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ABSTRACT
Tumor escape to immunosurveillance and resistance to immune attacks present a major hurdle in cancer
therapy, especially in the current era of new cancer immunotherapies. We report here that hypoxia, a
hallmark of most solid tumors, orchestrates carcinoma cell heterogeneity through the induction of
phenotypic diversity and the acquisition of distinct epithelial–mesenchymal transition (EMT) states. Using
lung adenocarcinoma cells derived from a non-metastatic patient, we demonstrated that hypoxic stress
induced phenotypic diversity along the EMT spectrum, with induction of EMT transcription factors (EMT-
TFs) SNAI1, SNAI2, TWIST1, and ZEB2 in a hypoxia-inducible factor-1a (HIF1A)-dependent or -independent
manner. Analysis of hypoxia-exposed tumor subclones, with pronounced epithelial or mesenchymal
phenotypes, revealed that mesenchymal subclones exhibited an increased propensity to resist cytotoxic T
lymphocytes (CTL), and natural killer (NK) cell-mediated lysis by a mechanism involving defective immune
synapse signaling. Additionally, targeting EMT-TFs, or inhibition of TGF-b signaling, attenuated
mesenchymal subclone susceptibility to immune attack. Together, these findings uncover hypoxia-
induced EMT and heterogeneity as a novel driving escape mechanism to lymphocyte-mediated
cytotoxicity, with the potential to provide new therapeutic opportunities for cancer patients.
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Introduction

The tumor microenvironment is a complex system that con-
tains numerous cell types playing important roles in tumor
development and progression. Besides stromal cells, metabolic
mediators are also involved, such as hypoxia, an essential meta-
bolic element of the tumor microenvironment that may help to
shape cellular plasticity and tumor heterogeneity.1,2 Hypoxic
stress is predominantly caused by an abnormal formation of
the vasculature of the rapidly growing tumor mass, and the net
result is heterogeneously distributed areas of low oxygen pres-
sure.3 In this context, cancer cell adaptation allows for their
survival and may give rise to heterogeneity and the emergence
of therapy-resistant phenotypes. Accumulating evidence also
points to hypoxia as an important trigger for cancer cell inva-
sion or metastases via the activation of hypoxic cascades and
hypoxia-inducible factor (HIF)-1.4 Hypoxic stress also has clin-
ical implications, with the severity of tumor hypoxia known to
correlate with tumor progression and therapeutic resistance,
particularly in breast cancer.5,6 Although the advent of high-
throughput analyses coupled with single-cell-based approaches
has revealed considerable inter-tumor (between tumors of the
same type) and intra-tumor (within tumors, different cancer
cell subclones) heterogeneities,7,8 the role of hypoxia in driving

or generating heterogeneous cancer cell populations warrants
further investigation.

The epithelial–mesenchymal transition (EMT) process
involves the conversion of epithelial cells into migratory and
invasive cells, presumably in a transient and reversible manner,
and represents at least one of the crucial steps required for
tumor progression via invasion and metastatic spread.9 It may
result from a combination of oncogenic mutations, epigenetic
regulation, and microenvironmental control. Recently, there
has been an expanding body of research linking EMT and the
mesenchymal-like phenotypic states of cells to therapy resis-
tance and the emergence of cancer stem cell (CSC) properties.9

We and others have provided evidence to indicate that the
acquisition of the EMT phenotype can control immunosup-
pression,10,11 and confer resistance to T-cell-mediated cytotox-
icity.12,13 Intriguingly, despite the growing list of EMT inducers
being discovered and an understanding of their underlying
mechanisms of action,9 the role of hypoxia in triggering this
process remains relatively unclear. Contradicting results exist
to support both the promoting and suppressive roles of hyp-
oxia, and findings indicate differences in terms of the mecha-
nisms at play in human and in mouse.14-17 Given that hypoxia-
mediated changes seem to have a pivotal role in cancer cell
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plasticity and in clinical outcomes, it would be paramount to
explore the role of EMT in hypoxia-induced cancer cell hetero-
geneity and its impact on the quality of cell-mediated cytotoxic-
ity. In this study, we used non-metastatic NSCLC cells to
elucidate how hypoxic stress is involved in shaping tumor het-
erogeneity and the subsequent regulation of the antitumor
cytotoxic response.

