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Abstract

In order to design a road de-icing device by heating, we consider in a two
dimensional setting the optimal control of an advection-diffusion equation with a
nonlinear boundary condition of the Stefan-Boltzmann type. The problem models
the heating of a road during a winter period to keep positive its surface tem-
perature above a given threshold. The heating device is performed through the
circulation of a coolant in a porous layer of the road. We prove the well-posedeness
of the nonlinear optimal control problem, subjected to unilateral constraints, set
up a gradient based algorithm then discuss some numerical results associated with
real data obtained from experimental measurements. The study, initially devel-
oped in a one dimensional simpler setting in [1], aims to quantify the minimal
energy to be provided to keep the road surface without frost or snow.

Keywords: Optimal control, Non linear advection-diffusion equation, Unilateral
constraint, Road heating, Energy, De-icing



1 Introduction

1.1 Context

Winter road operations are an important issue in many countries. Although road de-
icing agents remains the most widely used solution, road heating systems can be used
at certain critical points of the road network (slopes with trucks traffic, bridges, access
to hospital emergency services, etc.). Different types of heating systems are deployed:
electromagnetic induction heating thanks to steel wool fiber, electric heating, infrared
lamps above the road surface, circulation of a heat transfer fluid in pipes inserted in the
road [2-4]. " The use of pavement as a source of heat to recover energy and melt snow
is a technique used in several countries and real systems have been deployed all around
the world e.g. in Europe [5], Japan [6] and United States [7]. The pavement heating
systems using pipes in which a heat transfer fluid circulates need power between 320
W/m? and 600 W/m?, which is less than that required by electric heating (500 W /m?
and 750 W/m?) [8, 9]. This new type of heating system is used for pavements, bridges,
pedestrian walkways, airport platforms and heliports [10, 11]. For the winter period,
energy quantities to maintain positive pavement temperature and to thaw the road
depend on the climate, and more precisely on the parameters: wind speed, outside
temperature, presence of snow or not and intensity of snowfall. Climate data vary
from country to country and from year to year. The determination of the energy
quantities is therefore relative. According to the international literature review, the
heating power ranges between 160 and 1200 W/m? [11-13]. According to studies of
bituminous hydraulic systems manufacturers using tubes, it can be concluded that the
performance of these systems depends on the parameters of flow rate, pipe spacing,
depth and tube diameters. For the road heating, several models for snow melting
systems using pipes have been developed to treat the complexity of surface snow
conditions [14, 15]. They predict the transient surface conditions and temperatures
including the extent of snow cover. The model developed in this paper does not take in
consideration the presence of snow cover. One time snow fall, it will be instantly melt
by surface heat flux since we adapt the temperature of the injected fluid to keep the
road surface temperature above 0°C. Simulation model and experiments have shown
high performance of such hydraulic systems using tubes to defreeze road surface using
renewable energy but tubes are subjected to mechanical constraint caused by traffic
circulation. In this work we are interested in a road heat exchanger obtained by the
gravitational circulation of a heat transfer fluid in a porous pavement without the use
of pipes inserted in the road [16, 17]. More precisely the pavement structure studied
is composed of three asphalt layers where the central one is a highly porous draining



asphalt through which circulates a fluid (water) via gravitational flow under slant
effect. We refer to [1, Figure 2, page 776] for a scheme of the demonstrator.

Very few studies are conducted for this kind of device [18, 19]. In a recent study [20],
the authors initiated modelling works for such devices. An instrumented demonstrator
has been developed by Cerema (Centre for expertise and engineering on risks, urban
and country planning, environment and mobility) in order to study how to build
such a road and to develop thermo-hydraulic models validated from experimental
measurements [20]. This demonstrator is referenced in [21] as one of the 50 worldwide
large-scale demonstrators of hydronic asphalt pavement systems. It is an experimental
roadway constructed in 2014 at Egletons, France. The road with 50 m in length and 4
m in width, with a transversal slope around 2% with no longitudinal slope, is composed
of three layers: a wearing course layer of semi-phaneritic asphalt concrete 0.06 m thick;
a bonding course layer of 0/14 porous asphalt 0.08 m thick; and a base layer of asphalt
concrete with a thickness of 0.05 m (see Figure 1).

Fig. 1 The Egletons demonstrator.

Whatever the technique used (electrical heating, pipes, porous asphalt), the design
of the devices needs to quantify the minimal energy to be provided to keep the road
surface without frost or snow, for a given winter meteorological scenario. This optimal
control based approach is not addressed in the literature. We can mention [1] in which
the authors proposed a method to optimize the heating power needed by a road
to maintain its surface temperature above 0°C during winter. This previous work
considered a 1D road thermic model with a punctual heating source inserted in the
road. This model is well representative of a road equipped with an electrical heating.
We extend in this paper the modeling to a heating device mentioned above and the
inlet temperature of the heating coolant is now the control variable instead of the
heating source considered for the 1D case.

