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Abstract: French Guiana lacks a dedicated model for developing an early warning system tailored to
its entomological contexts. We employed a spatiotemporal modeling approach to predict the risk
of Aedes aegypti larvae presence in local households in French Guiana. The model integrated field
data on larvae, environmental data obtained from very high-spatial-resolution Pleiades imagery,
and meteorological data collected from September 2011 to February 2013 in an urban area of French
Guiana. The identified environmental and meteorological factors were used to generate dynamic
maps with high spatial and temporal resolution. The study collected larval data from 261 different
surveyed houses, with each house being surveyed between one and three times. Of the observations,
41% were positive for the presence of Aedes aegypti larvae. We modeled the Aedes larvae risk within a
radius of 50 to 200 m around houses using six explanatory variables and extrapolated the findings to
other urban municipalities during the 2020 dengue epidemic in French Guiana. This study highlights
the potential of spatiotemporal modeling approaches to predict and monitor the evolution of vector-
borne disease transmission risk, representing a major opportunity to monitor the evolution of vector
risk and provide valuable information for public health authorities.

Keywords: dengue virus; Aedes aegypti; spatiotemporal modeling; remote sensing; vector control;
French Guiana

1. Introduction

Arboviral diseases, transmitted by infected arthropods, have emerged as a significant
public health concern [1–4]. French Guiana, an overseas French department with a pop-
ulation of 300,000 in Northeast South America, has faced multiple outbreaks of dengue,
chikungunya, and Zika viruses in recent years, with Ae. aegypti being the sole known
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vector responsible for transmission in the country [5–11]. After a period of no dengue virus
circulation between 2015 and 2018, dengue virus activity gradually intensified, culminating
in a new epidemic in 2020 involving two serotypes [12,13], resulting in 12,300 clinical cases
and four deaths [14].

While vaccines have been developed for some arboviral disease prevention, vector
control remains the cornerstone of prevention efforts. In French Guiana, control efforts
involve indoor and outdoor deltamethrin spraying to target adult mosquitoes in homes
with human cases and within a 100 m radius. Additionally, mechanical and chemical meth-
ods are used to eliminate larval breeding sites [15,16]. However, these interventions can be
limited by delayed responses and the challenge of accurately identifying contamination
sites. Effective mitigation of high transmission risks necessitates the continuous collection
of entomological and epidemiological data at the local level. Unfortunately, the intermittent
collection of entomological data, due to the substantial resources required for continuous
monitoring, often results in imprecise information, hindering the accurate identification
of high-risk areas. Consequently, detailed risk maps are essential for pinpointing areas
with a high probability of transmission from larval breeding sites, thereby enabling pre-
cision public health interventions to optimize control efforts. The continuous collection
of fine-scale data, combined with epidemiological information, is crucial for enhancing
the effectiveness of control measures and improving our understanding of vector-borne
disease transmission.

The correlation between spatial and temporal patterns of Ae. aegypti larval distribution
and dengue risk has been extensively studied and debated over the decades [17,18]. While
some studies have identified significant links [19,20], traditional larval indices, such as
the Breteau Index and House Index, have shown inconsistent correlations with dengue
transmission [18,21]. This inconsistency raises questions about their reliability as universal
predictors of outbreaks, as they frequently fail to establish clear, quantifiable associations
for predicting dengue epidemics. The variability in these correlations across different
geographic regions and temporal contexts underscores the need for more precise and
context-specific models. Such models are crucial for accurately forecasting dengue risk and
enabling more effective and targeted public health interventions.