Results

NSCLC IGR-Heu cell heterogeneity and EMT phenotypes in
response to hypoxic stress

NSCLC IGR-Heu carcinoma cells in standard 2 D cultures exhib-
ited an intermediate epithelial state, with relatively homogenous,
epithelial-like features and often growing as clusters with cell–cell
junctions (Fig. 1A). Exposure to hypoxia (1% O2) for 72 h caused
increased phenotypic heterogeneity with distinct morphologies,
with individual, elongated cells that were variably spread or situ-
ated in clusters (Fig. 1A). A gene set enrichment analysis (GSEA)
revealed enrichment of and alterations to various biological pro-
cesses under short-term hypoxia (Fig. 1B). Expectedly, a hypoxia
hallmark signature was the most significantly enriched process,
and pathways involved in stress response and cell death, such as
p53 and tumor necrosis factor-a, were upregulated. EMT was
also enriched, whereas several proliferation and mitosis-related
signatures had negative enrichment scores. We then asked the
extent to which EMT transcription factors (EMT-TFs) could be
influenced by hypoxia in primary NSCLC IGR-Heu cells, and
evaluated their dependency on HIF-1a. The cells were exposed to
normoxic or hypoxic conditions for 72 h in the presence of
HIF1A or non-targeting siRNA. qRT-PCR analysis revealed
induction of EMT-TFs (SNAI1, SNAI2, TWIST1, and ZEB2)
under hypoxia, as well as related markers, such as TGFB1 and
VIM (Fig. 1C). siRNA targeting of HIF1A strongly diminished
the induction of ZEB2, VIM, and TGFB1, implying an hypoxia/
HIF1A-dependency for their gene expression. Well-known HIF
targets CA9, PDK1, LOXL2, VEGFA, and NDRG1 were also
affected by HIF1A knockdown under hypoxia. Moreover, differ-
ences in cell morphology were observed between siHIF1A and
siNT-treated cells (Fig. S1). SNAI1 and SNAI2 remained
unchanged after HIF1A knockdown, whereas TWIST1 expres-
sion was only slightly reduced, indicating that numerous factors,
rather than HIF1A alone, may drive or promote EMT states, pre-
sumably via their propensity to co-activate EMT-TFs in carci-
noma cells.

To further assess a potential link between hypoxia and EMT
in human lung tumors, we explored the samples from The Can-
cer Genome Atlas lung adenocarcinoma (TCGA-LUAD) data-
set18 corresponding to primary surgically resected tumors (i.e.,
early stage disease). Markedly, tumors with high HIF1A levels
showed an elevated expression of known HIF targets and
EMT-TFs, suggesting enrichment of these genes in hypoxic
lung adenocarcinomas included in the TCGA-LUAD project
(Fig. 1D). It is also noteworthy that patients with high HIF1A
expression in their tumors showed a higher risk of recurrence
after primary management; this denotes a relative aggres-
siveness for these tumors, regardless of secondary treatments
(Fig. S2). Correlation scores between each EMT-TF and

hypoxia signatures (hallmark_Hypoxia, Manolo_hypoxia_UP)
or HIF1A expression consistently found significant and positive
correlations for hypoxia signatures and HIF1A expression with
EMT-TF expression (Fig. 1E). These findings again underscore
the link between hypoxia and EMT in human TCGA lung ade-
nocarcinoma tumors.

