility
from their preferred candidate falls below a common exogenous threshold (termed
the alienation threshold). I show how the alienation threshold shapes candidates’
flip-flopping strategy. When the alienation threshold is high, i.e. when citizens
are reluctant to vote, there is no flip-flopping at equilibrium. When the alien-
ation threshold is low, candidates flip-flop toward the center of the policy space.
Surprisingly, I find a positive correlation between flip-flopping and voter turnout
at equilibrium, despite voters’ preference for consistent candidates. Finally, I ex-
plore alternative models in which candidates’ objective function differs from vote
share. I show that electoral competition can lead to polarization when candidates
maximize their number of votes.
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1 Introduction

In electoral competition, citizens evaluate candidates based on their platform as well
as on other characteristics, such as consistency. Yet between two elections or even
two temporal periods, a candidate can indeed change her public stance on a specific
issue, or modify her political position. Termed «flip-flopping», this can be a beneficial
political strategy: for example, a candidate may flip-flop to get closer to the median
voter. However, flip-flopping is costly. Citizens may draw negative inferences about the
character of the politician, like a perception of incompetence (Tomz and Van Houweling,
2012), and thus may have an intrinsic preference for candidates who do not flip-flop.
Campaigning candidates therefore face a tradeoff between the costs and the benefits of
flip-flopping (Hummel, 2010).

When voting is compulsory, candidates compare the benefits of getting closer to
the median voter to the costs of flip-flopping. However, when voting is voluntary,
candidates’ tradeoff is more complex. The negative perception of flip-flopping may
lead some citizens to abstain. On the other hand, a candidate may have incentives to
flip-flop to convince possible abstainers (or those who might vote for her opponent) to
vote for her. Thus, while flip-flopping can attract some abstainers, it can also induce
abstention.

In this paper, I design an electoral competition model where two candidates maximize
their vote share. Citizens associate each candidate with an exogenous initial platform,
and each candidate is able to flip-flop. This model integrates abstention due to alien-
ation. Citizens vote if their utility from their favorite candidate exceeds an exogenous
threshold, defined within the paper as the alienation threshold. This parameter rep-
resents citizens’ propensity to abstain. The utility a citizen derives from a candidate
depends negatively on the distance between the citizen’s ideal policy and the platform
promoted by the candidate, but also on the extent to which the candidate diverges from
her initial position (i.e. flip-flopping).

At equilibrium, flip-flopping is negatively correlated with the alienation threshold. A
low alienation threshold means that « extreme voters » in each electorate would vote for
their preferred candidate if she stuck to her initial position. Consequently, candidates
have incentives to flip-flop toward the center of the policy space so as to increase their
vote share without losing the adhesion of the extreme part of their electorate. When
the alienation threshold is high, candidates do not flip-flop, since this would lose them
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more voters than they would gain.
I obtain divergence at equilibrium in most cases, but do not find polarization (which

I define as flip-flopping toward the extremes). Candidates either stick to their initial
position or flip-flop toward the center. Consequently, the threat of voter abstention
hinders the convergence of platforms, consistent with the analysis of Oprea et al. (2024).
I also find that candidates are more likely to flip-flop when initial positions are extreme.

Additionally, this paper shows that flip-flopping is positively correlated with voter
turnout, involving two opposite effects. A higher alienation threshold makes citizens
more likely to abstain (direct effect), but also reduces flip-flopping, thereby increasing
citizens’ utility and positively impacting turnout (indirect effect). I find that the direct
effect dominates the indirect effect. Consequently, both flip-flopping and voter turnout
are negatively correlated with the alienation threshold at equilibrium. Moreover, as
candidates only flip-flop toward the center, there is also a negative correlation between
divergence and turnout.

Finally, I consider alternative objective functions for candidates. The equilibrium
remains unchanged when candidates maximize either their plurality or their probability
of winning. However, in a less competitive environment where candidates maximize
their number of votes, I obtain cases where candidates have incentives to polarize. In
this context, the competition for the votes of centrist citizens is less intense, which
can induce candidates to flip-flop toward the extremes in order to consolidate their
electorate.

The paper is organized as follows. Section 2 is devoted to a review of the literature.
In section 3, I introduce the main model, where candidates maximize their vote share.
Results are presented in section 4. In section 5, I consider various objective functions
for candidates, and section 6 concludes.

2 Related Literature

Endogenous Turnout. The introduction of abstention in the classical electoral com-
petition framework established by Downs (1957) has been shown to have little effect
on candidates’ strategic behavior (Hinich and Ordeshook, 1969). However, numerous
papers show that when abstention is introduced alongside other departures from the
Downsian setting, we can observe divergence at equilibrium. This divergence can arise
due to the threat of entry of a third candidate (Callander and Wilson, 2007), het-
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erogeneity on non-policy characteristics (Adams and Merrill, 2003), or asymmetry of
information between citizens on candidates’ platform (Glaeser et al., 2005). My analysis
will yield divergent equilibria without incorporating these features.

An ongoing issue in the literature is how polarization relates to voter turnout. Ac-
cording to the analysis of Oprea et al. (2024), the ability of extreme citizens to threaten
abstention induces polarization. This finding aligns with Grillo (2023). In Grillo’s work,
citizens derive a single-peaked and convex utility function (with respect to candidates’
platform) and turnout is determined at the group level. The analysis reveals a positive
correlation between polarization and citizens’ propensity to abstain. I find a similar
result in my paper within a different setting. However, I use the term "divergence"
instead of "polarization", which I reserve for flip-flopping toward the extremes.

Additionally, Grillo (2023) reports ambiguous findings regarding the relationship be-
tween divergence and turnout, whereas my results demonstrate a positive correlation
between the two.

Flip-flopping. Empirical and experimental studies in the literature have examined
flip-flopping. DeBacker (2015) provides evidence that this strategy is electorally costly,
estimating a dynamic model of candidate positioning. This electoral cost can be ex-
plained by citizens’ negative perception of flip-flopping. Tomz and Van Houweling
(2012) use survey-based experiments to show that citizens draw negative inferences
about a flip-flopping politician’s character. Other experimental work indicates that cit-
izens react differently to flip-flopping depending on the degree of complexity attributed
to the issue (Doherty et al., 2016) and on elite communications (Robison, 2017). More-
over, Tavits (2007) shows that policy shifts on principled issues are more costly than
flip-flopping on pragmatic issues.

Flip-flopping can also take different forms, as shown by Tella et al. (2023) from U.S
and French data. Between the two rounds of an election or between primaries and
a general election, candidates can actually adjust their position toward that of their
opponent. However, they also adapt the level of complexity of the language they use
and diversify the set of topics they cover.

Theoretically, some papers have studied electoral competition when flip-flopping is
costly. Hummel (2010) highlights a post-primary moderation effect in a dynamic model
with both primaries and a general election. During primaries, voters elect a candidate
who closely aligns with their preferences (sufficiently extreme) without compromising
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the candidate’s chances of winning the general election1. Then, candidates flip-flop
toward the center, solving a tradeoff between the costs and the benefits of flip-flopping.
This post-primary moderation effect also appears in Agranov (2016) and in Fournier
et al. (2023). In the first paper, voters infer the candidates’ ideology through their cam-
paign, while in the second, flip-flopping also incurs a financial cost for the candidates.

Finally, Aragonès and Xefteris (2022) study flip-flopping in a static model of electoral
competition (i.e. initial positions are exogenous), where candidates do not have the
same valence. When valence asymmetry is not too large, the candidate with the highest
valence flip-flops more than her opponent. Otherwise, it is the disadvantaged candidate
who flip-flops more in order to survive. Like these authors, I study flip-flopping in a
static model, adding a new feature likely to have an impact on candidates’ strategy
(abstention due to alienation). However, I do not consider valence asymmetry.

3 Model

Two candidates j ∈ {1, 2} compete on a uni-dimensional policy space X = [0, 1].
Each candidate j is associated with an exogenous platform qj ∈ [0, 1], which can be
interpreted as the candidate’s initial position (the one promoted during primaries for
instance). I assume that initial positions are symmetric with respect to 1

2
, so that

no candidate is disadvantaged ex ante: q1 = 1 − q2. Without loss of generality, let
q1 < q2. Candidates can adjust their position during the campaign, choosing a platform
pj ∈ [0, 1].

Definition 1. Flip-flopping is the distance between pj and qj, i.e. |pj − qj|.

Preferences. I consider a unit mass of citizens, identified with their preferred policy
θ uniformly distributed on X. The utility of citizen θ for candidate j is negatively
affected by the distance between the citizen’s ideal platform and that promoted by the
candidate, as well as by flip-flopping:

U j
θ (pj) = −|pj − θ|−γ

2
(pj − qj)

2.

The cost of flip-flopping is an increasing and convex function γ
2
(pj−qj)

2, where γ > 0

1Note that flip-flopping can also be studied as a reaction to a change in the state of the world, looking
at the tradeoff of an incumbent both policy-motivated and concerned for her reputation (Andreottola,
2021).
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represents the relative weight of flip-flopping in citizens’ utility. Each additional unit
of flip-flopping increases the disutility to citizens.

Citizens are perfectly informed about the initial position (qj) and the platform (pj)
of each candidate. Moreover, I assume full commitment.

Endogenous Turnout. The model incorporates abstention due to alienation. A
citizen prefers to vote rather than to abstain if and only if her utility from her preferred
candidate is higher than an exogenous alienation threshold denoted by u < 0. In this
case, she votes for her preferred candidate and randomizes if she is indifferent between
the two candidates.

Each candidate has an attraction interval Ij, which is the set of citizens that prefer
to vote for candidate j rather than to abstain (i.e U j

θ (pj) ≥ u).2 It follows that a citizen
θ prefers to vote rather than to abstain if and only if θ ∈ I1 ∪ I2.

Lemma 1. If (pj − qj)
2 ≥ −2u

γ
, then Ij = ∅. Otherwise, Ij = [θinfj (pj), θ

sup
j (pj)], with{

θinfj (pj) = pj − f(pj − qj),

θsupj (pj) = pj + f(pj − qj),

where f(x) = −u− γ
2
x2.

Proof. See Appendix A.1

The attraction interval Ij is symmetric around pj, and its length is denoted by ℓ(Ij).

ℓ(Ij) = 2f(pj − qj). (1)

Both flip-flopping and the alienation threshold u negatively affect the length of Ij.
Citizens are more likely to abstain when their alienation threshold is high and when
flip-flopping increases.

Note that θsupj (pj) is increasing in pj when pj ≤ qj +
1
γ
, but becomes decreasing when

pj ≥ qj +
1
γ
. This means that, starting from the initial position, when a candidate

adjusts her position in one direction, she attracts more voters in that direction, unless
she moves too much. In the latter case, the candidate becomes less attractive to the
voters she is getting closer to, as the quadratic electoral cost of flip-flopping outweighs
the linear policy gains.

2Note that Ij is not necessarily a subset of the interval [0, 1]. Consequently, there can be some
subsets of Ij where there is no citizen.
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Electorates. Having determined which citizens will turn out to vote, we now focus on
their voting choices.

Lemma 2. Candidate j ∈ {1, 2} is unanimously preferred by citizens if and only if
ϕj(p1, p2) :=

γ
2

(
(p−j − q−j)

2 − (pj − qj)
2
)
> |p2 − p1|.

Proof. See Appendix A.2.

The result identifies a situation where one candidate j is unanimously preferred,
which occurs when she flip-flops significantly less than her opponent.

