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Abstract

These notes are defining the notion of centric linking system for a locally fi-
nite group. If a locally finite group G has countable Sylow p-subgroups, we
prove that, with a finiteness condition on the set of intersections of Sylow p-
subgroups, the p-completion of its classifying space is homotopy equivalent to
the p-completion of the nerve of its centric linking system.
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1. Introduction

Through all the paper, p will denote a fixed prime number. Bousfield and
Kan introduced in the 70’s a notion of p-completion for spaces [1]. It consists
in a functor (−)∧p from spaces to spaces together with a natural transformation
λ : Id → (−)∧p and its main property is that a map f induces an isomorphism5

in mod p cohomology if and only if f∧p is an homotopy equivalence. When
the space X is p-good (i.e. λX : X → X∧p induces a isomorphism in mod p
homology) λX is a final object among homotopy classes of maps defined on X
inducing an isomorphism in mod p cohomology. For example classifying spaces
of finite groups and compact lie groups are p-good.10

The notion of centric linking system of a finite group was first introduced
by Broto, Levi, and Oliver [2] to study the p-completion of classifying spaces of
finite groups. It was an important tool in the proof by Oliver of the Martino-
Priddy Conjecture[3, 4] which roughly state that, for two finite groups G and
H, BG∧p ' BH∧p if and only if they have the same p-local structure. Later,15

Broto, Levi, and Oliver defined the notion of centric linking system associated
to a saturated fusion system over a finite p-group [5] or a discrete p-toral group
[6] to construct classifying spaces for fusion systems and develop the homotopy
theory of fusion systems. Moreover, in [6], they generalized centric linking
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systems of finite groups to centric linking systems of locally finite groups with20

discrete p-toral Sylow p-subgroups. They also proved the following nice result
([6, Theorem 8.7]): given a locally finite group G with discrete p-toral Sylow p-
subgroups and satisfying some technical stabilization condition on centralizers,
the p-completion of the nerve of its centric linking system has the homotopy
type of the p-completion of the classifying space of G.25

On the other hand, Chermak and Gonzalez [7], using the language of lo-
calities, are considering fusion systems over countable p-groups. This allows to
consider fusion systems of a much more larger class of groups which contains in
particular algebraic groups over the algebraic closure of Fp. The groups they are
considering are countable locally finite groups with a finite dimensionality con-30

dition on a certain poset of p-subgroups. This condition guarantee in particular
the existence of Sylow p-subgroups and allow a study of the p-local structure of
these groups.

Here we generalize the notion of centric linking system to any locally finite
group. We are in particular interested in the case of localy finite groups with35

countable Sylow p-subgroups. We prove in Theorem 1 that, for a locally finite
group G with countable Sylow p-subgroups, with a finiteness condition on the
number of conjugacy classes in the poset of intersections of Sylow p-subgroups of
G, the p-completion of the nerve of the centric linking system has the homotopy
type of the classifying space of G. This generalizes the previous result of Broto,40

Levi, and Oliver and can be a starting point of an homotopy theory of discrete
localities developed in [7]. The surprising part of this result is that we get some
information on these p-completions even if we do not know that the spaces we
are considering are p-good.

Notation. For G a group and H a subgroup of G we denote by Hg the45

subgroup g−1Hg. Also, for C a small category, we denote by |C| the geometric
realisation of the nerve of C.

Acknowledgement. The author is grateful to Andy Chermak for suggest-
ing to look at this problem. The author also deeply thank the referee for his
careful reading and spotting some mistake in the first place.50

2. Sylow p-subgroups

In this paper, a group is said to be locally finite if every finitely generated
subgroup of G is finite. A p-group is a locally finite group where every element
of P has finite order a power of p and a p-subgroup is a subgroup which is a
p-group.55

Definition 1. Let G be a group let S ≤ G be a p-subgroup. We say that S is
a Sylow p-subgroup of G if

(i) S is maximal in the poset of p-subgroups of G; and

(ii) every p-subgroup of G is conjugate to a subgroup of S.
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We denote by Sylp(G) the set of all Sylow p-subgroups of G.60

Lemma 1. Let G be a group with Sylp(G) 6= ∅.

(a) Any two elements in Sylp(G) are conjugate.

(b) Let S be a p-subgroup of G maximal in the poset of p-subgroups of G, then
S ∈ Sylp(G).

