

## Quantum Dot-Based Nanosensors for in Vitro Detection of Mycobacterium Tuberculosis

Viktor V Nikolaev, Tatiana B Lepehina, Alexander S Alliluev, Elham Bidram,

Pavel M Sokolov, Igor R Nabiev, Yury V Kistenev

### ▶ To cite this version:

Viktor V Nikolaev, Tatiana B Lepehina, Alexander S Alliluev, Elham Bidram, Pavel M Sokolov, et al.. Quantum Dot-Based Nanosensors for in Vitro Detection of Mycobacterium Tuberculosis. 2024. hal-04687195

## HAL Id: hal-04687195 https://hal.science/hal-04687195v1

Preprint submitted on 4 Sep 2024

**HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.



Review



1

2

3

4

5

6

7

8 9

10

11

12

13

14

15

16

17

18

# **Quantum Dot–Based Nanosensors for** *in Vitro* **Detection of** *My-cobacterium Tuberculosis*

Viktor V. Nikolaev <sup>1</sup>, Tatiana B. Lepehina <sup>1</sup>, Alexander S. Alliluev <sup>1</sup>, Elham Bidram <sup>2</sup>, Pavel M. Sokolov <sup>3,4,5</sup>, Igor R. Nabiev <sup>3,4,5,6,\*</sup> and Yury V. Kistenev <sup>1,\*</sup>

- Laboratory of Laser Molecular Imaging and Machine Learning, National Research Tomsk State University, 36 Lenin av., 634050 Tomsk, Russia; yuk@iao.ru
- <sup>2</sup> Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; elhambidram@gmail.com
  - Life Improvement by Future Technologies (LIFT) Center, Skolkovo, 143025 Moscow, Russia; p.sokolov@lift.center
- <sup>4</sup> Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31 Kashirskoe shosse, 115409 Moscow, Russia; socolovpm87@mail.ru
- <sup>5</sup> Department of Clinical Immunology and Allergology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russian Federation
- <sup>5</sup> Université de Reims Champagne-Ardenne, Laboratoire BioSpect (BioSpectroscopie Translationnelle), 51 rue Cognacq Jay, 51100 Reims, France; igor.nabiev@univ-reims.fr
- \* Correspondence: <u>igor.nabiev@univ-reims.fr</u> (I.R.N.) or <u>yuk@iao.ru</u> (Yu.V.K.)

Abstract: Despite the existing effective treatment methods, tuberculosis (TB) is the second most 19 deadly infectious disease globally, its carriers in the latent and active phases accounting for more 20 than 20% of the world population. An effective method to control TB and reduce the mortality is 21 regular population screening and diagnosis of the latent form of TB in order to take preventive and 22 curative measures. Numerous methods allow diagnosing TB and directly detecting Mycobacterium 23 tuberculosis (M.tb) biomarkers, including M.tb DNA, proteins, and specific metabolites, as well as 24 antibodies produced by the host immune system in response to M.tb. PCR, ELISA, immunofluores-25 cence and immunochemical analyses, flow cytometry, and other methods allow the detection of 26 *M.tb* biomarkers or the host immune response to *M.tb* by recording the optical signal of fluorescent 27 or colorimetric dyes included in the diagnostic tools. Current research in biosensors is aimed at 28 increasing the sensitivity of detection, which can be achieved by using brighter and more photosta-29 ble optical tags containing fluorescent quantum dots. Here, we review current methods for detection 30 of *M.tb* biomarkers using optical sensor systems, primarily quantum dot-based nanosensors, and 31 summarize *M.tb* biomarkers whose detection can be made significantly more sensitive by using 32 quantum dot-based nanosensors. 33

Keywords: quantum dot; nanosensor; tuberculosis; diagnostics

## 35 36

34

1. Introduction

3

Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis and 37 most often affecting the lungs. In 2022, there were 10.6 million TB cases worldwide, in-38 cluding 5.8 million men, 3.5 million women, and 1.3 million children; a total of 1.3 million 39 people died from TB (including 167,000 people with concomitant HIV infection). Globally, 40 TB is the second leading cause of death among infectious diseases after COVID-19, with 41 death rates higher than those of AIDS [1]. TB can have particularly severe consequences 42 for women, especially those of reproductive age and during pregnancy, and is one of the 43 top five killers of women aged 20–59 years [2]. Recent estimates demonstrate that about 44 1.7 billion people are latently infected by M.tb [3]. At the same time, traditional diagnostic 45 methods, such as chest X-ray and tuberculosis skin tests, do not have a sufficient level of 46

**Citation:** To be added by editorial staff during production.

Academic Editor: Firstname Lastname

Received: date Revised: date Accepted: date Published: date



**Copyright:** © 2024 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/license s/by/4.0/).

54

62

sensitivity and specificity to reliably diagnose latent forms of TB [4], especially against the background of other diseases or pathological conditions [5]. The risk of progression of latent TB infection to the active form is estimated at 10% [6]. One of the health-related targets of the United Nations Sustainable Development Goals (SDGs) is to end the TB epidemic by 2030 [1]. To attain this goal, it is necessary not only to combat active forms of TB, but also to carry out prevention and therapy for patients with latent TB, which requires methods for diagnosing *M.tb* infection at the earliest stages. 53

#### 2. Current Tuberculosis Diagnostic Methods

TB can be diagnosed in two ways: direct detection of M.tb in a clinical specimen or detection of the biomarkers associated with M.tb infection. Currently, numerous methods are widely used for TB diagnosis [7–9]. At the moment, there are four major groups of routine clinical methods used for this purpose: rapid molecular diagnostic tests, cultural methods, provocation tests, and diagnosis using optical methods. The characteristics of these groups of methods are presented in Table 1. With exception of skin tests, all the procedures are performed *in vitro*. 61

Table 1. The major groups of routine clinical methods used for tuberculosis diagnosis.

| Assay                                   | Biomaterial<br>analyzed                                                                           | Time of analysis | Advantages                                                                                                                          | Disadvantages                                                                                                                                         | Sensitivity,<br>specificity                                              | Ref. | Comments                                                                                                                                                                        |
|-----------------------------------------|---------------------------------------------------------------------------------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                         | 2                                                                                                 | 2                | Molecular o                                                                                                                         | liagnostic tests                                                                                                                                      | • • •                                                                    |      |                                                                                                                                                                                 |
| Polymerase<br>chain reac-<br>tion (PCR) | Serum, urine,<br>blood, spu-<br>tum, saliva,<br>lung biopsy<br>samples,<br>BALF, pleural<br>fluid | 4–5 h            | High specificity,<br>quickness, and in-<br>formativeness                                                                            | High cost, limited<br>availability, low sen<br>sitivity for non-res-<br>piratory samples;<br>detection of DNA<br>only                                 | Sensitivity: 47%<br>(42–51%)<br>Specificity: 95%<br>(93–97%)<br>CrI: 95% | [10] | The sensitivity<br>and specificity<br>are averaged<br>results of 9<br>studies in 709<br>subjects                                                                                |
| Xpert<br>MTB/RIF<br>Ultra               | Raw sputum<br>or concen-<br>trated sedi-<br>ment                                                  | 1.5 h            | Detection of <i>rpoB</i><br>gene mutations as-<br>sociated with rifam-<br>picin resistance                                          | High cost                                                                                                                                             | Sensitivity: 89%<br>(85–92%)<br>Specificity: 99%<br>(98–99%)<br>CrI: 95% | [11] | The sensitivity<br>and specificity<br>are averaged<br>result of 22<br>studies in 8998<br>subjects, in-<br>cluding 2953<br>confirmed TB<br>cases and 6045<br>cases without<br>TB |
| Truenat                                 | Raw sputum                                                                                        | 1 h              | Use of a portable,<br>chip-based and bat-<br>tery-operated de-<br>vice. Suitability for<br>laboratories with<br>technical equipment | Lower accuracy<br>compared to Xpert<br>MTB/RIF Ultra                                                                                                  | Sensitivity: 80%<br>(70.2–88.4%)<br>Specificity: 98%<br>(94.5–99.6%)     | [12] | The sensitivity<br>and specificity<br>have been es-<br>timated in<br>tests in 250<br>subjects                                                                                   |
| LF-LAM                                  | Urine                                                                                             | 0.5 h            | High efficiency, ease<br>of use, low cost,<br>simple technology,<br>no special equip-<br>ment. Detection of<br>TB in patients for   | <ul> <li>Lower sensitivity<br/>compared to Xpert<br/>MTB/RIF (though<br/>higher compared to<br/>microscopy meth-<br/>ods). Suitability for</li> </ul> | Sensitivity: 45%<br>(29–63%)<br>Specificity: 92%<br>(80–97%)<br>CrI: 95% | [13] | The sensitivity<br>and specificity<br>are averaged<br>results of 5<br>studies in 2313<br>subjects,                                                                              |

|                                                                     |              |                  | whom other diag-<br>nostic methods can-<br>not be used (e.g.,<br>HIV patients)                                                                                                                                                                                                                                                                                                                                                      | a limited group of<br>patients only. Im-<br>possibility to distin-<br>guish <i>M. tb.</i> from<br>other mycobacteria,<br>which requires us-<br>ing other diagnostic<br>methods after the<br>test                                                                                                                                                        |                                                                                                                                                             |      | including 35%<br>of TB cases                                                                                                                                       |
|---------------------------------------------------------------------|--------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TB-XT<br>HEMA EX-<br>PRESS                                          | Blood, serum | 0.5 h            | Quickness, rela-<br>tively low cost                                                                                                                                                                                                                                                                                                                                                                                                 | Low sensitivity,<br>suboptimal perfor-<br>mance in the case of<br>high TB prevalence                                                                                                                                                                                                                                                                    | Sensitivity: 31%<br>(3.9–78%)<br>Specificity: 85%<br>так (52–93%)                                                                                           | [14] | The sensitivity<br>and specificity<br>have been es-<br>timated in<br>tests in 1386<br>subjects, in-<br>cluding 290<br>TB cases                                     |
|                                                                     |              |                  | TB tests based                                                                                                                                                                                                                                                                                                                                                                                                                      | on T-cells analysis                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                             |      |                                                                                                                                                                    |
| IGRA, (T-<br>SPOT.TB,<br>QuantiFE-<br>RON-TB<br>Gold (QFT))         | Blood, serum | up to 2<br>days  | Insensitivity to BCG<br>vaccination or con-<br>tact with atypical<br>mycobacteria; one-<br>time tests; high effi-<br>ciency. T-SPOT.TB is<br>less susceptible to<br>immunosuppression<br>than other TB tests<br>and is preferable for<br>the examination of<br>HIV-infected or au-<br>toimmunity patients<br>during treatment<br>with immunosup-<br>pressants; can be<br>used before starting<br>therapy with biolog-<br>ical drugs | Low specificity and<br>sensitivity; high<br>cost; impossibility to<br>s distinguish between<br>the active and latent<br>forms of TB and un-<br>suitability as a pri-<br>mary diagnostic test<br>for LTBI or active<br>TB. The bacterium<br>s itself is not deter-<br>mined; the result de-<br>pends on the state of<br>the patient's im-<br>mune system | <b>QFT</b><br>Sensitivity: 66%<br>(47–81%)<br>Specificity: 87%<br>(68–94%)<br><b>T-SPOT</b><br>Sensitivity: 60%<br>(48–72%)<br>Specificity: 86%<br>(65–95%) | [15] | The sample<br>consisted of<br>6,525 HIV-<br>positive pa-<br>tients, includ-<br>ing 3,467 TB<br>cases, 806 of<br>them with<br>LTBI and<br>2,661 with ac-<br>tive TB |
|                                                                     |              |                  | Cultur                                                                                                                                                                                                                                                                                                                                                                                                                              | al methods                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                             |      |                                                                                                                                                                    |
| BBL Septi-<br>Chek AFB                                              | Sputum       | Up to 23<br>days | Higher <i>M.tb</i> growth<br>rate compared to<br>methods using an<br>isolated dense me-<br>dium                                                                                                                                                                                                                                                                                                                                     | Low sensitivity,<br>long time of analysis                                                                                                                                                                                                                                                                                                               | Sensitivity: 73%<br>Specificity: 93%                                                                                                                        | [16] | The sensitivity<br>and specificity<br>have been es-<br>timated in<br>studies on 274<br>specimens                                                                   |
| BACTEC<br>(with differ-<br>ent parame-<br>ters of MGIT<br>460, 960) | Sputum       | Up to 14<br>days | Rapid identification<br>of <i>M.tb</i> and its drug<br>sensitivity; acceler-<br>ated culture testing<br>of all first-line drugs                                                                                                                                                                                                                                                                                                     | High cost, justified<br>only for large labor-<br>atories. Semi-auto-<br>matic monitoring of<br>bacterium growth;<br>many labor-inten-<br>sive operations: use                                                                                                                                                                                           | MGIT 960<br>Sensitivity:<br>81.5%<br>Specificity:<br>99.6%<br>MGIT 460                                                                                      | [17] | The sensitivity<br>and specificity<br>have been es-<br>timated in<br>studies on<br>~8,000 clinical                                                                 |