There is also a particular case where a non-empty interval of citizens are indifferent
between the two candidates. If those citizens vote, they are equally likely to vote for
candidate 1 or for candidate 2, each with a probability of 1

2
.

Lemma 3. If ϕj(p1, p2) = p1 − p2 or ϕj(p1, p2) = p2 − p1, then there is a non-empty
interval of citizens θ such that U1

θ (p1) = U2
θ (p2).

Proof. See Appendix A.3.

The following condition ensures that neither Lemma 2 nor Lemma 3 applies, so that
electorates are separated by a single indifferent citizen.

Condition 1. ϕj(p1, p2) ∈ (pj − p−j, p−j − pj), with j such that pj ≤ p−j.

I show in Appendix A.5 and A.8 that Condition 1 holds at equilibrium, except in
the case of full convergence toward the center, i.e. p∗1 = p∗2 =

1
2
, where every citizen is

indifferent between the two candidates.
Also, I show that at equilibrium, p1 ≤ p2. I hereby state the following result in this

specific case.

Proposition 1. If p1 ≤ p2 and if Condition 1 holds, a citizen θ:

• votes for candidate 1 if and only if θ ∈ I1 and θ < θ(p1, p2),

• votes for candidate 2 if and only if θ ∈ I2 and θ > θ(p1, p2),

• abstains otherwise,

with θ(p1, p2) :=
θsup1 (p1) + θinf2 (p2)

2
∈ (p1, p2).

Proof. See Appendix A.4
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Citizens are divided into two groups by a single indifferent citizen, denoted by
θ(p1, p2). Every citizen θ such that θ < θ(p1, p2) prefers candidate 1 over candidate
2, i.e. U1

θ (p1) > U2
θ (p2). Similarly, every citizen θ > θ(p1, p2) prefers candidate 2.

We can thus deduce the quantity of votes for each candidate denoted by Vj(p1, p2):{
V1(p1, p2) = ℓ(I1 ∩ [0, θ(p1, p2)]),

V2(p1, p2) = ℓ(I2 ∩ [θ(p1, p2), 1]).

Figure 1: Example of policy space

Candidates’ behaviour. Candidates maximize their vote share denoted by V Sj(p1, p2).

V Sj(p1, p2) =
Vj(p1, p2)

Vj(p1, p2) + V−j(p1, p2)
.

A best response p∗j against p−j is:

p∗j ∈ argmax
pj∈[0,1]

{V Sj(p1, p2)}.

This objective function is justified in many contexts. For instance, in the case of elec-
tions using proportional representation, the parties’ number of seats depends crucially
on their vote share. Also, in single-winner elections, candidates have incentives to win
with a higher vote share because this will increase their legitimacy.3 Finally, note that,
as argued in Callander and Carbajal (2022), vote share maximization can be micro-
founded by assuming some citizens vote randomly. Alternative objective functions will
be studied in Section 5.

3As mentioned in Herrera et al. (2014), even in non-proportional systems, vote share influences the
majority party’s power.
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In the following section, I determine the pure strategy Nash equilibria of this game
and then discuss the qualitative implications.

4 Results

4.1 Equilibrium

The following theorem fully characterizes the unique equilibrium of the game.

Theorem 1. The game admits a unique equilibrium, which is symmetric and denoted
by (p∗1, 1− p∗1) with:

p∗1 =


min{q1 + 1

γ
, 1
2
} if u < u0,

q1 +
−1+

√
1−2γ(q1+u)

γ
if u ∈ [u0,−q1),

q1 if u ≥ −q1,

(2)

with u0 := max{−q1 − 3
2γ
,−γ

2
(1
2
− q1)

2 − 1
2
}.

Proof. See Appendix A.5

Figure 2 illustrates Theorem 1, graphically representing equilibrium policies and of
attraction intervals for each value of the alienation threshold, given γ and q1.4 Three
different regions of the alienation threshold appear, each associated with a particular
equilibrium configuration. I will analyze this graph from right to left.

4I let q1 ∈ ( 14 ,
1
2 ), so that the case where I1∩I2 ̸= ∅, I1 ⊂ X and I2 ⊂ X is represented in the figure.

Moreover, to ensure readability, Figure 2 represents the case where −q1− 3
2γ > −γ

2 (
1
2 −q1)

2− 1
2 , which

is equivalent to γ > 2
1−2q1

, so that p∗1 < 1
2 for all u. Finally, θinf1 (p∗1) and θsup2 (p∗2) curves are dashed

when they attain values not included in X, while θsup1 (p∗1) and θinf2 (p∗2) are dashed when the former
becomes greater than the latter.
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Figure 2: Equilibrium policies as functions of the alienation threshold.

For u ≥ −q1, candidates have incentives not to deviate from their initial position.
In this region of the alienation threshold, attraction intervals are subsets of the policy
space. Therefore, flip-flopping would reduce candidates’ attraction in the policy space,
thus decreasing their vote share. Note that q1 is the sole platform that guarantees
candidate 1 a vote share of at least 1/2.

Then, if u ∈ [u0,−q1), candidates flip-flop toward the center of the policy space at
equilibrium. If they remained at their initial position, their attraction interval would fall
partly outside of the policy space. In other words, the utility of citizens with an extreme
ideal platform (0 or 1) would be higher than the alienation threshold. Candidates thus
have incentives to flip-flop either to attract new voters at the center of the policy
space, or to convince voters from the opposing electorate to change their vote, without
losing the extreme part of their own electorate. They deviate from their initial position
until their attraction interval falls entirely within the policy space. The platform p∗1 =

q1 +
−1+

√
1−2γ(q1+u)

γ
is the sole policy greater than q1 such that θinf1 (p1) = 0. It follows
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from the previous paragraph that there is no additional profitable deviation.

If u < u0, then candidates do maximum flip-flopping toward the center, and p∗1 is
constant with respect to the alienation threshold. If the relative weight of flip-flopping
in citizens’ utility (represented by the parameter γ) is high enough5, then p∗1 = q1 +

1
γ
.

Candidates do not flip-flop by more than 1
γ
, since this would deter the citizens they

are targeting from voting for them, as explained in the previous section. If γ is low
enough, then p∗1 = p∗2 = 1

2
. Candidate 1 does not have incentives to choose a strategy

p1 > 1/2, as citizens at the center of the policy space would change their vote, therefore
diminishing candidate 1’s vote share.

4.2 Qualitative Implications

I now discuss the implications of the equilibrium outcomes to investigate the interactions
between the different features of the model.

Corollary 1. For all u < 0 and γ > 0, we have p∗1 ≥ q1 and p∗2 ≤ q2.

Corollary 1 highlights the fact that there is no polarization. Candidates either stick
to their initial platform, or flip-flop toward the center of the policy space. However, the
following corollary indicates that in most cases, platforms diverge at equilibrium.

Corollary 2. If γ > 2
1−2q1

, then ∀u < 0, p∗1 < 1
2

(and p∗2 > 1
2
). Otherwise, p∗1 < 1

2
for

u > −γ
2
(1
2
− q1)

2 − 1
2
.

If the relative weight of flip-flopping in citizens’ utility is high enough, equilibrium
platforms diverge for all values of the alienation threshold. Otherwise, equilibrium
platforms converge only for citizens sufficiently inclined to vote.

Let F (q1) := {u ∈ R− | p∗1 ̸= q1} be the set of values of the alienation threshold that
leads candidates to flip-flop at equilibrium.

Corollary 3. If q′1 < q1, then F (q1) ⊂ F (q′1).

This corollary indicates that when initial positions are more extreme, the range of
alienation threshold values within which candidates flip-flop is larger. When q1 is close6

to 0, citizens who have an extreme ideal platform are highly satisfied with the initial
5If γ > 2

1−2q1
, then u0 = −q1 − 3

2γ and equivalently, q1 + 1
γ < 1

2 as in Figure 2
6Symmetrically, q2 is close to 1.
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position of their favourite candidate. Candidates can thus flip-flop toward the center
of the policy space without losing the votes of this electorate.

Corollary 4. Flip-flopping is a monotonic non-increasing function of u and of γ.

As figure 2 shows, flip-flopping is either decreasing or constant with respect to the
alienation threshold. The more satisfied extreme voters are with the initial position of
their preferred candidate relative to the alienation threshold, the more candidates can
afford to flip-flop toward the center.

Flip-flopping follows a similar pattern with respect to γ, the relative weight of flip-
flopping in citizens’ utility. Candidates flip-flop less when it has a greater impact on
citizens’ preferences. However, note that when u ≥ −q1, γ does not have any influence
on flip-flopping as candidates do not deviate from their initial position.

We saw in Corollary 1 that candidates flip-flop only toward the center. Thus, there
is a direct inverse relationship between flip-flopping and divergence, i.e. the distance
between equilibrium platforms. I therefore obtain that divergence is a monotonic non-
decreasing function of u and of γ. Both abstention due to alienation and the cost of
flip-flopping hinder the convergence of platforms.

This result is in line with Grillo (2023) and Oprea et al. (2024). The ability of extreme
citizens to threaten abstention induces platform divergence.7 In my model, if citizens
are reluctant to vote (i.e. u is high), then candidates do not have any margin to flip-
flop toward the center (which would reduce divergence). However, if citizens are willing
to vote (low u), then candidates flip-flop toward the center, which makes divergence
decrease. On a technical note, I differ from Grillo (2023) in that I do not require a
polarized distribution of citizens’ ideal platforms to obtain divergence at equilibrium.

Corollary 5. Turnout is a monotonic non-increasing function of u and of γ

Voter turnout, i.e. the total number of votes V1+V2, is either decreasing or constant
with respect to the alienation threshold. The parameter u has both a direct negative
effect on the length of the attraction intervals and an indirect positive (or null) effect
on citizens’ utility through a negative (or null) effect on flip-flopping, as mentioned in
Corollary 4.

When the alienation threshold is high enough (u ≥ −q1), there is no flip-flopping
at equilibrium. The effect of u on turnout is thus negative. Similarly, when the alien-
ation threshold is low enough (u ≤ u0), this parameter has no impact on flip-flopping.

7Grillo (2023) and Oprea et al. (2024) mainly use "polarization" rather than "divergence".
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Consequently, the effect on turnout is either negative, or null (in the case of full par-
ticipation).

However, when the alienation threshold has an intermediate value (u ∈ (u0,−q1)),
both the direct and the indirect effect exert influence. My result indicates that the
direct effect dominates the indirect effect.

All this points to a positive correlation between flip-flopping and turnout, as they
evolve in a similar way with respect to the alienation threshold. Regions of the param-
eters characterized by full participation at equilibrium are also associated with high
levels of flip-flopping. This result differs from Grillo (2023), where numerical simula-
tions reveal that the correlation between divergence and turnout can be either positive
or negative, depending on the model’s parameters.

Finally, turnout either decreases or remains constant with respect to γ, the relative
weight of flip-flopping in citizens’ utility. While an increase in γ has a direct negative
effect on the utility function, it also has an indirect positive effect by making flip-
flopping decrease (Corollary 4). Here again, my result indicates that the direct effect
dominates the indirect effect.

5 Alternative Objective Functions

In this section, I analyze alternative objective functions for candidates. Many papers
study electoral competition with endogenous turnout between two candidates that ei-
ther maximize plurality or their number of votes (Hinich and Ordeshook, 1969, Hinich
and Ordeshook, 1970, Anderson and Glomm, 1992). Plurality maximization leads to
convergent equilibria, whereas maximizing the number of votes can induce divergence.
In this section, I examine flip-flopping strategies under both objective functions.

