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Remote sensing is an invaluable tool for tracking decadal-scale changes in vegetation 
greenness in response to climate and land use changes. While the Landsat archive has 
been widely used to explore these trends and their spatial and temporal complexity, its 
inconsistent sampling frequency over time and space raises concerns about its ability 
to provide reliable estimates of annual vegetation indices such as the annual maxi-
mum normalised difference vegetation index (NDVI), commonly used as a proxy of 
plant productivity. Here we demonstrate for seasonally snow-covered ecosystems, that 
greening trends derived from annual maximum NDVI can be significantly overesti-
mated because the number of available Landsat observations increases over time, and 
mostly that the magnitude of the overestimation varies along environmental gradients. 
Typically, areas with a short growing season and few available observations experience 
the largest bias in greening trend estimation. We show these conditions are met in 
late snowmelting habitats in the European Alps, which are known to be particularly 
sensitive to temperature increases and present conservation challenges. In this critical 
context, almost 50% of the magnitude of estimated greening can be explained by this 
bias. Our study calls for greater caution when comparing greening trends magnitudes 
between habitats with different snow conditions and observations. At a minimum 
we recommend reporting information on the temporal sampling of the observations, 
including the number of observations per year, when long-term studies with Landsat 
observations are undertaken.

Keywords: alpine, bias, greening, Landsat, observations, tundra

Introduction

Satellite remote sensing (SRS) has become an indispensable tool for deriving biophysical 
parameters of terrestrial and oceanic ecosystems at spatial scales unattainable through 
other observation methods (Randin et al. 2020, Loveland et al. 2022, Wulder et al. 
2022). The emergence of open and up-to-date data has made it possible to address 
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environmental changes at the core of the 21st century climate 
and biodiversity crises by monitoring key biophysical param-
eters across Earth’s surface (Wulder et al. 2022). Vegetation 
greening, defined as a ‘positive trend in vegetation greenness’, 
stands as one the most striking example of human-induced 
change that is historically intertwined with advances in satel-
lite remote sensing (Tucker and Sellers 1986, Piao et al. 2019, 
Shukla et al. 2019). Research from the 1970s revealed close 
connections between the remotely sensed normalised dif-
ference vegetation index (NDVI) and plant photosynthetic 
activity (Rouse  et  al. 1974, Tucker 1979), an insight that 
allowed scientists to monitor changes in vegetation green-
ness at global scales and in areas often challenging to access. 
In a seminal study, Myneni et al. (1997) reported increases 
in vegetation greenness in the Northern Hemisphere using 
coarse resolution satellite observations. Subsequently studies 
revealed with unequivocal result: the land surface has been 
greening over the last four decades at regional and continen-
tal scales (Goetz et al. 2005, Krishnaswamy et al. 2014, Zhu, 
X.  et  al. 2016, Zhu, Z.  et  al. 2016, Anderson  et  al. 2020, 
Myers-Smith et al. 2020, Choler et al. 2021). Recent research 
has used higher-resolution satellite observations due to grow-
ing evidence that vegetation responses are scale-dependent, 
the necessity to better link fine-scale ecological processes to 
remotely sensed patterns and trends, and increased computa-
tion power (Assmann et al. 2020, Berner et al. 2020, Myers-
Smith et al. 2020).

The Landsat satellites are invaluable for tracking variability 
in fine-scale biophysical parameters at climate and ecologi-
cally relevant timescales, thanks to their high spatial resolu-
tion and extensive historical archive (Wulder et al. 2019). This 
holds particularly true in topographically heterogeneous land-
scapes such as mountains, as complex topography compresses 
life zones, thus juxtaposing diverse biological communities in 
close proximity (Choler 2018). The Landsat archive provides 
well-calibrated (Markham and Helder 2012) and precisely 
geolocated measurements (Lee et al. 2004, Masek et al. 2020); 
however, observation availability is highly irregular over space 
and time (Zhang  et  al. 2022), which complicates efforts 
to monitor biophysical parameters across Earth’s surface 
(Berner et al. 2020). Over the past four decades, the quan-
tity of usable observations collected by the optical sensors on-
board Landsat satellites has drastically varied (Arvidson et al. 
2006, Goward  et  al. 2006, Ju and Roy 2008, Kovalskyy 
and Roy 2013, Wulder et al. 2016, Zhang et al. 2022). For 
instance, Landsat 5, launched in 1984, faced communication 
issues due to equipment failures in 1988 and 1992, limiting 
acquisitions to times when the satellite was in direct view of 
an international ground station. With the 1999 launch of 
Landsat 7 two satellites operated simultaneously, allowing for 
eight-day coverage, though this was hampered by scan line 
corrector (SLC) failure in 2003, causing data gaps amounting 
to approximately 22% of the scene area. Additionally, Landsat 
7 adopted a long-term acquisition plan resulting in the collec-
tion of at least one clear scene for each season globally every 
year (Arvidson et al. 2006). In 2013, with the decommission-
ing of Landsat 5 and the launch of Landsat 8, two satellites 

again collected imagery, both under efficient acquisitions 
plans. Observations are expected to increase even more with 
Landsat 9 as it is the first time in the Landsat era when two 
satellites are concomitantly operating without technical fail-
ures. Overall, the frequency of usable Landsat observations 
has varied, with fewer observations in the 1980s than in recent 
decades, and strong spatial variations due to cloudiness or 
snow (Zhang et al. 2022). Figure 1 illustrates spatial and tem-
poral variability in available clear-sky and snow-free Landsat 
observations data from 1984 to 2021 in Landsat Collection 2 
for summer months (June, July and August, referred to as the 
growing season) over the European Alps.