1.2 2D diffusion-advection model

We consider the 2D model of road as described in Figure 2, which corresponds to the
heating device of [1, Figure 2, page 776]. As represented in Figure 2, space variables
are = along the sub-horizontal transversal axis of the pavement with slant angle 5 and



Fig. 2 Schema of pavement structure with its limit conditions (¢ and 0, are respectively the injection
temperature of the fluid and the air temperature).

y along the upwards sub-vertical axis, perpendicular to x. The road is assumed to have
no longitudinal slant and to be infinite in its third dimension. h. and L denote the
height of the road structure and its length respectively. The temperature of the road
is denoted by 0(x,y, t), the hydraulic load by H(z,y,t) and the hydraulic conductivity
by K(z,y,0). We are then interested in the following diffusion-convection system: for
all (z,y,t) in (0,L) x (0,he) x (0,T),
c(x,y)0l (x,y,t) — div (k(z,y)VO (z,y,t)) — div (K0 (z,y,t) VH (z,y,0)) = 0,
{div (KVH (z,y,t)) =0,

(1)
where ¢ and k are positive functions. The first equation of (1) corresponds to the
energy conservation and the second one to the mass conservation and the Darcy’s law.
We consider homogeneous Neumann conditions for the temperature  except for the
upstream condition of porous asphalt layer (z = 0, e; < y < e1 + e2) and the road
surface condition (y = 0). We then have:

050(0,y,t) =0, y€ (0,e1) U (e1 + ez, he), t € (0,T)

0(0,y,1) = q(t), y € (e, €1 + €2), t € (0, T)

0-0(L,y,t) =0, ye (0,h.), t€(0,T) (2)
0y0(x, he,t) =0, z€ (0,L), te (0,T)

[ £(0)0,0(x,0,t) = oe(t)*(x,0,t) — fi(t) + f2(t)0(x,0,t), x € (0,L), t € (0,T)

where f; and fo are defined by:

fl(t) = (]— - A(t))Rg(t) + Ratm(t) + Hv(t)oa(t) - LfI(t)a fQ(t) = Hv(t)' (3)



We introduce the following notations :

c(x,y) : volumic heat capacity of the road material at the point (z,y) (J.K~*.m™3),
E(zx,y) : thermal conductivity of the road material at the point (z,y) (W.K~t.m™1),
e, A : emissivity and albedo of the road surface,
o : Stefan-Boltzmann constant (5.67 x 1078 W/m?K*?),
Ratm, Ry : atmospheric and global radiation (W/m?),
0, : air temperature (K), H, : convection heat transfer coefficient (W/m?K),

I : snowrate (mm.s™ '), L; : latent heat of fusion of the ice per kg (J.kg™').

Boundary conditions for the hydraulic load H are only given on the boundary of
(0,L) x (e1,e1 +ea) since it is assumed that K = 0 outside of (0, L) x (e1,e1 +e3) (the
fluid circulates in the second road layer). We impose homogeneous Neumann condition
(hydraulic tightness) except for the upstream and downstream boundaries:

4
OyH(z,e1,t) = 0yH(z,e1 +e2,t) =0, z € (0,L), te(0,T), @

{H(Oa Y, t) = Hl(t)vH(Layvt) = 0; Yy E (ela e + 62)7 te (OvT)a
where H; represents the hydraulic load imposed upstream of fluid circulating in
porous draining asphalt layer. We assume a saturated fluid circulation with a con-
stant hydraulic conductivity K in the second layer: the second equation of (1) leads
to AH = 0 and then:

v _ Hi(t) .
(x,y,t) € (0,L) x (e1,e1+e2) x (0,T), 0 H(x,y,t) = I O0yH(z,y,t) =0. (5)
For physical reasons, a saturated circulation implies that for all ¢ € (0,T), Hy(t) = SL
for some 8 > 0. Eventually, introducing the following notations:
Q=(0,L) x (0,he), ¥y = (0, L) x {0}, (©)
Ec = {O} X (61,61 + 62), Ed = {L} X (61,61 + 62)7 Zf = (O,L) X {he},

the temperature 8 = 6(z, y,t) in the four layers road occupying the domain € satisfies
the following boundary value problem:

C(x7y)at0 - dlv(k'(x,y)VH) + KHlT(t)]-(el,el-Fez)(y)amg = Oa Q x (0 T),
EVO-v =0, (OO\(Zp U ) x (0,T),
0=q, 5. % (0,7), (7
k(x,y)0,0 = ae(t)0* — f1(t) + f2(1)0, ¥ x (0,7),
6 = 6y, Q x {0}.




q is the temperature of the injected fluid inside the road through the part .. The ini-
tial temperature 6y is defined as the solution of the following boundary value problem

—div(k(z,y)Vbp) = 0, Q,
kVOy-v =0, ON(Zp uE. U Xy),
o = qo, Y, (8)
k(x,y)0,00 = 02(0)05 — f1(0) + f2(0)6o, b,
o = s, Xy,

where the soil temperature 6, is given and assumed time-independent.