I also explore an alternative model where candidates maximize their probability of
winning. In this setting, candidates focus on winning but are indifferent about their
margin of victory.
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5.1 Plurality and Probability of Winning

5.1.1 Plurality

In this variant of the model, each candidate j maximizes her plurality Pj(p1, p2), defined
by:

Pj(p1, p2) = Vj(p1, p2)− V−j(p1, p2).

A best response p∗j against p−j is:

p∗j ∈ argmax
pj∈[0,1]

{Pj(p1, p2)}.

Proposition 2. The pair (p∗1, 1 − p∗1) defined in (2) is the unique equilibrium of the
plurality maximization game.

Proof. See Appendix A.6

Proposition 2 indicates that the equilibrium of the game is the same when candidates
maximize their plurality rather than their vote share. The intuition behind this result
is that if a candidate j chooses a platform pj ∈ [0, 1], her opponent can in any case
obtain a vote share of 1

2
and a plurality of 0 by playing the symmetric strategy p−j =

1 − pj. Consequently, if (p1, p2) is an equilibrium, then for all j, V Sj(p1, p2) =
1
2

and
Pj(p1, p2) = 0. In section 4, I proved that there is a unique pair (p1, p2) such that
candidates cannot unilaterally increase their number of votes beyond the number of
votes of their opponent (i.e. there is no p′1 such that V S1(p

′
1, p2) >

1
2

and there is no p′2

such that V S2(p1, p
′
2) >

1
2
). It follows that (p1, p2) is also the unique equilibrium of the

plurality maximization game.

5.1.2 Probability of Winning

I assume that each candidate j maximizes her probability of winning πj(p1, p2).

πj(p1, p2) =


1 if V Sj(p1, p2) >

1
2

1
2

if V Sj(p1, p2) =
1
2

0 if V Sj(p1, p2) <
1
2
.

A best response p∗j against p−j is:

p∗j ∈ argmax
pj∈[0,1]

{πj(p1, p2)}.
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Proposition 3. The pair (p∗1, 1 − p∗1) defined in (2) is the unique equilibrium of the
probability of winning maximization game.

Proof. See Appendix A.7

The intuition behind this proposition is similar to Proposition 2. At equilibrium, we
know that for all j, πj(p1, p2) = 1

2
. I proved in section 4 that there is a unique pair

(p1, p2) such that candidates cannot unilaterally deviate to increase their vote share.
Consequently, it can be deduced that (p1, p2) is also the unique equilibrium of the
probability of winning maximization game.

5.2 Number of Votes

I now turn to the case where the objective function is the number of votes. In most
elections, number of votes maximization is not fully consistent with office-motivated
candidates. However, there are contexts where candidates have incentives to partially
sacrifice their vote share to increase their number of votes. For instance, the French
parliament is elected via a two-round election where the number of votes matters for
office-motivated candidates. A candidate getting a vote share higher than one half and
the votes of at least 25% of registered voters during the first round wins the election.
Otherwise, a second round is organized, where the competitors are the two candidates
with the highest vote share from the first round together with any candidate who gets
the votes of at least 12.5% of registered voters.

Another interpretation of the number of votes maximization framework is that we
are examining a less competitive environment, where candidates aim to get votes but
are not focused on outperforming their opponent.

Formally, in this specification of the model, a best response p∗j against p−j is:

p∗j ∈ argmax
pj∈[0,1]

{Vj(p1, p2)}.

We thus study an alternative version of the model which is no longer a zero-sum
game. Nevertheless, the following theorem indicates that if initial positions are extreme
enough, the equilibrium of the number of votes maximization game is unique and is the
same as the equilibrium of the vote share maximization game.

Theorem 2. If q1 ≤ 1
4
, then (p∗1, 1− p∗1) defined in (2) is the unique equilibrium of the

number of votes maximization game.
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Proof. See Appendix A.8.

However, when initial positions are moderate (i.e., close to the center), then the
equilibrium of the number of votes maximization game is no longer unique and shows
differences from the vote share maximization game. For ease of presentation of the
results, the following theorem addresses symmetric equilibria in the case where initial
positions are not too moderate (i.e. q1 ∈ (1

4
, 1
4
+ 1

3γ
]). Interested readers can find the

full characterization of the equilibria in the Appendix (Section A.8.2).

Theorem 3. If q1 ∈ (1
4
, 1
4
+ 1

3γ
], there is a unique symmetric equilibrium (p∗1, 1 − p∗1)

with:

p∗1 =



min{q1 + 1
γ
, 1
2
} if u < u0

q1 +
−1+

√
1−2γ(q1+u)

γ
if u ∈ [u0,−γ

2
(q1 − 1

4
)2 − 1

4
)

q1 +
1−
√

1+2γ(q1−u− 1
2
)

γ
if u ∈ [−γ

2
(q1 − 1

4
)2 − 1

4
, q1 − 1

2
)

q1 if u ≥ q1 − 1
2
.

Proof. See Appendix A.8.

Note that asymmetric equilibria exist for u ∈ (−γ
2
(q1 − 1

4
)2 − 1

4
, q1 − 1

2
).8 Figure 3

graphically represents the symmetric equilibrium described in Theorem 3.

Figure 3: Symmetric equilibrium policy p∗1 as a function of the alienation threshold.
8Those equilibria are characterized by flip-flopping toward the extremes, either by both candidates

or by only one candidate whose opponent does not flip-flop. See the Appendix section A.8.2 for more
details.

16



When q1 ∈ (1
4
, 1
4
+ 1

3γ
] and u ∈ (−q1, q1 − 1

2
), the equilibrium differs from that of the

vote share maximization problem.

Corollary 6. If q1 ∈ (1
4
, 1
2
) and u ∈ (−q1, q1 − 1

2
), then p∗1 < q1.9

Corollary 6 indicates that it is not only divergence of platforms that is observed
at equilibrium, but also polarization, which occurs under two jointly necessary and
sufficient conditions. First, initial positions must be sufficiently moderate. Then, the
alienation threshold must take an intermediate value such that at initial positions, there
are no abstainers at the center, but some at the two extremes of the policy space.

In this parameter region, as explained in section 4.1, candidates do not flip-flop when
they maximize their vote share. However, candidates can increase their number of votes
by deviating toward the extremes of the policy space. Consider the case of candidate
1, she has incentives to flip-flop toward the left. By doing so, she convinces some left-
wing citizens to vote for her rather than abstain, as she is moving closer to their ideal
platform. The indifferent voter’s location is also moving toward the left, but to a lesser
extent, so that the deviation is profitable.

More formally, when u ∈ [−γ
2
(q1 − 1

4
)2 − 1

4
, q1 − 1

2
), candidates flip-flop to convince

as many abstainers as possible without causing abstention at the center of the policy

space. The platform p∗1 = q1 +
1−
√

1+2γ(q1−u− 1
2
)

γ
is the unique policy such that p1 <

q1 and θsup1 (p1) = θinf2 (1 − p1). Then, when the alienation threshold is lower (i.e.
u ∈ [u0,−γ

2
(q1 − 1

4
)2 − 1

4
)), candidates can capture all abstainers at the extremes of the

policy space without causing abstention at the center. Candidate 1 chooses the platform

p∗1 = q1 +
−1+

√
1−2γ(q1+u)

γ
, the unique equilibrium policy such that θinf1 (p1) = 0.

To sum up, when candidates maximize their total number of votes rather than their
vote share, competition for the center becomes less intense. This incentivizes candidates
to flip-flop toward the extremes to convince some abstainers to vote for them, thereby
increasing their electoral base.

6 Conclusion

In this paper, I develop an electoral competition model with both a flip-flopping cost and
endogenous turnout. I assume that citizens abstain due to alienation, i.e. they abstain

9In this corollary, the condition on initial positions is q1 ∈ ( 14 ,
1
2 ), since the statement is also true

for q1 ∈ ( 14 + 1
3γ ,

1
2 ). The corollary thus follows from the complete characterization of the equilibria

(Appendix, section A.8.2), and not only from Theorem 3.
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if their utility from their preferred candidate is lower than an exogenous alienation
threshold. In the main model, candidates maximize their vote share, but I also explore
alternative models with different objective functions for candidates.

I fully characterize equilibrium platforms as functions of the alienation threshold.
When citizens are reluctant to vote, i.e., when the alienation threshold is high, then
candidates do not flip-flop. When citizens are willing to vote, then extreme citizens’
utility from their favorite candidate is relatively high compared to the alienation thresh-
old. Candidates thus flip-flop toward the center, seeking to attract citizens at the center
of the policy space without losing the adhesion of the extreme part of their electorate.
The ability of citizens to threaten abstention hinders convergence of platforms and is
thus a factor in divergence, in line with Grillo (2023) and Oprea et al. (2024).

I obtain divergence in most cases, but I do not find polarization (i.e flip-flopping
toward the extremes) at equilibrium. If candidates flip-flop, it is always toward the
center of the policy space. Moreover, I show that flip-flopping is positively correlated
with voter turnout, implying a negative correlation between turnout and divergence of
platforms.

My results also indicate that candidates are more likely to flip-flop when initial po-
sitions are closer to the extremes. More precisely, in such cases, there is a larger range
of values for the alienation threshold within which candidates flip-flop.

Finally, I study alternative models where candidates’ objective functions differ from
vote share. Specifically, when candidates aim to maximize their number of votes, I
obtain polarization when citizens are moderately able to threaten abstention and can-
didates’ initial positions are sufficiently moderate. In this framework, competition for
the center is less intense, leading candidates to flip-flop toward the extremes to increase
their electoral base.

In this study, I assume for simplicity that citizens are uniformly distributed over the
policy space. In the literature, it is also standard to consider a symmetric single- peaked
distribution, which would involve accounting not only for the length of the intervals
but also for the density of citizens within those intervals. Consequently, the electoral
benefits of flip-flopping toward the center would increase, and candidates would still not
polarize in the vote share maximization setting. Moreover, candidates would still tend
to flip-flop more toward the center when the alienation threshold is low. For instance,
if candidate 1’s attraction interval is large, then flip-flopping toward the center is less
costly because she would be sacrificing a low-density part of the policy space.
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This work provides some predictions that would be interesting to study empirically.
One result that could be empirically verified is the positive correlation between can-
didates’ propensity to flip-flop and the extremeness of their initial position (Corollary
3). It would also be relevant to investigate whether a positive correlation between flip-
flopping and voter turnout is observed in the data, as well as a negative correlation
between divergence and turnout.
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A Proofs

A.1 Proof of Lemma 1

Citizen θ prefers to vote for candidate j rather than abstain if and only if U j
θ (pj) ≥ u.

For θ ≤ pj, it gives:
θ ≥ θinfj (pj) := pj + u+

γ

2
(pj − qj)

2.

For θ ≥ pj, it gives:
θ ≤ θsupj (pj) := pj − u− γ

2
(pj − qj)

2.

Consequently, citizen θ prefers to vote for candidate j rather than abstain if and only
if θ ∈ Ij := [θinfj (pj), θ

sup
j (pj)].

A.2 Proof of Lemma 2

Suppose first that pj ≤ p−j. Candidate j is unanimously preferred by citizens if
∀θ ∈ [0, 1], U j

θ (pj) > U−j
θ (p−j). For θ ≤ pj, this condition writes:

θ − pj −
γ

2
(pj − qj)

2 > θ − p−j −
γ

2
(p−j − q−j)

2.

It is equivalent to:

ϕj(p1, p2) :=
γ

2

(
(p−j − q−j)

2 − (pj − qj)
2
)
> pj − p−j.