|                                                                                         |            |         |                                                                                                                                               | of radioisotopes and<br>the need for dis-<br>posal of radioactive<br>waste; long time of<br>analysis                                                                                                                                                                                                                                  | Sensitivity:<br>85.8%<br>Specificity:<br>99.9%                                                                                                                           |      | specimens per<br>year.<br>The number<br>after MGIT is<br>the number of<br>wells in the<br>plate.               |
|-----------------------------------------------------------------------------------------|------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------------------------------------------------------------------------------------------------------------|
| BacT/ALER<br>T 3D                                                                       | Sputum     | 24–72 h | Detection of <i>M.tb</i><br>growth; detection of<br><i>M.tb</i> and fungi in<br>blood cultures. Full<br>automation; no radi-<br>oactive waste | Long time, high cost                                                                                                                                                                                                                                                                                                                  | Sensitivity:<br>87.80%<br>Specificity:<br>99.21%                                                                                                                         | [18] | The sensitivity<br>and specificity<br>have been es-<br>timated in<br>studies on<br>2659 clinical<br>specimens  |
|                                                                                         |            |         | Ski                                                                                                                                           | in tests                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                          |      |                                                                                                                |
| Tuberculin<br>skin tests,<br>Mantoux<br>tests, and<br>Diaskintest<br>( <i>in vivo</i> ) | Skin tests | 72 h    | Availability; low<br>cost; ease of use                                                                                                        | Low specificity and<br>sensitivity; unsuita-<br>bility for diagnosing<br>active TB forms;<br>false positive results<br>in those who have<br>been infected with<br><i>M.tb</i> in the past be-<br>cause their memory<br>T cells still secrete<br>interferon; impossi-<br>bility to distinguish<br>the active and latent<br>forms of TB | Sensitivity: 59%<br>Specificity: 95%                                                                                                                                     | [19] | The sensitivity<br>and specificity<br>have been es-<br>timated in<br>tests in<br>643,694 U.S.<br>Navy recruits |
|                                                                                         |            |         | Tests based on my                                                                                                                             | ycobacterium staining                                                                                                                                                                                                                                                                                                                 | 3                                                                                                                                                                        |      |                                                                                                                |
| Gabbett's<br>stain, Ziehl–<br>Neelsen<br>stain, modi-<br>fied cold<br>stain (MCS)       | Sputum     | ~24 h   | Simplicity, quick-<br>ness, ease of use,<br>low cost                                                                                          | Low sensitivity and<br>specificity; suitabil-<br>ity for pulmonary<br>tuberculosis only;<br>inaccuracy in chil-<br>dren and HIV-in-<br>fected persons; mul-<br>tistage and complex<br>procedure. Impossi-<br>bility to distinguish<br>between different<br>mycobacteria                                                               | Gabbett's stain<br>Sensitivity: 77%<br>Specificity: 98%<br>Ziehl–Neelsen<br>stain<br>Sensitivity: 70%<br>Specificity: 97%<br>MCS<br>Sensitivity: 60%<br>Specificity: 96% | [20] | The sensitivity<br>and specificity<br>have been es-<br>timated in<br>tests in 100 pa-<br>tients                |
| Fluores-<br>cence mi-<br>croscopy                                                       | Sputum     | ~24 h   | Quickness, ease of<br>use, specificity                                                                                                        | High cost, frequent<br>burn-out of expen-<br>sive mercury vapor<br>lamps, need for con-<br>tinuous power sup-<br>ply, need for a dark<br>room                                                                                                                                                                                         | Sensitivity: 72%<br>Specificity: 81%                                                                                                                                     | [21] | The sensitivity<br>and specificity<br>have been es-<br>timated in<br>tests in 426 pa-<br>tients                |

| X-ray            | Radiographic<br>test | 1 h   | Quickness                                                                                                                                                                                                                                                                             | High cost; low spec<br>ificity                                                                                                                                                                                                                                                                                                                                                              | - Sensitivity: 96%<br>Specificity: 46%                        | [22] | and specificity<br>are averaged<br>results of 13<br>studies                                     |
|------------------|----------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|------|-------------------------------------------------------------------------------------------------|
| MALDI-<br>TOF MS | BALF, spu-<br>tum    | 2.5 h | Rapid, reliable, cost-<br>effective method                                                                                                                                                                                                                                            | Method requires<br>sample prepro-<br>cessing to generate<br>high-quality proteo<br>mic profiles, espe-<br>cially for pro-<br>teins/peptides or<br>other low-abun-<br>dance analytes in<br>which MS spectra<br>are obscured by<br>more abun-<br>dant/high-molecu-<br>lar-weight species.<br>This method is not<br>highly specific be-<br>cause of the matrix<br>proteins and noise<br>issues | -<br>Sensitivity:<br>83%;<br>Specificity:<br>93%;<br>CrI: 95% | [23] | The sensitivity<br>and specificity<br>have been es-<br>timated in<br>tests in 214 pa-<br>tients |
| LC-MS/MS         | Urine, blood         | 1 h   | Proteomic analysis<br>of urine; identifica-<br>tion of proteins<br>characteristic of TB<br>with high molecular<br>specificity and sensi-<br>tivity; simultaneous<br>diagnosis of HIV-1<br>and TB using a<br>blood sample. Struc-<br>tural identity of in-<br>dividual compo-<br>nents | Changes in ioniza-<br>tion efficiency in the<br>presence of not only<br>proteins, phospho-<br>lipids, and salts,<br>abut also reagents<br>and contaminants                                                                                                                                                                                                                                  | e<br>7 Sensitivity: 94%<br>Specificity:<br>100%               | [24] | The sensitivity<br>and specificity<br>have been es-<br>timated in<br>tests in 57 pa-<br>tients  |

\* Abbreviations: LF-LAM, lipoarabinomannan lateral shift test; LTBI, latent tuberculosis infection;
MGIT, mycobacteria growth indicator tube; IGRA, interferon-gamma release assay; CrI, credible
interval; BALF, bronchoalveolar lavage fluid; MALDI-TOF MS, matrix-assisted laser desorption
ionization time-of-flight mass spectrometry; LC-MS, liquid chromatography tandem mass spectrometry; MS, mass spectrometry.

#### 2.1. Molecular diagnostic tests

Polymerase chain reaction (PCR) is a molecular biology technique based on amplifi-69 cation and further analysis of specific DNA fragments. The amplification involves several 70 cycles of heating and cooling, causing a DNA fragment to be duplicated many times to 71 reach a detectable amount. PCR can detect the presence of a DNA fragment specific for 72 *M.tb* [10]. This method is effective for early TB diagnosis when the number of the micro-73 organisms is insufficient for detection by classical methods. PCR tests also allow analyzing 74 drug resistance of specific *M.tb* strains. The PCR tests have strict requirements for labora-75 tory room purity and personnel skills because their high sensitivity entails their downside 76

related to the high risk of engaging contaminants in the reaction. PCR tests are suitable 77 for detecting TB sepsis and disseminated TB but not for population screening for TB, 78 where the results could be false negative. 79

LF-LAM is a lateral flow urine test for diagnosis of TB through the detection of 80 lipoarabinomannan, a mycobacterial cell wall lipoglycan. A disadvantage of the LF-LAM 81 method is its low sensitivity [13]. Because lateral flow tests are cheap and easy to perform, 82 they are often used in diagnosis of TB by detecting IgG antibodies against TB-specific pro-83 teins in blood and serum samples [14]. Simultaneous detection of IgG and IgM antibodies 84 has also been reported [25]. In this case, the test band contained a proprietary mixture of 85 recombinant TB antigens that ensured a diagnostic sensitivity of 94.4% in a sample of 125 86 microbiologically or clinically diagnosed TB patients and a diagnostic specificity of 98.3% 87 in a sample of 400 subjects who were healthy or had respiratory conditions other than TB. 88

Loop-mediated isothermal amplification (LAMP) uses special primers to amplify DNAs forming loop-shaped intermediates of different sizes, which can be detected using fluorescence measurements or agarose gel electrophoresis [26]. WHO recommends the use of TB-LAMP as a replacement for microscopy for the diagnosis of pulmonary TB [42].

Xpert MTB/RIF Ultra is an improved version of the Xpert MTB/RIF test [28,29]. Xpert 93 MTB/RIF Ultra (*in vitro*) and Truenat can also identify mutations of the *rpoB* gene associated with rifampicin resistance [12,28–30]. Xpert MTB/RIF Ultra and Truenat have a 95 higher sensitivity and a shorter time of analysis than conventional PCR tests. 96

Serological tests detecting antibodies against specific protein antigens of the recombinant *M.tb* complex have a high specificity but variable sensitivity [14]. The control of multiple *M.tb* complex antigens increases the sensitivity [14]. It should be pointed out that these methods may give false positive results because specific antibodies can occur in the human body for a long time after recovery from TB. 101

#### 2.2. Tuberculosis tests based on T-cell analysis

Interferon-gamma release assay (IGRA) is a group of laboratory tests that evaluate 103 the release of interferon-gamma (INF- $\gamma$ ) by human immune blood cells (T cells) and are 104 performed *in vitro* [15]. There are two different types of blood tests based on this principle 105 approved by FDA: QuantiFERON-TB Gold Plus (QFT) and T-SPOT.TB (T-SPOT). The 106 QFT test is a whole-blood-based enzyme-linked immunosorbent assay (ELISA) measur-107 ing the amount of IFN- $\gamma$  produced in response to two *M.tb* antigens (ESAT-6 and CFP-108 10). The T-SPOT test measures the number of T cells that produce INF- $\gamma$  after stimulation 109 with ESAT-6 and CFP-10. These methods may give false positive results because T cells 110 have a long memory of an *M.tb* invasion that might have occurred a long time ago. 111

#### 2.3. Cultural methods

Cultural method remains the gold standard of TB diagnosis confirmation. They consist in inoculation of biological material on solid or liquid differential diagnostic nutrient 114 media for growing mycobacterial colonies. In practice, several cultural methods are used: 115 acid-fast mycobacteria (AFB) [16], BACTEC (with different parameters of MGIT, usually 116 460 and 960) [31], and BacT/ALERT 3D [18]. 117

The AFB method involves examining human sputum or other samples stained to de-118 tect acid-fast bacteria. The latest experimental study using this method dates back to 1997 119 [31,32], which may be due to the extremely long time of analysis. The sample to be tested 120 is inoculated into one or more vials with a specific growth medium and inserted into the 121 instrument for incubation and periodic fluorescent reading. Each vial contains a chemical 122 sensor detecting an increase in the amount of carbon dioxide produced by the growth of 123 microorganisms. The instrument monitors the sensor every 10 min for an increase in its 124 fluorescence, which is proportional to the amount of  $CO_2$ , a positive reading indicating 125 the presence of viable microorganisms in the vial. BACTEC is a fully automated system 126 not only for *M.tb* detection, but also for the analysis of *M.tb* sensitivity to all the first-line 127

102

drugs, including pyrazinamide. BACTEC is a reference method with high sensitivity and 128 specificity, but it takes about 10 days to obtain the result [33]. BacT/ALERT 3D allows 129 automated monitoring the culture medium to detect the growth of microorganisms via 130 monitoring CO<sub>2</sub> release by an increase in reflectance. It has a high sensitivity with a shorter 131 culturing time. BacT and BACTEC have similar operating principles but differ in the de-132 tails of technology and design. 133

The key limitation of these methods is a too long time of analysis.

#### 2.4. Skin tests

In vivo tuberculin skin tests are based on provocation of the body immune response 136 to TB-associated molecules [19]. For example, the Mantoux test uses a tuberculin solution 137 administered via intradermal injection. All these tests suffer from frequent false positive 138 and false negative results. The point is that the immune system responds to tuberculin if 139 there are mycobacteria in the body, and the majority of people receive the bacteria in the 140 form of the BCG vaccine back in the maternity hospital. Recently, WHO included Di-141 askintest, which is an advanced and more accurate variant of the Mantoux tuberculin test 142 [34], into the list of recommended TB skin tests. 143

#### 2.5. Tests based on mycobacterium staining

Staining methods identify acid-fast mycobacteria, actinomycetes, and other acid-fast 145 microorganisms by means of their staining and then analyzing using optical microscopy. 146 These methods differ in the staining solution, which determines the sensitivity and specificity of analysis. The weak point of this group of TB tests is a complex procedure of anal-148 ysis that requires considerable time and highly skilled personnel.

