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Abstract

Genome-wide association studies (GWAS) and fine-mapping efforts to date have identified more 

than 100 prostate cancer (PrCa)-susceptibility loci. We meta-analyzed genotype data from a 

custom high-density array of 46,939 PrCa cases and 27,910 controls of European ancestry with 

previously genotyped data of 32,255 PrCa cases and 33,202 controls of European ancestry. Our 

analysis identified 62 novel loci associated (P<5.0×10−8) with PrCa and one locus significantly 

associated with early-onset PrCa (≤55 years). Our findings include missense variants rs1800057 

(odds ratio (OR) = 1.16; P = 8.2×10−9; G>C, p.Pro1054Arg) in ATM and rs2066827 (OR = 1.06; 

P = 2.3 × 10−9; T>G, p.Val109Gly) in CDKN1B. The combination of all loci captured 28.4% of 

the PrCa familial relative risk, and a polygenic risk score conferred an elevated PrCa risk for men 

in the ninetieth to ninety-ninth percentiles (relative risk = 2.69; 95% confidence interval (CI): 

2.55–2.82) and first percentile (relative risk = 5.71; 95% CI: 5.04–6.48) risk stratum compared 

with the population average. These findings improve risk prediction, enhance fine-mapping, and 

provide insight into the underlying biology of PrCa1.

Although PrCa is the most common noncutaneous cancer among men in the Western world, 

and one in seven men will be diagnosed during their lifetime2, very few modifiable risk 

factors have been established3. Epidemiological studies have identified age, positive family 

history, and ancestry as the most prominent risk factors for PrCa4–7. PrCa incidence is 
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highest among men of African ancestry, followed by men of European and Asian ancestries. 

These observations of ancestral differences in PrCa risk, in conjunction with studies 

demonstrating the influence of family history8,9, highlight the contribution of genetics to 

PrCa etiology10. Our previous work, using a multiplicative model, has estimated that more 

than 1,800 common SNPs independently contribute to PrCa risk among populations of 

European ancestry11. GWAS have reported more than 100 of these PrCa variants across 

multiancestral populations, most of which were identified in populations of European 

ancestry12–29.

To facilitate additional discovery of PrCa genetic risk factors, we developed a custom high-

density genotyping array, the OncoArray, including a 260,000-SNP backbone designed to 

adequately tag most common genetic variants (minor allele frequency (MAF) >5% in 

Europeans), and 310,000 SNPs from meta-analyses of five cancers (breast, colorectal, lung, 

ovarian, and prostate)30. Approximately 80,000 PrCa-specific markers derived from our 

previous multiancestral meta-analysis12 (including populations of European, African 

American, Japanese, and Latino ancestry), fine-mapping of known PrCa loci, and candidate 

SNPs nominated by study collaborators were included on the OncoArray. We assembled a 

new PrCa sample series from 52 studies to genotype with the OncoArray (Supplementary 

Tables 1 and 2). After application of rigorous quality control (QC) criteria and removal of 

overlapping samples from previous studies, our OncoArray sample yielded 46,939 PrCa 

cases and 27,910 controls without a known diagnosis of PrCa and of European ancestry for 

analysis (Methods and Supplementary Table 3). Genotypes were phased and imputed to the 

cosmopolitan panel of the 1000 Genomes Project (1KGP; June 2014 release) in SHAPEIT31 

and IMPUTEv2 (ref.32) software (Methods and Supplementary Table 3). We performed a 

fixed-effects meta-analysis combining the summary statistics from our OncoArray analysis 

and seven previous PrCa GWAS or high-density SNP panels of European ancestry imputed 

to the 1KGP The final meta-analysis included 79,194 PrCa cases and 61,112 controls 

without a known diagnosis of PrCa (Fig. 1).

We performed study- and consortia-specific meta-analyses to identify novel PrCa risk loci. 

We established a P-value threshold of 5.0 × 10−8 to determine genome-wide significance. 

Our large sample size enabled several stratified meta-analyses focusing on key clinical and 

biological parameters (Methods and Supplementary Tables 4 and 5). All analyses used a 

likelihood-ratio test to minimize bias from rare variants, and a logistic-regression framework 

was used for all analyses, except for the Gleason score, for which linear regression was used. 

The genotype doses were incorporated in an allelic genetic model. The average λ1000, an 

inflation statistic calibrated to a sample size of 1,000 cases and 1,000 controls33, across the 

eight GWAS studies was 1.02 (range 0.98–1.09) and 1.00 for the overall meta-analysis 

(Supplementary Table 6). Our novel findings excluded variants within defined fine-mapped 

regions of previously reported PrCa risk loci (Supplementary Table 7).

