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ABSTRACT
In this short paper I illustrate by a few selected examples several compelling similarities in the
functional organization of face and voice cerebral processing: (1) Presence of cortical areas
selective to face or voice stimuli, also observed in non-human primates, and causally related to
perception; (2) Coding of face or voice identity using a “norm-based” scheme; (3) Personality
inferences from faces and voices in a same Trustworthiness–Dominance “social space”.
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Although the nature of the sensory input is highly differ-
ent for facial or vocal information, growing evidence
suggests that the cerebral architecture processing
these two types of signals is organized following similar
principles (Yovel & Belin, 2013). This short paper provides
a biased, non-exhaustive comparison of the perceptual
and neural mechanisms involved in face and voice pro-
cessing, focusing on a few examples, mostly from my
own work, that illustrate their puzzling similarities.

1. Neural selectivity: faces and voices are
special

It is now well established that faces are “special”: com-
bined evidence from cognitive psychology experiments,
studies in brain lesioned patients, and electrophysiology
and neuroimaging studies in primates and humans
(Bentin, Allison, Puce, Perez, & McCarthy, 1996; Bodamer,
1947; Bruce & Young, 1986; Haxby, Hoffman, & Ida
Gobbini, 2000; Kanwisher, McDermott, & Chun, 1997;
Sergent&Signoret, 1992; Tsao, Freiwald, Knutsen,Mande-
ville, & Tootell, 2003; Tsao, Freiwald, Tootell, & Livingstone,
2006; Young & Bruce, 2011) all point to the fact that
viewing a face engages psychological and neural mech-
anisms not engaged by other object categories. Are
voices “special” too? It would seem that they are.

a. Human neuroimaging. Functional magnetic reson-
ance imaging (fMRI) studies in humans have

evidenced Temporal Voice Areas (TVAs) in human
auditory cortex (Belin, Zatorre, Lafaille, Ahad, &
Pike, 2000) analogous to the “face areas” or “face
patches” of visual cortex (Freiwald, Tsao, & Living-
stone, 2009; Haxby, Hoffman, & Ida Gobbini,
2000; Kanwisher et al., 1997; Tsao et al., 2006).
TVAs show greater response to voices – whether
they contain speech or not – than to other cat-
egories of nonvocal sounds from the environment
or to acoustical control stimuli such as scrambled
voices and amplitude-modulated noise. They are
organized bilaterally in several clusters along the
superior temporal gyrus and superior temporal
sulcus of the temporal lobe (Belin et al., 2000;
Belin, Zatorre, & Ahad, 2002; Linden, Thornton,
Kuswanto, Johnston,& Jackson, 2011; VonKriegstein
& Giraud, 2004). A recent large analysis of cerebral
voice sensitivity in several hundred participants
(Pernet et al., 2015) demonstrates that TVAs are
the most salient part of a “vocal brain”, a bilateral,
distributed network of cortical and subcortical
regions showing significant voice-sensitivity
including in particular inferior prefrontal areas
and the amygdala. A cluster analysis of peaks of
voice sensitive response in these hundreds of par-
ticipants provided evidence of an organization in
three “voice patches” along the antero-posterior
axis of the superior temporal sulci and gyri bilater-
ally (Figure 1).
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b. Causal link with perception. The increased
response to faces seen in face-sensitive cortical
areas is causally related to face processing. Transi-
ently interfering with neuronal populations in the
occipital face area using transcranial magnetic
stimulation (TMS) results in specific drops in
behavioural performance tasks involving the pro-
cessing of faces, but not other objects (Pitcher,
Charles, Devlin, Walsh, & Duchaine, 2009; Pitcher,
Walsh, Yovel, & Duchaine, 2007). Likewise, TMS
stimulation of the TVA interferes with voice per-
ception (Bestelmeyer, Belin, & Grosbras, 2011).
Repetitive TMS stimulation of the TVA peak in
the right hemisphere induces a performance
level difference between a voice perception task
(voice/nonvoice categorization) and a low-level
nonvocal auditory task (loudness judgment) that
is not observed when stimulating a control site
in parietal cortex (Bestelmeyer et al., 2011).
Although that study is but the starting point of a
line of research potentially as productive as that
using TMS to dissect face processing, it clearly
establishes a causal link between TVA activation
and voice perception, as found for OFA activation
and face processing.