1.3 The optimal control problem

Our goal is to find the optimal inlet temperature g(-) over the time interval (0,T) cor-
responding to a minimal consumption of heating energy and allowing to maintain the
surface temperature 6(x,0,-) above a minimal prescribed temperature §. We assume
that the temperature g of the injected fluid on Y. is positive and constant with respect
to the variable (z,y). We then define the heating energy Ej, as the energy loss by the
coolant between its entrance to the road, at z = 0 and its exit at x = L, that is:

T e1+e2
By = O f o(t) f (q(t) — B(L,y. 1)) dy dt (9)

0 el

where v(t) = %ﬂt) for all t > 0 and Cy is the volumetric heat capacity of water.
a™ := max(a,0) denotes the positive part of any real a. We consider the positive part
to calculate the spent heating energy without taking into account a possible energy
retrieving by the fluid.

The corresponding optimal control problem is the following one :

1 «
inf J, here J,(q) := = E} —lg:)3
et (@) where Jo(q) := S Eji(@) + Slatlz=0,m)
subjected to q(0)=¢qgo>0, ¢g>0inte[0,T],

0=0 on ¥, x (0,T), 6 =20(q) solves (12);

(10)

a > 0 is a regularizing parameter to ensure the control ¢ to be regular enough which
is of interest in practice. We also emphasize that the initial value gy of the control ¢
is related to the initial temperature 6y solution of (8).

In Section 2, we perform the mathematical analysis of the direct problems (7) and
(8). The well-posedness is first obtained for the intermediate systems for the which
nonlinear term 6% is replaced by [0]|26. Monotinicity and fixed point arguments are
employed (see Lemma 1 and Theorem 1). Then, assuming that the inlet temperature



q is positive, we prove a maximum principle and get that the former solution is indeed
positive so that the systems coincide (see Theorem 2). We also prove that the map ¢ —
6 is Lipschitz continuous (see Theorem 3), a regularity property used for the analysis of
the optimal control problem (10). Section 3 is devoted to the study the control problem.
We first prove that the the functional J is strictly convex (see Lemma 5) and then
that the problem (10) admits a unique solution (see Theorem 4). Eventually, we prove
that a penalized/regularized approximation J, ¢, defined in (40) of the cost J, has
a directional derivative (see Proposition 8) leading to a minimizing sequence (¢*)en
defined in (44) in term of an adjoint problem. Section 4 discusses some numerical
experiments while Section 5 concludes and provides several perspectives.

To our knowledge, few works have addressed optimal control problem involving
nonlinear boundary condition. We mention [22] where an optimal control problem for
the heat equation with a nonlinear boundary condition of the form d,u = g(u, f)
is studied; the function ¢ is assumed locally Lipschitz continuous, strictly monotone
increasing in u and decreasing in f. Existence and uniqueness of weak solution are
obtained with the Leray-Schauder theorem and maximum principles. We also mention
[23] where a one dimensional nonlinear boundary control problem occurring in heat
conduction with a boundary condition governed by the Stefan-Boltzmann law is stud-
ied; the law (similar to the one considered in [1]) writes: d,y(t, 1) = —y*(¢, 1) + u(t),
t > 0 where the control u is assumed in [0, 1] for all ¢ > 0. The existence and unique-
ness of positives solutions is proved as well as optimal controls (so as to minimize
the state y at time 7" > 0). In this simple 1D setting, integral representations of the
solution using Green’s function are employed. More recently, we mention the works
[24, 25] for some related studies.

2 Analysis of the boundary value problems (7)-(8)

We define the spaces V = {v € H}(2), v = 0on X.} and V; = {v e H}(Q), v =
0 on ¥, U X¢} both endowed with the scalar product and the norm of H*(().
In the sequel we assume the following regularity properties on the data:

ke L?(Q), inf k(z,y) = ko > 0,0,k € L*(Q), 0 =0,

ce LOO(Q),ilsllfc(x,y) =c¢y >0, H;eL*®0,T),H >0,

ce WhH(0,T), inf € =g > 0, (11)
(0.7)

fleHl(OvT)u fl 207 fQEWLOC(OvT)? f2 207
qe H'(0,T), q(0) = go > 0.