#### 2.6. Other methods

Chest X-rays are commonly used in the TB diagnosis. They can help identify abnor-151 malities in the lungs that may be indicative of TB infection, such as nodules, cavities, or 152 infiltrates. However, it should be noted that chest X-rays alone cannot definitively diag-153 nose TB. 154

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry 155 (MALDI-TOF MS) is based on an ionization technique that allows the ionization of bio-156 logical macromolecules, such as peptides, proteins, DNA, oligonucleotides, and lipopol-157 ysaccharides, in the presence of a special matrix under laser irradiation [35]. Wang et al. 158 [36] have evaluated MALDI-TOF MS as a means of *M.tb* nucleic acid detection for rapid 159 diagnosis of TB and drug resistance. The effectiveness of the MALDI-TOF MS can be im-160 proved by using the protocol of destruction of mycobacterium cells and protein extraction 161 [37]. 162

Liquid chromatography-tandem mass spectropmetry (LC-MS/MS) is based on cou-163 pling mass spectrometers in series to analyze complex mixtures [38]. For example, liquid-164 liquid extraction and LC-MS analysis were used to determine the pretomanid concentra-165 tions in 40 mL of human plasma [39]. The method was proven to be reliable and repro-166 ducible for pharmacokinetic analysis of samples in a clinical trial involving TB patients. 167 Another study used the LC-MS technique to detect specific *M.tb* peptides in mouse blood 168 serum. Sixty-five peptides from four recombinant M.tb proteins were identified in the 169 mouse blood [40]. This method is not used to directly detect *M.tb*, but it is useful in the 170 monitoring of TB treatment [41]. 171

Figure 1 graphically illustrates the key data from Table 1.

134

135

144



149

150



173

174

178

179

**Figure 1.** Sensitivity and specificity of tuberculosis diagnostic methods shown in Table 1.

Scrutiny of the above TB diagnostic methods shows that all of them have disadvantages and limitations. Therefore, development of new simple and effective methods of TB diagnosis is an urgent task. 177

## 3. Quantum Dot-Based Nanosensors for *M. Tuberculosis* Detection and Tuberculosis Diagnosis

Most of the detection methods discussed above are in some way or another related 180 to the detection of an optical signal, be it molecular detection methods based on PCR with 181 fluorescent probes, lateral flow tests that use colloidal gold nanoparticles or colored latex 182 microparticles, methods based on ELISA and ELISPOT tests, tests for CO<sub>2</sub> accumulation, 183 or specific *M.tb* staining. Traditionally, all commercial products for MTB detection and TB 184 diagnosis use organic fluorescent or colorimetric dyes, which have recently been increasingly replaced with fluorescent quantum dots (QDs) [42]. 186

QDs are inorganic semiconductor nanocrystals 2–10 nm in size with a high fluores-187 cence quantum yield due to a high molar absorption coefficient and a high efficiency of 188 internal conversion of the absorbed photon energy into fluorescence [43]. Another benefit 189 of QDs is their extremely long luminescence lifetime compared to fluorescent biomole-190 cules. This allows time-resolved detection with an increased useful signal-to-noise ratio, 191 which enhances the detection sensitivity [44,45]. The narrow emission peak and wide ab-192 sorption spectrum make it possible to excite QDs of different colors with a single broad-193 spectrum source and perform multiplexed measurements. QDs usually have a semicon-194 ductor core (CdSe, CdS, CdTe, InP, InAs, AgInS2, CuInS2, PbSe, etc.), often coated with a 195 shell to passivate the surface trap states and protect the core from aggressive environment 196 and photo-oxidative degradation, as well as to meet biosafety requirements [46–48]. The 197 typical structure of QD-based nanosensors is shown in Figure 2. 198



199

**Figure 2.** Schematics of a quantum dot–based nanosensor. Abbreviations: *M.tb, M. tuberculosis*; TB, 200 tuberculosis. 201

An ideal QD-based fluorescence nanosensor should combine a bright fluorescent la-202 bel and a highly specific recognition ligand or capture molecule [49]. This capture mole-203 cule can be a protein (e.g., an antibody or recombinant antigen), peptide, oligonucleotide, 204 etc. [43,48,49]. After the QD-based nanosensor has bound the target biomolecule, the QD 205 fluorescence signal can be detected and quantified [52-54]. Numerous methods for cova-206 lent and noncovalent conjugation of ligands to the QD surface (e.g., electrostatic interac-207 tion and metal ion chelation) have been developed [42,55,56]. The possibility of using mul-208 tiple QDs with different emission spectra enables simultaneous detection of several bi-209 omarkers, which increases the diagnostic accuracy [57-59]. 210

A total of 28 articles retrieved by the keywords *quantum dot, tuberculosis,* and *Myco-*211 *bacterium tuberculosis* and 43 articles retrieved by the keywords *quantum dot* and *tuberculo-*212 *sis* have been found in the PubMed database. Of these publications, 37 dealt with TB diagnosis using QD-based nanosensors, 18 of them published in the past five years (including six reviews published in the past four years [7–9,60–63]). The number of these publications by year is shown in Figure 3. In total, 116 articles are cited in this review, 95 of them published in the past 10 years. 217



218

Figure 3. Numbers of analyzed publications by year. Abbreviations: TB, tuberculosis; QDs, quantum dots.219220

The methods of *M.tb* detection and TB diagnosis using QD-based nanosensors are shown in Table 2.

**Table 2.** Quantum dot-based nanosensors for *M. tuberculosis* detection and tuberculosis223diagnosis.224

|     | Diamatanial |           | Comburge av al  |                        | Mathadat               | Wavelength,     |              |      |  |
|-----|-------------|-----------|-----------------|------------------------|------------------------|-----------------|--------------|------|--|
| No. | biomaterial | Biomarker | Capture mol-    | Nanosensor             |                        | nm (where rel-  | LOD          | Ref. |  |
|     | analyzed    |           | ecule           |                        | detection              | evant)          |              |      |  |
|     |             |           |                 |                        | Toehold-me-            |                 |              |      |  |
|     |             |           | Oligonucleo-    |                        | diated strand          |                 |              |      |  |
|     |             | TMCC1     | tides specific  | QD655 and QD525        | displacement           | Emission: 525   | GBP6: 1.6 nM |      |  |
| 1   | Blood       | CRP4      | for <i>M.tb</i> | conjugated with the    | with fluores-          | Emission: 655   | TMCC1: 6.4   | [64] |  |
|     |             | GDF0      | mRNA bi-        | capture molecules      | cence                  | Excitation: 480 | nM           |      |  |
|     |             |           | omarkers        |                        | quenching by           |                 |              |      |  |
|     |             |           |                 |                        | FRET                   |                 |              |      |  |
|     |             |           |                 | CdS QDs coupled to     | Square wave            |                 |              |      |  |
|     |             |           |                 | magnetic beads conju-  | anodic strip-          |                 |              |      |  |
|     |             |           | Anti human      | gated with the capture | ping voltam-           |                 |              |      |  |
| С   | Blood       | IEN N     | IEN av anti     | molecules. Sandwich-   | metry to               | NI/A            | 0.34  pg/mI  | [65] |  |
| 2   | bioou       | 11-1Ν-γ   | hodios          | type sensor is fabri-  | quantify the           | 1N/A            | 0.54 pg/mL   | [05] |  |
|     |             |           | bod             | boules                 | cated on a glassy car- | metal cad-      |              |      |  |
|     |             |           |                 |                        | bon electrode covered  | mium, which     |              |      |  |
|     |             |           |                 | with a well-ordered    | indirectly             |                 |              |      |  |

|   |        |                         |                                                     | gold nanoparticle<br>monolayer, which of-<br>fers a solid support to<br>immobilize the cap-<br>ture molecules                                                                                                                                                                                                                                                                                                                                      | reflects the<br>amount of<br>the analyte                                                                                                                        |                                  |                             |      |
|---|--------|-------------------------|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------------|------|
| 3 | Serum  | IFN-γ                   | IFN-γ ap-<br>tamer                                  | Gold electrode cov-<br>ered with L-cysteine-<br>SnTeSe QDs function-<br>alized with the cap-<br>ture molecules                                                                                                                                                                                                                                                                                                                                     | Electrochemi-<br>cal imped-<br>ance spec-<br>troscopy de-<br>tection of the<br>change in the<br>electron<br>transfer re-<br>sistance upon<br>IFN-γ bind-<br>ing | N/A                              | 0.151 pg/mL                 | [66] |
| 4 | Serum  | IFN-γ, TNF-<br>α, IL-2  | Antibody<br>pairs for IFN-<br>γ-, TNF-α<br>and IL-2 | Sandwich immunoas-<br>say sensor consisting<br>of luminol and carbon<br>and CdS QDs inte-<br>grated with gold na-<br>noparticles and mag-<br>netic beads functional-<br>ized with the capture<br>molecules, as well as<br>the same capture mol-<br>ecules separately im-<br>mobilized on three<br>spatially resolved ar-<br>eas of a patterned in-<br>dium tin oxide elec-<br>trode to capture the<br>corresponding triple<br>latent TB biomarkers | Electrochemi-<br>luminescence<br>detection                                                                                                                      | N/A                              | 1.6 pg/mL                   | [67] |
| 5 | Sputum | DNA IS1081              | Specific DNA<br>nanobeacon                          | QD-based nanobeacon<br>fluorescence probes<br>containing QDs and<br>black hole quenchers.<br>After the target DNA<br>hybridizes with the<br>nanobeacon, the nano-<br>beacon is cleaved into<br>two DNA fragments,<br>and the QDs fluoresce<br>upon moving away<br>from the black hole<br>quenchers                                                                                                                                                 | Fluorescence<br>detection by<br>naked eye                                                                                                                       | Excitation: 280<br>Emission: 330 | 3.3 amol/L<br>(2 copies/µL) | [68] |
| 6 | N/A    | Anti-MA an-<br>tibodies | MAs                                                 | Graphene QDs cova-<br>lently functionalized<br>with MAs as detection                                                                                                                                                                                                                                                                                                                                                                               | Fluorescent<br>lateral flow<br>assay                                                                                                                            | Excitation: 360<br>Emission: 470 | N/A                         | [69] |

|    |                          |                         |                                                                                                             | tags for anti-MA anti-                                                                                                                                                                                                                                                                                                                        |                                                                                                            |                                                                             |                                                                   |      |
|----|--------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------|------|
|    |                          |                         |                                                                                                             | bodies                                                                                                                                                                                                                                                                                                                                        |                                                                                                            |                                                                             |                                                                   |      |
| 7  | N/A                      | Anti-MA an-<br>tibodies | Mas                                                                                                         | CdSe/ZnS QDs cova-<br>lently functionalized<br>with MAs as detection<br>tags for anti-MA anti-<br>bodies                                                                                                                                                                                                                                      | Fluorescent<br>lateral flow<br>assay                                                                       | Excitation: 390<br>Emission: 474                                            | N/A                                                               | [70] |
| 8  | Pure CFP-<br>10 solution | CFP-10                  | Pair of anti-<br>CFP-10 anti-<br>bodies (G2<br>and G3)                                                      | Glass slide coated<br>with magnetoplas-<br>monic core/shell nano-<br>particles (Fe <sub>3</sub> O <sub>4</sub> /Au)<br>functionalized with<br>G2. Graphene QDs<br>functionalized with<br>conjugate of gold-<br>binding protein with<br>G3. Upon binding of<br>CFP-10 by a G2–G3<br>sandwich, immunoas-<br>say is formed                       | Dual metal-<br>enhanced flu-<br>orescence<br>and surface-<br>enhanced Ra-<br>man scatter-<br>ing detection | Excitation: 320<br>Emission: 436,<br>516                                    | 0.0511 pg/mL                                                      | [71] |
| 9  | Pure DNA                 | rpoB531,<br>katG315     | ssDNA spe-<br>cific for target<br>DNA                                                                       | QD535 and QD648<br>functionalized with<br>specific ssDNA. When<br>the target DNA is ab-<br>sent, the nanosensor is<br>attached to a<br>quencher. Binding<br>with the target DNA<br>leads to detachment of<br>the nanosensor and re-<br>covery of fluorescence                                                                                 | Fluorescence<br>measurement                                                                                | Excitation: 380<br>Emission<br>(rpoB531): 535<br>Emission<br>(katG315): 648 | rpoB531: 24<br>pM;<br>katG315: 20<br>pM                           | [72] |
| 10 | Blood                    | IFN-γ, IP-10            | Aptamers<br>specific for<br>IFN-γ and IP-<br>10                                                             | Cytosine–Ag <sup>+</sup> –cyto-<br>sine and thymine-<br>Hg <sup>2+</sup> –thymine hairpin<br>structures releasing<br>the metal ions upon<br>specific interaction<br>with different bi-<br>omarker–aptamer<br>complexes. Ag <sup>+</sup> and<br>Hg <sup>2+</sup> are bound by<br>CdTe and carbon QDs,<br>which are detected by<br>fluorescence | Fluorescence<br>measurement                                                                                | -                                                                           | IP-10: 0.3×10-6<br>pg/mL;<br>IFN-γ: 0.5×10-<br><sup>6</sup> pg/mL | [73] |
| 11 | Sputum                   | <i>M.tb</i> cell        | <i>M.tb</i> -binding<br>peptide H8,<br>anti- <i>M.tb</i> pol-<br>yclonal anti-<br>bodies, and<br>anti-HSP65 | QDs conjugated with<br>H8 or anti-HSP65 anti-<br>bodies and MMS con-<br>jugated with H8 or<br>anti- <i>M.tb</i> polyclonal<br>antibodies. Magnetic                                                                                                                                                                                            | Fluorescence<br>microscopy                                                                                 | Excitation: 405<br>Emission: 610                                            | 103 CFU/mL                                                        | [74] |