Proof. Let S be a p-subgroup of G maximal in poset of p-subgroups of G and65

S′ ∈ Sylp(G). Since S′ is a Sylow p-subgroup of G, there is g ∈ G such that

Sg ≤ S′. Assume that Sg < S′. Then (S′)g
−1

is a p-subgroup of G which
contains strictly S and this contradicts the maximality of S. Thus Sg = S′ and
this proves (a) and (b).

ForG a group such that Sylp(G) is non-empty, we denote by Ωp(G) the poset,70

ordered by inclusion, of all subgroups of G which are intersections of Sylow p-
subgroups of G. Since Sylp(G) is closed by conjugation in G, Ωp(G) is also closed
by conjugation in G. If S ∈ Sylp(G) we will also define ΩS(G) = Sub(S)∩Ωp(G)
the poset of subgroups of S which are in Ωp(G).

Definition 2. Let G be a group with Sylp(G) 6= ∅. For P a p-subgroup of G we75

define P ◦ ∈ Ωp(G) as the intersection of all Sylow p-subgroups of G containing
P .

For G a group and P,Q two subgroups of G we denote by NG(P,Q) the set
of elements of g ∈ G such that P g ≤ Q. The next proposition gather the main
properties of the map P 7→ P ◦.80

Proposition 1. Let G be a group with Sylp(G) 6= ∅ and P,Q be two p-subgroups
of G.

(a) P ≤ P ◦ and, if P ≤ Q then P ◦ ≤ Q◦.

(b) If P ∈ Ωp(G), P ◦ = P .

(c) NG(P,Q) ⊆ NG(P ◦, Q◦).85

(d) If Q ∈ Ωp(G) then NG(P ◦, Q) = NG(P,Q).

Proof. (a) follows from the definition of (−)◦. (b) is a direct consequence of the
definition of Ωp(G). To prove (c) let g ∈ NG(P,Q). By a direct calculation we
have (P ◦)g = (P g)◦. Thus, by (a),

(P ◦)g = (P g)◦ ≤ Q◦

and g ∈ NG(P ◦, Q◦). Finally, (d) follows from (a) and (c).

In the main Theorem, we will need to filter Ωp(G) in a proper way. The
following Lemma shows that the existence of such a filtration is equivalent to
require that one works with finitely many conjugacy classes.90
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Lemma 2. Let G be a group with Sylp(G) 6= ∅. Let Ω0 ⊆ Ωp(G) be a collection
of subgroups which is stable by conjugation in G and such that for any P,Q ∈
Ωp(G) with P ≤ Q, if P ∈ Ω0 then Q ∈ Ω0.

The following are equivalent.

(i) Ωp(G) r Ω0 contains finitely many G-conjugacy classes.95

(ii) There exists an at most countable filtration Ω0 ⊆ Ω1 ⊆ · · · ⊂ Ωp(G) such
that

(a)
⋃

r≥0 Ωr = Ωp(G),

(b) for all r ≥ 0, Ωr+1 r Ωr consists in a single G-conjugacy class, and

(c) for all r ≥ 0 and P,Q ∈ Ωr such that P ≤ Q, if P ∈ Ωr then Q ∈ Ωr.100

Proof. Assume (i) and let X = {C1, C2, . . . , Cn} be the set of G-conjugacy
classes of Ωp(G) r Ωc

p(G). we can endow X with a partial order � defined by
Ci � Cj if and only if there exists Pi ∈ Ci and Pj ∈ Cj such that Pi ≤ Pj . Up
to a permutation of the elements of X we can assume that Ci � Cj implies that
i ≥ j (in particular, C0, resp. Cn, is a minimal, resp. maximal, element of X ).
We then define, for r ∈ {0, 1, 2, . . . , n},

Ωr = Ω0 ∪
r⋃

i=1

Ci.

One can then see that Ω0 ⊂ Ω1 ⊂ · · · ⊂ Ωn satisfies properties (a), (b) and (c).
Now assume (ii) and let (Ωr)r be such a filtration. Let Op(G) be the in-

tersection of all the Sylow p-subgroups of G. By (a), there exists r0 such that
Op(G) ∈ Ωr0 . In particular, thanks to (c), Ωr0 = Ωp(G). Therefore, since105

at each step of the filtration one is only adding one conjugacy class by (b),
Ωp(G) r Ω0 contains exactly r0 G-conjugacy classes.