After the exclusion of all known susceptibility regions (fine-mapping coordinates provided 

in Supplementary Table 7 and Supplementary Note), we identified 64 loci associated with 

overall PrCa susceptibility and 1 locus associated with early-onset PrCa (P < 5.0 × 10−8) in 

the meta-analysis (Supplementary Fig. 1), of which 53 were imputed, and 12 were 

genotyped with the OncoArray. The cluster plots for the genotyped makers are presented in 
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Supplementary Fig. 2. Although most of the imputed markers were of high quality, with an 

average imputed r2 >0.80 for 61 of the 65 loci across all contributing GWAS (Supplementary 

Table 8), we closely examined four variants with a poor imputation quality score (r2 <0.80) 

in the OncoArray samples by inspecting linkage disequilibrium (LD) plots including only 

genotyped SNPs from the OncoArray and performing an imputation QC assessment 

(Methods). After reviewing the LD plots and the imputation QC, we determined that loci 

rs6602880 and rs144166867 were probably false positives due to imputation artifacts 

(Supplementary Fig. 3 and Supplementary Table 9). Overall, we identified 62 novel loci 

associated with overall PrCa risk and one novel locus associated with early-onset PrCa 

(Table 1). The consortia-specific associations were consistent across the eight contributing 

GWAS studies (Supplementary Table 10).

We performed several stratified analyses defined by clinical and population parameters. We 

detected a novel variant, rs138004030, which was significantly associated with early-onset 

disease (Table 1) but was only nominally significant for overall PrCa risk (P = 0.02). In 

addition, we detected four markers significantly associated (P < 5 × 10−8) with advanced 

PrCa and two markers associated with early-onset PrCa (Supplementary Table 11). 

However, the case-only analyses of these markers indicated marginal statistical significance 

(P < 1.0 × 10−3). Additionally, these markers were in LD with nearby index markers 

associated with overall PrCa and were not significantly associated with overall aggressive 

disease after adjustment for the index marker (Supplementary Table 11). A similar 

association pattern was observed for rs111599055, which was in LD with rs7295014 (r2 = 

0.54), a marker associated with overall disease. The early-onset marker rs77777548 was 

independent of novel and known PrCa-risk loci. However, the marker was relatively rare 

(effect-allele frequency <0.02), was indicated as monomorphic in the 1KGP, and had a 

moderate imputation quality score (average r2 = 0.57); hence, we did not include it in further 

analyses.

Among the 63 novel associations, 38 variants were found to be located within gene-rich 

regions (Supplementary Table 12): intronic (32 SNPs), missense (4 SNPs), and 3′ 
untranslated region (UTR) (2 SNPs). Analyses of expression quantitative trait loci (eQTL) in 

The Cancer Genome Atlas (TCGA) database identified statistically significant associations 

(P < 0.05; Supplementary Table 12) in normal PrCa tissue for 17 of the novel associations, 

including both 3′-UTR SNPs and 11 of the 32 intronic SNPs. Cis-eQTL associations were 

identified for 3′-UTR variant rs1048169 with HAUS6 (3′-UTR) and intronic variants 

rs182314334 with MBNL1, rs4976790 with COL23A1, rs9469899 with UHRF1BP1, 
rs878987 with B3GAT1, rs11629412 with PAX9, and rs11666569 with MYO9B. The eQTL 

associations were consistent with the observed PrCa-SNP associations, given that we 

assessed colocalization between the GWAS and eQTL SNPs. The TCGA data analysis did 

not identify an eQTL association with any of the four missense SNPs.

We assessed the association of our newly discovered loci with prostate-specific antigen 

(PSA) levels by using a series of disease-free controls (n = 9,090; Methods). Among the 48 

available loci, we observed a significant association for rs8093601 (P = 5.0 × 10−4; 

Supplementary Table 13) after correction for multiple testing (P = 0.05/48 = 1.0 × 10−3). 

This marker lies near MBD2 (encoding methyl-CpG binding domain protein 2) and has not 
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previously been associated with either PrCa risk or PSA levels. The effect estimates of PrCa 

clinical features and overall PrCa did not differ (Supplementary Table 14). LD plots 

incorporating several functional annotation features for each of the 63 novel markers are 

presented in Supplementary Fig. 4.