|    |                                                |                              | monoclonal<br>antibodies                                               | separation of the QD–<br><i>M.tb</i> –MMS complex                                                                                                                                                                                                                                                                                                                                                                                                            |                            |                                          |            |      |
|----|------------------------------------------------|------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------------------------|------------|------|
| 12 | <i>M.tb</i> sus-<br>pension<br>and spu-<br>tum | <i>M.tb</i> cell             | <i>M.tb-</i> binding<br>peptide H8                                     | Magnetic beads and<br>QDs conjugated with<br>H8. Magnetic separa-<br>tion of the QD- <i>M.tb</i> -<br>magnetic bead com-<br>plex                                                                                                                                                                                                                                                                                                                             | Fluorescence<br>microscopy | N/A                                      | 103 CFU/mL | [75] |
| 13 | Sputum                                         | ESAT-6                       | Oligonucleo-<br>tides specific<br>for ESAT-6                           | FRET-based sandwich<br>biosensor containing<br>CdTe QDs and gold<br>nanoparticles<br>(quencher) conjugated<br>with the capture mole-<br>cules (obtained by<br>PCR). When the<br>marker id bound, QD<br>fluorescence is<br>quenched via FRET to<br>gold nanoparticles                                                                                                                                                                                         | Fluorescence<br>detection  | Excitation: 370<br>Emission: 400–<br>680 | 10 fg      | [76] |
| 14 | Sputum                                         | <i>IS6110</i> DNA            | ssDNA com-<br>plementary<br>to the <i>IS6110</i><br>gene frag-<br>ment | FRET-based biosensor<br>in which CdTe QDs<br>conjugated with the<br>capture molecule<br>serves as a donor and<br>Cu-TCPP, which is<br>more affine for ssDNA<br>than double-stranded<br>DNA, serves as an ac-<br>ceptor. In the absence<br>of the marker, the QD<br>fluorescence is<br>quenched. Interaction<br>of the ssDNA. Hybrid-<br>ization of the ssDNA<br>with the marker re-<br>sults in fluorescence ,<br>whose intensity de-<br>pends on the marker | Fluorescence<br>detection  | Excitation: 365<br>Emission: 586         | 35 pM      | [77] |
| 15 | Urine                                          | Secretory an-<br>tigen Ag85B | Anti-Ag85B<br>antibodies<br>(GBP-50B14<br>and SiBP-<br>8B3)            | FRET based biosensor<br>in which gold nano-<br>rods conjugated with<br>GBP-50B14 serve as<br>acceptors and silica-<br>coated CdTe QDs con-<br>jugated with SiBP-8B3<br>serve as donors. When<br>both tags bind Ag85B,<br>FRET between the<br>ODs and nanorods                                                                                                                                                                                                | Fluorescence<br>detection  | Excitation: 350<br>Emission: 630         | 13 pg/mL   | [78] |

|    |                                                       |                                                     |                                                                       | quenches the QD fluo-<br>rescence                                                                                                                                                                                                                                                                                                                                                                         |                                          |                                                 |           |      |
|----|-------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------------|-----------|------|
| 16 | Urine                                                 | LAM                                                 | Pair of anti-<br>LAM recom-<br>binant mono-<br>clonal anti-<br>bodies | Lateral flow test using<br>CdSe/ZnS QDs encap-<br>sulated in polymeric<br>bead conjugated with<br>the capture molecules;<br>test strip with the im-<br>mobilized capture<br>molecules                                                                                                                                                                                                                     | Portable fluo-<br>rescence de-<br>tector | Excitation: 375<br>Emission: 620                | 50 pg/mL  | [79] |
| 17 | Urine                                                 | CFP-10                                              | Pair of anti-<br>CFP-10 anti-<br>bodies                               | Glassy carbon elec-<br>trode modified with<br>graphene quantum<br>dot-coated Fe <sub>3</sub> O <sub>4</sub> @Ag<br>nanoparticles and<br>gold nanoparticles<br>conjugated to the cap-<br>ture antibody. Binding<br>of CFP-10 to the elec-<br>trode results in an im-<br>mune sandwich, gold<br>nanoparticles conju-<br>gated with the detec-<br>tion antibody serving<br>as signal-amplification<br>labels | Differential<br>pulse voltam-<br>metry   | N/A                                             | 330 pg/mL | [80] |
| 18 | Exhaled air                                           | TB related<br>volatile or-<br>ganic bi-<br>omarkers | No                                                                    | Suspension of CdSe or<br>carbon QDs. The bi-<br>omarker causes<br>changes in the absorb-<br>ance and fluorescence<br>spectra.                                                                                                                                                                                                                                                                             | Spectroscopic<br>analysis                | Excitation:<br>360–650<br>Emission: 300–<br>800 | N/A       | [81] |
| 19 | Exhaled air                                           | MN                                                  | Co ion                                                                | CoTCPP nanosheets<br>with attached CdTe<br>QDs. The QD fluores-<br>cence is quenched in<br>the absence of MN<br>and is recovered upon<br>MN binding to<br>CoTCPP causing QD<br>release                                                                                                                                                                                                                    | Fluorescence<br>detection                | Excitation: 370<br>Emission: 658                | 0.59 µM   | [82] |
| 20 | BALS, fe-<br>ces, paraf-<br>fin-embed-<br>ded tissues | IS6110 and<br>IS900 DNA                             | Mycobacte-<br>rium-specific<br>oligonucleo-<br>tides                  | CdSe QDs conjugated<br>with streptavidin and<br>species-specific probes<br>and magnetic beads<br>conjugated with strep-<br>tavidin and genus-<br>specific probes. Sand-<br>wich hybridization is<br>used to bind the bi-<br>omarkers and                                                                                                                                                                  | Fluorescence<br>detection                | Excitation: 260<br>Emission: 655                | 12.5 ng   | [83] |

| subsequent magnet                                                                                 |                 |
|---------------------------------------------------------------------------------------------------|-----------------|
| separation, to concen-                                                                            |                 |
| trate the biomarker                                                                               |                 |
| Direct and double an-                                                                             |                 |
| tibody sandwich lat-                                                                              |                 |
| 21 Pure for A for A Anti-fprA an- eral flow tests with Fluorescence                               | mI [84]         |
| tibodies CdSe/ZnS QDs conju- detection                                                            | IIIL [04]       |
| gated with the capture                                                                            |                 |
| molecule                                                                                          |                 |
| FRET-based sensor                                                                                 |                 |
| composed of water-                                                                                |                 |
| stable CsPbBr <sub>3</sub> perov-                                                                 |                 |
| 32 M th strains M th DNA spe- skite QDs conjugated Fluorescence                                   |                 |
| cific for <i>M.tb</i> to DNA probe serving detection                                              | M [65]          |
| as a donor and MoS2                                                                               |                 |
| nanosheets serving as                                                                             |                 |
| acceptor                                                                                          |                 |
| Electrochemical im-                                                                               |                 |
| munosensor consist-                                                                               |                 |
| ing of SPCE function-                                                                             |                 |
| alized with Si nano-                                                                              |                 |
| particles and                                                                                     |                 |
| CdSe/ZnS QDs. The                                                                                 |                 |
| Anti-CFP10- target biomarker is ad-                                                               |                 |
| Pure anti- CFP10- ESAT6 mono- sorbed on the elec-                                                 | T [9/]          |
| gens ESAT6 clonal anti- trode and then cap-                                                       | IIL [00]        |
| body tured by the primary                                                                         |                 |
| antibody, the second-                                                                             |                 |
| ary antibody being la-                                                                            |                 |
| beled with catalase,                                                                              |                 |
| whose activity is de-                                                                             |                 |
| tected electrochemi-                                                                              |                 |
| cally                                                                                             |                 |
| * Abbreviations: TMCC1, transmembrane and coiled-coil domain family 1; GBP6, guar                 | vylate binding  |
| protein family member 6; QD, quantum dot; IFN- $\gamma$ , interferon gamma; TNF- $\alpha$ , tumor | necrosis factor |
| alpha; IL-2, interleukin-2; MAs, mycolic acids; CFP-10, culture filtrate protein 10; st           | DNA, single-    |
| strand μNA; IP-10, IPN-γ-induced protein 10; MMS, magnetic microsphere; HSP65, h                  | transfer: Cu    |
| TCPP, two-dimensional metal-organic framework: LAM. lipoarabinomannan: MN                         | methyl nico-    |
| tinate; CoTCPP, cobalt-metalized tetrakis (4-carboxyphenyl) porphyrin; BALS, bronch               | oalveolar lav-  |
| age specimens; fprA, flavoprotein reductase; SPCE, screen-printed carbon electrode;               | OPV, differen-  |
| tial mules real temperature                                                                       |                 |
| tiai puise voitammetry.                                                                           |                 |
| tial pulse voltammetry.                                                                           | uco their a     |
| Not all of the biomarkers described above are completely specific, beca                           | use their oc-   |

currence may be related to concomitant diseases, body conditions, etc. Currently, there is 235 no biomarker or combination of biomarkers that allows diagnosing active forms of TB 236 with an accuracy close to 100%. Thus, the search for a combination of biomarkers with a 237 high specificity is an urgent task. New potential *M.tb* biomarkers that can be detected by 238 new QD-based fluorescent nanosensors are listed in Table 3. 239

Table 3. Potential *M. tuberculosis* biomarkers.

240

234

| Biomarker               | Already detected<br>with QD-based | Comment                                                         | Ref.       |
|-------------------------|-----------------------------------|-----------------------------------------------------------------|------------|
|                         | Host RN                           | A transcript/DNA signatures                                     |            |
| GBP2 GBP5 GBP6 TMCC1    | +                                 | Oligonucleotides (RNA, DNA)                                     | [64,87]    |
| PRDM1                   | _                                 | PR domain zinc finger protein 1 gene                            | [87]       |
| ARG1                    | -                                 | Arginase 1 gene (encoding the arginase enzyme)                  | [87]       |
|                         | +                                 | IS6110 gene                                                     | [77]       |
|                         | _                                 | IS1081 gene                                                     | [88]       |
| rpoB531                 | +                                 | rpoB531 gene                                                    | [72]       |
| katG315                 | +                                 | katG315gene                                                     | [72]       |
|                         | Aci                               | ds and their derivatives                                        |            |
| MN                      | +                                 | Menthyl nicotinate                                              | [81]       |
| MAs                     | +                                 | Mycolic acids                                                   | [69,70]    |
|                         |                                   | Enzymes                                                         |            |
| MNAzymes                | +                                 | Multicomponent nucleic acid enzyme                              | [68]       |
| ADA                     | -                                 | Adenosine deaminase (enzyme of purine metabolism)               | [89]       |
| KatGs                   | -                                 | Catalase-peroxidase enzymes (responsible for the activa-        | [90]       |
|                         |                                   | tion of the antituberculosis drug isoniazid)                    |            |
|                         |                                   | Cytokines                                                       |            |
| IL-1ra                  |                                   | Interleukin-1 receptor antagonist                               | [91]       |
| IL-2                    | +                                 | Interleukin-2                                                   | [91,92]    |
| IL-10                   | +                                 | Interleukin-10                                                  | [91,93]    |
| IL-13                   |                                   | Interleukin-13                                                  | [91]       |
| INF-y                   | +                                 | Interferon gamma                                                | [65,92,93] |
| TNF-α                   | +                                 | Tumor necrosis factor alpha                                     | [92]       |
| INF-y IP-10             | +                                 | Interferon-gamma-inducible protein 10                           | [25]       |
| MIP-1β                  | -                                 | Macrophage inflammatory protein                                 | [91]       |
|                         | SI                                | pecific surface proteins                                        |            |
| CFP-10                  | +                                 | 10-kDa culture-filtered protein                                 | [86,94,95] |
| Mtb Rv1468c (PE_PGRS29) | -                                 | <i>M.tb</i> surface protein                                     | [96]       |
| Rv1509                  | -                                 | <i>M.tb</i> -specific protein                                   | [97]       |
| ESAT-6                  | -                                 | 6-kDa early secreted antigenic target                           | [94,98–    |
|                         |                                   |                                                                 | 100]       |
| MPT-64                  | -                                 | <i>M.tb</i> protein 64                                          | [101]      |
| Ag85B                   | +                                 | Secreted protein antigen 85 complex B                           | [78,102]   |
| PPE-68                  | -                                 | Proline-proline-glutamic acid                                   | [103,104]  |
| Rv2536                  | -                                 | Potential membrane protein                                      | [105]      |
| Rv2341                  |                                   | Probable conserved lipoprotein LppQ                             | [106]      |
|                         | Ν                                 | Iycobacterial antigens                                          |            |
| 14-kDa antigen          | -                                 | 14-kDa protein antigen                                          | [107]      |
| 16-kDa antigen          | -                                 | <i>M.tb</i> -specific antigens                                  | [108]      |
| 19-kDa antigen          | -                                 | 19-kDa lipoprotein                                              | [107]      |
| 30-kDa antigen          | -                                 | Immunodominant phosphate-binding protein                        | [109]      |
| 38-kDa antigen          | -                                 | Immunodominant lipoprotein antigen                              | [110]      |
| 55-kDa antigen          | -                                 | <i>M.tb</i> -specific antigens                                  | [111]      |
| LAM                     | -                                 | A glycolipid and a virulence factor associated with <i>M.tb</i> | [112]      |
| A60                     | -                                 | Tuberculosis antigen                                            | [113]      |
| Mtb81                   | -                                 | Recombinant protein                                             | [114]      |

| ESAT-6 + <i>M.tb</i> -specific antigens [86,115 | ESAT-6 | + | <i>M.tb</i> -specific antigens | [86,115] |
|-------------------------------------------------|--------|---|--------------------------------|----------|
|-------------------------------------------------|--------|---|--------------------------------|----------|