We do not discuss here the existence of Sylow p-subgroups in locally finite
groups. The reader interested in that matter can find some answers in [8].

3. Centric linking systems110

In this section, we will mostly work with locally finite groups even though
some definitions make sense for any groups or at least torsion groups. Most of
the materials in this section are already available in [2] and [6].

For G a locally finite group, we denote by Tp(G) the transporter system of
G, this is the category with set of objects the collection of p-subgroups of G and
for morphisms

MorTp(G)(P,Q) = NG(P,Q) := {g ∈ G | P g ≤ Q} .

One important collection of p-subgroups is the collection p-centric subgroup.
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Definition 3. Let G be a locally finite group. A p-subgroup P ≤ G is p-centric115

if CG(P )/Z(P ) has no element of order p. We denote by Ωc
p(G) ⊆ Ωp(G) the

subposet of G consisting of all subgroups in Ωp(G) which are p-centric. Also
T c
p (G) ⊆ Tp(G) will denote the full subcategory of Tp(G) with set of objects the

collection of p-centric subgroups of G.

Though the last definition is the the most natural to define p-centric sub-120

groups, the next lemma give a more convenient characterization.
For G a locally finite group, we define Op(G)EG the subgroup of G generated

by all elements of order prime to p.

Lemma 3. Let G be a locally finite group and P a p-subgroup of G. The
following are equivalent.125

(i) P is p-centric.

(ii) CG(P ) = Z(P ) × Op(CG(P )) and all elements of Op(CG(P )) have order
prime to p.

Proof. the proof is the same as in [6, Proposition 8.5].

We can now define the notion of centric linking system.130

Definition 4. Let G be a locally finite group. The centric linking system of G
is the category Lc

p(G) whose set of objects is the collection of all the p-centric
subgroups of G, and where

MorLc
p(G)(P,Q) = NG(P,Q)/Op(CG(P )).

If S ∈ Sylp(G), the equivalent full subcategory Lc
S(G) ⊆ Lc

p(G) with objects
the subgroups of S which are p-centrics is called the centric linking system of G
over S.

The following lemma allow us to compare the geometric realisations of the
centric part of the transporter category and the centric linking system.135

Lemma 4. Let Ψ: C → C′ be a functor between small categories. Assume the
following:

(i) Ψ is bijective on isomorphism classes of objects and is surjective on mor-
phism sets;

(ii) for each object c ∈ C, the subgroup

K(c) = Ker [AutC(c)→ AutC′(Ψ(c))]

is a locally finite group with all elements of order prime to p ; and140

(iii) for each pair of objects c and d, and each f, g : c → d in C, Ψ(f) =
Ψ(g) if and only if there is some σ ∈ K(c) such that g = f ◦ σ (i.e.
MorC′(Ψ(c),Ψ(d)) ∼= MorC(c, d)/K(c)).
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Then for any functor F : C′ → Top, the induced map

hocolim
C′

(F )→ hocolim
C

(F ◦Ψ)

is an Fp-homology equivalence, and induces a homotopy equivalence between the
p-completions.145

Proof. This is [2, Lemma 1.3] except that we are just asking K(c) to be a locally
finite group with all elements of order prime to p instead of a finite p′-group. But
this suffices to ensure that coinvariants preserve exact sequences of Z(p)[K(c)]-
modules, which is the only way the condition on K(c) is used in the proof of [2,
Lemma 1.3].150

In particular, when G is locally finite, the canonical projection functor
T c
p (G)→ Lc

p(G) satisfies all of the hypotheses of Lemma 4, Hence, the induced
map gives a homotopy equivalence

|T c
p (G)|∧p ' |Lc

p(G)|∧p (1)

4. Higher limits over orbit categories

In this section we recollect results about higher limits over orbit categories
needed to prove the main result. They are manly adaptations of results from
[6, 9].

Definition 5. Let G be a group and H a collection of subgroups of G. The
orbit category of G over H is the category OH(G) with set of objects H and
morphisms

MorOH(G)(H,H
′) = H ′ rNG(H,H ′) ∼= MapG(G/H,G/H ′).