Several strong candidate genes were identified among the PrCa-susceptibility loci, including 

ATM, a key gene within the DNA-damage response pathway, in which truncating variants 

contribute to PrCa susceptibility and progression, particularly aggressive PrCa34,35. The 

index variant within this region is the missense variant rs1800057, exerting a modestly 

increased risk of PrCa (OR = 1.16; P = 8.15 × 10−9; G>C, p.Pro1054Arg; Fig. 2a). Although 

rs1800057 is designated ‘benign’ by ClinVar (see URLs), it has been suggested to be 

associated with a twofold-increased risk of early-onset PrCa in a small clinical series and 

has been found to be unassociated with morbidity after treatment36. In addition to the ATM 
region, we identified missense variants at three separate loci: rs2066827 within CDKN1B, 
encoding a cyclin-dependent-kinase inhibitor that controls cell-cycle progression; 

rs33984059 within RFX7, encoding a transcription factor; and rs2277283 within INCENP, 

encoding a centromere-interacting protein.

rs1048169 at 9p22 is located in the 3′ UTR of HAUS6 (Fig. 2b), which encodes a subunit of 

augmin, a protein complex required for proper microtubule formation and chromosome 

segregation during cell division37. rs1048169 is also an eQTL for HAUS6 expression. 

Interestingly, an additional lead SNP identified in this study, rs11666569 at 19p13, was 

found to be an eQTL for two genes, including HAUS8, which encodes another member of 

the augmin complex. These discoveries may implicate a potential role of augmin in PrCa 

susceptibility.

rs7968403 (OR = 1.06; P = 3.38 × 10−12; Fig. 2c) is situated within the first intron of 

RASSF3. Members of the Ras-association-domain family (RASSF) are putative tumor 

suppressors implicated in a range of biological processes38. RASSF3 is ubiquitously 

expressed across tissue types and has been observed to arrest the cell cycle in the G1 phase 

and to induce apoptosis through the p53 pathway39. A PrCa-risk locus, ~100 kb away, 

within RASSF6 has been identified in a previous study11. However, rs7968403 was also an 

eQTL for the distant WIF1 (encoding WNT-inhibitory factor 1; Fig. 2c). WIF1 inhibits Wnt 

signaling and is frequently downregulated in PrCa40, whereas aberrant activation of Wnt 

signaling is common in many solid tumor types. Restoration of WIF1 expression has also 

been demonstrated to decrease cell motility and invasiveness in a metastatic PrCa cell line 

and to reduce tumor growth in a mouse xenograft model41. Both RASSF3 and WIF1 
therefore are plausible mechanisms for the modulation of PrCa risk at this locus.

rs28441558 at 17p13 was the lead variant for a cluster of highly correlated SNPs centered on 

the CHD3 gene (Fig. 2d). CHD3 encodes an ATPase that forms a component of the 

nucleosome-remodeling and deacetylase (NuRD) histone deacetylase complex, which is 

involved in chromatin remodeling. NuRD plays an important role in regulating gene 

expression, as both a silencer and an activator of transcription, in addition to its roles in 

URLs. ClinVar, http://www.ncbi.nlm.nih.gov/clinvar/.
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maintaining genomic integrity and in the DNA-damage response42. Alterations in NuRD 

function have been implicated in several cancer types and found to act in a highly complex 

manner43,44. However, rs28441558 was also observed to be an eQTL for three genes: 

LOC284023, encoding a currently uncharacterized noncoding RNA transcript; GUCY2D, 
encoding a guanylate cyclase enzyme expressed predominantly in the retina; and ALOX15B, 
encoding a member of the lipoxygenase family of enzymes that produce fatty acid 

hyperoxides. Although CHD3 appears to be the most biologically plausible candidate gene 

for this locus, we cannot exclude roles of any of these genes.

Our pathway analysis based on mapping each SNP to the nearest gene (Methods) by using 

the meta-analysis summary association statistic identified several pathways implicated in 

PrCa susceptibility. The top 53 pathways detected (enrichment score (ES) >0.50) are 

provided in Supplementary Table 15. The most significant pathway detected was PD-1 

signaling (ID: 389948), ES = 0.74, as defined by the REACTOME database (Supplementary 

Fig. 5). This pathway is intriguing, given the therapeutic potential of several checkpoint 

inhibitors focusing on the PD-1 signaling pathway to enhance immune responses45.