Weather and climate conditions such as rainfall, relative humidity, and tempera-
ture [5,6,22], as well as environmental conditions including vegetation indices, land use,
and urbanization rate [23,24] play pivotal roles in the evolution of dengue epidemics.
These conditions exhibit spatial and temporal heterogeneity. Remote sensing tools, as
a valuable resource for collecting environmental and meteorological data with various
spatial, spectral, and temporal resolutions, are employed to monitor these conditions at
global, regional, and local scales. These tools, combined with different machine learning
algorithms, are used to detect associations with entomological indices. For instance, in a
study conducted in 2014 in Martinique, Machault et al. used logistic regression to model
the presence of houses potentially hosting Ae. aegypti larvae [25]. The presence of larvae
was significantly associated with maximum humidity and asphalt surface predictors. In
Thailand, Sarfraz et al. used a decision tree to predict the probability of vector reproductive
habitats using temperature, rainfall, human density, land cover, and elevation factors [26].
Others researchers have utilized time-series [27] or spatial analysis [28] to map abundances
and explore correlations with reported cases. Previous studies have demonstrated that
the effects of climatic parameters on dengue epidemic incidence can vary significantly
from one site to another, depending on the local epidemiological context. Despite the
importance of dengue [5,7,9,12,29,30] and the past epidemics transmitted by Ae. aegypti in
French Guiana [8,31,32], there is currently no model designed to develop an early warning
system tailored to the entomological context. This gap is particularly critical given the
need for precise and timely interventions to control the spread of dengue. By utilizing
historical data, we aim to demonstrate the potential of a straightforward predictive model
to enhance surveillance, target high-risk zones, and improve intervention strategies for
arbovirus transmission in French Guiana. To address this need, our study focuses on
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understanding and modeling the fine spatial and temporal dynamics of Ae. aegypti larvae
presence based on meteorological and environmental factors. Our research is centered in
Matoury, a municipality on the French Guiana coast near Cayenne, to capture the intricate
interactions between climatic conditions and mosquito breeding patterns. Additionally, we
applied this larval model to all houses in the municipalities of Cayenne, Rémire-Montjoly,
and Matoury during the 2020–2021 dengue epidemic [33]. This extrapolation aimed to
evaluate the model’s ability to identify areas at high risk of dengue transmission across
different municipalities.

2. Materials and Methods
2.1. Study Area

French Guiana, located in South America, lies north of the equator along the Atlantic
Ocean. The climate is equatorial, characterized by high temperature and humidity. Relative
humidity rarely drops below 80% and average monthly temperatures remain around
27 ◦C throughout the year. Rainfall exhibits significant seasonal variation due to the
influence of migration from the Intertropical Convergence Zone (ZCIT). The average
annual rainfall is approximately 3 m, with the majority occurring during the rainy season
from December to June. Conversely, the dry season, spanning from July to November,
experiences lower levels of rainfall. There are considerable fluctuations in annual rainfall
accumulation from year to year, influenced by El Niño. During El Niño periods, French
Guiana experiences precipitation deficits, while La Niña events lead to higher annual
rainfall accumulations [34,35]. Environmental conditions exhibit more heterogeneity across
the territory compared to meteorological conditions. Ninety percent of the territory is
covered by the Amazon rainforest, contributing to the region’s rich biodiversity. Most of
the population resides along the coast, where the three main municipalities are located:
Cayenne and its surroundings, Kourou, and Saint-Laurent-du-Maroni municipalities.

2.2. Data Collection

We conducted an entomological monitoring study over an 18-month period from
September 2011 to February 2013 in the urban center of Matoury, (Figure 1), an adjacent
municipality to the main city of Cayenne. At the time of the study, Matoury had a popula-
tion of 29,712 inhabitants, covering an area of 137 km2, resulting in a population density of
217 inhabitants/km2. The town’s urbanization was heterogeneous, surrounded by dense
forests, with the central area comprising 875 easily accessible houses, isolated from the
rest of the town, representing urbanization in French Guiana. The monitoring period
included 16 months of inter-epidemic phase and 2 months of dengue epidemics at the end
of the study period (Figure 2). Each month, a 3-day monitoring session was conducted,
during which we randomly selected twenty houses using a sampling plan with replace-
ment. The objective was to identify and quantify the presence and types of water-holding
containers, as well as to assess the presence or absence of larvae in both domestic and
peridomestic containers.

During the study period, we collected daily meteorological data from the Météo
France “Félix Eboué” station at Matoury airport including rainfall, minimum, average, and
maximum temperatures, temperature amplitude, relative and absolute humidity, sea-level
pressure, vapor pressure, global radiation, and sunshine duration, among others. For each
trapping date, we averaged or cumulated 243 variables over different previous periods: 5,
10, 15, 20, 25, and 30 days, considering lag effects by integrating characteristics calculated
over the last 5–10, 5–15, 5–20, 5–25, and 5–30 days. To enhance spatial rainfall information,
we used satellite observations from the Tropical Rainfall Measuring Mission (TRMM). We
obtained data from the nearest pixel to the area or the average of surrounding pixels.