When 1 ∈ H, for M ∈ Z[G]-module, we define

Λ∗H(G;M) = lim←−
OH(G)

∗(FM ),

where FM : OH(G)→ Ab is the functor defined by setting FM (H) = 0 if H 6= 1155

and FM (1) = M .
Finally, when H = Sp(G) the collection of all p-subgroups of G, we will write

Op(G) in place of OSp(G)(G) and, for M a Z[G]-module, Λ∗p(G;M) in place of
Λ∗Sp(G)(G;M).

If G is a group with Sylp(G) 6= ∅ then, by Proposition 1, we have a functor160

(−)◦ : Op(G)→ OΩp(G)(G) and we have the following adjunction.

Lemma 5. Let G be a group with Sylp(G) 6= ∅. The two functors

OΩp(G)(G)
incl

,, Op(G)
(−)◦

mm

are adjoint. More precisely, (−)◦ is left adjoint to the inclusion functor.
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Proof. This is a direct consequence of Proposition 1.

Lemma 6 (cf. [6, Lemma 5.10]). Let G be a group and Q be a p-subgroup of
G. Let F : Op(G)op → Ab be a functor such that F (P ) = 0 except when P is
G-conjugate to Q. Set F ′ : Op(NG(Q)/Q) → Ab to be the functor F ′(P/Q) =
F (P ). Then

lim←−
Op(G)

∗(F ) ∼= lim←−
Op(NG(Q)/Q)

∗(F ′) ∼= Λ∗p(NG(Q)/Q;F (Q)).

Proof. This is a direct application of [6, Proposition 5.3] with C = Op(G),
Γ = NG(Q)/Q and H = Sp(G).165

Lemma 7 (cf. [6, Proposition 5.12]). Let G be a locally finite group. Assume
there is a countable p-subgroup S ≤ G such that every p-subgroup of G is con-
jugate to a subgroup of S. Fix a Z[G]-module M and assume that there exists
a finite subgroup H ≤ G such that Λ∗p(K;M) = 0 for all subgroup K ≤ G
containing H. Then Λ∗p(G;M) = 0. In particular, Λ∗p(G;M) = 0 if M is a170

Z(p)[G]-module and the kernel of the action of G on M contains an element of
order p.

Proof. The proof is exactly the same as the proof of [6, Proposition 5.12]. In-
deed, they prove the result for S a discrete p-toral group but the only property
of discrete p-toral groups they used is that S is an increasing union of finite175

groups, which is also true for countable locally finite groups.

Lemma 8. Let G be a group. Let H′ ⊆ H be collections of p-subgroups of G
closed by G-conjugation such that for all P,Q ∈ H, if P ∈ H′ and P ≤ Q
then Q ∈ H′. Let F : OH(G)op → Ab be a functor and denote by F |OH′ (G) the
restriction of F to OH′(G). If for all P ∈ HrH′, F (P ) = 0, then

lim←−
OH(G)

∗(F ) = lim←−
OH′ (G)

∗(F |OH′ (G)).

Proof. The proof is exactly the same as the proof of [9, Lemma 1.6(a)].

5. p-completion of classifying spaces

This section is devoted to the main Theorem.

Theorem 1. Let G be a locally finite group with Sylp(G) 6= ∅ and S ∈ Sylp(G).
Assume that S is countable and that ΩS(G)rΩc

S(G) contains, up to conjugacy,
finitely many subgroups. Then,

|Lc
S(G)|∧p ' |Lc

p(G)|∧p ' BG∧p .
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Proof. The proof is based on the proof of [6, Theorem 8.7]. We will write180

Ω := Ωp(G) and Ωc := Ωc
p(G) for short. The first homotopy equivalence holds

since the categories Lc
S(G) and Lc

p(G) are equivalent. It remains to prove the
last homotopy equivalence.

For i > 0, let Fi : Op(G)op → Ab be the ith mod p cohomology functor
defined for Q ∈ Sp(G) by Fi(Q) = Hi(BQ,Fp). We also set I : Op(G) → Top
and Φ: Op(G)→ Top be the functors defined for Q ∈ Sp(G) by

I(Q) = G/Q and Φ(Q) = EG×G I(Q)

where EG is a fixed universal covering space of BG endowed with his natural
G-action (Φ(Q) corresponds to a Borel construction).185

To prove the last homotopy equivalence |Lc
p(G)|∧p ' BG∧p we will proceed as

follow.

|Lc
p(G)|∧p ' |T c

p (G)|∧p (see (1) at the end of Section 3)

' (hocolim
OΩc (G)

(Φ))∧p (see (5) in Step 4)

' (hocolim
OΩ(G)

(Φ))∧p (see (4) in Step 3)

' BG∧p (see (2) in Step 2).