In summary, we identified 63 novel PrCa-susceptibility variants, including strong candidate 

loci highlighting the DNA-repair and cell-cycle pathways. Previous studies have probably 

overestimated the effect estimates of PrCa loci as a result of the ‘winner’s curse’, thus 

yielding a biased familial relative risk (FRR) and polygenic risk score (PRS). Here, we 

applied a weighted Bayesian correction approach and demonstrated that our large sample 

size minimized the winner’s curse bias46 (Methods and Supplementary Fig. 6). We applied 

the beta estimates calculated in our overall meta-analysis to the OncoArray sample set to 

calculate the FRR and PRS risk models (Supplementary Table 16). Our prediction models 

included 85 previously reported PrCa loci replicating in our overall meta-analysis and our 62 

novel loci associated with overall PrCa risk. Assuming a familial risk estimate of 2.5 for 

PrCa47,48, we demonstrated that our 147 loci captured 28.4% of the FRR (Supplementary 

Table 17). The 62 newly identified PrCa loci increased the FRR by 4.4%. On the basis of the 

assumption of a log-additive model, the estimated RR for PrCa relative to men in the twenty-

fifth to seventy-fifth PRS percentiles (baseline group) was 5.71 (95% CI: 5.04–6.48) for men 

in the top first percentile of the PRS distribution and 2.69 (95% CI: 2.55–2.82) for 

individuals in the ninetieth to ninety-ninth percentiles of the PRS distribution (Table 2). The 

PRS score was positively associated with overall PrCa risk (OR = 1.86; 95% CI: 1.83–1.89; 

Supplementary Table 18). Our novel associations highlight several biological pathways that 

warrant further investigation. The increased PRS can be used to improve the identification of 

men at high risk for PrCa and therefore inform PSA guidelines for screening and 

management to reduce the burden of over-testing.

Methods

Methods, including statements of data availability and any associated accession codes and 

references, are available at https://doi.org/10.1038/s41588-018-0142-8.
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Methods

Study subjects

A brief overview and study details for participating PrCa studies in the newly genotyped 

OncoArray project are provided in Supplementary Table 1 for men of European ancestry. All 

studies were approved by the appropriate ethics committees (as described in the references 

for each study listed in Supplementary Table 1), and informed consent was obtained from all 

participants. Supplementary Table 2 summarizes the PrCa sample series of the Elucidating 

Loci Involved in Prostate Cancer Susceptibility (ELLIPSE) consortium contributing both 

newly obtained genotyping data for the OncoArray and previous GWAS. Most of the studies 

contributing to the OncoArray were case-control studies primarily based in either the United 

States or Europe. In total, 52 new studies provided core data on disease status, age at 

diagnosis (age at observation or questionnaire for controls), family history of PrCa, and 

clinical factors for cases (for example, PSA at diagnosis and Gleason score) for 48,455 PrCa 

cases and 28,321 disease-free controls. Previous GWAS contributed an additional 32,255 

PrCa cases and 33,202 disease-free controls of European ancestry to the overall meta-

analysis12. Supplementary Table 3 provides QC information by consortia (e.g., OncoArray 

project, UK GWAS, and so forth) for both samples and SNPs. After removal of all 

overlapping samples, the OncoArray contribution for newly genotyped samples was 46,939 

PrCa cases and 27,910 disease-free controls.

Several strata-specific analyses were implemented to evaluate the effects of genetic variation 

on PrCa disease aggressiveness. Supplementary Table 4 describes the analysis title, outcome 

and reference groups, and the statistical model used. Several classification schemes (low 

aggressiveness, intermediate aggressiveness, and so forth) were implemented to better assess 

the spectrum of genetic involvement. All classification schemes incorporated the diagnostic 

clinical features PSA, tumor stage, and Gleason score. To compare the results with those 

from previous PrCa aggressive analyses12 by our research group, we included the ‘advanced 

(plus death due to PrCa)’ classification. Contributing study groups missing clinical features 

were excluded (Supplementary Table 2). Individuals with missing or granular clinical 

information were excluded. The strata-specific sample sizes from the PrCa GWAS 

consortium are provided in Supplementary Table 5. Furthermore, we analyzed Gleason score 

as a continuous variable.

OncoArray SNP selection

The NCI GAME-ON consortium (http://epi.grants.cancer.gov/gameon/) provided SNPs to 

be included in the Illumina OncoArray. Approximately 50% of the OncoArray was a 

compilation of SNP lists by the GAME-ON disease consortium of cancer (breast, colorectal, 

lung, ovarian, and prostate), a common set of variants for common risk regions, other related 

traits (BMI, age at menarche, and so forth), pharmacogenetics, and candidates30. The 

remaining content of the OncoArray was selected as a ‘GWAS backbone’ (Illumina 

HumanCore), which aimed to provide high coverage for most common variants through 

imputation. Approximately 79,000 SNPs were selected specifically for their relevance to 

PrCa, on the basis of prior evidence of association with overall or subtype-specific disease, 

fine-mapping of known PrCa regions, and candidate submissions (survival, exome 
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sequencing, and so forth). To maximize the efficiency of the array, cancer-specific candidate 

lists were merged to remove redundant genetic variation30.