Prolonged hypoxia potentiates EMT in primary NSCLC IGR-
Heu cells

To better recapitulate the chronicity of hypoxia in human
tumors, we exposed IGR-Heu cells to prolonged hypoxic stress.
We found that distinct carcinoma cell morphologies were more
pronounced following this treatment condition, with easily
detectable clusters of compact cells contrasting with cells dis-
playing dendritic and spindle shapes, or areas with mixed mor-
phologies (Fig. 2A). Gene expression profiles analyzed using
GSEA showed that EMT was the most enriched process under
sustained hypoxia compared to normoxia, suggesting potentia-
tion of the EMT process (Fig. 2B). Accordingly, Hallmar-
k_EMT signature was upregulated in prolonged (45 d)
compared to short (72 h) hypoxic conditions as shown by a
positive enrichment score. An analysis of protein extracts from
cells cultured under short-term or prolonged hypoxia further
indicated that maintenance of a hypoxic state accentuates the
expression of EMT-TFs and markers including vimentin
(Fig. 2C). However, maintenance of hypoxia for over 6 mo did
not further accentuate the mesenchymal phenotype; instead, it
led to a persistent perhaps increased epithelial state, as mea-
sured by E-cadherin expression. This suggests that hypoxia
induces EMT to different extents in subsets of primary NSCLC
IGR-Heu cells, with some cells retaining an epithelial-like phe-
notype. These findings were corroborated by dual-immunoflu-
orescence analysis of hypoxia-treated IGR-Heu carcinoma cells
as compared with parental cells (Fig. 2D).

Lung adenocarcinoma subclones with distinct EMT
phenotypes following prolonged hypoxic stress display
distinct susceptibility to lymphocyte-mediated lysis

To gain further insight into this heterogeneity from prolonged
hypoxic conditions, we isolated a panel of carcinoma clones
from the bulk of hypoxic-maintained IGR-Heu cells. Although
a spectrum of phenotypes was observed, two predominant pop-
ulations were distinguishable (Fig. 3A): those with a pro-
nounced epithelial (Epi) phenotype (CDH1(E-cad)high,
EPCAMhigh, VIMlow) and those with pronounced a mesenchy-
mal (Mes) phenotype (CDH1(E-cad)low, EPCAMlow, VIMhigh);
the latter also showed a high expression of EMT-TFs and
EMT-associated genes. Representative Mes and Epi tumor sub-
clones are depicted in Fig. 3B. We next investigated whether
the EMT status of carcinoma cells correlated with differences
in susceptibility to lymphocyte-mediated killing. To this end,
we evaluated the cytotoxicity of human NK92 cells and the
autologous cytotoxic T lymphocytes (CTL) clone Heu17119

toward hypoxia-exposed Epi and Mes IGR-Heu derivatives.
We found that CTL-mediated and natural killer (NK) cell-
mediated lyses of the Mes IGR-Heu variant were lower than
that of the Epi IGR-Heu variant (Fig. 3C). The resistance to
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CTL Heu171 attack is presumably due to the absence of detect-
able E-cadherin in the hypoxia-induced Mes IGR-Heu cells
since the cytolytic function of autologous CTL Heu171 relies
on integrin CD103 and its interactions with its preferred ligand,

E-cadherin.20 Regarding the impairment of Mes subclone sus-
ceptibility to NK92 cells, we asked whether this impaired sus-
ceptibility was due to defects in the recognition of target cells
by the NK cells. We therefore examined conjugate formation

Figure 1. Hypoxia increases tumor heterogeneity and EMT phenotype in NSCLC IGR-Heu cells and in human lung adenocarcinomas. (A) Morphology of IGR-Heu cells
under normoxia (left) and hypoxia (1% O2 for 72 h). Scale bar, 40 mm. (B) Effect of 72 h hypoxia on gene expression profile in IGR-Heu cells. GSEA analyses for hallmark
gene signatures. NES, normalized enrichment score, q value, false discovery rate. Positive scores (red bars) indicate gene set enrichment with hypoxia, whereas negative
scores indicate downregulation (blue bars). Enrichment plots for Hypoxia and EMT gene sets. (C) IGR-Heu cells were transfected with HIF1A and/or non-targeting siRNAs
and cultivated for 72 h under normoxic or hypoxic conditions. Immunoblots were probed with anti-HIF1A. Quantitative RT-PCR analysis of EMT-TFs (SNAI1, SNAI2, ZEB1,
ZEB2, TWIST1), EMT-related genes (VIM, TGFB1), and HIF targets (CA9, LOXL2, PDK1, VEGFA, NDRG1). Results are from two independent experiments performed in tripli-
cate. Bars; error bars, § SEM. (D) Heatmap of mRNA expression levels of EMT-TFs and HIF1A targets in tumors samples with low (left) vs. high (right) HIF1A expression
from lung adenocarcinoma TCGA cohort. Cases with gene expression �highest 1/4 were recorded as high, �lowest 1/4 as low. Samples are ordered by HIF1A expression.
(E) Correlations for EMT-TF, HIF1A and hallmark hypoxia signature in TCGA lung adenocarcinoma.
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after co-culturing NK cells with either Epi IGR-Heu or Mes
IGR-Heu subclones for 30 min. Confocal microscopy indicated
no obvious differences in the capacity of NK cells to form