The remaining of the proof is dedicated to prove these homotopy equivalences
and is divided into 4 Steps. Step 1 describes BG in terms of homotopy colimit.
Step 2 computes some limits over orbit categories using results from Section190

4. These results are then used in Step 3 to compare two spectral sequences
to get an homotopy equivalence between homotopy colimits. Finally, Step 4
decomposes |T c

p (G)| as an homotopy colimit.

Step 1. From the exactly the same arguments as in the Step 1 of the proof of
[6, Theorem 8.7], we have

hocolim
OΩ(G)

(Φ) ∼= EG×G

(
hocolim
OΩ(G)

(I)

)
' BG. (2)

Step 2. For Q ∈ ΩrΩc and i ≥ 0, we define the functor F
[Q]
i : Op(G)op → Ab

as follows

F
[Q]
i (P ) =

{
Hi(BP,Fp) if P is G-conjugate to Q
0 otherwise.

CG(Q)Q/Q ≤ AutOp(G)(Q) = NG(Q)/Q acts trivially on F
[Q]
i (Q). Moreover,

since Q is not p-centric, CG(Q)Q/Q ∼= CG(Q)/Z(Q) contains an element of
order p. Hence, by Lemma 6 and Lemma 7,

lim←−
Op(G)

∗(F
[Q]
i ) ∼= Λ∗

(
NG(Q)/Q;F

[Q]
i

)
= 0 for all i,

8



Therefore, by Lemma 5,

lim←−
OΩ(G)

∗(F
[Q]
i ) ∼= lim←−

Op(G)

∗(F
[Q]
i ) = 0.

Step 3. Since S is a Sylow p-subgroup and ΩS(G) r Ωc
S(G) contains, up to

conjugacy, finitely many subgroups, one also have that Ωp(G)rΩc
p(G) contains

finitely many conjugacy classes. Therefore by Lemma 2, there exists a finite
filtration

OΩc(G) = O0 ⊆ O1 ⊆ · · · ⊆ On = OΩ(G)

by full subcategories of OΩ(G) such that

(a) for all r ∈ {1, 2 . . . , n − 1}, Ob(Or+1) r Ob(Or) = {Qr+1}G is the G-195

conjugacy class of a subgroup Qr+1 ∈ Ω, and

(b) for all r ∈ {1, 2 . . . , n − 1} and for all P ∈ Ob(Or) and P ′ ∈ Ω with
P ≤ P ′ ≤ S then P ′ ∈ Ob(Or).

For r ∈ {1, 2 . . . , n}, we define Fi,r : Oop
r+1 → Ab by

Fi,r(P ) =

{
Fi(P ) if P ∈ Ob(Or),
0 else

(where we set Ωn+1 = Ωn). For all r ∈ {1, 2 . . . , n− 1}, property (b) implies

Ker
[
Fi,r+1|Or+1

� Fi,r

]
= F

[Qr+1]
i |Or+1

and, by (2) and Lemma 8 (which can be applied thanks to assumption (b) on
the filtration), the higher limits of this functor vanish. Thus

lim←−
Or+1

∗(Fi,r+1|Or+1) ∼= lim←−
Or+1

∗(Fi,r) ∼= lim←−
Or

∗(Fi,r|Or ) (3)

where the last isomorphisms follows by Lemma 8. Notice that for all r ∈
{1, 2 . . . , n}, Fi,r|Or = Fi|Or and so, by (3),

lim←−
Or

∗(Fi,r|Or
) ∼= lim←−

O0

∗(Fi|O0
) = lim←−

OΩc (G)

∗(Fi|OΩc (G)).

In particular,

lim←−
OΩ(G)

∗(Fi|OΩ(G)) ∼= lim←−
OΩc (G)

∗(Fi|OΩc (G)).