Due to their inherent seasonal variability, the character-
ization of biophysical parameters is affected by the sampling 
frequency of observations. The shorter the duration of the 
phenomena (i.e. seasonality), the greater the need for fre-
quent sampling to obtain relevant measurements (Mallat and 
Hwang 1992). This is particularly true in seasonally snow-
covered Arctic and alpine ecosystems, where the occurrence 
of peak standing biomass represents a brief period during 
the growing season, making the probability of capturing its 
full extent dependent on observation frequency. Vegetation 
greenness trends are typically estimated using single-rule 
maximum compositing algorithms applied annually through-
out the time series (Holben 1986, Qiu et al. 2023). However, 
with the Landsat time series showing increased sampling 
frequency over time, recent years are more likely to capture 
the peak of greenness (Berner et al. 2020). The widespread 
availability of Landsat data on cloud-computing platforms 
like Google Earth Engine has exposed a broad user base to 
this issue, underscoring the need for better understanding of 
its mechanisms and potential consequences on environmen-
tal studies. Although the concept of this maximum NDVI 
sampling bias is acknowledged and methods for its correc-
tion have been proposed (Karlsen et al. 2018, Berner et al. 
2020, 2023, Wang et al. 2022), demonstrations to date have 
focused only on the relationship between the estimated maxi-
mum NDVI and the number of observations (Berner et al. 
2020, 2023). Nevertheless, no studies have thoroughly evalu-
ated or quantified how the maximum NDVI sampling bias 
impacts the magnitude of greening trends, the factors influ-
encing its magnitude, and the potential consequences on 
our understanding of plant dynamics. This raises three key 
questions: how does maximum NDVI sampling bias affect 
Landsat-based greening trend estimates? Also, what param-
eters influence the magnitude of this bias and to what extent? 
Which plant communities are most affected and to what 
extent may this lead to misleading interpretation when com-
paring changes in plant communities? This paper addresses 
these questions in the case of the European Alps.

Data, methods and analysis

Our analysis is structured in three parts, each corresponding 
to a research question, with the complete procedure described 
in the Supporting information.
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Quantification of false greening trends over the 
European Alps using Landsat

Answering question 1 (in what ways and to what extent does 
NDVImax sampling bias impact the estimates of Landsat-
based greening trends?) requires characterizing the 1) under-
lying vegetation phenological curves and 2) scenarios of 
Landsat usable observations over the European Alps, for 
which we used MODIS and Landsat datasets, respectively. 
To summarize the procedure described in this section: 1) the 
daily NDVI time series from MODIS allows us to obtain a 
precise phenology; 2) we then use this phenology to sample 
NDVI values from the Landsat time series observation den-
sity; 3) from these NDVI values, we derive the maximum 
NDVI for each year; and 4) we calculate the 38-year trend 
in these NDVImax values. Assuming that Landsat provides 
one observation per day, we would consistently capture the 
same NDVImax from year to year, resulting in no detected 
trend. Therefore, obtaining an NDVImax slope in this case 
amounts to measuring the effect of sampling density alone 

on the NDVImax trend. This entire procedure is repeated for 
each of the three vegetation clusters.

To characterize vegetation phenology, we used the 250-m 
resolution eight-day composite of MODIS MOD09QA/
Terra collection six products over the entire European 
Alps (n = 1  076  872 pixels). MODIS has daily acquisi-
tion which enables a more in-depth characterisation of 
land surface phenology in comparison to Landsat with its 
coarser temporal resolution. Acquired dates spanned from 
18 February 2000 to 27 December 2021. We assembled 
tiles h18v4 and h19v04 to cover the entire mountain range 
and reprojected red (RED) and near-infrared (NIR) sur-
face reflectance values for high quality pixels (according 
to the MOD09QA quality control flag) and calculated 
NDVI according to (NIR-RED)/(NIR+RED). We lim-
ited the analysis to pixels with non-forested land cover 
classes, tree cover density below 5%, elevation above 1500 
m, and an NDVImax above 0.1 (Fig. 2A). To do so, we 
employed the 25-m resolution digital elevation model 
and the 100-m resolution tree cover density of year 2018 