Host transcript RNA/DNA signatures is a group of biomarkers associated with the 241 host gene expression in response to M.tb infection. For some markers listed in Table 3, 242 there are suitable QD-based nanosensors presented in Table 2 (GBP2 [64,87], GBP5 [64,87], 243 GBP6 [64,87], IS6110 gene [77], rpoB531 gene [72], and katG315gene [72]). Regarding 244 PRDM1, it is also associated with lymphoma [116]. To date, there is no QD-based nanosen-245 sor for arginase 1 detection. The group of acids and their derivatives consists of two im-246 portant TB biomarkers: MN [81] and MAs [69,70]. For both markers, sets of QDs and con-247 jugates that can be used for TB diagnosis are shown in Table 2. Three most common en-248 zymes can be used for TB diagnosis: MNAzymes, ADA, and KatG. To date, QDs function-249 alized with MNAzymes [68] have been proposed as TB diagnostic agents. Regarding 250 KatGs, there are methods for detecting the encoding genes, but there are no biosensors for 251 detecting the enzymes themselves. No nanosensors for ADA detection have been reported 252 to date. 253

The groups of specific surface protein and mycobacterial antigen biomarkers can be254pooled because both include specific proteins and other antigens associated with *M.tb.* At255the moment, three main protein antigens from this group have been studied for TB diag-256nosis using nanosensors: CFP-10, ESAT-6, and Ag85B [71,78,80,86].257

#### 4. Summary and Outlook

TB remains a major global health problem, with millions of new cases and significant 259 mortality every year. Early and accurate diagnosis is crucial for effective treatment and 260 control of this disease. Traditional methods of TB diagnosis, such as PCR tests, immuno-261 fluorescence and immunochemical analyses, flow cytometry, cell culture tests, and micro-262 scopic analysis can be improved by the use of optical tags based on fluorescent QDs. Some 263 alternative nanomaterials, such as other nanoparticles [114–116], graphene [88], and gra-264 phene-like 2D-materials (trans-graphenes) [113,117–122], can also be used for the devel-265 opment of nanosensors solving similar tasks and based on the same physical principles. 266 QDs have already established themselves as promising constituent elements of biosensors 267 providing increased sensitivity and specificity of detection than routinely used assays and 268 allowing the development of multiplexed assays for early, more detailed detection of *M.tb* 269 and diagnosis of TB. Despite the undoubtedly high potential, several challenges need to 270 be addressed for enabling widespread use of QD-based nanosensors for TB diagnosis, 271 such as the search for new suitable conjugates and available highly specific biomarkers, 272 standardization and validation of diagnostic protocols, and advanced cost- and time-re-273 ducing solutions. However, the data reviewed here show that the unique properties of 274 QDs make the QD-based nanosensors promising candidates for biosensing applications, 275 including in vitro M.tb diagnosis. The use of QDs makes it possible to increase the sensi-276 tivity and speed of analysis, which is important for point-of-care diagnosis of TB and 277 wider coverage of diagnostic procedures. The possibility of excitation of QD fluorescence 278 in a wide range of wavelengths and a long fluorescence lifetime allow reducing the re-279 quirements for fluorescence detectors and, hence, the cost of their manufacture, as well as 280 designing more compact devices for reading the fluorescent signal. This could ensure their 281 wider use of these tools in diagnostic practice, thus decreasing the morbidity and mortal-282 ity from TB. 283

Author Contributions: Conceptualization, Yu.V.K. and I.R.N.; writing—original draft preparation,284V.V.N and P.M.S.; writing—review and editing, T.B.L, A.S.A., E.B.; data validation and general revision, P.M.S.; supervision, I.R.N. and Yu.V.K.; funding acquisition, Yu.V.K. and I.R.N. All authors285have read and agreed to the published version of the manuscript.287

293

301

331

| Funding: The part of the study related to design of the quantum sensors was funded by the Russian | 288 |
|---------------------------------------------------------------------------------------------------|-----|
| Science Foundation (RSF) grant number 21-79-30048. The part of the study related to the quantum   | 289 |
| sensors biomedical applications was funded by the RSF grant number 23-75-30016.                   | 290 |
| Institutional Review Board Statement: Not applicable.                                             | 291 |

Informed Consent Statement: Not applicable. 292

Data Availability Statement: Not applicable.

Acknowledgments: We thank Vladimir Ushakov for proofreading the manuscript and Maria Ya. 294 Stoyanova for assistance in filling in the data on the standard methods for tuberculosis diagnosis. 295

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the 296 design of the study; in the collection, analyses, or interpretation of data; in the writing of the manu-297 script; or in the decision to publish the results. The company Life Improvement by Future Technol-298 ogies (LIFT) Center had no role in the design of the study; in the collection, analyses, or interpreta-299 tion of data; in the writing of the manuscript; or in the decision to publish the results. 300

#### References - TH

| 1.  | The Global Health Observatory: SDG Target 3.3 Communicable diseases. Available online:                                                       | 302 |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------|-----|
|     | https://Www.Who.Int/Data/Gho/Data/Themes/Topics/Sdg-Target-3_3-Communicable-Diseases.                                                        | 303 |
| 2.  | Tuberculosis in Women, World Health Organization, Fact Sheet October 2016. Available online:                                                 | 304 |
|     | http://Www.Who.Int/Tb/Areas-of-Work/Population-Groups/Gender/En/.                                                                            | 305 |
| 3.  | Chakaya, J.; Khan, M.; Ntoumi, F.; Aklillu, E.; Fatima, R.; Mwaba, P.; Kapata, N.; Mfinanga, S.; Hasnain, S.E.; Katoto, P.D.M.C.;            | 306 |
|     | et al. Global Tuberculosis Report 2020 – Reflections on the global TB burden, treatment and prevention efforts. Int. J. Infect. Dis.         | 307 |
|     | <b>2021</b> , <i>113</i> , S7–S12, doi:10.1016/j.ijid.2021.02.107.                                                                           | 308 |
| 4.  | Maddineni, M.; Panda, M. Pulmonary tuberculosis in a young pregnant female: Challenges in diagnosis and management. Infect.                  | 309 |
|     | Dis. Obst. Gynecol. 2008, 2008, 1–5, doi:10.1155/2008/628985.                                                                                | 310 |
| 5.  | Liu, Q.; Yang, X.; Wen, J.; Tang, D.; Qi, M.; He, J. Host factors associated with false negative results in an interferon - $\gamma$ release | 311 |
|     | assay in adults with active tuberculosis. Heliyon 2023, 9, e22900, doi:10.1016/j.heliyon.2023.e22900.                                        | 312 |
| 6.  | World Health Organization. Guidelines on the Management of Latent Tuberculosis Infection. World Health                                       | 313 |
|     | Organization, 2015.                                                                                                                          | 314 |
| 7.  | Yang, X.; Fan, S.; Ma, Y.; Chen, H.; Xu, JF.; Pi, J.; Wang, W.; Chen, G. Current progress of functional nanobiosensors for                   | 315 |
|     | potential tuberculosis diagnosis: The novel way for TB control? Front. Bioeng. Biotechnol. 2022, 10, 1036678,                                | 316 |
|     | doi:10.3389/fbioe.2022.1036678.                                                                                                              | 317 |
| 8.  | Mukherjee, S.; Perveen, S.; Negi, A.; Sharma, R. Evolution of tuberculosis diagnostics: From molecular strategies to                         | 318 |
|     | nanodiagnostics. Tuberculosis 2023, 140, 102340, doi:10.1016/j.tube.2023.102340.                                                             | 319 |
| 9.  | Gupta, A.K.; Singh, A.; Singh, S. Diagnosis of tuberculosis: Nanodiagnostics approaches. In NanoBioMedicine; Saxena, S.K.,                   | 320 |
|     | Khurana, S.M.P., Eds.; Springer: Singapore, 2020; pp. 261–283 ISBN 978-981-329-897-2.                                                        | 321 |
| 10. | Jin, T.; Fei, B.; Zhang, Y.; He, X. The diagnostic value of polymerase chain reaction for Mycobacterium tuberculosis to distinguish          | 322 |
|     | intestinal tuberculosis from Crohn's disease: A meta-analysis. Saudi J Gastroenterol. 2017, 23, 3, doi:10.4103/1319-3767.199135.             | 323 |
| 11. | Steingart, K.R.; Schiller, I.; Horne, D.J.; Pai, M.; Boehme, C.C.; Dendukuri, N. Xpert MTB/RIF assay for pulmonary tuberculosis              | 324 |
|     | and rifampicin resistance in adults. In: Cochrane Database of Systematic Reviews 2014, doi:10.1002/14651858.CD009593.pub3.                   | 325 |
| 12. | Ssengooba, W.; Katamba, A.; Sserubiri, J.; Semugenze, D.; Nyombi, A.; Byaruhanga, R.; Turyahabwe, S.; Joloba, M.L.                           | 326 |
|     | Performance evaluation of Truenat MTB and Truenat MTB-RIF DX assays in comparison to Gene XPERT MTB/RIF Ultra for the                        | 327 |
|     | diagnosis of pulmonary tuberculosis in Uganda. BMC Infect. Dis. 2024, 24, 190, doi:10.1186/s12879-024-09063-z.                               | 328 |
| 13. | Bjerrum, S.; Schiller, I.; Dendukuri, N.; Kohli, M.; Nathavitharana, R.R.; Zwerling, A.A.; Denkinger, C.M.; Steingart, K.R.; Shah,           | 329 |
|     | M. Lateral flow urine lipoarabinomannan assay for detecting active tuberculosis in people living with HIV. In: Cochrane Database             | 330 |

of Systematic Reviews 2019, 2019, doi:10.1002/14651858.CD011420.pub3.