conjugates with Epi or Mes target cells (Fig. 3D). However, a
significant decrease in tyrosine phosphorylation at the contact
area of NK cells was observed when grown in co-cultures with

Figure 2. Prolonged hypoxia induces various EMT states. (A) Marked heterogeneity of IGR-Heu cells maintained for 45 d under 1% O2. Fields 1, 2 and 3 show areas from
the same culture flask: field 1, more epithelial-like, clustered cells; field 2, more mesenchymal-like cells; and field 3, mixed populations. Scale bar, 20 mm. (B) Effect of pro-
longed (45 d) hypoxia on gene expression in IGR-Heu cells. Prolonged hypoxia vs. normoxic condition (left), and prolonged hypoxia vs. short-term hypoxia (right).
EMT_hallmark was enriched in the two settings. (C) Western blotting for extracts of IGR-Heu cells maintained under 1% O2 hypoxia for 72 h, 45 d, or >6 mo (passages 12
and 14). (D) Immunofluorescence staining of E-cadherin (red) and vimentin (green) in IGR-Heu cells maintained under normoxia or hypoxic stress for 45 d. Nuclei were
stained blue (DAPI). Observations were carried out using confocal microscopy. Scale bar, 10 mm.
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the Mes subclones as compared with Epi subclones (Fig. 3D),
suggesting for less effective immune synapse signaling in NK
cells interacting with Mes hypoxia-derived tumor cells.

Targeting EMT status increases susceptibility of hypoxia-
derived Mes carcinoma cells to cell-mediated cytotoxicity

To ascertain the extent to which the hypoxia-induced EMT
status impairs carcinoma cell susceptibility to NK-mediated

killing, we thought to disrupt the EMT status of Mes IGR-
Heu cells using siRNAs directed against SNAI1, SNAI2,
ZEB1, ZEB2, and TWIST1. Data depicted in Fig. 4A indi-
cated that the EMT status was affected by each treatment
(Fig. 4A). For instance, whereas reducing SNAI1 or SNAI2
expression only had a minor effect on E-cadherin expres-
sion, their combined silencing led to a net gain in epithelial
markers, such as EPCAM and keratin-18. A knockdown of
TWIST1 also resulted in an increase in keratin-18, whereas

Figure 3. IGR-Heu tumor variants with Epi and Mes phenotypes following prolonged hypoxic stress displayed various susceptibility to lymphocyte-mediated lysis. (A)
Heatmap of qRT-PCR analysis showing the expression of a panel of epithelial- and mesenchymal-associated genes in isolated tumor clones. (B) Left: Morphology of an Epi
(more epithelial-like) and Mes (more mesenchymal-like) clones compared with IGR-Heu parental cells. Scale bar, 40 mm. Right: Quantitative RT-PCR analysis of VIM and
CDH1(E-cad) expression in tumor IGR-Heu parental, Epi and Mes clones. Bars represent the means of two experiments § SEM performed in triplicate. (C) NK-mediated
(left) and CTL-mediated (right) lysis of IGR-Heu tumor variants with more epithelial (Epi subclone, parental cells), or more mesenchymal (Mes subclone) phenotypes, at dif-
ferent effector:target (E :T) ratios. Heu171 CTL clone (left) and NK92 clone (right) were used as effectors. Bars represent the means of three experiments§ SEM performed
in triplicate. (D) Confocal microscopy of immunological synapses (arrows) after culturing Epi or Mes clones (targets) in the presence NK92 clone for 30 min. Fixed cells
were stained for anti-phosphorylated-Tyrosine (p-Tyr). Efficiency of conjugate formation between NK92 and target cells; MFI § SD derived from p-Tyr signals from a mini-
mum of 25 cell conjugates. �p � 0.05 (Mann–Whitney test).
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siZEB1, siZEB2, or the combination of siZEB1/siZEB2
potently upregulated E-cadherin, or the expression all three
epithelial markers, respectively.