The analysis of (7) and (8) relies on a monotonicity argument: we first replace in (7)
the nonlinear term * by |6]30 and in (8) the nonlinear term 63 by |6o|>6p and then
show that if ¢ is non-negative, then 6y and 6 are non negative as well on Xy.



2.1 Intermediates problems and monotonicity argument

We consider the following boundary problem: find 8 solution of

c(x,y)0:0 — div(k(z,y)VO) + v(t)1 (e, ey 4es)(¥)00 = 0, Q% (0,7),
kVO-v =0, (OO\(Zp U X)) x (0,T),
0=gq, 3. x (0,7),
k(z,y)0,0 = ae(t)|0]°0 — f1(t) + f2(1)0, ¥y x (0,7,
0 = 0y, Q x {0}
(12)
where 6 is, for any real 6, > 0, solution of
—div(k(z,y)Véy) = 0, Q,
kVoy -v =0, ON(Zp U X, U Xy),
1 o = qo, e,  (13)
k(z,y)0,00 = 0(0)|60[*00 — f1(0) + f2(0)80, By,
6o = 05, Y.

Lemma 1. For any 05 > 0 and qo = 0 there exists 0y € H'(Q) unique solution of
system (13). This solution satisfies 6y = 0 a.e. in Q. More precisely, the following
properties hold :
e Let any | = 0 small enough such that oe(0)I* + f2(0)l — f1(0) < 0. If go =1 and
0s =1, then 6y =1 a.e. in Q.
e Let any 1 > 0 large enough such that oc(0)I* + f2(0)l — f1(0) = 0. If o <1 and
0s <1, then 6y <1 a.e. in Q.

Proof. Existence of a solution. By linearization and fixed point method. Let 50 €
H(Q). We are looking for 8y € H'(£2) solution of

— div(k(z,y) V) = 0, Q,
kvl - v =0, OO\(Zp U B, U B5),
b = qo, e, (14)
k(w,y)2y00 = 02(0)[6o]60 — f1(0) + £2(0)fo, S,
0o = 05, .

Let g : [0, he] — [0,1] be a smooth cut-off function with support in [e; — n,e; +
ea +n], g =1 on (e1,e; + e2) and h : [0,h.] — [0,1] a smooth cut-off function
with support in [h, — 7, h.] for some 1 > 0 small enough, A = 1 on (h — 7,h). In
order to get homogeneous Dirichlet boundary conditions, we introduce the variable

~

0o = 0y + g(y)qo + 05 h(y) . Then, since g(y)qo + s h(y) = 0 on a neighbourhood of



%, 0y = fo on a neighbourhood of 3, and therefore 6y € H!(Q) is solution of (14) if
and only if 0§, € H*() is solution of

vl ) 98) = & (Ko (o) +0.1), ). 0,
kVl,-v =0, ON(Zp uE.uXy),
Q(] = 07 Ea (15)
k(x,y)0,00 = 02(0)[00]00 — f1(0) + £2(0)8,, S,
QO =0, Ef
where 670 = Gvo —g(y)qo — 05 h(y) € V4, that, for all v € V3, is solution of
K98, Vot (=(O)Fal8y — £10) + £20)8) vde =~ | K(a.w) (oo 0. h(w), 20
Q = Q
(16)

Let then a : Vi x Vi = R, (u,v) — §,kVu- Vo + Sgb (‘76(0)\§o|3 + fz(())) uv de.
Since f2(0) =0, €(0) = &9 >0, 0 =0 and k > ko > 0, we get that

Ja(u, v)| < k] =@ lulvi [vlvi +o2(0)180]Zs () Il s 2oy 0] L3 (24) + f2(0)[ul 2wy 0] L2

< C (Kl (o) + 0e(0)[b0] 705,y + f200)) lulvalvlve,  V(u,v) € Vi x Vi

using since 2 = R? that the injection vo(V1) — L5(0S2), where 7o : u — ulaq, is
continuous. Similarly, we get that a(u,u) > kollu|}, for all u € Vi. Consequently, the
Lax Milgram theorem implies the existence of 8, € V; unique solution of (16), which
is the weak solution of (15) with the estimate

6ol < ,jo(k@,y)(g(y)qo 0By ey + hi/2|f1<o>|). (17)

We define V5 = {v € HY5(), v = 0on X, U Xs}. Then we have, since V5 —
HY5(R), (see [26, Théoreme 9.4, page 47])

70(Vjs) = HYF12(00) = HY/10(60) — L7(69).