- Manga, S.; Perales, R.; Reaño, M.; D'Ambrosio, L.; Migliori, G.B.; Amicosante, M. Performance of a lateral flow 332 immunochromatography test for the rapid diagnosis of active tuberculosis in a large multicentre study in areas with different 333 clinical settings and tuberculosis exposure levels. *J. Thorac. Dis.* 2016, *8*, 3307–3313, doi:10.21037/jtd.2016.11.51.
- Chen, H.; Nakagawa, A.; Takamori, M.; Abe, S.; Ueno, D.; Horita, N.; Kato, S.; Seki, N. Diagnostic accuracy of the interferongamma release assay in acquired immunodeficiency syndrome patients with suspected tuberculosis infection: A meta-analysis.
   *Infection* 2022, 50, 597–606, doi:10.1007/s15010-022-01789-9.
- Tortoli, E.; Mandler, F.; Tronci, M.; Penati, V.; Sbaraglia, G.; Costa, D.; Montini, G.; Predominato, M.; Riva, R.; Passerini Tosi, C.;
   et al. Multicenter evaluation of mycobacteria growth indicator tube (MGIT) compared with the BACTEC radiometric method,
   BBL biphasic growth medium and Löwenstein—Jensen medium. *Clin. Microbiol. Infect.* **1997**, *3*, 468–473, doi:10.1111/j.1469 0691.1997.tb00284.x.
- Cruciani, M.; Scarparo, C.; Malena, M.; Bosco, O.; Serpelloni, G.; Mengoli, C. Meta-analysis of BACTEC MGIT 960 and BACTEC
   460 TB, with or without solid media, for detection of mycobacteria. *J. Clin. Microbiol.* 2004, 42, 2321–2325, 343 doi:10.1128/JCM.42.5.2321-2325.2004.
- Martinez, M.R.; Sardiñas, M.; Garcia, G.; Mederos, L.M.; Díaz, R. Evaluation of BacT/ALERT 3D system for mycobacteria isolates.
   *J. Tuberc. Res.* 2014, *2*, 59–64, doi:10.4236/jtr.2014.22007.
   346
- Rose, D.N.; Schechter, C.B.; Adler, J.J. Interpretation of the tuberculin skin test. J. Gen. Intern. Med. 1995, 10, 635–642, 347 doi:10.1007/BF02602749.
- Abdelaziz, M.M.; Bakr, W.M.K.; Hussien, S.M.; Amine, A.E.K. Diagnosis of pulmonary tuberculosis using Ziehl–Neelsen stain or cold staining techniques? *J. Egypt. Pub. Health Assoc.* 2016, *91*, 39–43, doi:10.1097/01.EPX.0000481358.12903.af.
   350
- Cattamanchi, A.; Davis, J.L.; Worodria, W.; den Boon, S.; Yoo, S.; Matovu, J.; Kiidha, J.; Nankya, F.; Kyeyune, R.; Byanyima, P.;
   et al. Sensitivity and specificity of fluorescence microscopy for diagnosing pulmonary tuberculosis in a high HIV prevalence
   setting. *Int. J. Tuberc. Lung Dis.* 2009, *13*, 1130–1136.
- Pinto, L.M.; Pai, M.; Dheda, K.; Schwartzman, K.; Menzies, D.; Steingart, K.R. Scoring systems using chest radiographic features 354 for the diagnosis of pulmonary tuberculosis in adults: A systematic review. *Eur. Respir. J.* 2013, 42, 480–494, 355 doi:10.1183/09031936.00107412.
- Wang, Y.; Xu, Q.; Xu, B.; Lin, Y.; Yang, X.; Tong, J.; Huang, C. Clinical performance of nucleotide MALDI-TOF-MS in the rapid diagnosis of pulmonary tuberculosis and drug resistance. *Tuberculosis* 2023, 143, 102411, doi:10.1016/j.tube.2023.102411.
- Metcalfe, J.; Bacchetti, P.; Esmail, A.; Reckers, A.; Aguilar, D.; Wen, A.; Huo, S.; Muyindike, W.R.; Hahn, J.A.; Dheda, K.; et al. 359 Diagnostic accuracy of a liquid chromatography-tandem mass spectrometry assay in small hair samples for rifampin-resistant 360 tuberculosis drug concentrations in a routine care setting. *BMC Infect. Dis.* 2021, 21, 99, doi:10.1186/s12879-020-05738-5. 361
- Nsubuga, G.; Kennedy, S.; Rani, Y.; Hafiz, Z.; Kim, S.; Ruhwald, M.; Alland, D.; Ellner, J.; Joloba, M.; Dorman, S.E.; et al. 362 Diagnostic accuracy of the NOVA tuberculosis total antibody rapid test for detection of pulmonary tuberculosis and infection 363 with *Mycobacterium tuberculosis*. J. Clin. Tuberc. Other Mycobacter. Dis. 2023, 31, 100362, doi:10.1016/j.jctube.2023.100362. 364
- Sharma, G.; Tewari, R.; Dhatwalia, S.K.; Yadav, R.; Behera, D.; Sethi, S. A loop-mediated isothermal amplification assay for the diagnosis of pulmonary tuberculosis. *Lett. Appl. Microbiol.* 2019, *68*, 219–225, doi:10.1111/lam.13115.
   366
- 27. The Use of Loop-Mediated Isothermal Amplification (TB-LAMP) for the Diagnosis of Pulmonary Tuberculosis: Policy Guidance; WHO
   367
   Guidelines Approved by the Guidelines Review Committee; World Health Organization: Geneva, 2016; ISBN 978-92-4-151118 368
   369
- Horne, D.J.; Kohli, M.; Zifodya, J.S.; Schiller, I.; Dendukuri, N.; Tollefson, D.; Schumacher, S.G.; Ochodo, E.A.; Pai, M.; Steingart, 370
   K.R. Xpert MTB/RIF and Xpert MTB/RIF Ultra for pulmonary tuberculosis and rifampicin resistance in adults. In: *Cochrane 371 Database of Systematic Reviews* 2019, doi:10.1002/14651858.CD009593.pub4. 372

- Aainouss, A.; Momen, Gh.; Belghiti, A.; Bennani, K.; Lamaammal, A.; Chetioui, F.; Messaoudi, M.; Blaghen, M.; Mouslim, J.;
   Khyatti, M.; et al. Performance of GeneXpert MTB/RIF in the diagnosis of extrapulmonary tuberculosis in Morocco. *Rus. J. Infect. Immun.* 2021, 12, 78–84, doi:10.15789/2220-7619-POG-1695.
- Ngangue, Y.R.; Mbuli, C.; Neh, A.; Nshom, E.; Koudjou, A.; Palmer, D.; Ndi, N.N.; Qin, Z.Z.; Creswell, J.; Mbassa, V.; et al. Diagnostic accuracy of the Truenat MTB Plus assay and comparison with the Xpert MTB/RIF assay to detect tuberculosis among hospital outpatients in Cameroon. J. Clin. Microbiol. 2022, 60, e00155-22, doi:10.1128/jcm.00155-22.
- Sevastyanova, E.V.; Smirnova, T.G.; Larionova, E.E.; Chernousova, L.N. Detection of mycobacteria by culture inoculation.
   Liquid media and automated systems. *Bulle. TsNIIT* 2020, 88–95, doi:10.7868/S258766782004010X.
   380
- Lee, H.S.; Park, K.U.; Park, J.O.; Chang, H.E.; Song, J.; Choe, G. Rapid, sensitive, and specific detection of *Mycobacterium* 381 *tuberculosis* complex by real-time PCR on paraffin-embedded human tissues. *J. Mol. Diagn.* 2011, 13, 390–394, 382 doi:10.1016/j.jmoldx.2011.02.004.
- Itani, L.Y.; Cherry, M.A.; Araj, G.F. Efficacy of BACTEC TB in the rapid confirmatory diagnosis of mycobacterial infections: A
   Lebanese tertiary care center experience. *J. Med. Liban.* 2005, *53*, 208–212.
   385
- Campelo, T.A.; Cardoso De Sousa, P.R.; Nogueira, L.D.L.; Frota, C.C.; Zuquim Antas, P.R. Revisiting the methods for detecting 386 mycobacterium tuberculosis: What has the new millennium brought thus far? *Access Microbio*. 2021, 3, doi:10.1099/acmi.0.000245. 387
- Szewczyk, R.; Kowalski, K.; Janiszewska-Drobinska, B.; Druszczyńska, M. Rapid method for *Mycobacterium tuberculosis* 388 identification using electrospray ionization tandem mass spectrometry analysis of mycolic acids. *Diagn. Microbiol. Infect. Dis.* 389 2013, 76, 298–305, doi:10.1016/j.diagmicrobio.2013.03.025. 390
- 36. El Khéchine, A.; Couderc, C.; Flaudrops, C.; Raoult, D.; Drancourt, M. Matrix-assisted laser desorption/ionization time-of-flight
   391 mass spectrometry identification of mycobacteria in routine clinical practice. *PLoS ONE* 2011, 6, e24720,
   392 doi:10.1371/journal.pone.0024720.
- Bacanelli, G.; Araujo, F.R.; Verbisck, N.V. Improved MALDI-TOF MS identification of *Mycobacterium tuberculosis* by use of an enhanced cell disruption protocol. *Microorganisms* 2023, *11*, 1692, doi:10.3390/microorganisms11071692.
   395
- Thomas, S.N.; French, D.; Jannetto, P.J.; Rappold, B.A.; Clarke, W.A. Liquid chromatography–tandem mass spectrometry for clinical diagnostics. *Na.t Rev. Meth. Primers* 2022, *2*, 96, doi:10.1038/s43586-022-00175-x.
- Malo, A.; Kellermann, T.; Ignatius, E.H.; Dooley, K.E.; Dawson, R.; Joubert, A.; Norman, J.; Castel, S.; Wiesner, L. A Validated 398 liquid chromatography tandem mass spectrometry assay for the analysis of pretomanid in plasma samples from pulmonary 399 tuberculosis patients. *J. Pharmac. Biomed. Anal.* 2021, 195, 113885, doi:10.1016/j.jpba.2020.113885.
- 40. Chen, H.; Li, S.; Zhao, W.; Deng, J.; Yan, Z.; Zhang, T.; Wen, S.A.; Guo, H.; Li, L.; Yuan, J.; et al. A peptidomic approach to 401 identify novel antigen biomarkers for the diagnosis of tuberculosis. *Infect. Dis. Rep.* 2022, *15*, 4617–4626, doi:10.2147/IDR.S373652. 402
- 41. Chen, X.; Song, B.; Jiang, H.; Yu, K.; Zhong, D. A liquid chromatography/tandem mass spectrometry method for the simultaneous quantification of isoniazid and ethambutol in human plasma. *Rapid Commun. Mass Spectrom.* 2005, 19, 2591–2596, 404 doi:10.1002/rcm.2100.
  405
- 42. He, X.; Ma, N. An overview of recent advances in quantum dots for biomedical applications. *Colloids Surf. B Biointerfaces* 2014, 406 124, 118–131, doi:10.1016/j.colsurfb.2014.06.002.
   407
- 43. Medintz, I.L.; Uyeda, H.T.; Goldman, E.R.; Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing. *Nat.* 408 *Mat.* 2005, *4*, 435–446, doi:10.1038/nmat1390.
   409
- 44. Brkić, S. Applicability of quantum dots in biomedical science. In *Ionizing Radiation Effects and Applications*; Djezzar, B., Ed.; 410
   InTech, 2018. ISBN 978-953-51-3953-9. 411
- 45. Samokhvalov, P.S.; Karaulov, A.V.; Nabiev, I.R. Control of the photoluminescence lifetime of quantum dots by engineering their shell structure. Opt. Spektrosc. 2023, 131, 1262–1267 [in Russian], doi:10.61011/OS.2023.09.56614.5586-23.
  413