Figure 1. Spatio-temporal distribution of clear-sky and snow-free Landsat observations during the growing season in the European Alps. (A) 
Sum of observations from 1984 to 2021 for the entire European Alps as defined by the Alpine Convention (www.alpconv.org). Landsat 
paths are shown in black stripes. (B) Mean number and standard deviation of clear-sky and snow-free Landsat observations during the 
growing season from 1984 to 2021 within and outside overlapping tiles. (C) Distribution of clear-sky and snow-free Landsat observations 
during the growing season along an elevation gradient for the three Landsat periods (Landsat 5 TM only, Landsat 5 TM and 7 ETM+ 
combined, and Landsat 7 ETM+ and 8 OLI combined) differentiating between zones within and outside overlapping tiles. The C Version 
of Function of Mask (CFmask) was applied to define the attributes of the pixel qualities, which identified each pixel as clear (land/water), 
snow, cloud, adjacent to cloud, or cloud shadow (Zhu and Woodcock 2012). Elevation was obtained using the 25 × 25 m resolution 
EU-DEM resampled to the Landsat grid of 30 × 30 m resolution using bilinear interpolation. See the Supporting information for similar 
analysis in the Arctic tundra and Asian mountain ranges. 
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(https://land.copernicus.eu/pan-european/high-resolu-
tionlayers/forests/tree-cover-density). For each remaining 
pixel (n = 546  273), we merged all years into one annual 
time series to obtain a median representation of vegetation 
phenology. We then processed the raw NDVI time series 
in two steps. First, we used the best index slope extraction 
(BISE) algorithm to reduce the noise of the NDVI time 
series (Viovy et al. 1992) applied a low-pass filter using the 
Savitzky–Golay algorithm (Savitzky and Golay 1964). We 
then interpolated daily NDVI using the spline method. For 
representation purposes only, we implemented a partition-
ing around medoids (PAM) model for n = 30  000 NDVI 
time series using a number of K = 4 clusters (Fig. 2). Cluster 
1 was discarded because it exhibited high NDVI values dur-
ing the winter season, likely due to the presence of forest 
or tall shrub patches. Increasing the number of prescribed 
clusters led to intermediate phenologies and did not signifi-
cantly enhance the clarity of results displayed. The model 
was then used to calculate the distances between medoids, 
and the entire dataset and each pixel of the European Alps 
was assigned to the closest medoid. We interpreted the three 
vegetation clusters as early, intermediate, and late snowmelt 
sites based on their elevation distribution and growing sea-
son length and used these terminologies hereafter (Fig. 2C). 

For each cluster, we fitted a seven-parameter double logistic 
(DL) function (Supporting information). We employed DL 
models instead of MODIS-NDVI time series to mathemat-
ically characterize these phenologies, thereby increasing the 
reproducibility of our analysis based on a widely used phe-
nological model. The R package ‘Cluster’ was used to assign 
pixels to clusters (Maechler et al. 2022). The fitting was per-
formed using the GENOUD (GENetic optimization using 
derivatives) algorithm implemented in the ‘rgenoud’ pack-
age (Mebane and Sekhon 2011).

To quantify the actual availability of Landsat observations 
over time, we extracted annual time series of the number 
of clear-sky and snow-free Landsat observations during the 
growing season (OBSGS) from GEE by applying the CFmask 
to remove snow, clouds, and cloud shadows from Landsat 
5 TM, 7 ETM+ and 8 OLI images (Collection 2) between 
day of year (DOY) 152–243 (Zhu and Woodcock 2012) 
over the European Alps. Annual time series of OBSGS were 
applied to a simulated Landsat acquisition sequence with an 
acquisition every eight days over a year to obtain annual time 
series of NDVImax. For instance, if a pixel had three observa-
tions available during a given year, then we randomly drew 
three daily MODIS NDVI values from the acquisition dates 
between DOY 152 and 243 and computed the maximum 

Figure 2. (A) Spatial distribution of phenological clusters in the European Alps with inset maps over the Lautaret Pass, France. Non-
coloured areas represent areas that did not match criteria for inclusion. (B) Raw, and interpolated MODIS-derived NDVI time series for a 
random point in the European Alps with indication of phenological metrics extracted for the analysis. (C) Full lines represent daily inter-
polated MODIS-derived NDVI time series for early (black), intermediate (red), and late (blue) snowmelting sites obtained from PAM 
clustering. Dashed lines represent the corresponding seven-parameters double logistic fits. Shaded curves represent pixel curves.
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NDVI values. Because the phenological data were distributed 
on a 250-m resolution grid while Landsat observations were 
distributed on a 30-m resolution grid, we systematically used 
the Landsat pixel landing on the centroid of the MODIS 
pixel to associate both datasets without resampling.

To confirm the asymptotic relationship between OBSGS and 
NDVImax initially observed by Berner et al. (2020), we ran-
domly sampled a gradually increasing number of observations 
(from 1 to 8) during the growing season (DOY 152–243) and 
estimated the NDVImax for each scenario. This allowed us to 
compute the discrepancy between the estimated NDVImax 
and the ‘true’ NDVImax obtained from the DL model fit to the 
daily MODIS NDVI timeseries. This procedure was repeated 
for the three phenological clusters to test the impact of phe-
nological variation on NDVImax sampling. We evaluated the 
impact of changing the starting date (resulting in seven possible 
chronosequences with the first day being day 1, 2, 3, … 7) and 
the revisit time before sampling (4, 8 or 16 days) on the gener-
ated Landsat observation time series and found no impact on 
the results (Supporting information). We also performed the 
analysis using quantile metrics (median, q75, q80 and q90) 
instead of maximum to derive annual vegetation greenness 
in order to test for similarity in the sampling bias behaviour. 
Specifically, we tested the nine methods to compute quantiles 
as listed in Hyndman and Fan (1996). Finally, we tested for 
the effect of randomizing observation dates compared to using 
the actual DOY for every observation. More details on these 
analyses are available in the Supporting information. 