In the sequel, we always denote yo(u) = u and therefore vo(Vy/5) = Vas.

Let A : Vys — Vys, b 6, where g, € V1 is the unique solution of (16). Then A is
continuous. Indeed, let (§g)neN be a sequence of V5 and @0 € Vy/5 such that 5{; — §0
in Vy/5. Let us prove that 0y = A@B?) — 0, = A(Bp) in Vis. From (17), (0 )nen is a
bounded sequence of V7 and thus there exists a subsequence, still denoted by (8()nen
and 6, € V; such that 0 — 6, weakly in V;. Since V; — L3(X}) is compact, 07 — 6,



in L5(3), and passing to the limit in (16) we obtain, since 6 — 8 in L?(3) that 6,
satisfies, for all v e Vj

| #9000 [ (o=@, ~ 10) + £2(0)8) vdo =~ [ ke ) oW 0. b
Q

o Q

that is g, = A(@O). This solution being unique, the whole sequence (87)nen weakly
converges to ¢, in V; and since Vi < V5 is compact, 8y = A(0f) — 0, = A(bo)
in Vy5. Thus A is continuous. Moreover, A(V}) = K; = {u € Vi, [ufy, <
é (Hk(m, Y)(9(W)qo +0s h(y))ylr2(0) + hé/z\fl (O)|)} is a compact convex subset of V5.

thus, from the Schauder fixed point theorem, there exists @0 € V1 solution of

J kV@O -Vou + J (U€(O)|§0|3§0 — fl(O) + fQ(O)é\o) vdx
Q P
-~ | ke tatin + o hwae wei (8)

and thus 6y = 0o + g(y)qo + 05 h(y) € H' () is a solution of (13).

Uniqueness of the solution of (13). Let 63,62 € H'(Q) be two solutions of (13).
Then 0y = 0} — 62 is solution of

—div(k(z,y)Vby) =0, Q,
k(z,y)Vby - v =0, ON(Zp U Ee U Xy), (19)
0y =0, Yeu Xy,
k(z,y)0,80 = o<(0)(|65°05 — 1051°65) + f2(0)60, .

Multiplying (19)-1 by 6y and integrating by part, we get
| W80+ [ o=t 183185 6300 + 220N =
Q pITY

Since for all (a,b) € R2, (Ja]*a — [b]*b)(a — b) > 0, the term of the left-hand side
(1651765 — 1651°65)(65 — 63) = 0 and thus §, k[V6o|* + §s. f2(0)[6o]*> < 0. Therefore,
since f2(0) =0, k > 0 and 6y € Vi, we get that 6y = 0, that is 6} = 62.

10



Proof of 0y > [ a.e. in Q) if moreover 0, > [, qo > [ for any [ such that
oe(0)I* + f2(0)l — f1(0) < 0. Let 6y = 0y — 1. Then 6 is solution of

— div(k(z,y) V) = 0, Q,
k(z,y) Vo - v =0, 20\(p U Be U Ty),
9o = qo — 1, Y., (20
k(x, y)aygo = 0¢(0)[60[60 — f1(0) + f2(0)6o, i,
00 = 0, — 1, 5.

Let 5(; be the negative part of 8. Then 5(; e H'(Q2) and since 0o =0,—1>0o0n Xy
and 50 =qo—1!>0o0n X, we get 5(: =0 on X, u X¢. Multiplying (20) by 5(;, we get

f KV, - Vo, = f |V, |2 = f (f1(0) — o<(0)[60[200 — f2(0)60) G,
Q Q Xy

< [ (WO - =1~ £00)F,
3p

since 5(; = 0 if 0y = [, from which we get, since f1(0) — a(0)[I]’1 — f2(0)I = 0 that

So k|V0, |2 < 0 and thus 6, = 0 (since k > 0 and 0, € V}), that is 6y > L.
The other statements are obtained in a similar way. O

Theorem 1. Let g € H*(0,T), q(0) = qo and 6y € HY(Q) be the unique solution of
(13) associated with qo given in Lemma 1. Then there exists 0 € H(0,T;L?(2)) N
L*(0,T; HY(2)) unique solution of system (12).