| 46. | Bilan, R.; Nabiev, I.; Sukhanova, A. quantum dot - based nanotools for bioimaging, diagnostics, and drug delivery.                                | 414 |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|     | ChemBioChem 2016, 17, 2103–2114, doi:10.1002/cbic.201600357.                                                                                      | 415 |
| 47. | Sukhanova, A.; Ramos-Gomes, F.; Chames, P.; Sokolov, P.; Baty, D.; Alves, F.; Nabiev, I. Multiphoton deep-tissue imaging of                       | 416 |
|     | micrometastases and disseminated cancer cells using conjugates of quantum dots and single-domain antibodies. In Multiplexed                       | 417 |
|     | Imaging; Zamir, E., Ed.; Methods in Molecular Biology; Springer: New York, NY, 2021; Volume 2350, pp. 105-123 ISBN 978-1-                         | 418 |
|     | 07-161592-8.                                                                                                                                      | 419 |
| 48. | Sokolov, P.; Samokhvalov, P.; Sukhanova, A.; Nabiev, I. Biosensors based on inorganic composite fluorescent hydrogels.                            | 420 |
|     | Nanomaterials <b>2023</b> , 13, 1748, doi:10.3390/nano13111748.                                                                                   | 421 |
| 49. | Hafian, H.; Sukhanova, A.; Turini, M.; Chames, P.; Baty, D.; Pluot, M.; Cohen, J.H.M.; Nabiev, I.; Millot, JM. Multiphoton                        | 422 |
|     | imaging of tumor biomarkers with conjugates of single-domain antibodies and quantum dots. Nanomedicine: NBM 2014, 10,                             | 423 |
|     | 1701–1709, doi:10.1016/j.nano.2014.05.014.                                                                                                        | 424 |
| 50. | Bilan, R.; Fleury, F.; Nabiev, I.; Sukhanova, A. Quantum dot surface chemistry and functionalization for cell targeting and                       | 425 |
|     | imaging. <i>Bioconjugate Chem.</i> 2015, 26, 609–624, doi:10.1021/acs.bioconjchem.5b00069.                                                        | 426 |
| 51. | Sukhanova, A.; Even-Desrumeaux, K.; Kisserli, A.; Tabary, T.; Reveil, B.; Millot, JM.; Chames, P.; Baty, D.; Artemyev, M.;                        | 427 |
|     | Oleinikov, V.; et al. Oriented conjugates of single-domain antibodies and quantum dots: Toward a new generation of ultrasmall                     | 428 |
|     | diagnostic nanoprobes. Nanomedicine: NBM 2012, 8, 516–525, doi:10.1016/j.nano.2011.07.007.                                                        | 429 |
| 52. | Lee, J.S.; Youn, Y.H.; Kwon, I.K.; Ko, N.R. Recent advances in quantum dots for biomedical applications. J. Pharmac. Invest. 2018,                | 430 |
|     | 48, 209–214, doi:10.1007/s40005-018-0387-3.                                                                                                       | 431 |
| 53. | Han, X.; Xu, K.; Taratula, O.; Farsad, K. Applications of nanoparticles in biomedical imaging. Nanoscale 2019, 11, 799-819,                       | 432 |
|     | doi:10.1039/C8NR07769J.                                                                                                                           | 433 |
| 54. | Zhang, Y.; Cai, N.; Chan, V. Recent advances in silicon quantum dot-based fluorescent biosensors. Biosensors 2023, 13, 311,                       | 434 |
|     | doi:10.3390/bios13030311.                                                                                                                         | 435 |
| 55. | Brazhnik, K.; Nabiev, I.; Sukhanova, A. Oriented conjugation of single-domain antibodies and quantum dots. In Quantum Dots:                       | 436 |
|     | Applications in Biology; Fontes, A., Santos, B.S., Eds.; Methods in Molecular Biology; Springer: New York, NY, 2014; Volume 1199,                 | 437 |
|     | pp. 129–140 ISBN 978-1-4939-1279-7.                                                                                                               | 438 |
| 56. | Brazhnik, K.; Nabiev, I.; Sukhanova, A. Advanced procedure for oriented conjugation of full-size antibodies with quantum dots.                    | 439 |
|     | In Quantum Dots: Applications in Biology; Fontes, A., Santos, B.S., Eds.; Methods in Molecular Biology; Springer: New York, NY,                   | 440 |
|     | 2014; Volume 1199, pp. 55–66 ISBN 978-1-4939-1279-7.                                                                                              | 441 |
| 57. | Biju, V. Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy.                      | 442 |
|     | <i>Chem. Soc. Rev.</i> <b>2014</b> , <i>43</i> , 744–764, doi:10.1039/C3CS60273G.                                                                 | 443 |
| 58. | Bilan, R.S.; Krivenkov, V.A.; Berestovoy, M.A.; Efimov, A.E.; Agapov, I.I.; Samokhvalov, P.S.; Nabiev, I.; Sukhanova, A.                          | 444 |
|     | Engineering of optically encoded microbeads with FRET-free spatially separated quantum - dot layers for multiplexed assays.                       | 445 |
|     | <i>ChemPhysChem</i> <b>2017</b> , <i>18</i> , 970–979, doi:10.1002/cphc.201601274.                                                                | 446 |
| 59. | Rousserie, G.; Sukhanova, A.; Even-Desrumeaux, K.; Fleury, F.; Chames, P.; Baty, D.; Oleinikov, V.; Pluot, M.; Cohen, J.H.M.;                     | 447 |
|     | Nabiev, I. Semiconductor quantum dots for multiplexed bio-detection on solid-state microarrays. Crit. Rev. Oncol. Hematol. 2010,                  | 448 |
|     | 74, 1–15, doi:10.1016/j.critrevonc.2009.04.006.                                                                                                   | 449 |
| 60. | Sarkar, L.H.; Kumari, S. Nanocarriers for <i>Mycobacterium tuberculosis</i> . J. Sci. Res. <b>2021</b> , 65, 33–37, doi:10.37398/JSR.2021.650807. | 450 |
| 61. | El-Shabasy, R.M.; Zahran, M.; Ibrahim, A.H.; Maghraby, Y.R.; Nayel, M. Advances in the fabrication of potential nanomaterials                     | 451 |
|     | for diagnosis and effective treatment of tuberculosis. <i>Mater. Adv.</i> 2024, 5, 1772–1782, doi:10.1039/D3MA00720K.                             | 452 |
| 62. | Ahmad, F.; Pandey, N.; Singh, K.; Ahmad, S.; Khubaib, M.; Sharma, R. Recent advances in nanocarrier based therapeutic and                         | 453 |
|     | diagnostic approaches in tuberculosis. Prec. Nanomed. 2023, 6, doi:10.33218/001c.90699.                                                           | 454 |

- 63. Pati, R.; Sahu, R.; Panda, J.; Sonawane, A. Encapsulation of zinc-rifampicin complex into transferrin-conjugated silver quantumdots improves its antimycobacterial activity and stability and facilitates drug delivery into macrophages. *Sci. Rep.* 2016, *6*, 24184,
  doi:10.1038/srep24184.
- 64. Gliddon, H.D.; Howes, P.D.; Kaforou, M.; Levin, M.; Stevens, M.M. A nucleic acid strand displacement system for the 458 multiplexed detection of tuberculosis-specific mRNA using quantum dots. *Nanoscale* 2016, *8*, 10087–10095, 459 doi:10.1039/C6NR00484A.
- Huang, H.; Li, J.; Shi, S.; Yan, Y.; Zhang, M.; Wang, P.; Zeng, G.; Jiang, Z. Detection of interferon-gamma for latent tuberculosis
  diagnosis using an immunosensor based on CdS quantum dots coupled to magnetic beads as labels. *Int. J. Electrochem. Sci.* 2015, 462
  10, 2580–2593, doi:10.1016/S1452-3981(23)04869-1.
- 66. Januarie, K.C.; Oranzie, M.; Feleni, U.; Iwuoha, E. Quantum dot amplified impedimetric aptasensor for interferon-gamma.
   464 *Electrochim. Acta* 2023, 463, 142825, doi:10.1016/j.electacta.2023.142825.
   465
- 67. Zhou, B.; Zhu, M.; Hao, Y.; Yang, P. Potential-resolved electrochemiluminescence for simultaneous determination of triple
   466 latent tuberculosis infection markers. ACS Appl. Mater. Interfaces 2017, 9, 30536–30542, doi:10.1021/acsami.7b10343.
   467
- 68. Hu, O.; Li, Z.; Wu, J.; Tan, Y.; Chen, Z.; Tong, Y. A multicomponent nucleic acid enzyme-cleavable quantum dot nanobeacon
  68. for highly sensitive diagnosis of tuberculosis with the naked eye. *ACS Sens.* 2023, *8*, 254–262, doi:10.1021/acssensors.2c02114.
  69. 469
- Kabwe, K.P.; Nsibande, S.A.; Pilcher, L.A.; Forbes, P.B.C. Development of a mycolic acid graphene quantum dot probe as a potential tuberculosis biosensor. *Luminescence* 2022, *37*, 1881–1890, doi:10.1002/bio.4368.
- 70. Kabwe, K.P.; Nsibande, S.A.; Lemmer, Y.; Pilcher, L.A.; Forbes, P.B.C. Synthesis and characterisation of quantum dots coupled 472 to mycolic acids as a water soluble fluorescent probe for potential lateral flow detection of antibodies and diagnosis of 473 tuberculosis. *Luminescence* 2022, 37, 278–289, doi:10.1002/bio.4170. 474
- Zou, F.; Zhou, H.; Tan, T.V.; Kim, J.; Koh, K.; Lee, J. Dual-mode SERS-fluorescence immunoassay using graphene quantum dot
   labeling on one-dimensional aligned magnetoplasmonic nanoparticles. ACS Appl. Mater. Interfaces 2015, 7, 12168–12175,
   doi:10.1021/acsami.5b02523.
- Hu, O.; Li, Z.; He, Q.; Tong, Y.; Tan, Y.; Chen, Z. Fluorescence biosensor for one-step simultaneous detection of *Mycobacterium* 478 *tuberculosis* multidrug-resistant genes using nanoCoTPyP and double quantum dots. *Anal. Chem.* 2022, *94*, 7918–7927, 479 doi:10.1021/acs.analchem.2c00723.
- 73. Shi, T.; Jiang, P.; Peng, W.; Meng, Y.; Ying, B.; Chen, P. Nucleic acid and nanomaterial synergistic amplification enables dual targets of ultrasensitive fluorescence quantification to improve the efficacy of clinical tuberculosis diagnosis. *ACS Appl. Mater.* 482 *Interfaces* 2024, *16*, 14510–14519, doi:10.1021/acsami.3c18596.
  483
- Yang, H.; Qin, L.; Wang, Y.; Zhang, B.; Liu, Z.; Ma, H.; Lu, J.; Huang, X.; Shi, D.; Hu, Z. Detection of *Mycobacterium tuberculosis* 484 based on H<sub>37</sub>R<sub>v</sub> binding peptides using surface functionalized magnetic microspheres coupled with quantum dots A Nano 485 detection method for *Mycobacterium tuberculosis*. *Int. J. Nanomed.* 2014, 77, doi:10.2147/IJN.S71700. 486
- 75. Ma, H.; Hu, Z.; Wang, Y.; Qing, L.; Chen, H.; Lu, J.; Yang, H. [Methodology research and preliminary assessment of Mycobacterium tuberculosis detection by immunomagnetic beads combined with functionalized fluorescent quantum dots].
  488 *Zhonghua Jie He Hu Xi Za Zhi (Chin. J. Tuberc. Resp. Dis.)* 2013, 36, 100–105 [in Chinese].
- 76. Shojaei, T.R.; Mohd Salleh, M.A.; Tabatabaei, M.; Ekrami, A.; Motallebi, R.; Rahmani-Cherati, T.; Hajalilou, A.; Jorfi, R. 490 Development of sandwich-form biosensor to detect mycobacterium tuberculosis complex in clinical sputum specimens. *Braz. J.* 491 *Infect. Dis.* 2014, 18, 600–608, doi:10.1016/j.bjid.2014.05.015. 492
- 277. Liang, L.; Chen, M.; Tong, Y.; Tan, W.; Chen, Z. Detection of *Mycobacterium tuberculosis* IS6110 gene fragment by fluorescent 493 biosensor based on FRET between two-dimensional metal-organic framework and quantum dots-labeled DNA probe. *Anal.* 494 *Chim. Acta* 2021, *1186*, 339090, doi:10.1016/j.aca.2021.339090.
  495