For θ ≥ p−j, U j
θ (pj) > U−j

θ (p−j) can be written as:

ϕj(p1, p2) > p−j − pj.

Finally, citizens θ ∈ [pj, p−j] prefer candidate j if:

θ <
1

2
(pj + p−j + ϕj(p1, p2)).

This condition holds for all θ ∈ [pj, p−j] if ϕj(p1, p2) > p−j − pj.

Conclusion: When pj ≤ p−j, candidate j is unanimously preferred by citizens if
and only if ϕj(p1, p2) > p−j − pj. When p−j ≤ pj, we can show that candidate j

is unanimously preferred by citizens if and only if ϕj(p1, p2) > pj − p−j. These two
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conditions can be summed up as follows: ϕj(p1, p2) > |pj − p−j|.

Remark 1. ϕj(p1, p2) > |pj − p−j| is equivalent to I−j ⊂ Ij.

It is the case as θinf−j (p−j) > θinfj (pj) is equivalent to ϕj(p1, p2) > pj − p−j, while
θsup−j (p−j) < θsupj (pj) is equivalent to ϕj(p1, p2) > p−j − pj.

A.3 Proof of Lemma 3

Proof. Let pj ≤ p−j. For all θ ∈ [0, 1], U j
θ (pj) = U−j

θ (p−j) is equivalent to ϕj(p1, p2) =

|pj − θ| − |p−j − θ|.
We can deduce that citizens θ ≤ pj are indifferent between the two candidates if

ϕj(p1, p2) = pj − p−j. Citizens θ ≥ p−j are indifferent if ϕj(p1, p2) = p−j − pj.

A.4 Proof of Proposition 1

Proof. Suppose that p1 ≤ p2 and that condition 1 holds. It follows from Condition 1
that ϕ1(p1, p2) ∈ (p1−p2, p2−p1). Consequently, we obtain from Lemma 2’s proof that
citizens θ ≤ p1 prefer candidate 1 rather than candidate 2, while citizens θ ≥ p2 prefer
candidate 2. Moreover, it follows from Lemma 2’s proof that citizens θ ∈ [p1,

1
2
(p1 +

p2 + ϕ1(p1, p2))) prefer candidate 1 while citizens θ ∈ (1
2
(p1 + p2 + ϕ1(p1, p2)), p2] prefer

candidate 2. There is a unique indifferent citizen θ(p1, p2) :=
1
2
(p1 + p2 + ϕ1(p1, p2)) ∈

(p1, p2).
Consequently, a citizen θ < θ(p1, p2) prefers and votes for candidate 1 if U1

θ (p1) ≥ u,
which is equivalent to θ ∈ I1. A citizen θ > θ(p1, p2) prefers and votes for candidate 2
if θ ∈ I2.

The following notations will be used in the subsequent proofs.

Definition 2. The maximum of flip-flopping toward the center for candidate j is de-
noted by pj, with p1 := min{q1 + 1

γ
, 1
2
} and p2 := max{q2 − 1

γ
, 1
2
}.

Platforms p1 and p2 are crucial, as they bound flip-flopping toward the center. As
explained in section 3, θsup1 (p1) is a decreasing function with respect to p1 > q1 +

1
γ
.

Consequently, additional flip-flopping toward the center would decrease the utility of
the citizens from which candidate 1 gets closer from. However, if q1 +

1
γ
> 1

2
, flip-

flopping toward the center is upper-bounded by 1
2
. We will show in Claim 1 (section

A.5) that p1 ≤ 1
2
≤ p2 at equilibrium.
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A.5 Proof of Theorem 1

Claim 1. If (p∗1, p∗2) is an equilibrium, then p∗1 ≤ 1
2
≤ p∗2

Proof. Let’s consider a pair (p1, p2) such that p1 > 1
2
. To show that (p1, p2) cannot

be an equilibrium, we consider two cases: V S2(p1, p2) < 1 and V S2(p1, p2) = 1. If
V S2(p1, p2) < 1, then p′2 = p1 is a profitable deviation for candidate 2. Indeed, as
ϕ2(p1, p1) = γ

2

(
(p1 − q1)

2 − (p1 − q2)
2
)

> |p1 − p1|, it follows from Lemma 2 that
V S2(p1, p1) = 1. The deviation is thus profitable for candidate 2. If V S2(p1, p2) = 1,
then V S1(p1, p2) = 0. It follows from Lemma 2 that p′1 = q1 is a profitable deviation
for candidate 1. Indeed, since we have ϕ2(q1, p2) = −γ

2
(p2 − q2)

2 < |p2 − q1|, candidate
2 is not unanimously preferred by citizens. Consequently, candidate 1 gets votes, and
V S1(q1, p2) > 0.

We have shown that a pair (p1, p2) with p1 > 1
2

cannot be an equilibrium. Con-
sequently, if (p1, p2) is an equilibrium, then p1 ≤ 1

2
. A similar (and thus omitted)

argument can be used to prove that if (p1, p2) is an equilibrium, then p2 ≥ 1
2
.

Claim 2. If (p∗1, p∗2) is an equilibrium, then V S1(p
∗
1, p

∗
2) = V S2(p

∗
1, p

∗
2) =

1
2
.

Proof. By symmetry, playing p2 = 1 − p1 gives candidate 2 a vote share equal to 1
2
.

This strategy is therefore a profitable deviation from any p2 such that V S2(p1, p2) <
1
2
.

Symmetrically for candidate 1, p1 = 1 − p2 is a profitable deviation from any p1 such
that V S1(p1, p2) <

1
2
.

Claim 3. If (p∗1, p∗2) is an equilibrium, then p∗1 = 1− p∗2.

Proof. Let (p1, p2) with p1 ̸= 1− p2 be an equilibrium. I consider three cases:

1. ∀j, Ij ⊆ X

2. For some j ∈ {1, 2}, Ij ⊆ X and I−j ∩X ̸= I−j

3. ∀j, Ij ∩X ̸= Ij

I will show that we will obtain a contradiction.

Case 1. Let’s assume that for all j, Ij ⊆ X. It follows from Claim 2 that
V S1(p1, p2) = V S2(p1, p2) (which is equivalent to V1(p1, p2) = V2(p1, p2)). We now prove
that it is equivalent to ℓ(I1) = ℓ(I2) (defined in equation (1)). If I1 ∩ I2 = ∅, for all j,
Vj(p1, p2) = ℓ(Ij), the equality thus follows. If I1∩I2 ̸= ∅, V1(p1, p2) = θ(p1, p2)−θinf1 (p1)
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and V2(p1, p2) = θsup2 (p2)− θ(p1, p2). It follows from the definition of θ(p1, p2) that the
equality V1(p1, p2) = V2(p1, p2) can be written as:

1

2
(θsup1 (p1) + θinf2 (p2))− θinf1 (p1) = θsup2 (p2)−

1

2
(θsup1 (p1) + θinf2 (p2)),

which simplifies to:

ℓ(I1) = θsup1 (p1)− θinf1 (p1) = θsup2 (p2)− θinf2 (p2) = ℓ(I2).

Using Lemma 1, we find −2u−γ(p1−q1)
2 = −2u−γ(p2−q2)

2, which implies |p1−q1| =
|p2−q2|. Both candidates flip-flop by the same magnitude and therefore, (p1, p2) is either
of the form (q1 + δ, q2 + δ) or (q1 + δ, q2 − δ) for δ ∈ R. We are left to prove that the
first form can not be an equilibrium if δ ̸= 0.

Indeed, for δ > 0, since θsup2 (q2+δ) ≤ 1, then θinf1 (q1+δ) > 0. Consequently, candidate
1 has a profitable marginal negative deviation p′1 (i.e toward the left). Marginally
reducing her flip-flopping, she would increase the length of her attraction interval. We
would have ℓ(I1) > ℓ(I2), and therefore V S1(p

′
1, q2 + δ) > 1

2
.

A similar argument holds for δ < 0, candidate 2 has a profitable marginal positive
deviation (i.e toward the right). Consequently, (p1, p2) is not an equilibrium, we obtain
a contradiction.

Case 2. Suppose that for some j ∈ {1, 2}, Ij ⊆ X and I−j ∩X ̸= I−j. We consider
j = 1 without loss of generality: I1 ⊆ X and I2 ∩X ̸= I2. We first prove that p2 must
be equal to p2 as defined in definition 2. We then show that we obtain a contradiction.
We consider separately the cases where q2 − 1

γ
> 1

2
and q2 − 1

γ
≤ 1

2
.

• We consider first the case where q2 − 1
γ
> 1

2
. If p2 > q2 − 1

γ
(resp. p2 < q2 − 1

γ
), a

marginal negative (resp. positive) deviation of candidate 2 implies that θinf2 (p2)

and θ(p1, p2) would decrease while θsup2 (p2) would remain greater than 1. V2 thus
increases while V1 decreases or remains stable. Consequently, V2 becomes greater
than V1, which contradicts Claim 2.

• Then we study the case where q2 − 1
γ

≤ 1
2
. It follows from Claim 1 that at

equilibrium, p2 ≥ 1
2
. If p2 > 1

2
, then candidate 2 has a profitable marginal

negative deviation, as θinf2 (p2) and θ(p1, p2) would decrease while θsup2 (p2) would
remain greater than 1.
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We proved that p2 must be equal to p2. We then show that we obtain a contradiction.

From Claim 2, we have V1(p1, p2) = V2(p1, p2). Moreover, it follows from the definition
of θ(p1, p2) that half of the citizens included in I1 ∩ I2 vote for candidate 1, while the
other half vote for candidate 2. Consequently, since I1 ⊆ X and I2 ∩X ̸= I2, we must
have ℓ(I1) = ℓ(I2 ∩ X) < ℓ(I2). We are now ready to contradict that (p1, p2) is an
equilibrium, considering separately the cases where p2 = q2 − 1

γ
and p2 =

1
2
.

• If p2 = q2 − 1
γ
, then it follows from ℓ(I1) < ℓ(I2) that we must have either

p1 < q1 − 1
γ

or p1 > q1 +
1
γ
. In the first (resp. second) case, candidate 1 has a

positive (resp. negative) marginal profitable deviation, as θinf1 (p1) would decrease
while θsup1 (p1) and θ(p1, p2) would increase. V1 thus increases and V2 decreases or
remains constant.

• If p2 = 1
2
, then we have X ⊂ I2. Consequently, it follows from I1 ⊆ X that

I1 ⊂ I2. We can deduce from Lemma 2 and Remark 1 that V S1(p1, p2) = 0,
which contradicts Claim 2.

We obtained a contradiction.

Case 3. Suppose that ∀j, Ij ∩ X ̸= Ij. Following the argument of the previous
case, we must have p1 = p1 and p2 = p2. Consequently, two equilibrium candidates are
(q1 +

1
γ
, q2 − 1

γ
) and (1

2
, 1
2
). In both cases, we have p1 = 1− p2.

I denote by brj(p−j) = argmax
pj∈[0,1]

V Sj(p1, p2), the set of best responses of candidate j

against a platform x. In the following claim, we discard the study of the special case
mentioned in Lemma 3 (except in the case of full convergence, i.e p1 = p2 =

1
2
).

Claim 4. If p−j ̸= 1
2
, then the platform pj such that ϕj(p1, p2) = p1−p2 or ϕj(p1, p2) =

p2 − p1 does not belong to brj(p−j).