Genotype calling and quality control

Details of the genotype calling and QC for the iCOGS and GWAS have been described 

elsewhere11–28.

Of the 568,712 variants selected for genotyping on the OncoArray, 533,631 were 

successfully manufactured on the array (including 778 duplicate probes). OncoArray 

genotyping of ELLIPSE studies was conducted at five sites (Cambridge, CIDR, 

Copenhagen, USC, and NCI). Details of the genotype calling for the OncoArray have been 

described in more detail elsewhere30. Briefly, we developed a single calling pipeline that 

was applied to more than 500,000 samples across the GAME-ON consortium. An initial 

cluster file was generated by using 56,284 samples selected from all major genotyping 

centers and ancestries, with the Gentrain2 algorithm. Variants likely to have problematic 

clusters were selected for manual inspection on the basis of the following criteria: call rate 

<99%, MAF <0.001, poor Illumina intensity and clustering metrics, deviation from the MAF 

observed in the 1KGP, by using the criterion 
( p1 − p0 − 0.01)2

(p1 + p0)(2 − p1 − p0))
> C, where p0 and p1 are 

the minor frequencies in the 1KGP and OncoArray datasets, respectively, and C = 0.008. 

This procedure resulted in manual adjustment of the cluster file for 3,964 variants and the 

exclusion of 16,526 variants. The final cluster file was then applied to the full dataset.

Our QC pipeline for ELLIPSE excluded SNPs with a call rate <95% by study, not in Hardy-

Weinberg equilibrium (P < 10−7 in controls or P < 10−12 in cases) or with concordance 

<98% among 11,260 duplicate pairs. To minimize imputation errors, we additionally 

excluded SNPs with a MAF <1% and a call rate <98% in any study, SNPs that could not be 

linked to the 1KGP reference, those with MAF for Europeans that differed from that for the 

1KGP, and a further 16,526 SNPs for which the cluster plot was judged to be not ideal. Of 

the 533,631 manufactured SNPs on the OncoArray, we retained 498,417 SNPs among our 

samples of European ancestry after QC.

We excluded duplicate samples and first-degree relatives within each study, duplicates 

across studies, samples with a call rate <95%, and samples with extreme heterozygosity 

(>4.9 s.d. from the mean for the reported ancestry). We excluded duplicated samples as well 

as first-degree relatives across the GWAS studies CAPS1, CAPS2, UK Stage 1, UK Stage 2, 

and iCOGS. Duplicate and first-degree-related samples were assessed across the BPC3 and 

Pegasus GWAS studies as well. Ancestry was computed through principal component 

analysis using 2,318 informative markers on a subset of ~47,000 samples and projected onto 

the complete OncoArray dataset. The current analysis was restricted to men of European 

ancestry, defined as individuals with an estimated proportion of European ancestry >0.8, 

with reference to the HapMap populations, on the basis of the first two principal 

components. Of the 78,182 samples genotyped (regardless of ancestry), the final dataset 

consisted of 74,849 samples, of which 46,939 PrCa cases and 27,910 disease-free controls 
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(Supplementary Table 3), after exclusion of overlap samples, were meta-analyzed with 

previous studies.

Imputation

We imputed genotypes for ~70 million SNPs for all samples by using the October 2014 

(Phase 3) release of the 1KGP data as the reference panel. We imputed the OncoArray and 

GWAS datasets through a two-stage imputation approach, using SHAPEIT31 for phasing 

and IMPUTEv2 (ref. 32) for imputation. The imputation was performed in 5-Mb 

nonoverlapping intervals. All subjects were split into subsets of ~10,000 samples, with 

subjects from the same group in the subset. We imputed genotypes for all SNPs that were 

polymorphic (MAF > 0.1%) in European samples. We excluded data for all monomorphic 

SNPs and those with an imputation r2 <0.3, thus leaving a total of 20,370,935 SNPs across 

chromosomes 1–22 and chromosome X. Of the SNPs imputed, 49.3% had a MAF <1%, 

15.2% had a MAF ranging between 1% and 5%, and 35.5% had a MAF ≥5%.

Statistical analyses

Per-allele odds ratios and standard errors were generated for the OncoArray and each 

GWAS, with adjustment for principal components and study-relevant covariates through 

logistic regression. The OncoArray and iCOGS analyses were additionally stratified by 

country and study, respectively. We used the first seven principal components in our analysis 

of individuals of European ancestry, because additional components did not further decrease 

inflation in the test statistics.

OR estimates were derived with either SNPTEST (https://mathgen.stats.ox.ac.uk/

genetics_software/snptest/snptest.html) or an in-house C++ program (Supplementary Table 

3). OR estimates and standard errors were combined by a fixed-effects inverse variance 

meta-analysis in METAL50. All statistical tests conducted were two sided.