To address our first question, we generated annual NDVImax 
time series by creating a 38-year stable (i.e. no trend) NDVI 
time series for each of the three vegetation clusters (absence of 
NDVImax trends by sampling true NDVImax). The 38-year 
stable NDVI time series was obtained by simply repeating the 
same annual NDVI phenology curve 38 times. Then, we sub-
sampled each NDVI time series using the annual time series 
of OBSGS, and then calculated temporal trends in NDVImax 
based on subsampled time series. Trends in NDVImax, here-
after referred to as absolute ‘false trends’ (aβF), were estimated 
using the Theil–Sen parameter. We relied on a simple Theil–
Sen slope estimator to determine the magnitude of temporal 
trends because those methods are robust against outliers and 
widely used by the community despite acknowledgements that 
there is issue of temporal autocorrelation (Ives et al. 2021). In 
addition, as we are focusing solely on slope estimation and not 
p-values, temporal autocorrelation is not expected to be an 
issue in our analysis. Because there was no trend in the true 
NDVImax time series, we know that aβF estimates are solely 
the result of variation in OBSGS and phenology. In addition, we 
computed the relative (rβF) as a measure of importance of aβF, 
using the following formula:

r a
NDVImax

nF
F� �� �

�
�

�
�
��

�

�
�

�

�
��100

with n as the number of years in the time series (n = 38) and 
NDVImax depending on the true NDVImax.

Phenological and observational drivers of spatial 
variability in the magnitude of false trends

To answer question 2 (which parameters are driving the mag-
nitude of false trends, and to what extent?), we extracted 100 
time series of NDVI and 100  000 time series of OBSGS from 
datasets described in section ‘Quantification of false greening 
trends over the European Alps using Landsat’ and computed 
aβF for each combination (n = 10  000  000 estimates of aβF). 
Time series of NDVI (phenological curves) were obtained 
by clustering n = 30  000 NDVI times series into K = 100 
clusters as described in section ‘Quantification of false green-
ing trends over the European Alps using Landsat’. We used 
100 clusters instead of four in order to increase the gradi-
ent of phenological curves on which to compute our model. 
We used this approach instead of directly using random time 
series of NDVI to reduce noise and obtain a larger number of 
representative phenologies for mountain vegetation growing 
season length in the European Alps. We extracted the onset 
and offset (defined as the first and last date of the year when 
the NDVI amounts 50% of the NDVImax) which was used 
to obtain the growing season length (GSL) (Fig. 2B). We 
summarized time series of annual OBSGS by its sum (ΣOBSGS ,  
as presented in Fig. 1). As a result, we obtained a list of aβF 
as a function of the following predictive variables: GSL and 
ΣOBSGS , which we used to build a random forest regression 
model, with R2 as a measure of performance (Breiman 2001). 
We measured the relative variable importance using the per-
centage of increase in accuracy through out-of-bag approach. 
Then, we used partial dependence plot to show the marginal 
effect the two variables have on aβF. 

False trends and its relative importance along 
environmental and floristic gradients

To answer question 3 (how false trends are distributed along 
elevation and floristic gradients?), we extracted the GSL and 
ΣOBSGS  for every pixel and used the random forest regression 
model described in section ‘Phenological and observational 
drivers of spatial variability in the magnitude of false trends’ 
to obtain aβF at the scale of the European Alps and inves-
tigate its spatial distribution. We derived rβF from aβF as 
described in section ‘Quantification of false greening trends 
over the European Alps using Landsat’. We computed the 
actual Landsat-based greening trends from 1984 to 2021 to 
quantify the relative importance of false trends compared to 
observed trends. To do that, we aligned reflectance measure-
ments from Landsat 8 OLI to Landsat 7 ETM+ using the 
correction method described by Roy  et  al. (2016a). Also, 
we applied the c-factor approach to correct for bidirectional 
reflectance distribution function (BRDF) effects (Roy et al. 
2016b). We estimated the yearly NDVImax and com-
puted vegetation greenness trends (βNDVImax) as described 
in section ‘Quantification of false greening trends over the 
European Alps using Landsat’. Finally, we computed the 
relative importance of false trends ( RI Fβ ) using the follow-
ing formula: 
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We displayed the distribution of GSL, ΣOBSGS , aβF, rβF, 
βNDVImax, and RI Fβ  along an elevation gradient from 1500 
to 2800 m a.s.l. In addition, we used the floristic sur-
veys database from the French National Alpine Botanical 
Conservatory (CBNA) comprising n = 21  934 vegetation 
plots, from which we selected those above 1500 m a.s.l., with 
a geolocation accuracy < 20 m and which was sampled after 
1990, resulting in n = 11  114 plots distributed in the French 
Alps. We conducted a similarity-based cluster analysis on 
the whole floristic datasets. Distances among plots were esti-
mated with the Euclidean binary distance based on presence/
absence data. For the clustering, we used the PAM algorithm 
with K = 12 and interpreted corresponding habitats based 
on the 20 most frequent species, capturing habitats ranging 
from alpine snowbed communities to the forest ecotone. We 
extracted all metrics described above for the 12 clusters and 
displayed their respective distribution.

Results

NDVImax sampling biases cause false greening trends

We confirmed that estimates of NDVImax depend on OBSGS 
following an asymptotic relationship with the magnitude of 

the underestimation for low number of observations being 
related to the phenological curve (Fig. 3a) as initially shown 
by Berner  et  al. (2020). For example, with one observa-
tion, NDVImax was underestimated by an average of 30% 
for late snowmelting sites and 11% for early snowmelting 
sites. We found similar results using quantile metrics instead 
of maximum NDVI with a clear asymptotic relationship 
between the underestimation of vegetation greenness and 
OBSGS (Supporting information). We tested nine methods 
to compute quantiles with none resulting in a diminution 
of the sampling bias (Supporting information). In addition, 
we found that the randomization of observation dates led to 
slight overestimation of the sampling bias compared to using 
the actual observation DOY, but with no redhibitory con-
sequences on the main analysis (Supporting information). 
We applied the 38-year time series of OBSGS over pixels from 
early, intermediate, and late snowmelting sites and evaluated 
how NDVImax sampling bias affects greenness trends esti-
mates (Fig. 3B–F). Estimates of NDVImax varied from year 
to year simply because of the variation in OBSGS Fig. 3B–D). 
Because OBSGS increased over time (Fig. 1, 3B–D), the sys-
tematic underestimation of NDVImax decreases over time, 
leading to positive NDVImax trends (aβF) that vary in mag-
nitude depending on the timing of snowmelt (Fig. 3E). At 
the beginning of the Landsat time series, early snowmelting 
sites averaged OBSGS = 3 (Fig. 3B), whereas late snowmelting 
sites averaged OBSGS = 2. Therefore, the early snowmelting 