Proof. As in the elliptic case, in order to get a homogeneous Dirichlet condition on
Y., we perform te change of variable 8 := 6 — g(y)q(t) where g : [0,h.] — [0,1] is
a smooth cut-off function with support in [e; — 1, e + e + 1] for some 1 > 0 small
enough, g = 1 on (ej,e; + e3). 6 solves

c(z,v)0:0 — div(k(z,y)V0) + v(t)l(eheﬁ@)(y)am@
= —c(z,9)9(¥)a: + q0y(k(z,y)gy), Qx(0,T),
kVO-v =0, OO\(Zp U ) x (0,T),
=0, . x (0,T),
K(,1)2,0 = a0 — 1u(2) + Fa(0), % x (0,7),
8(0) = 6o — g(y)q0 = bo, Q x {0}.
(21)

The change of variable does not affect the condition on ¥ since g = 0 on Xy

11



The existence of § € H(0,T; L?(2)) n L*(0,T; H(Q2)) is obtained for instance
using the Galerkin method and monotonicity arguments (see [25]). From the regularity
of g(y)q(t) we deduce that 0 = 0 + g(y)q(t) € H(0,T; L*(Q)) n L®(0,T; HY(Q)) is
solution of (12). In the rest of the proof, we provide only some estimates for 6.

Estimate in L*(0,T; L*(Q)) n L*(0,T; HY(Q)).

Since the term

div(k(z,y)VO) = c(2,9)040 + () Ley e1+e0) 1) 00 — c(z,y)g(y)ar + a0y (k(x,y)gy)

is in L2((0,T) x ), multiplying (21-1) by § and integrating over 2 x (0,t), we get :

S0+ [ 1oy [ ooes [ [ g [ [ cetope -

1 _ _ _
sVl + [[[ 50 [ [ conatuad+ [ ] s sinm

But

¢ t _o\ 1/2 oL 1 i vl
2

f t@‘éLl/zi 2(0, JJ 0 < — i 4JJ\k002

JO \ 1( ) H 1HL (0 T)( 05, ) ko HJlHl?(O,Z) 0 | ‘

where y/a corresponds to the embedding constant from H'(Q) into L?(%),

c(z,)9(y)ab| < llcglr2)llael r20,m 100 20,6 x )

s 2 2 1 ij 712
< — - k|Vo
o legll 72 lalzz20,m) + 1 JoJg Vol

where /B corresponds to the Poincaré constant (0] r2(0.4)x0) < vVBIVO|r2(0.6)x2)2),
and

(Ko 00)8] < 10,5200 Lol 20 Pl 0010
B oy k@, )g0) o a2 + + [ [ KV
< o y R\, Y)9y) Il L2 ()19l L2 (0,1) 4J,)q

which gives, for some constant C' > 0

T T
Meu%m,w(mﬁf J KV + J f oe(®)F® < Vel — 9)a0) ey
0JQ 0J3, (22)

C C C
+ kT)Hfl ||2L?(0,T) + ?OHCQH%Z(Q) H%Hiz(om + kaH@y(k(:v,y)gy)Him) HQH%Z(O,T)'
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Estimate in H'(0,T;L?(2)) n L*(0,T; H(Q)).
We also have, multiplying (21)-1 by ;6 and integrating over Q x (0,t) :

e1+eo L t 1 t _
JJ c|o.0* + Jk|V0| J JJ 0,00,0 J f10:0 + = f f20:]0]?
Xy
JJ oc|0200,0 = — f J c(z,y)g qt6t9+JJ q0y (k(z,v)gy)0:0 + = f k|V0]?(0).
>

But, a.einte (0,7T)

f P = [ a0~ [ 0Bl - j (R

0J%,

— — % _
|, 2080 < Ufelieiomy [ Bol? < o elleor [ KB
2y PN 0 p

and
(h < [(F2)el e oy f f 812 < all(f2)el ooy f f V2
< 21l j f KB,
ko oJa
We write
t . . . t
f f@ad= | nwa- [ £©6- f (f1)i(r)
0Jx, > P 0JX
and
a 1/2 il ﬂ 2 YR
F1(0)00) < L= frllzo 0y 100l 2y < - MfilLe o,y + | KIVOO[,
>N 0 Q
n n 1/2 N2 1/
£108] < il [ 161 < VAL il ooy ([ 1V9P)
b ¥ Q
al 9 1 — 9
< SNy + 5 | WO
Similarly,

f1)ell72 Lfkve?
0] < Ll + [ [ 190

13



We also have

fbeos 7)|01°00,8 = JJ oe(1)8,8)°

1
5
2| estmro -1 [ oo -1 [ [ o

1 t _
| < Sladisom | | ostobl
€o 0JY,
K |[vlz=0,m) 2,
ST  koco Lf KIveI" + jfc|6t9|

”\/Eg||L2(Q) lqe HL?(O,T) H\/EatgHL?((o,t) x Q)

and

oey(T)

0Js,
Eventually, we get

e1+eo

0.00:0

‘jf c(r,y)g qtat

1 -
< Vel alaom + 1 | | clod?