The Pleiades satellite constellation provided high-resolution images (50 cm) with
frequent updates, covering every point on the globe every three to four days. We acquired
two pairs of optical Pleiades images, covering the dry season and the beginning of the
rainy season, on 23 September 2012 and 10 December 2013, respectively. These images were
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projected in WGS 84, UTM Zone 22 N, and geometrically corrected using the SRTM 90 m
database by NASA. We applied radiometric, atmospheric, and geometric corrections to the
images, processed using ENVI 5.1 and ENVI EX (Exelis Visual Information Solutions).
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We used QGIS version 2.12.3 with Orfeo Toolbox (OTB) to calculate 14 indices grouped
into three categories, including vegetation (NDVI, TNDVI, RVI, SAVI, MSAVI2, GEMI,
ARVI, AVI, IPVI), land use (RI, IB, IB2), and water (NDWI2, NDTI) based on spectral
characteristics related to physical and biological features. We calculated atmospheric-effect
indices (e.g., GEMI) before applying atmospheric correction to the images.

For land cover maps, we classified each image into eight classes: building, pool, as-
phalt, water, bare ground, light vegetation, green grass, and tree. We employed supervised
maximum likelihood pixel classification in ENVI 5.1, using training polygons digitized
by an operator based on spectral signatures of each class. Each pixel was assigned to the
class with the highest probability based on these spectral signatures. The kappa coefficient,
a measure of classification accuracy, was 0.93 for each image, indicating good agreement
between the resulting classes and validation areas.

We performed object-oriented classification to enhance classification accuracy and
avoid class confusion. This approach considers spectral information and spatial environ-
ment. We conducted segmentation and merging of objects based on rule operations in
the ENVI FX module. Using confusion trees between pixel and object classifications, we
better classified objects like blue or white roofs and swimming pools. For each house,
identified by its centroid (from IGN cadastral data), we extracted various information from
the immediate environment, calculating averages of all indices and determining land use
class zones for buffer zones at 10, 20, 30, 40, 50, 100, 200, 300, 400, and 500 m around the
house. We also calculated the distance to the first pixel of each class and the area of each
land use class around the experimental unit.

We obtained epidemiological data of confirmed dengue cases, spanning from Novem-
ber 2019 to August 2020, within the Cayenne municipality and aggregated into 100 m × 100
m pixels, from the regional epidemiology unit of Santé Publique France as part of routine
surveillance and epidemic management activities.

2.3. Statistical and Spatial Analyses

We compiled a large and diverse database, consolidating entomological data with
747 environmental and 195 meteorological factors. We employed univariate logistic re-
gressions to model the probability of larvae presence, testing each of the 942 variables as
explanatory factors. Variables with p-value < 0.25 were retained in the initial set of Boosted
Regression Tree (BRT) variables, resulting in 317 explanatory variables. We conducted the
analysis of larvae presence/absence using a BRT model, fitting a Bernoulli distribution with
a flexible probability structure to characterize the relationship between the variable of inter-
est and numerous explanatory variables. To refine the model and improve interpretability,
we prioritized variables that had the most interpretable biological or physical significance
and reduced those that were highly correlated with other variables in the model. This
process ensured that the retained variables contributed unique and meaningful information
to the model. We set specific parameters for the BRT model, including a tree complexity
(tc) value of 5, a learning rate (lr) value of 0.001, and an initial number of trees (nt) of 50.
Cross-validation was performed with a bag fraction of 0.5, using a portion of observations
not used to build the model.

We measured the strength of association between each explanatory variable and the
outcome using the ROC (Receiver Operating Characteristic) curve. We extrapolated the
resulting model to the municipalities of Cayenne, Rémire-Montjoly, and Matoury during
the last dengue epidemic period (from November 2019 to August 2020) to compare the
locations of reported cases with the hotspots identified by the model.

We obtained a complete meteorological dataset without missing data from meteoro-
logical stations. We used a Pleiades image taken on 20 December 2017 for analysis. We
correlated the predicted entomological data and epidemiological variables (geolocated
biologically confirmed cases from November 2019 to August 2020) using different grid
sizes, including 500 × 500 m and 1000 × 1000 m grids, as well as IRIS (homogeneous geo-
graphical and demographic micro-neighborhoods). We visualized these correlations using
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choropleth maps, representing the data by discretized ranges of values. We performed all
statistical analyses using R software version 3.0.2.