We next performed cytolytic assays following the knock-
down of EMT-TFs in Mes IGR-Heu variants through co-cul-
turing with NK cells. We found that the attenuation of the
EMT state increased the susceptibility of Mes subclones to NK-
mediated lysis at different effector–target ratios (Fig. 4B). As
noted above, the combined targeting of SNAI1 and SNAI2 or
ZEB1 and ZEB2 was more effective at increasing cell lysis than
targeting any of these genes alone. Moreover, those effects were
not detectable when similar treatments were applied to Epi sub-
clones (Fig. S3). These observations suggest that EMT induc-
tion in some cells after an hypoxic stress could protect them
from immune attacks.

Targeting EMT-associated factors increases cell lysis
susceptibility of hypoxia-derived Mes carcinoma cells

Compared with Epi cells, Mes cells were found to have
increased phosphorylation of ERK and SMAD2, and a slight
reduction in AKT phosphorylation (Fig. 4C). Moreover, we
noted that TGF-b expression was induced under hypoxia in
these cells (Fig. S4) and strongly diminished after neutralization
of EMT-TFs with siRNAs (Fig. S5). We thus assessed whether
inhibiting TGF-b signaling could sensitize Mes IGR-Heu cells
to NK-mediated lysis. In the Mes subclone, 10 mM A83–01
treatment for 72 h resulted in substantial morphological
changes, a lowered expression of EMT/TGF-b-related genes
and phospho- SMAD2 (Figs. 4D, E and S6). Additionally, in
cytotoxicity assays, we found that these Mes-like cells were

Figure 4. Neutralizing EMT-TF, endogenous TGF-b signaling in IGR-Heu hypoxia-derived Mes subclone increases susceptibility to NK-mediated lysis. (A) Quantita-
tive RT-PCR results from the Mes subclone pretreated for 72 h with siRNA against the indicated EMT-TF factors, and effects of epithelial-related genes expression.
(B) Cytotoxicity assay for NK-mediated lysis of IGR-Heu Mes subclone after siRNA targeting of EMT-TF. Bars represent the means of three experiments § SEM per-
formed in triplicate. (C) Immunoblots comparing expression of phosphorylated ERK, SMAD2 and AKT in IGR-Heu Epi and Mes subclones. (D–F) Effects of pharma-
cological inhibition of TGF-b signaling with 10 mM A83–01 in Epi and Mes tumor subclones cells treated for 72 h. Results are from two experiments performed in
triplicate. Bars; error bars, § SEM.
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more susceptible to both NK cell- (Fig. 4F) and CTL-mediated
lysis under these culture conditions (Fig. S7), whereas Epi
cells were marginally affected by such treatment. Similar results
were obtained with a different TGF-b signaling inhibitor
LY2157299 (25 mM), which is currently in clinical development
(Fig. S8). These data are in support of a role for TGF-b signal-
ing in conferring resistance to lymphocyte-mediated lysis.