and
[ [ atvtae.1)08] < 10,0562l i 1081000
< L0, (k) g) 2o I +1f 1292
S o lov T Y)9y) 2 @)1l 0,1) T 3 (QC tv]-
Thus

1] J Aol + 1 || VIR j O+ f o=(t)[7I°

K ol
<<L Phetoth oo +1) [ 998 + oledson [ ostrpre

aL 3 —
+ Ul + ol il + Gl felumom + 3) | V)

1 — 1
+ 202(0) j ol + Vg @yl Faqo,m) + 180 k(900 oy a1 0.
' (23)
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leading for all ¢ > 0, since H'(0,T) < L*(0,T) and 6 = 0 — g(y)q(t) to

fJ clo.0|? +J kv (t) + f2(t)|0)? +J oe(t)|0]°
0J0 Q Ty

PN

< (WAl + [ Bol® + i + el
” (24)
for some constant C' > 0 which depends on the norm of the data fo, ¢, v, etc.
Uniqueness of 0 € H*(0,T; L*(Q)) n L*(0,T; H*(Q)) solution of (12).

Let 01,0, € HY(0,T; L*(Q2)) n L*(0,T; H*(Q)) be two solutions of (12). Then 6 =
01 — 0y € HY(0,T; L3(Q)) n L*(0,T; H'(2)) is solution of

c(x,y)0:0 — div(k(z,y)VO) + v(t)1 (e, ey tes)(¥)020 = 0, Q% (0,7),
kEVO-v =0, ON(Zp U ) x (0,T),
=0, 2. x (0,7),
k(z,y)0,0 = ae(t)(|01°01 — |62]%02) + f2(1)0, ¥y x (0,7,
=0, Q x {0}.
(25)

Since div(k(z,y)V0) = c(z,y)00+ K01, ()8, € L2((0,T) x Q) we have
for all ¢ € (0,7, multiplying (25-1) by 0 and integrating over 2 x (0, 1) :

SV Doy + | [ 90R [ | v+ [ e
t oeT 131* 232 1 —Ub2)=U.
+” () (0,76, — |02°02)(61 — 62) = 0

But for all (a,b) € R?, (|a]3a — [b]*b)(a — b) = 0 and thus, since fo >0, >0,¢> 0
and k > 0, 0 = 0 that is #; = 05. O

2.2 Maximum principle

In the following, we denote
H(0,T) = {qe H'(0,T),q(0) = q0,q(t) >0 Vte (0,T)}. (26)

Theorem 2. For any g€ H}(0,T), let 0 be the solution of (12) given in Theorem 1.
Then 0(-,t) = 0 for allt € (0,T) a.e. in 2. More precisely, we have :

e Let anyl > 0 large enough such that qo < 1,05 <1 and oc(t)l* + fo(t)l— f1(t) = 0
for allt € [0,T]. If q(t) <1 in (0,T), then 0(-,t) <1 for allt € [0,T] a.e. in Q.

e Let anyl = 0 small enough such that qo = 1,05 =1 and oe(t)l* + fo(t)l— f1(t) <0
for allt € [0,T]. If q(t) =1 in (0,T), then O(-,t) =1 for allt € [0,T] a.e. in Q.

15



Proof. Let 0~ be the negative part of 6. Then 6~ € H'(0,T; L3(Q)) n L*(0,T; H'())
and since § = ¢ = 0 on X, we get 6~ = 0 on X.. Multiplying (12) by 6~, we get

e1tez
J c@t99_+J kV&-VH‘—FJ 0(t)0,0 e—+f (02()|020 — f1(t) + f2(1)8) 0~ dw = 0
Q Q

el pN
from which we get, a.e. in (0,7,

1d
1) o2 +fmvwﬁ+f
2 dt ESOR S

PR

v(t)(07)? +J (0e(t)]|0%10 + f2(1)0)0~ = |  f1(t)0~

Eb Zb

and then, for all ¢t € (0,7")

1 _ 9 t . t N
Ve (Ol + [ | e ]

t —)2 —\2 ‘ _ 1 _ 5
+LLb(Ua(7)|93I(9 )=+ fa(7)(07) ):J . fi(r)o~ + 5”@9 (0)]2(0.