Proof. Let j = 1 without loss of generality. I first consider p1 < p2, studying both the
case where ϕ1(p1, p2) = p1 − p2 and ϕ1(p1, p2) = p2 − p1. Then, I let p1 > p2 and I
also investigate the two following cases: ϕ1(p1, p2) = p1 − p2 and ϕ1(p1, p2) = p2 − p1.
Finally, I study the case where p1 = p2 ̸= 1

2
. Consequently, I will prove that p1 is not a

best response to p2 in five distinct cases.

Case 1. Consider first p1 < p2 such that ϕ1(p1, p2) = p1 − p2. With some algebra,
we can show that this equality is equivalent to θinf1 (p1) = θinf2 (p2). We also obtain
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from Lemma 2’s proof (Appendix A.2) that for θ ∈ [0, p1], we have U1
θ (p1) = U2

θ (p2).
Finally, it follows from p1 < p2 that ϕ1(p1, p2) < p2 − p1. We can deduce from Lemma
2’s proof that for θ ∈ (p1, 1], U1

θ (p1) < U2
θ (p2). With some algebra, we can also show

that θsup1 (p1) < θsup2 (p2).
Consequently, we have V1(p1, p2) =

1
2
(p1 −max{θinf1 (p1), 0}) and V2(p1, p2) =

1
2
(p1 −

max{θinf1 (p1), 0}) + min{θsup2 (p2), 1} − p1. Candidate 1 has a profitable infinitesimal
deviation p′1 (toward the left if p1 < q1 − 1

γ
and toward the right otherwise), so that

θinf1 (p′1) < θinf2 (p2). We obtain a unique indifferent citizen θ(p′1, p2) > p′1. We also have
V1(p

′
1, p2) = θ(p′1, p2) − max{θinf1 (p′1), 0} and V2(p

′
1, p2) = min{θsup2 (p2), 1} − θ(p′1, p2).

As the deviation is infinitesimal, it follows that V1 increases while V2 decreases. Con-
sequently, V S1 increases, the deviation is thus profitable, and we can conclude that
p1 ̸∈ br1(p2).

Case 2. Consider now p1 < p2 such that ϕ1(p1, p2) = p2 − p1. It follows from
p1 < p2 that ϕ1(p1, p2) > p1 − p2. We can thus show with some algebra that θinf1 (p1) <

θinf2 (p2) and that θsup1 (p1) = θsup2 (p2). Finally, we can deduce from Lemma 2’s proof
that U1

θ (p1) > U2
θ (p2) for θ ∈ [0, p2) and that U1

θ (p1) = U2
θ (p2) for θ ∈ [p2, 1].

We thus have V1(p1, p2) = p2 − max{θinf1 (p1), 0} + 1
2
(min{θsup2 (p2), 1} − p2) and

V2(p1, p2) = 1
2
(min{θsup2 (p2), 1} − p2). Candidate 1 has an infinitesimal profitable de-

viation p′1 (toward the right if p1 < q1 +
1
γ
, and toward the left otherwise), so that

θsup1 (p′1) > θsup2 (p2) and thus I2 ⊂ I1. Candidate 1’s vote share would be equal to 1 and
her number of votes would increase (V1(p

′
1, p2) = min{θsup1 (p′1), 1} −max{θinf1 (p′1), 0}).

We can conclude that p1 < p2 such that ϕ1(p1, p2) = p1 − p2 or ϕ1(p1, p2) = p2 − p1 is
never a best response to p2.

Case 3. We now focus on p1 > p2 such that ϕ1(p1, p2) = p1 − p2. It follows that
ϕ1(p1, p2) > p2 − p1, we thus have θinf1 (p1) = θinf2 (p2) and θsup1 (p1) > θsup2 (p2). We can
deduce from Lemma 2’s proof that citizens θ ∈ [0, p2] are indifferent between the two
candidates, while the remaining citizens prefer candidate 1. Consequently, V1(p1, p2) =

min{θsup1 (p1), 1}−p2+
1
2
(p2−max{θinf1 (p1), 0}) and V2(p1, p2) =

1
2
(p2−max{θinf1 (p1), 0}).

Following the same argument as in Case 2, candidate 1 has a infinitesimal profitable
deviation p′1 such that θinf1 (p′1) < θinf2 (p2).

Case 4. Let p2 > p1 such that ϕ1(p1, p2) = p2−p1. It follows that ϕ1(p1, p2) < p1−p2,
we thus have θinf1 (p1) > θinf2 (p2) and θsup1 (p1) = θsup2 (p2). We can deduce from Lemma
2’s proof that citizens θ ∈ [0, p1] prefer candidate 2 rather than candidate 1, while the
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remaining citizens are indifferent. Consequently, V1(p1, p2) =
1
2
(min{θsup1 (p1), 1} − p1)

and V2(p1, p2) =
1
2
(min{θsup1 (p1), 1} − p1) + p1 −max{θinf2 (p2), 0}. Following the same

argument as in Case 1, candidate 1 has a infinitesimal profitable deviation p′1 such that
θsup1 (p′1) > θsup2 (p2). We can conclude that p1 > p2 such that ϕ1(p1, p2) = p1 − p2 or
ϕ1(p1, p2) = p2 − p1 is never a best response to p2.

Case 5. Finally, we consider p1 = p2 ̸= 1
2
. In this case, we can prove with some

algebra that ϕ1(p1, p2) ̸= p2 − p1 and ϕ1(p1, p2) ̸= p1 − p2.

Claim 5. If br1(p2) = {p1} and br2(p1) = {p2}, then (p1, p2) is the unique equilibrium.

Proof. Let br1(p2) = {p1} and br2(p1) = {p2}, then (p1, p2) is an equilibrium. Moreover,
the pairs (p′1, p2) and (p1, p

′
2) with p1 ̸= p′1 and p2 ̸= p′2 are not equilibria.

Now, let (p′1, p
′
2) with p′1 ̸= p1 and p′2 ̸= p2 be an equilibrium, we will obtain a

contradiction. We know from Claim 2 that for all j, V Sj(p1, p2) = V Sj(p
′
1, p

′
2) = 1

2
.

Then, it follows from br1(p2) = {p1} that V S1(p
′
1, p2) < 1

2
. Consequently, we have

V S2(p
′
1, p2) > 1

2
= V S2(p

′
1, p

′
2). We can deduce that candidate 2 has a profitable

deviation p2 from p′2, this is a contradiction.

Claim 6. If u ≥ −q1, then (p∗1, 1− p∗1) with p∗1 = q1 is the unique pure strategy equilib-
rium.

Proof. Let u ≥ −q1. If p2 = q2, then for any p1 ̸= q1 we have ℓ(I1) < ℓ(I2). Also, it
follows from u ≥ −q1 that I2 ⊆ X. Consequently, V S1(p1, q2) <

1
2
. As V S1(q1, q2) =

1
2
,

we can conclude that br1(q2) = {q1}. By a symmetric argument, it can be deduced
that br2(q1) = {q2}. It follows from Claim 5 that (q1, q2) = (q1, 1 − q1) is the unique
equilibrium.

Claim 7. If u ∈ [u0,−q1), then (p∗1, 1− p∗1) with p∗1 = p̂1 := q1 +
−1+

√
1−2γ(q1+u)

γ
is the

unique pure strategy equilibrium.

Proof. Let u ∈ [u0,−q1) and p̂2 = 1− p̂1. We first prove that br1(p̂2) = {p̂1}.
With some algebra, we can show that θinf1 (p̂1) = 0, and symmetrically that θsup2 (p̂2) =

1. We can also prove that p̂1 ∈ (q1, p1]. Consequently, we have p̂1 ≤ 1
2
, it follows that

I1 ⊆ X, and symmetrically that I2 ⊆ X. We can deduce that if p2 = p̂2, then for all
p1 > p̂1, we have l(I1) < l(I2), which implies V S1(p1, p̂2) <

1
2
. As V S1(p̂1, p̂2) =

1
2
, we

have shown that there is no p1 > p̂1 that belongs to br1(p̂2).
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Consider now p1 < p̂1. Since p̂1 ≤ p1, then θsup1 (p1) < θsup1 (p̂1) and θ(p1, p̂2) <

θ(p̂1, p̂2). It follows that V1(p̂1, 1−p̂1) > V1(p1, 1−p̂1) while V2(p̂1, 1−p̂1) ≤ V2(p1, 1−p̂1).
Consequently, we have V S1(p1, p̂2) <

1
2
, there is thus no p1 < p̂1 that belongs to br1(p̂2).

We can conclude that br1(p̂2) = {p̂1}. By a symmetric argument, it can be deduced
that br2(p̂1) = {p̂2}. It follows from Claim 5 that (p̂1, p̂2) = (p̂1, 1 − p̂1) is the unique
equilibrium.

Claim 8. If u ≤ u0, then (p∗1, 1−p∗1) with p∗1 = p1 is the unique pure strategy equilibrium.

Proof. Let u ≤ u0. First note that u0 = −q1 − 3
2γ

is equivalent to p1 = q1 + 1
γ
.

We thus divide this proof in two parts. We will first prove that if u0 = −q1 − 3
2γ

,
then (q1 +

1
γ
, 1 − q1 − 1

γ
) is the unique equilibrium. Then, we will show that if u0 =

−γ
2
(1
2
− q1)

2 − 1
2
, the pair (1

2
, 1
2
) is the unique equilibrium.

Case 1: u0 = −q1 − 3
2γ

.

We first prove that br1(q2 − 1
γ
) = {q1 + 1

γ
}. It follows from u ≤ −q1 − 3

2γ
that

θinf1 (q1 +
1
γ
) ≤ 0, and symmetrically that θsup2 (q2 − 1

γ
) ≥ 1. If p1 ̸= q1 +

1
γ

and p1 ∈
[0, q2− 1

γ
), then θsup1 (q1+

1
γ
) > θsup1 (p1) and θ(q1+

1
γ
, q2− 1

γ
) > θ(p1, q2− 1

γ
). Consequently,

V1(q1 +
1
γ
, q2 − 1

γ
) > V1(p1, q2 − 1

γ
) while V2(q1 +

1
γ
, q2 − 1

γ
) ≤ V2(p1, q2 − 1

γ
). Finally,

if p1 ≥ q2 − 1
γ
, then I1 ⊂ I2 so that V S1(p1, 1 − q1 − 1

γ
) = 0. We can conclude that

br1(q2− 1
γ
) = {q1+ 1

γ
}. By a symmetric argument, it can be deduced that br2(q1+ 1

γ
) =

{q2 − 1
γ
}. It follows from Claim 5 that (q1 +

1
γ
, q2 − 1

γ
) = (q1 +

1
γ
, 1 − q1 − 1

γ
) is the

unique equilibrium.

Case 2: u0 = −γ
2
(1
2
− q1)

2 − 1
2
.

We first show that br1(12) = {1
2
}. Let p2 = 1

2
, it follows from u ≤ −γ

2
(1
2
−q1)

2− 1
2

that
X ⊆ I2. Consider p1 <

1
2
, we can show that θ(p1,

1
2
) < 1

2
. Consequently, V2(p1,

1
2
) > 1

2

which implies V S1(p1,
1
2
) < 1

2
. As V S1(

1
2
, 1
2
) = 1

2
, we have shown that there is no p1 <

1
2

that belongs to br1(
1
2
).