c. Human electrophysiology. Electrophysiological
techniques such as electro- (EEG) or magneto-
encephalography (MEG) reveal comparable time
courses for face and voice processing. For faces,
both techniques reveal a well-known N170/
N170 m component most prominent on occipito-
temporal electrodes bilaterally with generally
higher amplitude in response to faces than to
other objects (Bentin et al., 1996). Similarly, high-
density EEG shows that bilateral fronto-temporal
electrodes display a component in the P200
range called the “fronto-temporal positivity to
voices” (FTPV) with a larger amplitude in response
to vocal compared to nonvocal sounds as early as
about 170 msec after sound onset (Charest et al.,
2009). MEG confirms this finding and identifies
sources of the FTPVm in anterior/posterior STG/
STS bilaterally, overlapping with the fMRI-derived
anatomical location of TVAs (Capilla, Belin, &
Gross, 2013). Thus, it takes about two-tenths of a
second for our brain to differentiate face or voice
from other signals in the same sensory modality.

d. Non-human studies. FMRI studies face processing
in macaques have consistently identified a series

of cortical “face patches” and, together with elec-
trophysiology, described their functional proper-
ties to a more detailed degree than is feasible in
humans; the results have suggested a series of
increasingly detailed face representations as one
moves anteriorly towards the frontal lobe, with
some patches containing a large proportion of
“face cells”, i.e., neurons displaying face prefer-
ence at the individual level (Freiwald & Tsao,
2010; Freiwald et al., 2009; Tsao et al., 2006).

The current understanding of voice processing in the
macaque brain is less advanced and different studies
yield partly conflicting results with some groups not
finding any reliable cortical areas differentiating con-
specific vocalization from other complex sounds
(Joly et al., 2012), while other groups show differences
in variable cortical areas (Gil-da-Costa et al., 2004; Gil-
da-Costa et al., 2006; Ortiz-Rios et al., 2015; Petkov
et al., 2008). A pioneering study by Chris Petkov and
colleagues provided clear evidence for TVAs in the
macaque brain: using fMRI in awake macaques
during auditory stimulation with macaque vocaliza-
tions and other sound categories they observed, in
two animals, several “voice patches” in temporal
lobe with greater activity in response to macaque
vocalizations than to other complex sounds (Petkov
et al., 2008) – the macaque equivalent of the human
voice areas. One of the voice patches, located in
right anterior temporal lobe, showed adaptation to
speaker identity (Petkov et al., 2008), similar to evi-
dence obtained in humans in an analogous anatom-
ical location (Belin & Zatorre, 2003). Moreover, single
cell recordings performed in this fMRI-identified
location provided the first evidence of “voice cells”,
i.e., individual neurons showing significant selectivity
to conspecific vocalizations (Perrodin, Kayser,
Logothetis, & Petkov, 2011). These results are impor-
tant in that they strongly suggest that the last
common ancestor of humans and macaques, some
20–25 million years ago, were already equipped with
rudimentary voice-selective cortical mechanisms.
Thus, when our hominin ancestors started speaking
a few tens or hundred thousand years ago, they
were already equipped with neural mechanisms
tuned over millions of years to analyse voice infor-
mation. Interestingly, fMRI studies in dogs have also
recently provided evidence of voice areas in the dog
brain: areas responding significantly more to dog
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vocalizations compared to other sounds (Andics,
Gacsi, Farago, Kis, & Miklosi, 2014), which pushes
back the emergence of the vocal brain to 80 million
years ago. Future studies should confirm the existence
of these voice patches, detail their anatomical location
and inter-individual variability, and examine potential
differences in underlying voice representations.

2. Identity processing

Faces and voices are the two most important signal
categories allowing us to recognize other individuals.
A large number of studies have investigated the func-
tional and neuronal architecture underlying face rec-
ognition (Bruce & Young, 1986; Calder & Young,
2005; Tsao & Livingstone, 2008; Young & Bruce,
2011); comparatively less effort has been devoted to
studying voice speaker recognition (Blank, Wieland,
& von Kriegstein, 2014; Perrodin, Kayser, Abel,
Logothetis, & Petkov, 2015), however what is known
reveals troubling similarities with face recognition.