Figure 3. (A) Relative underestimation of NDVImax as a function of the number of usable observations during the growing season. Each 
dashed line depicts the median bias for a specific profile of snowmelting sites, while the shaded area depicts interquartile ranges. (B–D) 
Represent estimates of average annual maximum NDVI time series based on the number of usable Landsat observations during the growing 
season for early, intermediate, and late snowmelting sites, respectively. Histograms represent time series of OBSGS. (E–F) Represent the 
resulting magnitude of absolute and relative false trends respectively for early, intermediate, and late snowmelting sites.
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were less affected by the NDVImax sampling bias (Fig. 3A), 
resulting in less underestimation of NDVImax and thus lower 
false trends (βF = 0.00025 NDVI year−1 versus βF = 0.00054 
NDVI year−1). In term of relative false trends (rβF), late snow-
melting sites had an average increase in NDVImax of 7.5% 
due only to the variability of OBSGS over time compared to 
only 2% for early snowmelting sites (Fig. 4F).

Observation density and phenology co-drive the 
magnitude of false NDVImax trends

We managed to explain 96% of variance in aβF using ΣOBSGS  
and GSL as predictor variables in a random forest regression 
model with a root mean square error of 9.24 × 10−5 [8.29 × 
10−5 to 9.81 × 10−5]. We found ΣOBSGS  was slightly more 
important than GSL (%IncMSE of 1.5 × 10−7 and 1 × 10−7 
for ΣOBSGS  and GSL, respectively) (Fig. 4A). Within the GSL 
and ΣOBSGS  range of values (100–170 and 50–300, respec-
tively), aβF magnitude varied asymptotically from 0 to 0.0015 
NDVI year−1 with higher magnitudes obtained with short 
growing season and limited observation density (Fig. 4B).

Higher false trends in late snowmelting ecosystems

GSL decreases almost linearly with elevation, ranging from 
almost 200 days at 1500 m to 110 days at 2800 m, while 
ΣOBSGS  shows a similar pattern but with an abrupt break 
point at approximately 2300 m and value ranging between 
150 observations at 1500 m to 70 observations at 2800 m 
(Fig. 5A). Random forest model regression was used to esti-
mate aβF for the entire European Alps between 1500 and 
2800 m a.s.l. As a result, aβF increases steadily with eleva-
tion up to 2300 m (aβF < 0.0005 NDVI year−1) where it 

accelerates until 2600 m, reaching a value of almost 0.001 
NDVI year−1 (Fig. 5B). Because NDVImax decreases with 
increasing elevation, rβF is limited until 2400 m (rβF < 5%) 
then increases linearly with elevation (rβF = 13% at 2800 m, 
Fig. 5B). Observed trends in NDVImax at the scale of the 
European Alps show high magnitudes between 2200 and 
2400 m (βNDVImax = 0.0029 NDVI year−1), and lower mag-
nitudes at 1400 and 3000 m (βNDVImax = 0.0017 and 0.0012 
NDVI year−1, respectively) (Fig. 5C). We found the relative 
importance of false trends increases linearly with elevation 
from 10 to 20% between 1500 and 2400 m, where it accel-
erates with a relative importance of 20–50% between 2400 
and 2800 m (Fig. 5C). The median ranges of GSL for flo-
ristic clusters span from 127 [119–137] to 166 [151–182] 
for north-exposed alpine screes (cluster 2) and forest ecotone 
(cluster 12), respectively, and ΣOBSGS  ranges from ranges 
from 128 [103–163] to 225 [182–265]. Cluster 3, 4, 6 and 9 
GSL and ΣOBSGS  ranged intermediately (Fig. 6A). Variability 
in GSL and ΣOBSGS  among plant communities resulted in 
variability in aβF with median values ranging from 0.0004 
NDVI year−1 [0.0002–0.0007] for north-exposed alpine 
screes to 0.0002 NDVI year−1 [0.0001–0.0003] for forest 
ecotone (Fig. 6B). It led to RI Fβ  up to 30% [12–50] for 
north-exposed alpine screes while only of 8% [5–12] for for-
est ecotone.