Our analyses included overall PrCa and several clinically relevant strata. These strata 

comprised: (i) high versus low aggressive PrCa; (ii) high versus low/intermediate aggressive 

PrCa; (iii) advanced versus nonadvanced PrCa; (iv) advanced PrCa versus controls; (v) 

early-onset PrCa (≤55 years) versus controls; and (iv) Gleason score (Supplementary Tables 

4 and 5). We defined low aggressive as tumor stage ≤T1 and Gleason score ≤6 and PSA <10 

ng/mL; intermediate aggressive as tumor stage T2 or Gleason score = 7 or PSA 10–20 

ng/mL; high aggressive as tumor stage T3/T4 or N1 or M1, or Gleason score ≥8 or PSA >20 

ng/mL; and advanced as either metastatic disease, Gleason score ≥8, PSA > 100 or PrCa-

related death (Supplementary Table 4).

Definition of newly associated loci

To search for novel loci, we assessed all SNPs excluding those within a known PrCa locus, 

defined by current fine-mapping assessments (Supplementary Table 7). SNPs that were 

associated with disease risk at P < 5 × 10−8 in the meta-analysis (GWAS and OncoArray) 

were considered novel. The SNP with the lowest P value in a region was considered the lead 

SNP. Imputation quality was assessed on the basis of IMPUTE2 imputation r2 in the 

OncoArray dataset (Supplementary Table 8).
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For ten regions where the newly identified locus was near a previously known region, we 

reported a novel association if the pairwise r2 between the new and the previously known 

SNP was <0.2. For novel PrCa associations for which the variant was imputed in the 

OncoArray study sample series and had an imputed quality score <0.70, we assessed the 

quality of the imputation by masking the variant in a subset of the 1KGP European sample 

and calculating the concordance after reimputation in the remaining 1KGP samples.

Reliability of imputation

Novel SNPs with an IMPUTE2 r2 <0.80 among the OncoArray sample series 

(Supplementary Table 8) were flagged for further investigation to minimize the probability 

of false positives. First, we examined LD plots (http://locuszoom.org/) for poorly imputed 

SNPs (±500 kb), including only genotyped SNPs within the region. The imputed index SNP 

was included in the plot to determine the strength of LD with nearby signals and to assess a 

pattern of association. Furthermore, we performed an imputation experiment using the 2,504 

1KGP Phase 3 samples. We split this sample into two parts: a random sample of 259 

individuals of European ancestry (excluding Finnish individuals) and a mixed-population 

reference panel of 2,245 individuals. The random sample of 259 individuals of European 

ancestry was filtered to include only the genetic variants available from the OncoArray after 

QC. This procedure ensured that the same imputation input was used in the overall 

imputation. The 259 individuals were imputed by using 2,245 individuals as the reference 

panel. A 5-Mb segment of the genome was selected on the basis of the target SNP (±250 

Mb). SHAPEIT2 was used for prephasing, and IMPUTE2 was used for imputation. 

Customized imputation settings included an effect size of 20,000, allowance of large-region 

imputation and a random seed of 12345. A weighted linear kappa statistic was calculated to 

determine the correlation of the imputation with the true genotypes.

We evaluated four SNPs whose IMPUTE2 r2 was <0.80 in the OncoArray sample series: 

rs527510716 (chr 7), rs6602880 (chr 10), rs533722308 (chr 18), and rs144166867 (chr X). 

Supplementary Fig. 3 includes the LD plots for three of the poorly imputed SNPs. The 

variant rs144166867 (chr X) could not be plotted, because no genotype SNPs were available 

within ±500 kb on the OncoArray. Both LD plots for markers rs527510716 (chr 7) and 

rs533722308 (chr 18) showed significant associations (P < 1 × 10−3) for several genotype 

markers with moderate LD of the index SNP The kappa coefficients for markers 

rs527510716 (chr 7) and rs533722308 (chr 18) were 0.911 and 0.931, respectively 

(Supplementary Table 9). The marker rs6602880 (chr 10) had a kappa coefficient of 0.812 

and was the only significant variant in the LD plot. The kappa coefficient for marker 

rs144166867 (chr X) was 0.665 (Supplementary Table 9). The markers rs6602880 (chr 10) 

and rs144166867 (chr X) were probably false positives due to poor imputation for these 

regions.