Consider now p1 > 1
2
. I denote θ0(p1, p2) := 1

2
(θinf1 (p1) + θsup2 (p2)), the indifferent

citizen when p1 > p2. It follows that V2(p1,
1
2
) = θ0(p1,

1
2
). We can show that θ0(p1, 12) >

1
2
. Consequently, we have V2(p1,

1
2
) > 1

2
, which implies V S1(p1,

1
2
) < 1

2
. We have shown

that there is no p1 >
1
2

that belongs to br1(
1
2
). We can conclude that br1(12) = {1

2
}. By

a symmetric argument, it can be deduced that br2(
1
2
) = {1

2
}. It follows from Claim 5

that (1
2
, 1
2
) is the unique equilibrium.
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A.6 Proof of Proposition 2

Proof. We first show that if the pair (p1, p2) is an equilibrium of the vote share maxi-
mization game, then it is an equilibrium of the plurality maximization game.

Let (p1, p2) be an equilibrium of the vote share maximization game. It follows from
Claim 2 that V S1(p1, p2) = V S2(p1, p2) =

1
2
. Consequently, there is no deviation p′1 such

that V S1(p
′
1, p2) >

1
2

and no deviation p′2 such that V S2(p1, p
′
2) >

1
2
. Equivalently, there

is no deviation p′1 such that V1(p
′
1, p2)−V1(p1, p2) > V2(p

′
1, p2)−V2(p1, p2) and no devia-

tion p′2 such that V2(p1, p
′
2)−V2(p1, p2) > V1(p1, p

′
2)−V1(p1, p2). Rearranging the terms

of the two last equations, we obtain P1(p
′
1, p2) > P1(p1, p2) and P2(p1, p

′
2) > P2(p1, p2).

We can conclude that if (p1, p2) is an equilibrium of the vote share maximization game,
then it is an equilibrium of the plurality maximization game.

We can also prove that if (p1, p2) is an equilibrium of the plurality maximization
game, then it is an equilibrium of the vote share maximization game.

Let (p1, p2) be an equilibrium of the plurality maximization game. Using the same
reasoning as in the proof of Claim 2, we obtain P1(p1, p2) = P2(p1, p2) = 0. It follows
that there is no deviation p′1 such that V1(p

′
1, p2) − V2(p

′
1, p2) > 0 and no deviation p′2

such that V2(p1, p
′
2) − V1(p1, p

′
2) > 0. With some algebra, the two last equations can

be rewritten as: V S1(p
′
1, p2) >

1
2

and V S2(p1, p
′
2) >

1
2
. We can conclude that if (p1, p2)

is an equilibrium of the plurality maximization game, then it is an equilibrium of the
vote share maximization game.

A.7 Proof of Proposition 3

Proof. Let (p1, p2) be an equilibrium of the winner-takes-all game. Using the same
reasoning as in the proof of Claim 2, we obtain π1(p1, p2) = π2(p1, p2) = 1

2
. Conse-

quently, there is no deviation p′1 such that π1(p
′
1, p2) > 1

2
and no deviation p′2 such

that π2(p1, p
′
2) > 1

2
. The two last equations can be rewritten as V S1(p

′
1, p2) > 1

2
and

V S2(p1, p
′
2) >

1
2
. This is exactly the definition of an equilibrium in the vote share max-

imization game. We can conclude that if (p1, p2) is an equilibrium of the vote share
maximization game, then it is an equilibrium of the winner-takes-all game, and vice
versa.
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A.8 Proof of Theorem 2 and Theorem 3

Claim 9. If (p∗1, p∗2) is an equilibrium, then p∗1 ≤ 1
2
≤ p∗2.

Proof. Let (p1, p2) with p1 > 1
2

be an equilibrium. First, we can show that we cannot
have I1 ∩ I2 = ∅. Candidate 1 can indeed increase her attraction interval (and thus her
number of votes) by deviating from p1 toward her initial position.

Now, let I1∩I2 ̸= ∅, we show that it contradicts that (p1, p2) is an equilibrium. First,
consider p1 = p2. It follows from Lemma 2 that V1(p2, p2) = 0, candidate 1 thus has a
profitable deviation. We now consider two cases: (i) p1 < p2 and (ii) p1 > p2.

Case (i). We first assume that p1 < p2. It follows from I1 ∩ I2 ̸= ∅ that θsup1 (p1) >

θinf2 (p2). If θinf1 (p1) ≤ 0, then θsup1 (p1) > 1, and it follows from Lemma 2 that candidate
2 has a profitable deviation p′2 = p1 as V2(p1, p1) = 1. If θinf1 (p1) > 0, then V1(p1, p2) =

θ(p1, p2)− θinf1 (p1). As the function θ(p1, p2)− θinf1 (p1) is concave in p1 and maximized
in q1 − 1

3γ
< 1

2
, we can deduce that p′1 =

1
2

is a profitable deviation for candidate 1. It
contradicts that p1 >

1
2

and p1 < p2 hold together.

Case (ii). Suppose now that p1 > p2. It follows from I1 ∩ I2 ̸= ∅ that θinf1 (p1) >

θsup2 (p2). We first show that we must have p2 ≥ 1
2
.

Let p2 < 1
2
, we show that we will obtain a contradiction. Candidate 1’s number of

votes can be written either as V1(p1, p2) = 1 − θ0(p1, p2) or as V1(p1, p2) = θsup1 (p1) −
θ0(p1, p2). As argmax

p1

{1− θ0(p1, p2)} = {q1− 1
γ
} and q1− 1

γ
< 1

2
, it follows that I1 ⊆ X

at equilibrium. Also, as argmax
p2

{θ0(p1, p2)} = {q2 + 1
γ
} and q2 +

1
γ
> 1

2
, it follows that

I2 ⊆ X at equilibrium.
We just proved that we must have I1 ⊆ X and I2 ⊆ X, we are now ready to

contradict that p2 < 1
2
. First, if p1 ≤ q2, then p′2 ∈ (p2, p1] such that I1 ⊂ I2 and

I2 ⊆ X is a profitable deviation for candidate 2. She would indeed increase the length
of her attraction interval, while ensuring that all citizens included in this interval vote
for her. It follows that we have p1 > q2. A symmetric argument also provides that
p2 < q1. Finally, we have |p2 − q1| > |p1 − q1| and |p1 − q2| > |p2 − q2|. Otherwise,
similar deviations are still profitable. However, the first inequality is equivalent to
p1 + p2 < 2q1 ≤ 1 while the second one is equivalent to p1 + p2 > 2 − 2q1 ≥ 1. We
therefore contradicted that p2 <

1
2
.

To contradict that p1 > p2 ≥ 1
2
, we are going to show that p′1 = 1 − p1 is a better

response against p2 than p1 >
1
2
, i.e V1(1− p1, p2) > V1(p1, p2).
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We proved that we have I1 ⊆ X. It follows that V1(p1, p2) = θsup1 (p1)−θ0(p1, p2) with
θsup1 (p1) ≤ 1. We divide the interval V1(p1, p2) into two parts: l(p1, p2) on the left of p1
and r(p1, p2) on the right. We have l(p1, p2) = p1−θ0(p1, p2) and r(p1, p2) = θsup1 (p1)−p1.
We consider now p′1 = 1−p1 (1−p1 ≤ p2), we have V1(1−p1, p2) = l(1−p1, p2)+ r(1−
p1, p2) with:

l(1− p1, p2) =

{
1− p1 if θinf1 (1− p1) < 0

1− p1 − θinf1 (1− p1) otherwise,

and:

r(1− p1, p2) =

{
θsup1 (1− p1)− (1− p1) if θsup1 (1− p1) ≤ θinf2 (p2)

θ(1− p1, p2)− (1− p1) otherwise.

We will show that l(1− p1, p2) ≥ r(p1, p2) and that r(1− p1, p2) > l(p1, p2). We first
prove that l(1− p1, p2) ≥ r(p1, p2).

We know that I1 is symmetric around candidate 1’s platform. Also, it follows from
q1 <

1
2

that |1− p1− q1| < |p1− q1|. Consequently, 1− p1− θinf1 (1− p1) > θsup1 (p1)− p1.
We can deduce that l(1− p1, p2) ≥ r(p1, p2).

We now prove that r(1 − p1, p2) > l(p1, p2). It follows from |1 − p1 − q1| < |p1 − q1|
that θsup1 (1 − p1) − (1 − p1) > p1 − θinf1 (p1). As p1 − θinf1 (p1) > p1 − θ0(p1, p2), then
we can conclude that θsup1 (1 − p1) − (1 − p1) > l(p1, p2). We are left to prove that
θ(1− p1, p2)− (1− p1) > p1 − θ0(p1, p2). This inequality can be simplified as: p2 − 1

2
>

γ
4
(1− p1 − q1)

2 − γ
4
(p1 − q1)

2. It follows from p2 ≥ 1
2

and from |1− p1 − q1| < |p1 − q1|
that this inequality holds.

We can conclude that V1(1 − p1, p2) > V1(p1, p2). We therefore contradicted that
(p1, p2) with p1 > 1

2
is an equilibrium. By a symmetric argument, it can be deduced

that p2 ≥ 1
2

at equilibrium.

In the subsequent sections of this proof, we will first prove Theorem 2. Then, we
will study the symmetric equilibrium stated in Theorem 3 as well as all additional
asymmetric equilibria. The case where 1

4
< q1− 1

3γ
will be presented through Claim 13,

Claim 14 and Claim 15. Note that in this proof, brj(p−j) = argmax
pj

Vj(p1, p2), and that

Claim 4 holds (the proof of this claim holds true in both the vote share maximization
and the number of votes maximization games).
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A.8.1 Theorem 2

Claim 10. If u ≥ −q1, then (p∗1, 1 − p∗1) with p∗1 = q1 is the unique pure strategy
equilibrium.

Proof. Let u ≥ −q1. If (p1, p2) = (q1, 1 − q1) = (q1, q2), it follows from Lemma 1 that
V1(p1, p2) = ℓ(I1). As argmax

p1

{ℓ(I1)} = {q1}, it follows that br1(q2) = {q1}. By a

symmetrical argument, it can be deduced that br2(q1) = {q2}.

We proved that (q1, 1 − q1) is an equilibrium, we now prove that it is unique. Let
(p1, p2) with p1 ̸= q1 and p2 ̸= q2 be an equilibrium. We will obtain a contradiction. If
p1 > q1, as θinf1 (p1) > 0 and as argmax

p1

{θ(p1, p2)− θinf1 (p1)} = {q1 − 1
3γ
}, then p′1 = q1

is a profitable deviation for candidate 1. If p1 < q1 − 1
3γ

, as argmax
p1

{θ(p1, p2)} =

argmax
p1

{θsup1 (p1)} = {q1 + 1
γ
}, then candidate 1 has a profitable marginal deviation

toward the right.
We thus have p1 ∈ [q1 − 1

3γ
, q1). Let p1 ∈ (q1 − 1

3γ
, q1). If θsup1 (p1) < θinf2 (p2),

then candidate 1 has a profitable marginal deviation toward the right. However, if
θsup1 (p1) > θinf2 (p2), then she has a profitable deviation toward the left.

Consequently, we either have (p1, p2) = (q1 − 1
3γ
, p2) with θsup1 (q1 − 1

3γ
) > θinf2 (p2),

or (p1, p2) with p1 ∈ (q1 − 1
3γ
, q1) and θsup1 (p1) = θinf2 (p2). The first pair is not an

equilibrium. Indeed, it follows from u ≥ −q1 that p2 < argmax
p2

{θsup2 (p2) − θ(p1, p2)}.

Candidate 2 thus has a marginal profitable deviation toward the right. The second one
also contradicts that (p1, p2) is an equilibrium. As u ≥ −q1, then p2 < q2, p′2 = q2 is
thus a profitable deviation for candidate 2.

We contradicted that (p1, p2) with p1 ̸= q1 and p2 ̸= q2 is an equilibrium. We can
conclude that (q1, 1− q1) is the unique equilibrium.