The spectral sequence for cohomology of a homotopy colimit ([1, XII.4.5])
now implies that the inclusion OΩc(G) ⊆ OΩ(G) induces a mod p homology
isomorphism of homotopy colimits of Φ and hence a homotopy equivalence

(hocolim
OΩc (G)

(Φ))∧p ' (hocolim
OΩ(G)

(Φ))∧p . (4)

9



Step 4. Now, by exactly the same argument as in [2, Lemma 1.2] we have

hocolim
Oc

p(G)
(Φ) ∼= EG×G

(
hocolim
Oc

p(G)
(I)

)
' |T c

p (G)|.

Moreover, the adjunction of Lemma 5 restricts to an adjunction betweenOΩc(G)
and Oc

p(G), and hence induces a homotopy equivalence

(hocolim
OΩc (G)

(Φ))∧p ' (hocolim
Oc

p(G)
(Φ))∧p ' |T c

p (G)|∧p . (5)

This ends the proof of Theorem 1.200

6. Particular cases

Theorem 1 works for a very large class of groups. Here are some examples
of groups which satisfy the hypothesis of Theorem 1.

Definition 6. A discrete p-toral group is a group P with a normal subgroup
P0 E P such that205

(a) P is isomorphic to a finite product of copies of Z/p∞ :=
⋃

n≥1 Z/pZ; and

(b) P/P0 is a finite p-group.

One can see that discrete p-toral groups are countable.

Proposition 2. Let G be a locally finite group such that Sylp(G) 6= ∅ and let
S ∈ Sylp(G). Assume that210

1. S is a discrete p-toral group, and

2. ΩS(G) r Ωc
S(G) contains, up to conjugacy, finitely many subgroups.

Then,
|Lc

S(G)|∧p ' |Lc
p(G)|∧p ' BG∧p .

Proposition 2 gives a small generalization of the second part of [6, Theorem
8.7] where they work with locally finite groups with discrete p-toral Sylow p-
subgroups but with a technical condition of stabilization on centralizers. This215

condition was introduced to ensure the existence of a Sylow p-subgroup but
they also proved in [6, Lemma 8.6] that it implies moreover that Ωp(G) contains
finitely many conjugacy classes.

Finally, Theorem 1 covers also countably locally finite groups which satisfies
a condition of ”finite dimensionality” which is central in [7]. For G a group and220

H a subgroup of G we denote by Ω̃H(G) and Ω̃fin
H (G) the set of subgroups of H

that are intersections, respectively finite intersection, of G-conjugates of H.

Proposition 3. Let G be locally finite group and S a maximal p-subgroup of
G. Assume that

10



(a) G is countable,225

(b) The supremum of the lengths of chains of proper inclusions in Ωfin
S (G)

exists and is finite.

(c) ΩS(G) r Ωc
S(G) contains, up to conjugacy, finitely many subgroups.

Then S ∈ Sylp(G) and

|Lc
S(G)|∧p ' |Lc

p(G)|∧p ' BG∧p .

Proof. We first show that Ω̃S(G) = Ω̃fin
S (G). Since G is countable so is the

set of G-conjugates of S. Let P ∈ Ω̃S(G) and assume that P is not a finite230

intersection of G-conjugates of S. let (Sn)n∈N be a collection of G-conjugates
of S such that P =

⋂
n≥0 Sn. By (b), the decreasing sequence of subgroups

S0 ⊇ S0 ∩ S1 ⊇ · · · stabilizes after a finite stage. So there is a n0 such that, for
all n ≥ 0, S0 ∩ S1 ∩ · · · ∩ Sn = S0 ∩ S1 ∩ · · · ∩ Sn0 . Thus S0 ∩ S1 ∩ · · · ∩ Sn0 =⋂

n≥0 Sn = P which contradicts the assumption on P .235

Since Ω̃S(G) = Ω̃fin
S (G), one can show that (G,∆, S) with ∆ the collection

of all subgroup of S is a locality in the sense of [7, Definition 3.1] (the finite
dimensionality condition is a direct consequence of (b)). By [7, Proposition 3.8],
we have that S is a Sylow p-subgroup of G. Finally, thanks to (c), one can apply
Theorem 1 to get the result.240

Gonzalez and Chermak proved in an unpublished, using the Chevalley com-
mutator formula, that an algebraic group over the algebraic closure of Fp satisfies
the finite dimensionality condition. If moreover you work with connected reduc-
tive algebraic groups, thanks to Bruhat decomposition, one have the finiteness
condition on the set of conjugacy classes. This gives a nice class of groups in245

which this results apply.
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