Proportion of familial risk explained

The contribution of the known SNPs to the familial risk of PrCa, under a multiplicative 

model, was computed with the formula
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∑
k

(log λk)/(log λ0)

where λ0 is the observed familial risk to first-degree relatives of PrCa cases47,48, assumed to 

be 2.5, and λk is the familial relative risk due to locus k, given by:

λk =
pkrk

2 + qk

(pkrk + qk)2

where pk is the frequency of the risk allele for locus k, qk = 1−pk, and rk is the estimated per-

allele odds ratio.

On the basis of the assumption of a log-additive model, we constructed a PRS from the 

summed risk-allelic doses weighted by the per-allele log ORs. Thus, for each individual j, 
we derived:

score j = ∑
i = 1

N
βigi j

where N is the number of SNPs, gij is the allele dose at SNPi for individual j, and βi is the 

per-allele log-odds ratio of SNPi.

The risk of PrCa was estimated for the percentiles of the distribution of the PRS (<1, 1–10, 

10–25, 25–75, 75–90, 90–99, >99 and <10, 10–25, 25–75, 75–90, >90) for which 

cumulative score thresholds were determined according to the observed distribution among 

controls. We applied effect sizes and allele frequencies obtained from the overall meta-

analysis of Europeans to estimate risk scores for individuals of European ancestry in the 

OncoArray study51. A standardized PRS score was calculated by dividing the observed PRS 

score by the s.d. of the PRS score among controls. A logistic-regression framework was used 

to evaluate the percentile comparisons and to determine the risk estimate. The models were 

adjusted for the first seven principal components to account for population stratification and 

stratified by country.

The FRR and PRS risk estimation was limited to the variants for which our overall meta-

analysis indicated a statistically significant association. In total, we included 147 PrCa index 

SNPs in our risk-score modeling, including 85 previously published associations and the 62 

novel findings reported here. To correct for potential bias in effect estimation of newly 

discovered variants, we implemented a fully Bayesian version of a weighted correction given 

in equation (3).4 in ref. 46. Specifically, we placed a normal prior distribution on MLE effect 

estimates of the form βm ~ N (βCor, τ2). Here, βm is the log OR from the overall meta-

analysis; βCor is the bias-corrected estimate calculated with the expectation-adjusted 

estimator from equation (3).1 in in ref. 46; and τ is a prespecified variance of the effect 

distribution reflecting the bias and is defined as τ = βm − βCor .
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eQTL analyses

Genotype and gene expression data were downloaded from TCGA for 494 samples with 

PrCa (https://gdc-portal.nci.nih.gov/). QC was performed on both these datasets as follows: 

on the genotype, we filtered out samples with high heterozygosity (mean heterozygosity ±2 

s.d.) and missing genotypes and duplicated or related samples. We then performed principal 

component analysis on the 494 samples plus 2,506 samples from 1KGP to infer the ancestry 

of the TCGA samples; samples of non-European ancestry were removed. We also filtered 

out variants with missing call rate >5%. For the expression data, samples from two plates 

had, on average, much higher expression values than did the remaining samples and 

therefore were excluded. We also filtered genes with mean expression across samples ≤6 

counts. Finally, expression values were quantile-normalized by samples and rank-

transformed by genes. After QC, we used the data from 359 samples. For the eQTL analysis, 

35 PEER factors from the top 10,000 expressed genes were used as covariates, plus three 

genotyping PCs (which explained 18% of total variation). eQTL analysis was performed in 

FastQTL with 1,000 permutations over the 85 regions. We used a window of 1 Mb 

(upstream/downstream) from the transcription start site of each gene.

Gene set enrichment analyses

The file Human_GOBP_AllPathways_no_GO_iea_September_01_2016_symbol.gmt (http://

baderlab.org/GeneSets/) from the GeneSets database52, was used for all analyses. This 

database contains pathways from Reactome53, NCI Pathway Interaction Database54, Gene 

Ontology (GO) biological process55, HumanCyc56, MSigdb57, NetPath58, and Panther59. We 

manually corrected several pathways in which the c gene was entered as PDK1. GO 

pathways inferred from electronic annotation terms were excluded. The same pathway (for 

example, apoptosis) may be defined in two or more databases with potentially different sets 

of genes, and all versions of these duplicate/overlapping pathways were included. Pathway 

size was determined by the total number of genes in the pathway to which SNPs in the 

imputed GWAS dataset could be mapped. To provide more biologically meaningful results, 

and to reduce false positives, only pathways that contained between 10 and 200 genes were 

considered.

Gene information (hg19) was downloaded from the ANNOVAR60 website (http://

annovar.openbioinformatics.org/). SNPs were mapped to the nearest gene within 500-kb 

windows; those that were further away from any gene were excluded. Gene significance was 

calculated by assigning the lowest P value observed across all SNPs assigned to a gene61,62, 

on the basis of the combined European meta-analysis (previous GWAS and OncoArray).