Claim 11. If u ∈ [u0,−q1), then (p∗1, 1 − p∗1) with p∗1 = p̂1 is the unique pure strategy
equilibrium.

Let u ∈ [u0,−q1), and p2 = p̂2 = 1− p̂1, we first prove that br1(p̂2) = {p̂1}.
As stated in Claim 7’s proof, we have p̂1 ≤ p1. Consequently, if p1 < p̂1, then10

θinf1 (p1) < 0 and p′1 = p̂1 is a profitable deviation for candidate 1. More generally, p̂1
10If p1 < q1 − 1

γ , it is possible that θinf1 (p1) > 0. In this case, candidate 1 has a marginal profitable
deviation toward the right, as θinf1 (p1) would decrease, while θsup1 (p1) and θ(p1, p2) would increase.
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is a better response for candidate 1 than any p1 < p̂1 against a platform p2 ≥ 1
2
. We

proved that there is no p1 < p̂1 that belongs to br1(p̂2).
Now we consider p1 > p̂1. Note that we can show that p̂1 > q1. It follows that if

θsup1 (p1) ≤ θinf2 (p̂2), then p′1 = p̂1 is a profitable deviation for candidate 1. If θsup1 (p1) ∈
(θinf2 (p̂2), θ

sup
2 (p̂2)], it follows from argmax

p1

{θ(p1, p2) − θinf1 (p1)} = {q1 − 1
3γ
} that p′1

such that θsup1 (p′1) = θinf2 (p̂2) is a profitable deviation for candidate 1. As q1 ≤ 1
4
, then

p′1 ≥ p̂1. Consequently, p′′1 = p̂1 is a profitable deviation for candidate 1. We proved
that there is no p1 > p̂1 such that θsup1 (p1) ≤ θsup2 (p̂2) that belongs to br1(p̂2).

Now let p1 > p̂1 such that θsup1 (p1) > θsup2 (p̂2). We proved in Claim 9 that if p1 >

p2 ≥ 1
2
, then p′′′1 = 1− p1 is a better response against p2 than p1. We can deduce that

there is no p1 > p̂1 such that θsup1 (p1) > θsup2 (p̂2) that belongs to br1(p̂2).
We can finally conclude that br1(p̂2) = {p̂1}. By a symmetric argument, we can

deduce that br2(p̂1) = {p̂2}.

We proved that (p̂1, p̂2) = (p̂1, 1−p̂1) is an equilibrium, we now show that it is unique.
Let (p1, p2) with p1 ̸= p̂1 and p2 ̸= p̂2 be an equilibrium. We will obtain a contradiction.
We have seen in the first part of the proof that p̂1 is a better response for candidate
1 than any p1 < p̂1 against a platform p2 ≥ 1

2
. We can deduce that p1 > p̂1 and

symmetrically that p2 < p̂2.
If θsup1 (p1) ≤ θinf2 (p2), then it follows from p̂1 > q1 that p′1 = p̂1 is a profitable

deviation for candidate 1, which contradicts that (p1, p2) is an equilibrium.
If θsup1 (p1) > θinf2 (p2), then it follows from argmax

p1

{θ(p1, p2)} = {q1 − 1
3γ
} that can-

didate 1 has profitable deviations which contradicts that (p1, p2) is an equilibrium.
We contradicted that (p1, p2) with p1 ̸= p̂1 and p2 ̸= p̂2 is an equilibrium. We can

conclude that (p̂1, 1− p̂1) is the unique equilibrium.

Claim 12. If u < u0, then (p∗1, 1− p∗1) with p∗1 = p1 is the unique pure strategy equilib-
rium.

Proof. Let u < u0. I will use the same method as in Claim 8, considering the two
following cases: (i) u0 = −q1 − 3

2γ
and (ii) u0 = −γ

2
(1
2
− q1)

2 − 1
2
. We will show in case

(i) that (q1 +
1
γ
, 1 − q1 − 1

γ
) is the unique equilibrium. In case (ii), we will prove that

(1
2
, 1
2
) is the unique equilibrium.

Case (i). We first show that br1(q2 − 1
γ
) = {q1 + 1

γ
}. We proved in Claim 8 that if

p1 ≤ q2 − 1
γ

and p1 ̸= q1 +
1
γ
, then V1(q1 +

1
γ
, q2 − 1

γ
) > V1(p1, q2 − 1

γ
). Consider now
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p1 > q2 − 1
γ
. We proved in Claim 9 that if p1 > p2 ≥ 1

2
, then p′1 = 1 − p1 is a better

response against p2 than p1. Consequently, there is no p1 > q2 − 1
γ

that belongs to
br1(q2 − 1

γ
).

We can conclude that br1(q2 − 1
γ
) = {q1 + 1

γ
}. By a symmetric argument, it can be

deduced that br2(q1 +
1
γ
) = {q2 − 1

γ
}

We proved that (q1+ 1
γ
, q2− 1

γ
) = (q1+

1
γ
, 1− q1− 1

γ
) is an equilibrium. We now show

that it is unique. It follows from argmax
p1

{θ(p1, p2)} = argmax
p1

{θsup1 (p1)} = {q1 + 1
γ
}

and from q1 +
1
γ
< p̂1 that p1 = q1 +

1
γ

is the best response of candidate 1 against any
p2 ≥ 1

2
. Symmetrically, p2 = q2 − 1

γ
is the best response of candidate 2 against any

p1 ≤ 1
2
. We can conclude that (q1 +

1
γ
, 1− q1 − 1

γ
) is the unique equilibrium.

Case (ii). We first show that br1(
1
2
) = {1

2
}. Consider first p1 < 1

2
. It follows from

1
2
≤ q1+

1
γ
< p̂1 that p′1 =

1
2

is a profitable deviation for candidate 1 against any p2 ≥ 1
2
.

It increases θsup1 (p1) and θ(p1, p2) while θinf1 (p1) decreases or remains negative. We can
deduce that there is no p1 < 1

2
that belongs to br1(

1
2
). Consider now p1 > 1

2
and let

p2 =
1
2
. We proved in Claim 9 that if p1 > p2 ≥ 1

2
, then p′1 = 1− p1 is a better response

for candidate 1 against p2 than p1. Consequently, there is no p1 > 1
2

that belongs to
br1(

1
2
). We can conclude that br1(

1
2
) = {1

2
}. Using a symmetric argument, it can be

deduced that br2(
1
2
) = {1

2
}.

We proved that (1
2
, 1
2
) is an equilibrium. Now, we show that it is unique.

We have already proved that p1 = 1
2

is a better response for candidate 1 than any
p1 <

1
2

against any p2 ≥ 1
2
. Symmetrically, p2 = 1

2
is a better response for candidate 2

than any p2 >
1
2

against any p1 ≥ 1
2
. It follows from Claim 9 that (1

2
, 1
2
) is the unique

equilibrium.

A.8.2 Theorem 3

Let q1 > 1
4
. A couple of results presented in Theorem 2 and proofs associated still hold.

If u ≥ q1 − 1
2

(note that q1 − 1
2
> −q1), then (p1, 1− p1) with p1 = q1 is the unique pure

strategy equilibrium. If u < u0, then (p1, 1− p1) with p1 = min{q1+ 1
γ
, 1
2
} is the unique

pure strategy equilibrium. The region of the alienation threshold u for which (p̂1, 1− p̂1)

is the unique pure strategy equilibrium changes a bit. When 1
4
≥ q1 − 1

3γ
, (p̂1, 1− p̂1) is

the unique pure strategy equilibrium if u belongs to the interval [u0,−γ
2
(q1 − 1

4
)2 − 1

4
).

However, when 1
4
< q1 − 1

3γ
, (p̂1, 1 − p̂1) is the unique pure strategy equilibrium if
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u ∈ [u0,−q1 +
5

18γ
). We will prove it in Claim 13. In Claim 14, we will treat the case

where u ∈ [max{q1− 9γ+7
18γ

,−γ
2
(q1− 1

4
)2− 1

4
}, q1− 1

2
). Finally, in Claim 15, we will study

the case where 1
4
< q1 − 1

3γ
and u ∈ [−q1 +

5
18γ

, q1 − 9γ+7
18γ

).

Claim 13. If 1
4
≥ q1 − 1

3γ
and u ∈ [u0,−γ

2
(q1 − 1

4
)2 − 1

4
), or if 1

4
< q1 − 1

3γ
and

u ∈ [u0,−q1+
5

18γ
), then (p∗1, 1−p∗1) with p∗1 = p̂1 is the unique pure strategy equilibrium.

Proof. Let 1
4
≥ q1 − 1

3γ
and u ∈ [u0,−γ

2
(q1 − 1

4
)2 − 1

4
). Similar and thus omitted

arguments can be used to treat the case where 1
4
< q1 − 1

3γ
and u ∈ [u0,−q1 +

5
18γ

).
We first show that br1(p̂2) = {p̂1}. We proved in Claim 11 that p1 = p̂1 is a better

response for candidate 1 than any p1 < p̂1 against a platform p2 ≥ 1
2
. We consider

now p1 > p̂1. We saw in Claim 11 that if θsup1 (p1) > θinf2 (p̂2), then p̂1 is a profitable
deviation11 for candidate 1. Now let’s focus on θsup1 (p1) ≤ θinf2 (p̂2). It follows from
u < −γ

2
(q1 − 1

4
)2 − 1

4
that12 θsup1 (p̂1) > θinf2 (p̂2). Since θsup1 (p1) is a decreasing function

of p1 for p1 > p1, it follows that p1 > p1. Consequently, p1 is a profitable deviation for
candidate 1, we can deduce that there is no p1 > p̂1 such that θsup1 (p1) ≤ θinf2 (p̂2) that
belongs to br1(p̂2).

We can conclude that br1(p̂2) = {p̂1}. It can be deduced by a symmetric argument
that br2(p̂1) = {p̂2}. We thus proved that (p̂1, p̂2) = (p̂1, 1− p̂1) is an equilibrium. We
now show that it is unique.

Let (p1, p2) with p1 ̸= p̂1 and p2 ̸= p̂2 be an equilibrium. As proved in Claim 11, we
have p1 > p̂1 and p2 < p̂2.

If θsup1 (p1) > θinf2 (p2), then it follows from argmax
p1

{θ(p1, p2) − θinf1 (p1)} = {q1 −
1
3γ
} that candidate 1 has profitable deviations which contradicts that (p1, p2) is an

equilibrium.
If θsup1 (p1) ≤ θinf2 (p2), then we either have p1 > p1, p2 < p2 or both. It contradicts

that (p1, p2) is an equilibrium.
We contradicted that (p1, p2) with p1 ̸= p̂1 and p2 ̸= p̂2 is an equilibrium. We can

conclude that (p̂1, 1− p̂1) is the unique equilibrium.