3. Results
3.1. Overview of Larval Data and Modeling Approach

We collected larval data from 261 different houses, surveyed between one and three
times, resulting in 333 observations, with 27 houses declining to participate across the
various sessions. Among the participating houses, 41% were positive for Ae. aegypti
larvae. We developed the final Boosted Regression Tree (BRT) model using six explanatory
variables, narrowed down from an initial set of three hundred seventeen obtained via
logistic regression. The model incorporated three environmental variables accounting
for 59% of the cumulative influence: surface of low vegetation within a 100 m radius
(26%), Mean Redness Index (RI) within a 50 m radius (18%), and Normalized Difference
Tillage Index (NDTI) within a 200 m radius (15%). Additionally, three weather variables
contributed to 41% of the model’s cumulative influence: mean temperature over the
previous 5 days (19%), minimum temperature over the previous 25 days (12%), and rainfall
over the previous 3 days (10%)

Figure 3 illustrates the directions of the associations and thresholds at which pre-
dictions change. For instance, a mean temperature of 25.5 ◦C over the previous 5 days
decreases the probability of Ae. aegypti larvae presence. Conversely, for RI, beyond the
cutoff point of 1.5, the probability of larvae presence increases. Cumulative rainfall over
the previous 3 days constitutes a high-probability plateau for the presence of Ae. aegypti
larvae, between 10 mm and 100 mm.
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To account for the dynamic nature of mosquito populations and their environments,
we added an entomological situation variable to the six other variables. This variable,
representing the average probabilities of larvae presence in houses within a 30 m radius
over the previous 7 days, was created using the initial model run and then incorporated
into the second modeling run to predict larvae presence/absence for each geolocated house.
The area under the ROC curve was 0.72.

3.2. Larvae Risk Mapping

During the 10 months of the studied epidemic period (2019–2020), the extrapolated
model (Figure 4) assessed the risk of Ae. aegypti larvae presence (red) or absence (blue)
for each house. No house was at risk every day of the study period, while all buildings
appeared at risk for at least 100 days. The positivity rate varied between 3.8% and 99.6%
(Table 1). The highest entomological risk occurred in May and June, with larvae presence
positivity rates above 99%. Conversely, at the beginning and end of the epidemic period,
the positivity rates were lowest, with November at 3.8% and August at 6.6%.
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Table 1. Correlation rate between entomological and epidemiological data.

Number of
Positive Cases

Number of
Positive Houses

Proportion of
Predicted

Positive Houses
(%)

Correlation Rate

November 2019 3 1125 3.8 0.2
December 2019 0 2339 7.9 -

January 2020 8 15,796 58.6 0.3
February 2020 11 10,730 38.6 0.2

March 2020 29 3707 9.0 0.2
April 2020 79 20,874 72.8 0.3
May 2020 121 25,610 99.6 0.4
June 2020 156 25,608 99.6 0.6
July 2020 168 6890 24.6 0.5

August 2020 122 2033 6.6 0.5
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The highest positive correlations between entomological and epidemiological variables
were found using a 1000 m × 1000 m grid, with correlations peaking between June and
August 2020 (Table 1). Choropleth maps (Figure 5) revealed spatial heterogeneity in
entomological and epidemiological results. In November and December 2019, at the
epidemic’s onset, the number of cases and predicted positive houses was low, with no
clear patterns emerging. As case numbers and predicted positive houses increased, distinct
patterns appeared, with April, May, and June showing some grids as hotspot areas.
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4. Discussion

We successfully utilized very high-resolution satellite imagery and daily meteoro-
logical field data to identify environmental variables that determine the presence of Ae.
aegypti larvae. We investigated the close and more distant environment of the houses,
considering radius areas of 50, 100, and 200 m. Interestingly, no larger-scale variables
were found to be associated with larvae risk, indicating that the biological and physical
phenomena leading to the presence of larvae occur primarily in close proximity to houses.
During the “wet” season, we observed that the probability of larvae presence increased
with the surface area of lightly vegetated land within a 100 m radius. This effect has been
previously demonstrated in Martinique, where “sparsely vegetated soil” was identified
as a risk factor for water lodges at the same scale [25]. Additionally, our results showed
that land characteristics influenced vector risks within a 50 m radius, illustrating that
the characteristics of the surroundings of a house, such as the yard or garden, impact
the presence or absence of water deposits and the ability of larvae to develop in those
deposits. The well-known relationship between land characteristics and vegetation can
influence the presence of Ae. aegypti by providing shade for their roost [36]. Moreover,
moist environments at low temperatures were found to favor larval development, while
the supply of nutrients in water breeding sites attracts females for egg laying and larvae
feeding [37], resulting in better survival rates and larger females [38,39]. A higher density
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of larvae in a location is evidently partly related to the presence of a high density of females.
The NDTI in a 200 m buffer indicates bare rooftops and unvegetated surfaces, signifying
urbanization. This index plays a positive role up to a threshold, as urbanization provides
artificial lodgings and blood meal within this 200 m scale. The identification of NDTI as a
significant predictor highlights the importance of urbanization in creating environments
conducive to Ae. aegypti breeding [40,41]. By capturing the extent of bare surfaces and
built-up areas, NDTI serves as a proxy for urban density, where anthropogenic activities
increase the availability of breeding sites and suitable conditions for mosquito survival.