- 78. Kim, E.J.; Kim, E.B.; Lee, S.W.; Cheon, S.A.; Kim, H.-J.; Lee, J.; Lee, M.-K.; Ko, S.; Park, T.J. An easy and sensitive sandwich assay 496 for detection of *Mycobacterium tuberculosis* Ag85B antigen using quantum dots and gold nanorods. *Biosens. Bioelectron.* 2017, 87, 497 150–156, doi:10.1016/j.bios.2016.08.034.
- Huang, Z.; Huang, H.; Hu, J.; Xia, L.; Liu, X.; Qu, R.; Huang, X.; Yang, Y.; Wu, K.; Ma, R.; et al. A novel quantitative urine LAM
   Antigen strip for point-of-care tuberculosis diagnosis in non-HIV adults. J. Infect. 2024, 88, 194–198, doi:10.1016/j.jinf.2023.11.014.
   500
- Tufa, L.T.; Oh, S.; Tran, V.T.; Kim, J.; Jeong, K.-J.; Park, T.J.; Kim, H.-J.; Lee, J. Electrochemical immunosensor using nanotriplex 501 of graphene quantum dots, Fe<sub>3</sub>O<sub>4</sub>, and Ag nanoparticles for tuberculosis. *Electrochim. Acta* 2018, 290, 369–377, 502 doi:10.1016/j.electacta.2018.09.108.
- Bhattacharyya, D.; Sarswat, P.K.; Free, M.L. Quantum dots and carbon dots based fluorescent sensors for TB biomarkers 504 detection. *Vacuum* 2017, *146*, 606–613, doi:10.1016/j.vacuum.2017.02.003.
- 82. He, Q.; Cai, S.; Wu, J.; Hu, O.; Liang, L.; Chen, Z. Determination of tuberculosis-related volatile organic biomarker methyl 506 nicotinate in vapor using fluorescent assay based on quantum dots and cobalt-containing porphyrin nanosheets. *Microchim.* 507 *Acta* 2022, *189*, 108, doi:10.1007/s00604-022-05212-w. 508
- 83. Gazouli, M.; Liandris, E.; Andreadou, M.; Sechi, L.A.; Masala, S.; Paccagnini, D.; Ikonomopoulos, J. Specific detection of unamplified mycobacterial DNA by use of fluorescent semiconductor quantum dots and magnetic beads. *J. Clin. Microbiol.* 2010, 48, 2830–2835, doi:10.1128/JCM.00185-10.
  511
- 84. Cimaglia, F.; Aliverti, A.; Chiesa, M.; Poltronieri, P.; De Lorenzis, E.; Santino, A.; Sechi, L.A. Quantum dots nanoparticle-based 512 lateral flow assay for rapid detection of mycobacterium species using anti-FprA antibodies. *Nanotechnol. Dev.* 2012, 2, 5, 513 doi:10.4081/nd.2012.e5. 514
- Jiang, X.; Zeng, H.; Duan, C.; Hu, Q.; Wu, Q.; Yu, Y.; Yang, X. One-pot synthesis of stable and functional hydrophilic CsPbBr<sub>3</sub>
   perovskite quantum dots for "turn-on" fluorescence detection of *Mycobacterium tuberculosis*. *Dalton Trans*. 2022, *51*, 3581–3589,
   doi:10.1039/D1DT03624F.
- Mohd Bakhori, N.; Yusof, N.A.; Abdullah, J.; Wasoh, H.; Ab Rahman, S.K.; Abd Rahman, S.F. Surface enhanced CdSe/ZnS
   QD/SiNP electrochemical immunosensor for the detection of *Mycobacterium tuberculosis* by combination of CFP10-ESAT6 for
   better diagnostic specificity. *Materials* 2019, 13, 149, doi:10.3390/ma13010149.
- 87. Gliddon, H.D.; Kaforou, M.; Alikian, M.; Habgood-Coote, D.; Zhou, C.; Oni, T.; Anderson, S.T.; Brent, A.J.; Crampin, A.C.; Eley,
  87. B.; et al. Identification of reduced host transcriptomic signatures for tuberculosis disease and digital PCR-based validation and
  922 quantification. *Front. Immunol.* 2021, *12*, 637164, doi:10.3389/fimmu.2021.637164.
  923
- Boyle, D.S.; McNerney, R.; Teng Low, H.; Leader, B.T.; Pérez-Osorio, A.C.; Meyer, J.C.; O'Sullivan, D.M.; Brooks, D.G.;
   Piepenburg, O.; Forrest, M.S. Rapid detection of *Mycobacterium tuberculosis* by recombinase polymerase amplification. *PLoS* ONE 2014, 9, e103091, doi:10.1371/journal.pone.0103091.
- Verma, S.; Dubey, A.; Singh, P.; Tewerson, S.; Sharma, D. Adenosine deaminase (ADA) level in tubercular pleural effusion.
   *Lung India* 2008, 25, 109, doi:10.4103/0970-2113.44121.
- 90. DeVito, J.A.; Morris, S. Exploring the structure and function of the mycobacterial KatG protein using *trans* -dominant mutants. 529
   Antimicrob. Agents Chemother. 2003, 47, 188–195, doi:10.1128/AAC.47.1.188-195.2003. 530
- Clifford, V.; Tebruegge, M.; Zufferey, C.; Germano, S.; Forbes, B.; Cosentino, L.; Matchett, E.; McBryde, E.; Eisen, D.; Robins Browne, R.; et al. Cytokine biomarkers for the diagnosis of tuberculosis infection and disease in adults in a low prevalence
   setting. *Tuberculosis* 2019, 114, 91–102, doi:10.1016/j.tube.2018.08.011.
- 22. Zhou, B.; Hao, Y.; Chen, S.; Yang, P. A Quartz crystal microbalance modified with antibody-coated silver nanoparticles acting as mass signal amplifiers for real-time monitoring of three latent tuberculosis infection biomarkers. *Microchim. Acta* 2019, *186*, 212, doi:10.1007/s00604-019-3319-7.
  234

- 93. Parate, K.; Rangnekar, S.V.; Jing, D.; Mendivelso-Perez, D.L.; Ding, S.; Secor, E.B.; Smith, E.A.; Hostetter, J.M.; Hersam, M.C.;
  537 Claussen, J.C. Aerosol-jet-printed graphene immunosensor for label-free cytokine monitoring in serum. ACS Appl. Mater.
  538 Interfaces 2020, 12, 8592–8603, doi:10.1021/acsami.9b22183.
  539
- 94. Renshaw, P.S.; Panagiotidou, P.; Whelan, A.; Gordon, S.V.; Hewinson, R.G.; Williamson, R.A.; Carr, M.D. Conclusive evidence 540 that the major T-cell antigens of the *Mycobacterium tuberculosis* complex ESAT-6 and CFP-10 form a tight, 1:1 complex and 541 characterization of the structural properties of ESAT-6, CFP-10, and the ESAT-6·CFP-10 complex. *Journal of Biological Chemistry* 542 2002, 277, 21598–21603, doi:10.1074/jbc.M201625200. 543
- Welin, A.; Björnsdottir, H.; Winther, M.; Christenson, K.; Oprea, T.; Karlsson, A.; Forsman, H.; Dahlgren, C.; Bylund, J. CFP-10
   from *Mycobacterium tuberculosis* selectively activates human neutrophils through a pertussis toxin-sensitive chemotactic
   receptor. *Infect. Immun.* 2015, *83*, 205–213, doi:10.1128/IAI.02493-14.
- 96. Chai, Q.; Wang, X.; Qiang, L.; Zhang, Y.; Ge, P.; Lu, Z.; Zhong, Y.; Li, B.; Wang, J.; Zhang, L.; et al. A *Mycobacterium tuberculosis* 547 surface protein recruits ubiquitin to trigger host xenophagy. *Nat. Commun.* 2019, *10*, 1973, doi:10.1038/s41467-019-09955-8.
   548
- 97. P, M.; Ahmad, J.; Samal, J.; Sheikh, J.A.; Arora, S.K.; Khubaib, M.; Aggarwal, H.; Kumari, I.; Luthra, K.; Rahman, S.A.; et al. 549 *Mycobacterium tuberculosis* specific protein Rv1509 evokes efficient innate and adaptive immune response indicative of 550 protective Th1 immune signature. *Front. Immunol.* 2021, *12*, 706081, doi:10.3389/fimmu.2021.706081. 551
- Lakshmipriya, T.; Gopinath, S.C.B.; Tang, T.-H. Biotin-streptavidin competition mediates sensitive detection of biomolecules in enzyme linked immunosorbent assay. *PLoS ONE* 2016, *11*, e0151153, doi:10.1371/journal.pone.0151153.
- Omar, R.A.; Verma, N.; Arora, P.K. Development of ESAT-6 based immunosensor for the detection of *Mycobacterium tuberculosis*.
   *Front. Immunol.* 2021, 12, 653853, doi:10.3389/fimmu.2021.653853.
- 100. Diouani, M.F.; Ouerghi, O.; Refai, A.; Belgacem, K.; Tlili, C.; Laouini, D.; Essafi, M. Detection of ESAT-6 by a label free miniature 556 immuno-electrochemical biosensor as a diagnostic tool for tuberculosis. *Mater. Sci. Eng. C* 2017, 74, 465–470, 557 doi:10.1016/j.msec.2016.12.051.
- 101. Arora, J.; Kumar, G.; Verma, A.; Bhalla, M.; Sarin, R.; Myneedu, V. Utility of MPT64 antigen detection for rapid confirmation of *Mycobacterium tuberculosis* complex. J. Global Infect. Dis. 2015, 7, 66, doi:10.4103/0974-777X.154443.
   560
- Saengdee, P.; Chaisriratanakul, W.; Bunjongpru, W.; Sripumkhai, W.; Srisuwan, A.; Hruanun, C.; Poyai, A.; Phunpae, P.; Pata,
  S.; Jeamsaksiri, W.; et al. A silicon nitride ISFET based immunosensor for Ag85B detection of tuberculosis. *Analyst* 2016, 141,
  562
  5767–5775, doi:10.1039/C6AN00568C.
- 103. Xu, J.-N.; Chen, J.-P.; Chen, D.-L. Serodiagnosis efficacy and immunogenicity of the fusion protein of *Mycobacterium tuberculosis* 564 composed of the 10-kilodalton culture filtrate protein, ESAT-6, and the extracellular domain fragment of PPE68. *Clin. Vaccine* 565 *Immunol.* 2012, *19*, 536–544, doi:10.1128/CVI.05708-11. 566
- 104. Wang, Q.; Boshoff, H.I.M.; Harrison, J.R.; Ray, P.C.; Green, S.R.; Wyatt, P.G.; Barry, C.E. PE/PPE proteins mediate nutrient transport across the outer membrane of *Mycobacterium tuberculosis. Science* 2020, 367, 1147–1151, doi:10.1126/science.aav5912.
   568
- 105. García, J.; Puentes, A.; Rodríguez, L.; Ocampo, M.; Curtidor, H.; Vera, R.; Lopez, R.; Valbuena, J.; Cortes, J.; Vanegas, M.; et al. 569 *Mycobacterium tuberculosis* Rv2536 protein implicated in specific binding to human cell lines. *Protein Sci.* 2005, 14, 2236–2245, 570 doi:10.1110/ps.051526305. 571
- Shirshikov, F.V.; Bespyatykh, J.A. TB-ISATEST: A diagnostic LAMP assay for differentiation of *Mycobacterium tuberculosis*. *Rus. J. Bioorg. Chem.* 2023, 49, 1279–1292, doi:10.1134/S1068162023060080.
- 107. Jackett, P.S.; Bothamley, G.H.; Batra, H.V.; Mistry, A.; Young, D.B.; Ivanyi, J. Specificity of antibodies to immunodominant mycobacterial antigens in pulmonary tuberculosis. J. Clin. Microbiol. 1988, 26, 2313–2318, doi:10.1128/jcm.26.11.2313-2318.1988.
   575
- 108. Verbon, A.; Hartskeerl, R.A.; Moreno, C.; Kolk, A.H.J. Characterization of B cell epitopes on the 16K antigen of *Mycobacterium* 576 *tuberculosis. Clini. Exp. Immunol.* 2008, *89*, 395–401, doi:10.1111/j.1365-2249.1992.tb06969.x.
   577

to in the content.

| 109. Salata, R.A.; Sanson, A.J.; Malhotra, I.J.; Wiker, H.G.; Harboe, M.; Phillips, N.B.; Daniel, T.M. Purification and characterization | 578 |
|------------------------------------------------------------------------------------------------------------------------------------------|-----|
| of the 30,000 dalton native antigen of Mycobacterium tuberculosis and characterization of six monoclonal antibodies reactive with        | 579 |
| a major epitope of this antigen. J. Lab. Clin. Med. <b>1991</b> , 118, 589–598.                                                          | 580 |
| 110. Andersen, A.B.; Hansen, E.B. Structure and mapping of antigenic domains of protein antigen b, a 38,000-molecular-weight             | 581 |
| protein of Mycobacterium tuberculosis. Infect. Immun. 1989, 57, 2481–2488, doi:10.1128/iai.57.8.2481-2488.1989.                          | 582 |
| 111. Attallah, A.M.; Osman, S.; Saad, A.; Omran, M.; Ismail, H.; Ibrahim, G.; Abo-Naglla, A. Application of a circulating antigen        | 583 |
| detection immunoassay for laboratory diagnosis of extra-pulmonary and pulmonary tuberculosis. Clin. Chim. Acta 2005, 356,                | 584 |
| 58–66, doi:10.1016/j.cccn.2004.11.036.                                                                                                   | 585 |
| 112. Hunter, S.W.; Gaylord, H.; Brennan, P.J. Structure and antigenicity of the phosphorylated lipopolysaccharide antigens from the      | 586 |
| leprosy and tubercle bacilli. J. Biol. Chem. <b>1986</b> , 261, 12345–12351.                                                             | 587 |
| 113. Cocito, C.; Vanlinden, F. Preparation and properties of antigen 60 from Mycobacterium bovis BCG. Clin. Exp. Immunol. 1986, 66,      | 588 |
| 262–272.                                                                                                                                 | 589 |
| 114. Hendrickson, R.C.; Douglass, J.F.; Reynolds, L.D.; McNeill, P.D.; Carter, D.; Reed, S.G.; Houghton, R.L. Mass spectrometric         | 590 |
| identification of Mtb81, a novel serological marker for tuberculosis. J. Clin. Microbiol. 2000, 38, 2354-2361,                           | 591 |
| doi:10.1128/JCM.38.6.2354-2361.2000.                                                                                                     | 592 |
| 115. Arend, S.M.; Ottenhoff, T.H.; Andersen, P.; van Dissel, J.T. Uncommon presentations of tuberculosis: The potential value of a       | 593 |
| novel diagnostic assay based on the Mycobacterium tuberculosis-specific antigens ESAT-6 and CFP-10. Int. J. Tuberc. Lung Dis.            | 594 |
| <b>2001</b> , <i>5</i> , 680–686.                                                                                                        | 595 |
| 116. Wilkinson, S.T.; Vanpatten, K.A.; Fernandez, D.R.; Brunhoeber, P.; Garsha, K.E.; Glinsmann-Gibson, B.J.; Grogan, T.M.; Teruya-      | 596 |
| Feldstein, J.; Rimsza, L.M. Partial plasma cell differentiation as a mechanism of lost major histocompatibility complex class II         | 597 |
| expression in diffuse large B-cell lymphoma. Blood 2012, 119, 1459–1467, doi:10.1182/blood-2011-07-363820.                               | 598 |
|                                                                                                                                          |     |
| Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the                     | 599 |
| individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim                         |     |
| responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred                 | 601 |