Claim 14. If u ∈ [max{q1− 9γ+7
18γ

,−γ
2
(q1− 1

4
)2− 1

4
}, q1− 1

2
), then the set E of equilibria

is E ≡ {(p1, p2)|θsup1 (p1) = θinf2 (p2), p1 ∈ [q1 − 1
3γ
, q1], p2 ∈ [q2, q2 + 1

3γ
], θinf1 (p1) ≥

0, θsup2 (p2) ≤ 1}.
11In this case, p̂1 is a better deviation than p′1 such that θsup1 (p′1) = θinf2 (p2) because we can show

that p′1 < p̂1.
12It is also the case for 1

4 < q1 − 1
3γ and u ∈ [u0,−q1 +

5
18γ ).
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Proof. Let u ∈ [max{q1− 9γ+7
18γ

,−γ
2
(q1− 1

4
)2− 1

4
}, q1− 1

2
). We first prove that if (p1, p2) ∈

E, then there is no profitable unilateral deviation. First, note that if (p1, p2) ∈ E, then
for all j, Vj(p1, p2) = ℓ(Ij). As p1 ≤ q1, then a deviation p′1 < p1 is not profitable for
candidate 1. Consider now a deviation p′′1 ∈ (p1, p2). It follows from argmax

p1

{θ(p1, p2)−

θinf1 (p1)} = {q1 − 1
3γ
} and from p1 ≥ q1 − 1

3γ
that p′′1 > p1 is not a profitable deviation

for candidate 1. Finally, as proved in Claim 9, a platform p1 such that p1 > p2 ≥ 1
2

is
never a best reponse against p2.

The argument for candidate 2 is similar and thus omitted. We can deduce that if
u ∈ [max{q1− 9γ+7

18γ
,−γ

2
(q1− 1

4
)2− 1

4
}, q1− 1

2
) and if (p1, p2) ∈ E, then it is an equilibrium.

Before proving that if (p1, p2) is an equilibrium, then (p1, p2) ∈ E, let’s show that
E is not empty for u ∈ [max{q1 − 9γ+7

18γ
,−γ

2
(q1 − 1

4
)2 − 1

4
}, q1 − 1

2
). Denote p1(p2) the

platform p1 as a function of the policy p2 such that θsup1 (p1) = θinf2 (p2) and p1 ≤ q1+
1
γ
:

p1(p2) = q1 +
1−

√
1 + 2γ(q1 − p2)− 4γu− γ2(p2 − q2)2

γ

It is a continuous and increasing function of p2 for p2 ∈ [1 − q2, q2 +
1
3γ
]. Moreover,

p1(q2) ∈ [q1− 1
3γ
, q1] is equivalent to u ∈ [q1− 18γ+7

36γ
, q1− 1

2
] and p1(q2+

1
3γ
) ∈ [q1− 1

3γ
, q1]

is equivalent to u ∈ [q1 − 9γ+7
18γ

, q1 − 18γ+7
36γ

]. Consequently, as p1(p2) is an increasing
function with respect to u, then there exists a platform p1 ∈ [q1 − 1

3γ
, q1] against a

policy p2 ∈ [q2, q2 +
1
3γ
] such that (p1, p2) ∈ E for u ∈ [q1 − 9γ+7

18γ
, q1 − 1

2
). However, a

pair (p1(p2), p2) does not belong to the set E if θinf1 (p1(p2)) < 0 and/or θsup2 (p2) > 1.
We distinguish two cases: 1

4
≤ q1 − 1

3γ
and 1

4
> q1 − 1

3γ
.

If 1
4
< q1 − 1

3γ
, then we can show that for p1 ∈ [q1 − 1

3γ
, q1], θinf1 (p1) ≥ 0. We can

deduce by a symmetric argument that for p2 ∈ [q2, q2 +
1
3γ
], θsup2 (p2) ≤ 1. We can

conclude that if u ∈ [q1 − 9γ+7
18γ

, q1 − 1
2
), then E is non empty.

If 1
4
≥ q1− 1

3γ
, then θinf1 (q1− 1

3γ
) < 0 for some u ∈ [q1− 9γ+7

18γ
, q1− 1

2
). The lower value

of u for which E is not empty is the one that ensures θinf1 (p1) = 0, θsup2 (p2) = 1 and
θsup1 (p1) = θinf2 (p2), for p1 ∈ [q1− 1

3γ
] and p2 ∈ [q2, q2+

1
3γ
]. The only pair (p1, p2) that can

jointly verify these conditions is (1
4
, 3
4
). We can deduce that if u ∈ [−γ

2
(q1−1

4
)2−1

4
, q1−1

2
),

then E is non empty.
Note that −γ

2
(q1− 1

4
)2− 1

4
> q1− 9γ+7

18γ
is equivalent to 1

4
> q1− 1

3γ
(under the constraint

that q1 > 1
4
), we thus conclude that E is not empty for u ∈ [max{q1 − 9γ+7

18γ
,−γ

2
(q1 −
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1
4
)2 − 1

4
}, q1 − 1

2
).

Let u ∈ [max{q1 − 9γ+7
18γ

,−γ
2
(q1 − 1

4
)2 − 1

4
}, q1 − 1

2
). We now show that if (p1, p2) is an

equilibrium, then (p1, p2) ∈ E. Let a pair (p1, p2) /∈ E be an equilibrium. First, note
that as u ∈ [max{q1− 9γ+7

18γ
,−γ

2
(q1− 1

4
)2− 1

4
}, q1− 1

2
), then θinf1 (p1) < 0 implies p1 < q1.

It follows that if θinf1 (p1) < 0, candidate 1 has a profitable deviation p′1 such that
θinf1 (p′1) = 0 . Consequently, we have θinf1 (p1) ≥ 0. It can be deduced by a symmetric
argument that θsup2 (p2) ≤ 1.

If θsup1 (p1) < θinf2 (p2), then it follows from u ∈ [max{q1− 9γ+7
18γ

,−γ
2
(q1− 1

4
)2− 1

4
}, q1−

1
2
) that we13 have p1 < q1 and/or p2 > q2. Consequently, p′1 ∈ (p1, q1] such that

θsup1 (p′1) ≤ θinf2 (p2) is a profitable deviation for candidate 2. We can deduce that we
have θsup1 (p1) ≥ θinf2 (p2).

Consider θsup1 (p1) > θinf2 (p2). It follows from u ∈ [max{q1 − 9γ+7
18γ

,−γ
2
(q1 − 1

4
)2 −

1
4
}, q1 − 1

2
) that p1 > q1 − 1

3γ
and/or p2 < q2 +

1
3γ

. As the function θ(p1, p2) − θinf1 (p1)

(resp. θsup2 (p2) − θ(p1, p2)) is strictly concave and maximized for p1 = q1 − 1
3γ

(resp.
p2 = q2+

1
3γ

), then at least one candidate has a profitable deviation. It contradicts that
(p1, p2) is an equilibrium.

We have θinf1 (p1) ≥ 0, θsup2 (p2) ≤ 1 and θsup1 (p1) = θinf2 (p2). Consequently, for all j,
Vj(p1, p2) = ℓ(Ij).

Consider p1 > q1, it follows from θinf1 (q1) > 0 that candidate 1 has a profitable
deviation toward her initial position. Consequently, we have p1 ≤ q1. It can be deduced
by a symmetric argument that p2 ≥ q2.

Consider now p1 < q1 − 1
3γ

. It follows from argmax
p1

{θ(p1, p2)− θinf1 (p1)} = {q1 − 1
3γ
}

that candidate 1 has a profitable deviation toward the center. Consequently, we have
q1 ≥ q1 − 1

3γ
. It can be deduced by a symmetric argument that p2 ≤ q2 +

1
3γ

.
We proved that θinf1 (p1) ≥ 0, θsup2 (p2) ≤ 1, θsup1 (p1) = θinf2 (p2), p1 ∈ [q1 − 1

3γ
]

and p2 ∈ [q2, q2 + 1
3γ
]. It contradicts that (p1, p2) /∈ E. We can conclude that if

u ∈ [max{q1 − 9γ+7
18γ

,−γ
2
(q1 − 1

4
)2 − 1

4
}, q1 − 1

2
) and if (p1, p2) is an equilibrium, then

(p1, p2) ∈ E.

Claim 15. If 1
4
< q1 − 1

3γ
and if u ∈ [−q1 +

5
18γ

, q1 − 9γ+7
18γ

), then (p∗1, 1 − p∗1) with
p∗1 = q1 − 1

3γ
is the unique pure strategy equilibrium.

Proof. Let u ∈ [−q1 +
5

18γ
, q1 − 9γ+7

18γ
). We first prove that br1(q2 +

1
3γ
) = {q1 − 1

3γ
}.

13We can also have p1 > q1 + 1
γ and/or p2 < q2 − 1

γ . In this case, candidate 1 has a marginal
profitable deviation toward the left.
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First note that it follows from 1
4
< q1 − 1

3γ
and u ∈ [−q1 + 5

18γ
, q1 − 9γ+7

18γ
) that

θinf1 (q1 − 1
3γ
) ≥ 0 and that θsup1 (q1 − 1

3γ
) > θinf2 (q2 +

1
3γ
). Consider p1 < q1 − 1

3γ
. It

follows from θinf1 (q1 − 1
3γ
) ≥ 0 that θinf1 (p1) < 0 implies p1 < q1 − 1

3γ
< p1. Then, if

θinf1 (p1) < 0, candidate 1 has a profitable deviation toward the right. If θinf1 (p1) ≥ 0, it
follows from argmax

p1

{θ(p1, p2)− θinf1 (p1)} = {q1 − 1
3γ
} and from argmax

p1

{ℓ(I1)} = {q1}

that candidate 1 has a profitable deviation toward the right. We can deduce that there
is no p1 < q1 − 1

3γ
that belongs to br1(q2 +

1
3γ
).

Consider now p1 > q1− 1
3γ

. If θsup1 (p1) ≤ θsup2 (q2+
1
3γ
), then candidate 1 has a profitable

deviation toward the left. Finally, if p1 > q2 +
1
3γ

such that θsup1 (p1) > θsup2 (q2 +
1
3γ
),

then it follows from Claim 9’s proof that p′1 = 1− p1 is a better reponse against q2 + 1
3γ

than p1. We thus proved that there is no p1 > q1 − 1
3γ

that belongs to br1(q2 +
1
3γ
).

We can conclude that br1(q2 +
1
3γ
) = {q1 − 1

3γ
}. It can be deduced by a symmetric

argument that br2(q1 − 1
3γ
) = {q2 + 1

3γ
}.

We proved that (q1 − 1
3γ
, q2 +

1
3γ
) is an equilibrium, we now show that it is unique.

Let a pair (p1, p2) ̸= (q1 − 1
3γ
, 1 − q1 +

1
3γ
) be an equilibrium. First, it follows from

θinf1 (q1 − 1
3γ
) ≥ 0 that θinf1 (p1) < 0 implies p1 < p. Consequently, we have θinf1 (p1) ≥ 0

and θsup2 (p2) ≤ 1.
Consider the case where θsup1 (p1) > θinf2 (p2). If p1 < q1 − 1

3γ
, then candidate 1 has

a profitable deviation toward the right. If p1 > q1 − 1
3γ

, candidate 1 has a profitable
deviation toward the left. Consequently, we have θsup1 (p1) ≤ θinf2 (p2).

We consider θsup1 (p1) < θinf2 (p2). In this case14, p1 < q1 and/or p2 > q2, it follows
that at least one candidate has a profitable deviation toward her initial position.

Finally, let θsup1 (p1) = θinf2 (p2). It follows that p1 < q1 − 1
3γ

and/or p2 > q2 +
1
3γ

.
Consequently, at least one candidate has a profitable deviation toward the center. It
contradicts that (p1, p2) is an equilibrium.

We contradicted that (p1, p2) ̸= (q1 − 1
3γ
, q2 +

1
3γ
) is an equilibrium. We can conclude

that (q1 − 1
3γ
, 1− q1 +

1
3γ
) is the unique equilibrium.

14We can also have p1 > p1 and/or p2 < p2. It contradicts that (p1, p2) is an equilibrium. This
argument holds for θsup1 (p1) = θinf2 (p2).
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