Discussion

Our study shows the increasing availability of Landsat obser-
vations over the historical record affects annual summaries 
of vegetation greenness in seasonally snow-covered environ-
ments, leading to false greening trends that confound efforts 

Figure 4. (A) Variable importance of ΣOBSGS , GSL, NDVImax, and Peakiness from a random forest regression model based on the measure 
of mean decrease in accuracy. Explained variance (measured as R2) is given above with its interquartile range. (B) Bivariate partial depen-
dence plot for aβF with the two most important predictive variables (ΣOBSGS  and GSL).
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to understand multi-decadal vegetation responses to climate 
change, particularly in climate-sensitive, high-alpine envi-
ronments. Specifically, we confirmed that annual estimates 
of maximum NDVI systematically increase with the num-
ber of available observations per growing season, as previ-
ously shown for the Arctic (Berner et al. 2020, 2023), while 
further showing that other annual metrics (e.g. median 
NDVI) are similarly affected. Focusing on the European 
Alps, we then demonstrated how the increasing availabil-
ity of observations over the past four decades led to false 
greening trends associated with the sampling biases and, 
moreover, that the magnitude of these false greening trends 
was highest in areas with the lowest observation density 

and shortest growing season length. For instance, almost 
50% of the observed greening trend in high-elevation 
alpine grasslands was due solely to this effect, though this 
effect was less pronounced in lower-elevation forest ecotone 
communities. Annual metrics of vegetation greenness are 
increasingly being derived from Landsat data (Bayle et  al. 
2022, Rumpf et al. 2022); however, our study underscores 
that caution is needed when deriving and analysing annual 
metrics of vegetation greenness using these satellites. To rig-
orously quantify multi-decadal changes in vegetation green-
ness, and likely other biophysical parameters, it is necessary 
to account for the effects of changes in observation avail-
ability throughout the Landsat record. 

Figure 5. Distribution of (A) growing season length (GSL) and sum of growing season observations (ΣOBSGS ). (B) Absolute (aβF) and rela-
tive (rβF) false trends and (C) observed trends (βNDVImax) and relative importance of false trends ( RI Fβ ), along elevation gradient ranging 
from 1500 to 2800 m a.s.l.

Figure 6. (A) Distribution of floristic plots (n = 11  114) along GSL and ΣOBSGS  gradients with median cluster position shows as black 
points. Ranges correspond to interquartile ranges. Only clusters used in (B) are shown in (A) to improve clarity. (B) Distribution of aβF, rβF, 
βNDVImax, and RI Fβ for north-exposed alpine screes (2), grassy snowbeds (3), dense subalpine grasslands (4), sparsely vegetated grasslands (6), 
shrublands (9), and forest ecotone (12).
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Implications for relating greening trends to 
ecological processes

Arithmetically derived estimates of annual maximum NDVI 
are impacted by sampling bias, leading to false greening 
trends in subsequent time series analyses. Consequently, 
by not considering the effect of sampling bias, the ecologi-
cal interpretation of the greening observed by Landsat turns 
out to be partly erroneous. For example, when compared 
to the actual greening observed based on our computation 
and those of Rumpf et al. (2022) (Supporting information), 
the false trends might correspond to more than 50% of the 
observed greening in the alpine zone (> 2400 m a.s.l.) of the 
European Alps. This might explain why Rumpf et al. (2022) 
found a significantly higher proportion of surfaces were 
greening (77%) compared to previous studies (55%) that 
used MODIS satellites (Choler et al. 2021). Nevertheless, it 
is crucial to note that our demonstration in no way calls into 
question the overall greening of the European Alps, repeat-
edly demonstrated by several satellites and in many different 
contexts (Carlson et al. 2017, Bayle 2020, Choler et al. 2021, 
Rumpf et al. 2022, Bayle et al. 2023, Dentant et al. 2023), as 
the absolute values of the false trends we obtained are system-
atically lower than the trends observed without correction 
(Fig. 5, Supporting information). 

Growing season length and Landsat observation avail-
ability are the two parameters influencing the magnitude 
of the false greening trends (Fig. 4), while exhibiting spatial 
variability (Fig. 5). In complex terrain, vegetation phenol-
ogy is highly variable over short distances because of vary-
ing snow cover duration, thus the difficulty of capturing the 
true seasonal maximum NDVI can also vary over short dis-
tances (Dedieu et al. 2016, Choler 2018). In addition, the 
number of usable observations over the growing season var-
ies along these same gradients. During the growing season 
in the European Alps, cloud cover affects an average of ~ 
25% of Landsat observations, but up to 50% at the high-
est elevations (Hu et  al. 2019). Furthermore, usable obser-
vations tend to decrease with increasing elevation because 
of poorly performing cloud masks that erroneously assume 
similar temperature from all clear-sky observations in one 
image, resulting in misclassification of cold surfaces as clouds 
(Qiu et al. 2017). High-elevation alpine ecosystems are par-
ticularly affected by false greening trends because of the late 
snowmelt dates and limited observations, while also being 
among the most threatened by climate warming (Engler et al. 
2011, Gottfried  et  al. 2012, Steinbauer  et  al. 2018). One 
of the most striking examples is that of snowbed commu-
nities, which are particularly sensitive to climate and snow 
cover regime changes (Hiller et al. 2005, Schöb et al. 2008, 
Matteodo et al. 2016) and strongly affected by false greening 
trends (Fig. 6). Monitoring these endangered habitats is cru-
cial to guide conservation policies, yet long-term surveys are 
generally lacking. Landsat time series are an ideal candidate 
for tracking the long-term response of these habitats. Yet, we 
showed that not accounting for NDVImax sampling bias 
and resulting false greening trends could have detrimental 

consequences for understanding changes that are occurring 
in these habitats (Fig. 6). Beyond snowbed communities, 
which represent an extreme case in terms of bias magnitude, 
the increase in bias magnitude with elevation might limit our 
ability to study the upward migration of warm-adapted spe-
cies (i.e. thermophilisation) using the Landsat time series, 
as greening at higher elevation compared to lower elevation 
could be solely explained by the bias (Gottfried et al. 2012, 
Rosbakh et al. 2014, Dentant et al. 2023). 