Discussion

Tissue hypoxia has been regarded as a central factor for tumor
aggressiveness and metastasis. Notably, we found that hypoxia
promotes cellular and functional heterogeneity in NSCLC cells
in association with the emergence of distinct EMT phenotypes
and various susceptibilities to lymphocyte-mediated killing.
Intriguingly, the observed phenotypic changes were particularly
exacerbated when hypoxic stress was maintained for a pro-
longed period, a situation presumably transposable to most solid
tumors. Our results indicate that the shift toward a mesenchy-
mal-like phenotype is only observed in a fraction of stressed cells
(Fig. 5), as demonstrated by our analysis of both carcinoma cell
populations and isolated clones. While some cells undergo
EMT, others do not move along the EMT spectrum. Because
the reduction in HIF1A levels in cells was able to restrain the
switch to a mesenchymal-like phenotype, we propose that the
observed changes in the carcinoma cell population are mainly
due to adaptive phenotypic plasticity of certain epithelial-like
cells or hybrid/intermediate EMT cells. However, we cannot
totally exclude the contribution of a parallel selection of preexist-
ing cells of a more advanced mesenchymal state. A thorough
assessment of such hypotheses will require systematic and multi-
parametric approaches. Further investigations are also needed to
unravel the detailed mechanisms as to why some carcinoma cells
are more prone than others to hypoxia-induced EMT.

Focusing on hypoxia-exposed carcinoma subclones with
Epi- and Mes-like phenotypes, we found that carcinoma Mes-
like cells, associating with expression of EMT-related factors
expression, were functionally primed to resist CTL- and NK
cell-mediated lysis, which may be a prerequisite for the

establishment of tumor resistance and escape (Fig. 5). Our data
therefore provide new evidence connecting hypoxia, EMT and
therapy resistance, and point to a potential role of microenvi-
ronmental hypoxia in promoting carcinoma cell heterogeneity
and plasticity, which could subsequently, through the emer-
gence of immunoresistant variants, limit the effectiveness of
solid tumor immunotherapies.21 As corollary, one could specu-
late that the degree of both EMT and hypoxic targets may be
predictive for cell-mediated cytotoxicity responses. Indeed, the
existence of a spectrum of EMT states,9 yet to be fully charac-
terized, could presage a greater variability of responses against
immune effector killer cells. Notwithstanding, there remains a
possibility of active, cooperative events between mesenchymal-
like and epithelial-like carcinoma cells in patients.

We previously reported the potential utility of EMT scoring
to estimate the EMT content in a given tumor and to help guide
clinical decisions22; however, this may provide only part of the
information required, especially in the context of heteroge-
neous tumor populations. Scoring EMT in situ in individual
carcinoma cells should allow us to refine our analysis of the
role of hypoxia in generating refractoriness in targeted thera-
pies in tumor microdomains, such an in situ scoring technique
is currently in development.23,24

Recent studies using human cancer cohorts have revealed
that human tumors with high EMT also display higher immune
activation marks, increased infiltration by immune cells, and an
elevated expression of immune-checkpoint molecules.25,26 Nev-
ertheless, the clinical impact of these findings remains unclear.
Our data, which points to hypoxia as an additional important
parameter for consideration, could shed new light on these ear-
lier works.

From both functional and therapeutic standpoints, we show
that targeting EMT through the inactivation of EMT-TFs or
through pharmacological inhibition of TGF-b, sensitizes mes-
enchymal cells to NK cell- or CTL-mediated killing. Our obser-
vations suggest that a TGF-b signaling mechanism, or the
actions of TGF-b-associated factors, may be required in Mes
subclones for their commitment to a resistant phenotype;
albeit, other important components of this resistance mecha-
nism likely exist and will need to be investigated. Aside from
our observations, it is worth noting that a previous study
reported that transfection of Snail1 in murine B16 melanoma
cells induced regulatory T cells along with an expansion of
CD4C Foxp3C cells.10 The proposed mechanism involved
reduced dendritic cells (DC) maturation and production of
thrombospondin-1 (TSP1), a known activator of TGF-b. By
extension, it is tempting to speculate that carcinoma cells mov-
ing along the EMT spectrum, could also produce various levels
of cytokines and immunosuppressive substances, thus, affecting
the activity and the recruitment of T Reg, and other immuno-
suppressive populations, such as myeloid-derived suppressor
cells (MDSC) promoting immune tolerance.