a. Selective recognition deficits. Selective recognition
deficits are known to occur for both face and
voice identity processing. Since Bodamer (1947),
many cases of “prosopagnosia” have been docu-
mented: patients who following a brain lesion
become unable to recognize previously known

faces while still being able to recognize nonface
object categories (Rossion, 2014; Sergent & Sign-
oret, 1992). Some persons even present face rec-
ognition impairments in the absence of any
evident brain damage – a deficit termed “devel-
opmental” or “congenital” prosopagnosia (Duch-
aine & Nakayama, 2006). Importantly other
aspects of face perception, such as the ability to
recognise emotions or lip-read, seem to be pre-
served in prosopagnosic patients, indicating that
the functional pathway underlying face identity
processing is partially dissociated from those
underlying emotional or speech information pro-
cessing (Bruce & Young, 1986; Young & Bruce,
2011).

A directly comparable deficit is also known to
occur for speaker recognition – although docu-
mented in a much smaller number of cases (Van
Lancker, Cummings, Kreiman, & Dobkin, 1988;
Van Lancker, Kreiman, & Cummings, 1989). This
deficit in speaker recognition, called “phonagno-
sia”, also occurs more frequently after right hemi-
sphere lesions. As for prosopagnosia, the deficit
seems quite selective to identity information pro-
cessing as these patients typically show normal
speech comprehension or emotion recognition
from voice. A small number of cases of so-called
“developmental phonagnosia”, presenting the

Figure 1. Temporal Voice Areas (TVAs) in the human brain. A cluster analysis of the density map of voice > nonvoice contrast revealing
three main clusters of voice sensitivity in each hemisphere along a voice-sensitive zone of cortex extending from posterior STS to mid-
STS/STG to anterior STG. The cluster with the greatest peak density is in right pSTS, consistent with individual images. Reproduced
(permission pending) from Pernet et al. (2015).
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deficit quite selectively without evident brain
damage, have also recently been described
(Garrido et al., 2009; Roswandowitz et al., 2014;
Xu et al., 2015). A detailed investigation of the
neural correlates of such deficits is the subject of
ongoing investigations by several groups.

b. Perceptual coding. How is voice or face identity
coded in the brain? In both cases there appears
to be distinct mechanisms for the coding of iden-
tity in familiar or unfamiliar faces/voices. In the
case of faces this is shown for instance by the
good performance of typical observers to match
different views of a familiar faces in tests such as
the Benton test, whereas different views of a
same unfamiliar face are often perceived as corre-
sponding to different identities. For voices a com-
parable dissociation has been observed between
discrimination of unfamiliar speakers versus rec-
ognition of known speakers (Van Lancker et al.,
1988).

The coding of unfamiliar identities appears to be per-
formed for both faces and voices using a Norm-based
coding mechanism. For faces, at the behavioural level,
adaptation after-effects cause larger identity categor-
ization performance differences for face adapters
that sit opposite the target face relative to the proto-
typical face so-called called “anti-faces” – which has
been interpreted as highlighting the special role of
the prototype in identity coding (Leopold, O’Toole,
Vetter, & Blanz, 2001; Rhodes & Jeffery, 2006). At the
neuronal level, single cell recordings in macaque
inferior temporal lobe (Leopold, Bondar, & Giese,
2006) as well as human fMRI measures of FFA activity
(Loffler, Yourganov, Wilkinson, & Wilson, 2005) indi-
cate that faces more dissimilar to an identity-free
face prototype (approximated by computer averaging
of many different faces) elicit greater neuronal activity
than less distinctive faces, more similar to the proto-
type. For voices, remarkably similar evidence has
recently been obtained in my group. As for faces,
behavioural adaptation after-effects induced by
“anti-voice” adapters induce greater perceptual shifts
in speaker identification than non-opposite adapters
(Latinus & Belin, 2011). Moreover, voices that are
more acoustically different from an internal voice pro-
totype (approximated by the morphing generated
average of many voices) are perceived as more distinc-
tive, and elicit greater activity in the TVAs, than voices

with a shorter distance to mean, more acoustically
similar to the prototype (Latinus, McAleer, Bestel-
meyer, & Belin, 2013) (Figure 2).