Our study did not consider the possibility of long-term 
increases in growing season length or reductions in snow 
cover, which could increase the number of usable observa-
tions and lead to better estimates of NDVImax at the end 
of the Landsat time. Over recent decades, climate change 
has led to longer growing seasons throughout the Northern 
Hemisphere (Jeong et al. 2011, Park et al. 2016, Piao et al. 
2019). In cold regions, many studies have highlighted the 
reduction of snow cover duration during recent decades 
with various magnitudes depending on the region and eleva-
tion (Brown et al. 2010, Callaghan et al. 2012, Hernández-
Henríquez  et  al. 2015, Mudryk  et  al. 2020). For example, 
the Eurasian Arctic region experienced larger declines in the 
duration of the snow-covered period (12.6 days), compared 
to the North American Arctic region (6.2 days) between 1982 
and 2011 (Barichivich  et  al. 2013), though both changes 
could affect the magnitude of false greening trends (Fig. 5). 
For global mountains, shortening of the snow cover duration 
is observed across elevations albeit with various magnitudes 
(Immerzeel  et  al. 2009, Klein  et  al. 2016, Beaumet  et  al. 
2021, Notarnicola 2022, Monteiro and Morin 2023). This 
additional temporal and spatial variability in changing snow 
cover duration and growing season length is expected to add 
complexity that was not accounted for in our analysis.

In this study, we evaluated false and observed greening 
trends based on linear changes over the entire Landsat period. 
However, recent studies show high temporal variability in 
NDVI trends, with phases of greening, stability, and even 
browning (Phoenix and Bjerke 2016). While overall greening 
has been observed during the last 40 years on a global scale, 
there is pronounced spatial variability and local reversals 
towards browning seem to be increasingly observed in part 
due to air temperature approaching or exceeding its optimum 
for vegetation and increasing moisture limitation (Keenan 
and Riley 2018, Huang et al. 2019, Winkler et al. 2021). In 
cold regions where Landsat is the most relevant tool to study 
these patterns (Ju and Masek 2016, Berner et al. 2020, Berner 
and Goetz 2022), local reversals from greening to browning 
have been documented (Phoenix and Bjerke 2016). These 
observations tend to push research towards further consid-
eration of the temporal heterogeneity and non-linear trends 
in vegetation greenness dynamics (Wolkovich  et  al. 2014, 
Vickers et al. 2016, Bayle et al. 2022). 

The Landsat history of increasing observation is itself non-
linear and occurred mostly at two moments, when Landsat 
7 ETM+ and Landsat 8 OLI came into operation in 1999 
and 2013, respectively. Therefore, changes in the sampling 
bias likely occur non-linearly within the Landsat observation 
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period. Bayle et al. (2022) studied the temporal heterogene-
ity of Landsat-based greening trends while not accounting 
for the sampling bias in northeastern Canada, and found the 
occurrence of two distinct waves of greening, centred around 
1996 and 2011. Both waves occurred at these Landsat transi-
tion periods, and while the first one was found to be highly 
correlated with rising summer temperatures, leaving little 
doubt to its ecological relevance, the second was not. Over 
their study site, ΣOBSGS  is approximately equal to 125 with 
GSL of 100 days, which suggests the presence of non-neg-
ligible NDVImax sampling bias (Fig. 4, 6). Given that the 
trend of the second greening wave (βNDVImax = 0.0075 NDVI 
year−1) was close to the average bias magnitude of 0.001 
NDVI year−1 found under these conditions in the European 
Alps (Fig. 4), it is possible that the result did not reflect eco-
logical change on the ground and instead was caused solely 
by increasing observation availability. This specific case is an 
example of how, if unaccounted for, this bias hampers our 
ability to interpret and understand ongoing ecological pro-
cesses using remote sensing approaches.

False trends consideration for cold ecosystems 
worldwide

While our study focused on the European Alps and above-
forest alpine vegetation, the combined effects of increased 
Landsat observation availability over time and short grow-
ing season length is found in cold ecosystems worldwide 
(Zhang et al. 2022). At a biogeographical scale, variation in 
Landsat observations comes from the combined effects of 
Landsat history (e.g. SCL failure) and topoclimatic patterns 
(see the Supporting information for Arctic and Asian moun-
tains ranges example). For instance, the north American 
subarctic has particularly high observation density in the 
1990s compared to other adjacent subarctic regions that 
have similar values as observed in the European Alps (Fig. 1, 
Supporting information). Nevertheless, the North American 
subarctic shows contrasting patterns with higher observation 
frequency in the inner Canadian Plains compared to Alaska 
or Nunavik. This spatial variability is attributable to several 
local factors. For example, Alaska suffered from the data relay 
problem and limited tasking before 1999 (Goward  et  al. 
2006), while two ground receiving stations were in full opera-
tion in Canada (White and Wulder 2014), resulting in sig-
nificant differences in observation availability (Ju and Masek 
2016). At the same time, continentality affects cloud cover 
distribution, resulting in limited observations in, for example, 
Nunavik (Supporting information). Similar to alpine ecosys-
tems, growing season length varies drastically along latitude 
and topography gradients in subarctic to high Arctic regions. 
Because the Landsat time series has increasing observation 
over time with large spatial variability in its magnitude, these 
underlying patterns could explain part of the spatial variabil-
ity in Landsat-based vegetation greening trends. The AVHRR 
satellite time series also has inconsistent observation numbers 
over time (Dech et al. 2021). Hence, it is possible that differ-
ences between the Landsat and AVHRR satellites in spatial 