The results of the present study provide new evidence that
hypoxia, through EMT induction, may also contribute to a key
phase of cancer immunoediting27 since besides conferring resis-
tance to cell death, EMT can reduce immune recognition
through altering the immune synapse. We propose that hyp-
oxia-induced EMT and the subsequent tumor heterogeneity is
a novel mechanism for tumor immunoediting. We envision

Figure 5. Working model depicting how hypoxic conditions could foster the emer-
gence of mesenchymal-like carcinoma cells resistant to lymphocyte-mediated
killing.
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such altered interaction as a mechanism that may allow the
selection of tumor cell variants capable of escaping detection
and destruction by the innate and adaptive arms of the immune
system. Full characterization of the underlying mechanism will
need further investigation.

In conclusion, hypoxia clearly plays a crucial role in shaping
carcinoma cell plasticity, in the induction of cell heterogeneity,
and in the subsequent emergence of immunoresistant variants
harboring a mesenchymal phenotype.

Materials and methods

Cell culture and reagents

Primary NSCLC IGR-Heu cells were established in our lab-
oratory from a resection of a non-metastatic NSCLC patient
and grown as previously.28 For hypoxic conditioning, cells
were maintained under hypoxia (1% pO2 with 5% CO2) for
the indicated time frames in a hypoxia chamber (InVivo2
400 Hypoxia Workstation; Ruskinn Technology, UK). The
CTL Heu 171 cytotoxic T lymphocyte (CTL) clone origi-
nated from the same patient and tumor piece as that used
to derive IGR-Heu tumor cells. The clone was cultured and
stimulated as described previously.28 The NK-92 cell line29

was obtained from the American Type Culture Collection
(Manassas, VA) and maintained in RPMI-1640 medium
supplemented with 10% FBS, 2.5% of human AB serum,
and 200 U/mL IL-2. Unless indicated, cells were maintained
at 37�C in a 5% CO2 and 95% air (21% O2) incubator.
LY2157299 from Selleckchem (Houston, TX), PD0325901
from Sigma-Aldrich (St. Louis, MO), and A83–01 from
Tocris Bioscience (Avonmouth, UK).

Western blot analysis

Western blotting was performed as described previously.12

Briefly, adherent cells were lysed on ice with lysis buffer
(62.5 mmol/L Tris–HCl, pH 6.8, 2% w/v SDS, 10% glycerol)
containing a cocktail of protease (Thermo Fisher Scientific,
Waltham, MA, USA) and phosphatase inhibitors (Roche
Life Science, Penzberg, Germany). Antibodies from an EMT
sampler kit (Cell Signaling Technology; Danvers, MA) were
used to probe for ZEB-1, SLUG, SNAIL, E-CADHERIN,
and VIMENTIN. Antibodies to p-SMAD2(Ser465/467),
SMAD2, phospho-ERK1/2(Thr202/Tyr204), ERK1/2, p-AKT
(Ser473), AKT were from Cell Signaling Technology.
b-Actin was purchased from Sigma-Aldrich, and anti-
human HIF-1a/Clone 54 was from BD Biosciences (San
Jose, CA, USA).

Gene silencing by RNA interference

The functionally validated siRNAs used in this study were from
Qiagen (FlexiTube) and Thermo Fisher Scientific (Silencer
Select) and directed against human SNAI1, SNAI2, ZEB1,
ZEB2, TWIST1, TGFB1. siRNAs were transfected using Lipo-
fectamine RNAiMAX Transfection reagent (Thermo Fisher
Scientific), with appropriate controls.

Cytotoxicity assays

The cytotoxic activities of NK and CTL clones were measured
by a conventional 4-h 51Cr release assay. 51Cr was purchased
from PerkinElmer (Waltham, MA, USA). For some cytotoxic
assays, tumor cells were incubated with compounds vs. DMSO,
or siRNAs for 48–72 h before their use as targets. Target tumor
cells were labeled with 51Cr for 1 h, and then co-cultured in one
of several effector:earget (E:T) ratios for 4 h in round-bottomed
96-well plates using 2,000 target cells per well in a final volume
of 200 mL. Cells were then pelleted by centrifugation and 60 mL
of supernatant was transferred to a 96-well LumaPlate (Perki-
nElmer), dried at 46�C overnight, and counted on a Packard
TopCount NXT (PerkinElmer). The percentage of specific lysis
was calculated using the standard formula [(experimental cpm
¡ spontaneous cpm)/total cpm incorporated] £100, and the
results are expressed as the mean of triplicate samples.