3. Social perception

Another aspect of face and voice processing that fea-
tures baffling similarities is the formation of social per-
cepts and inferences – how we judge someone
unknown as attractive, competent or untrustworthy
based on a glance at their face or a word heard.

a. Attractiveness and averaging. It has long been
established that averaging faces makes them
more attractive – face composites generated by
averaging faces from several different identities
are judged more attractive than individual faces
(Galton, 1878; Langlois & Roggman, 1990) –

although it is clear that there is more to attractive-
ness than mere averageness (DeBruine, Jones,
Unger, Little, & Feinberg, 2007). Two main expla-
nations have been proposed for this phenom-
enon: the “good genes” account, proposing that
we perceive averaged faces as more attractive
because if they were real faces they would
belong to individuals with high genetic fitness
(with more symmetrical features, fewer imperfec-
tions), good potential mates (Grammer, Fink,
Moller, & Thornhill, 2003; Langlois & Roggman,
1990; Thornhill & Gangestad, 1999); the “percep-
tual fluency” account, that averaged faces are pre-
ferred because they are closer in face space (more
perceptually similar) to a putative internal proto-
type and hence easier to process (Halberstadt &
Rhodes, 2003; Winkielman, Halberstadt, Fazen-
deiro, & Catty, 2006). Both accounts predict that
a similar phenomenon should be observed for
voices: that averaging the voice of several individ-
uals should result in a more attractive voice.

Thanks to the recent advent of voice morphing
tools (Kawahara & Matsui, 2003), we were able to
test this prediction and indeed a steady increase
of attractiveness ratings along with number of
averaged voices in a composite was observed
(Bruckert et al., 2010), similar that that found for
faces (Figure 3). More than a curiosity, the
phenomenon offers a window onto the percep-
tual mechanisms of voice attractiveness and
reveals that two main, independent, acoustical
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features are at play: the amount of spectro-tem-
poral irregularities (measured for instance by the
harmonics-to-noise ratio) and “distance-to-
mean” where voices acoustically more similar to
the average are generally found more attractive
(Bruckert et al., 2010). These two acoustical par-
ameters are directly analogous to two features
known to be key determinants of facial attractive-
ness: face texture smoothness and distance to
mean.

b. Social inferences in a same 2D “social space”. Social
face perception research has shown that people

readily form personality impressions from
unknown faces. These social inferences are
formed rapidly – a mere second is needed to
reach competence judgments that predict elec-
tion margins (Todorov, Mandisodza, Goren, &
Hall, 2005) – and robustly: impressions may not
be accurate but different people tend to agree
on them. The diverse personality impressions –

competence, aggressiveness, friendliness – are
well summarized by a 2D “social face space”
with perceived Trustworthiness and Dominance
as the two main axes (Oosterhof & Todorov,

Figure 2. Norm-based coding of speaker identity in the Temporal Voice Areas. (A) TVA showing significantly greater fMRI signal in
response to vocal versus nonvocal sounds at the group-level used as a mask for further analysis. Colour scale indicates T values of
the vocal versus nonvocal contrast. (B) Maps of Spearman correlation between beta estimates of BOLD signal in response to each
voice stimulus and its distance-to-mean overlay on the TVA map (black). Colour scale indicates significant r values (p < .05 corrected
for multiple comparisons). Note a bilateral distribution with a maximum along the right anterior STS. (C) Scatterplots and regression
lines between estimates of BOLD signal and distance-to-mean at the peak voxel for “had” syllables. (D) Scatterplots and regression lines
between estimates of BOLD signal and distance-to-mean at the peak voxel observed for “hellos”. Reproduced (permission pending)
from Latinus et al. (2013).
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2008). We recently found that the exact same con-
clusions can be reached for voices. From a single
word “hello”, listeners were found to form person-
ality impressions with high inter-rater agreement,
and principal component analysis reveals that the
diverse personality judgments are also well sum-
marized in a 2D “social voice space” with main
axes best corresponding to Trustworthiness and
Dominance, exactly as for faces – a finding
observed for both male and female voices
(McAleer, Todorov, & Belin, 2014).

The above sections have provided a short and volun-
tarily partial, but I believe no less striking, account of
the similarities in face and voice processing. These
similarities, observed in several different domains –

discrimination from other stimuli, processing of iden-
tity information, social inferences – are perhaps not
so surprising, considering that the processing of
these different types of information poses similar pro-
blems to the cortical architecture, that are apparently
implemented using similar solutions; which also no
doubt facilitates the integration of this information
across different modalities during naturalistic encoun-
ters (Campanella & Belin, 2007).
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