The gene-set enrichment analysis (GSEA)52 algorithm, as implemented in the GenGen 

package (http://gengen.openbioinformatics.org/en/latest/)62,63, was used to perform pathway 

analysis. Briefly, the algorithm calculates an ES for each pathway on the basis of a weighted 

Kolmogorov-Smirnov statistic63. To calculate the ES, we performed 100 permutations and 

averaged the final score. Pathways with most of their genes at the top of the ranked list of 

genes obtain higher ES values. Only pathways with positive ES and at least one gene with P 
< 5 × 10−8 were retained for subsequent analysis. An enrichment map was created in the 

Enrichment Map (EM) v 2.1.0 application52 in Cytoscape v3.40 (ref. 64), with application of 
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force-directed layout, in weighted mode. We restricted our pathway analysis to those with an 

ES ≥ 0.50 to ensure a true-positive rate >0.20 and a false-positive rate <0.15.

Reporting Summary

Further information on experimental design is available in the Nature Research Reporting 

Summary linked to this article.

Data availability

The OncoArray genotype data and relevant covariate information (ancestry, country, 

principal components, and so forth) generated during this study have been deposited in 

dbGaP under accession code phs001391.v1.p1. In total, 47 of the 52 OncoArray studies 

encompassing nearly 90% of the individual samples will be available (Supplementary Table 

19). The previous meta-analysis summary results and genotype data12 are available in 

dbGaP under accession code phs001081.v1.p1. The complete meta-analysis summary 

associations statistics are publicly available at the PRACTICAL website (http://

practical.icr.ac.uk/blog/).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. ELLIPSE/PRACTICAL study overview of PrCa GWAS meta-analysis.
The top section describes the PrCa GWAS meta-analysis published in 2014, in which 23 

novel variants were identified12. The current PrCa GWAS meta-analysis incorporated an 

additional 46,939 PrCa cases and 27,910 controls independent of the meta-analyses. The 

current meta-analysis discovered 62 novel variants associated with overall PrCa and 1 novel 

variant associated with early-onset PrCa.
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Fig. 2 |. Locus Explorer plots depicting the statistical association with PrCa and biological 
context of variants from four of the newly identified PrCa-risk loci (n = 74,849 biologically 
independent samples).
a-d, Top, Manhattan plots of variant −log10 P values (y axis), with the Index SNP labeled. 

Variants that were directly genotyped with the OncoArray are represented as triangles, and 

imputed variants are represented as circles. Variants in LD with the index SNP are denoted 

by color (red, r2 >0.8; orange, 0.6 < r2 < 0.8; yellow, 0.4 < r2 < 0.6; green, 0.2 < r2 < 0.4, 

blue, r2 ≤0.2). Middle, relative locations of selected biological annotations: histone marks 

within seven cell lines from the ENCODE project; genes for which the index SNP is an 
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eQTL in TCGA prostate adenocarcinoma dataset; chromatin state annotation by 

ChromHMM in PrEC cells; conserved elements within the genome; and DNAse I-

hypersensitivity sites in ENCODE prostate cell lines. Bottom, positions of genes within the 

region, with genes on the positive and negative strands marked in green and purple, 

respectively. The horizontal axis represents genomic coordinates in the hg19 reference 

genome. a, rs1800057 (chromosome (chr) 11: 107643000–108644000). The index variant is 

a nonsynonymous SNP in ATM. b, rs1048160 (chr 9: 18556000–19557000). The index 

variant is located within the 3′ UTR of HAUS6 and is an eQTL for HAUS6. c, rs7968403 

(chr 12: 64513000–65514000). The signal is centered on RASSF3, and the index variant is 

located within the first intron. This SNP is also situated within a region annotated for 

multiple regulatory markers and is an eQTL for the more distant WIF1 gene. d, rs28441558 

(chr 17: 7303000–8304000). The signal implicates a cluster of highly correlated variants 

centered on CHD3. The index SNP is also an eQTL for three other more distantly located 

genes.
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Table 2 |

Estimation of polygenic risk scores by using 147 prostate cancer-susceptibility variants

Risk category percentile
a Relative risk 95% CI

<1 0.15 0.11–0.20

1–10 0.35 0.32–0.37

10–25 0.54 0.51–0.57

25–75 1.00 (baseline)

75–90 1.74 1.67–1.82

90–99 2.69 2.55–2.82

≥99 5.71 5.04–6.48

a
PRS percentiles based on the cumulative score distributed among controls. The beta coefficients computed from the European overall meta-

analysis were applied to determine the PRS risk among individuals in the OncoArray study.
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