Confocal microscopy

Conjugate formation between tumor cells (target) and NK cells
(effector) was measured by co-culture on poly-L-lysine-coated
slides at 37�C for 30 min at an E/T 3:1 ratio, respectively. Cells
were then fixed with freshly prepared 3% paraformaldehyde for
10 min, incubated in a 50-mM NH4Cl quenching solution (in
PBS), permeabilized with 0.25% Triton X-100 in PBS for
10 min, and blocked with 10% FCS (v/v) in PBS for 20 min.
Fixed cells were stained with anti-phosphotyrosine antibody,
4G10 clone (BD Biosciences), or anti-b-catenin (D10A8, Cell
Signaling Technology) for 2 h or overnight at 4�C, and then
incubated for 1 h with secondary anti-mouse Alexa Fluor 488
or anti-rabbit Alexa Fluor 555 (Thermo Fisher Scientific). All
antibodies were diluted in PBS containing 1 mg/mL BSA. Cell
nuclei were stained using ProLong Gold Antifade Mountant
with DAPI (Thermo Fisher Scientific). Conjugates were imaged
on a Leica TCS SPE laser scanning confocal microscope using
sequential scanning and LASAF software. The efficiency of
conjugate formation between effector and tumor cells was esti-
mated by visual counting and calculating the ratio of effector
cells able to form conjugates with target cells to target cells
£100 in 10 different fields per condition. Phospho-tyrosine
intensity was assessed using ImageJ software (NIH, Bethesda,
MD, USA) by computing the mean fluorescence intensities
(MFI) of the contact regions on the effector cells after back-
ground subtractions. Tumor heterogeneity in IGR-Heu and
hypoxia-exposed derivatives was determined using fluores-
cence. Cells were trypsinized, plated onto poly-L-lysine-coated
slides, incubated overnight at 37�C, fixed and permeabilized as
above, and incubated with anti-vimentin (Clone V9, Dako;
Trappes, France) or anti-E-cadherin (24E10; Cell Signaling
Technology) antibodies, using appropriate Alexa Fluor second-
ary antibodies to counterstain.

RNA preparation, cDNA synthesis and quantitative
real-time PCR

Total RNA extraction was performed using Trizol reagent and
the samples subjected to DNase treatment (DNA-free kit).
Reverse transcription was performed using Maxima Reverse
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Transcriptase followed by qPCR using real-time PCR Master
SYBR Green on an StepOnePlus Real Time PCR system. All
products were from Thermo Fisher Scientific. The majority of
oligonucleotide sequences used were designed previously and
are published elsewhere.30 The full list is available upon request.

RNA-Seq and microarray gene expression analysis

To investigate the hypoxic responses of human primary IGR-
Heu NSCLC cells, gene expression profiles were studied by Gen-
eChip Human Gene 2.0 ST Array and the data processed as
described previously.31 Gene set enrichment analyses (GSEA)
were performed with the GSEA platform of the Broad Institute
(http://www.broadinstitute.org/gsea/index.jsp). Human samples
consisted of early-stage specimens of lung adenocarcinomas
from The Cancer Genome Atlas (TCGA) project collection
(http://cancergenome.nih.gov/). TCGA RNA-Seq expression
data and sample information were accessed before June 2016
from cBioPortal32 and the TCGA public access data (http://
tcga-data.nci.nih.gov/).

Statistical analysis

Data analyses were performed usingGraphPad (GraphPad Prism,
La Jolla, CA, USA) and Excel (Microsoft Corp., Redmond, WA,
USA). Statistical tests were performed using a two-tailed aD 0.05
level of significance; �p � 0.05. Spearman coefficients were used
for correlations between variables. Comparisons between groups
were performed using the Wilcoxon, Mann–Whitney, and
ANOVA tests, as appropriate. Recurrence free survival and over-
all survival curves were generated by the Kaplan–Meier method
and compared using the log-rank test.
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