Furthermore, we identified three meteorological variables that remain constant in
space and represent both the situation on previous days and the seasonal level. The average
mean temperature in the preceding five days is a key factor that affects the likelihood
of larvae presence, which is highest at around 25.5 ◦C. High air temperatures are not
conducive to adult survival. The average minimum temperature in the preceding 25 days
was positively associated with the presence of larvae, with two thresholds observed at
approximately 22.5 and 23.5 ◦C, highlighting that cooler seasons are less favorable for vector
presence. Additionally, the cumulative rainfall in the previous 3 days impacted the presence
of larvae, quickly reaching a limit. When rainfall exceeded ten millimeters in three days,
the probability of the presence of larvae reached its maximum. This finding is particularly
relevant in our study area, where breeding sites such as cups, pots, and watering cans were
small and quickly filled with water. Overall, the biological and physical significance of
the identified predictors underscores their relevance in shaping the spatial and temporal
dynamics of Ae. aegypti larval presence. These insights provide valuable guidance for
targeted vector control strategies, especially in urbanized areas where intervention efforts
can be concentrated based on predictive modeling outcomes.

The extrapolation of the model showed that March was less favorable for the presence
of larvae than the other months of the rainy season. This month corresponds to the “short
March summer”, when rainfall decreases significantly, between the short rainy season
(January–February) and the long rainy season (April–June). As soon as the main rainy
season starts, the probability of larval presence increases again.

The spatiotemporal risk maps produced in this study are a significant contribution to
the development of targeted operational control systems for arboviral diseases in urban
areas. While it is widely accepted that entomological risk alone cannot fully predict the
occurrence of human cases of arbovirus, as other factors such as socioeconomic level, virus
circulation, and protective behaviors also play crucial roles, the presence of vectors remains
an essential element in assessing the risk of transmission, especially when associated with
virus circulation. Our proposed approach aims to identify areas at high risk of transmission
by combining the presence of vector risk and the presence of the virus, as depicted in the
choropleth maps. These maps can effectively direct vector control actions to hotspots areas.
The core strength of our approach lies in its flexibility. While the specific parameters of
the model (such as temperature thresholds and rainfall patterns) are influenced by the
local climate of the study area, the overall framework is designed to be adaptable. By
recalibrating the model with region-specific data, such as different temperature ranges,
rainfall patterns, and vegetation cover, it can be applied to other tropical regions, including
those with a tropical monsoon climate. However, there are limitations in the collected
entomological data. For instance, we did not consider the productivity of breeding sites
for larvae, and it might have been interesting to model only the presence of larvae at the
most productive sites. Nevertheless, this may not be a significant issue in the specific case
of French Guiana, as productivity was fairly dichotomous: close to 20% at positive sites
with buckets or watering can containers and plants, versus close to 0% for all other types
of sites. Another limitation of the study pertains to the methodology used to explore the
associations between modeled entomological risk and case occurrence. While our study
relied on the surveillance system for biologically confirmed cases, it is important to note
that this system may not detect all dengue cases, potentially underestimating the actual
number of cases in the control houses.
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Looking ahead, it will be intriguing to identify geolocalized indicators that are more
representative of epidemiological risk than individual confirmed cases, allowing us to
better highlight the link between entomological risk and epidemiological risk. Future steps
include implementing new strategies to produce high-resolution local maps across the
country and integrating the proposed approach into the master plan of information systems
dedicated to the surveillance of priority diseases in French Guiana, enabling precision
public health actions to be deployed by control operators.
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