patterns of vegetation greening across North America (Ju 
and Masek 2016) could partially be due to satellite-specific 
changes in observations availability over time. In the moun-
tains of Asia, there are very few observations at the beginning 
of the time series, whereas at the end of the series the number 
is equivalent to that of the other cold ecosystems presented 
(Supporting information). Thus, the trends in the increase 
in the number of observations are much more acute, sug-
gesting a potentially greater bias. Furthermore, in certain cli-
matic contexts, such as the Austrian Alps, higher cloud cover 
can coincide with peak vegetation, making it more difficult 
to capture NDVImax than in the southern Alps. Although 
our analysis focused on the European Alps, the mechanisms 
behind the emergence of false trends (increasing number of 
observations over time, low observation density, and short 
growing season length) can be found throughout the cold 
ecosystems of the Northern Hemisphere (Fig. 1, Supporting 
information). Overall, spatial variability in observation and 
phenology lead to spatial variation in the sampling bias 
magnitude and importance, which might hinder our under-
standing of spatial variability in greening trends (Myers-
Smith et al. 2020). 

Corrections or solutions proposed in the literature

The effects of sampling bias on phenological metrics like 
maximum NDVI can be addressed by either an avoidance 
or a correction strategy. While the sampling bias is expected 
to affect all terrestrial surfaces because of global patterns of 
increasing image availability over time (Fig. 1, Supporting 
information), we have shown that it only becomes a serious 
problem in certain cases (Fig. 5, Supporting information). For 
example, several studies have limited their analysis to years 
with sufficient observations (Frost et al. 2014, Carlson et al. 
2017, Raynolds et al. 2018, Dentant et al. 2023), while oth-
ers limited the study areas to overlapping tiles (Fraser et al. 
2011). If skewed surfaces cannot be avoided, i.e. above 
2400 m in the European Alps (Fig. 6), corrections have to 
be considered. Correcting for the bias means reconstructing 
or constructing missing information from information avail-
able elsewhere, a field in which the literature is flourishing. 
According to Shen et al. (2015), reconstruction approaches 
can be classified into three categories depending on the 
additional information used: 1) spatial-based methods, 2) 
spectral-based methods, and 3) temporal-based methods. In 
our case, as the missing information is often outside satellite 
acquisitions, the first two methods are generally ineffective. 
Temporal reconstruction can either be based on subsequent 
information, assuming regular chronological fluctuation 
(Chen et al. 2004, Beck et al. 2006, Viovy et al. 2007), or 
additional information, using data fusion methods (Gao et al. 
2006, Zhu, X. et al. 2016, Zhu, Z. et al. 2016, Li et al. 2021, 
Qiu et al. 2021). In the first case, a Landsat-based temporal 
interpolation approach first fits a time series model to the 
original Landsat NDVI data and then predicts NDVI val-
ues on regular temporal intervals (Kovalskyy and Henebry 
2012, Melaas et al. 2013, Zhu et al. 2015, Yan and Roy 2020, 
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Zhang et al. 2021). This approach was used by Berner et al. 
(2020) to correct for NDVImax estimation before comput-
ing trends in vegetation greenness across the Arctic. They 
developed a phenology-based approach by modelling the per 
pixel land surface phenology over a 17-year moving period 
to predict annual NDVImax and demonstrated the effec-
tiveness of the correction. This approach has been effectively 
used with other spectral indices, e.g. EVI2, kNDVI (Berner 
and Goetz 2022), and is implemented in the ‘LandsatTS’ 
software package for R (Berner  et  al. 2023). In the second 
case, Landsat spatiotemporal fusion with another satellite of 
coarser spatial resolution but higher temporal resolution is 
a popular technique for reconstructing Landsat NDVI time 
series (Moreno-Martinez et al. 2020, Chen et al. 2021). In 
complex landscapes only MODIS could provide adequate 
spatial resolution, but data are not available before 2000. 
AVHRR products have too coarse a resolution and have been 
shown to be of limited use in correcting the bias, even in a 
forestry context (Wang et al. 2022). With the openings of the 
SPOT World Heritage archives in 2015, these non-system-
atic acquisition products might offer interesting possibilities 
to densify NDVI time series before applying a temporal filter 
(Barrou Dumont et al. 2023).

Conclusion

In this study, we quantified the effect of increasing Landsat 
observations availability on estimates of vegetation green-
ness trends during recent decades. We showed the increases 
in observation availability over time can lead to strong false 
greening trends when using maximum observed NDVI as 
a metric of annual vegetation greenness. The magnitude of 
these false trends are a function of observation density and 
growing season length, and while we focused on the European 
Alps, our analysis strongly suggests this methodological issue 
also affects other cold seasonally snow-covered ecosystems 
worldwide. Although we focused on vegetation greenness in 
seasonally snow-covered environments, this sampling bias 
can also likely create false trends in other biophysical param-
eters with seasonal variability such as the extent of the snow 
cover, flooded areas, and burnt areas, and hence warrants fur-
ther investigation. We urge the scientific community to take 
this bias into account, or at the very least, to question their 
stationary conditions of seasonality and observation density 
prior to calculating and interpreting Landsat-based trends.
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