0
Using that f; =0, fo = 0,v>01in (0,7), ¢ > 0, k > 0 and according to the first part
of Lemma 1 that 6y > 0, it follows that the negative part of the solution 6 vanishes
a.e. in ) for all t € (0,T). The second statement is obtained in a similar way (we refer
to the proof of Lemma 1). O

Remark 1. The last item in Theorem 2 shows that the system has a minimal positive
temperature as soon as the control q is large enough.
Let f : R — R the real function be defined by f(r) = ar*+br—c with a,b,c > 0. It is

easily seen that the unique root of f satisfies min ((i)l/l"7 2%) < R < §. Recalling that

the function e, f1 and fo are uniformly positives and continuous in [0,T], we consider

g(t) := min((;;lg(z))l/él, 2?2(8)) te[0,T]

and define G := minyeo, ) g(t) > 0. The second item of Theorem 2 implies that if
0s = g(0) and q(t) = g(t) in [0,T] then 0(-,t) = g(t) for all t € [0,T] a.e. in Q.
This leads to a minimal temperature depending on the time variable and also to a
simple command law : we refer to [1, section 5.5] for some related discussions in a 1D
sttuation.

Eventually, we emphasize that the previous analysis does mot prove that an arbi-
trarily large temperature can be achieved as soon as the injected temperature is
arbitrarily large: this property, physically intuitive, has been observed in our numerical
experiments.

Theorem 3. The map T : q — 6 is Lipschitz continuous from H}F(O,T) onto
L*®(0,T; L3(2)) n L2(0,T; H' (). More precisely, let ; be the solution of (12) asso-
ciated with the data (0, q;) given in Theorem 1 and let @ = 6, — 02, ¢ = q1 — g2 and
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0 =0—g(y)q(t) where g : [0,h.] — [0,1] is a smooth cut-off function with support in
[er —n,e1 + ex + 1] for some n > 0 small enough, g =1 on (e1,e1 + ea). Then, for all
t=0andp=0orp=2:

|\9|\§;20TLM(Q)+JJ k|VOPR 6P + = JJ k[o|P=2|v (92 +ff )|0[+?
t
" f parfor + | f oe () A7
0J%,

(HUHLw(O T) + HCQHitfz ) + Hay(k(%y)gy)Hiﬁz(Q))HQH%% T)
(27)
with the convention that pgégﬂ k|§|p*2’V|5|2‘2 =0ifp=0.
Moreover, if g, € H}(0,T) — q in H*(0,T) asn — o then T (gn) = 6, 2T (q) =
in HY(0,T; L2(2)) n L*(0,T; HY(Q)).

Proof. We have that § = 0; — 65 € H'(0,T; L*(Q)) n L*(0,T; H'()) is solution of

c(z,y)0:0 — div(k(z,y)VO) + v(t)1(e, e;+es)(¥) 020 = 0, Qx (0,7,
kEVO.-v =0, (0Q\(3p U 2,)) x (0,T),
0 =q, e x (0,7,
k(z,y)0,0 = ae(t)(0F — 03) + fa(t)0, S x (0,7,
0 =0, Q x {0}.
(28)
As in the proof of Theorem 1, 6 := 6 — g(y)q(t) solves
(c(2,y)040 — div(k(z,y)VO) + v(t)1(c, ¢, +)(y) 0l
= —c(2,9)9(y)a: + g0y (k(x,y)gy), Q% (0,7),
kVO-v =0, (0O\(Zp U X)) x (0,7,
g=0, e x (0,7),
k(z,y)0,0 = ae(t) (0] — 03) + fa(t)0, ¥ x (0,T),
0(0) =0, Q x {0}.
(29)
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Since div(k(z,y)V0) € L2((0,T) x ), multiplying (29-1) by 0|0|" (p = 0 or p > 2) we
get for all ¢ € (0,7, integrating over £ x (0,t), that

p+2J |0|p+2 ff ACE V(9|9|p p+2JLd L|9|p+2 J-J fo(r |9|p+2
+ f L oe(7)(0F — 63)0)0)

e1+e2 P
T v [ (- ctomatiia + a0y o)L
(30)
But, if p > 2

ﬂg kYT -V (3[07) = f:jﬁ KB a + LtL kAP [a2).
Since # = 0 on X, the last term of the left-hand side is on & :
(01 — 05)0 = (07 — 03) (61 — 02) = (61 — 92)2(9% +03)(01 + 62)
and since 67 = 0 and 65 > 0, we infer that
01 + 0 =101 — O], 07 +035 =107 — 03] =101 — 02](01 + 02) = |01 — 0]

Consequently, (0] — 03)0|0P = |6, — 62[P+> = |9|P*® and thus, since § = 6 on %y,
t e ¢ 3
|| o=t - ot@p = | [ oxtryiap.
0 Zb 0 Zb
On the other hand,

e1+ez
) 2
J~f g2 < eQHUIILw(o,T)HCIHZEL%O 7 < Clolreo,m) H(J”Z]}t 0,7)

and

(= c(z,9)9(y)a: + g0, (k(z,y)g,))0[6

1
< HGHI;;((O T);Lr+2 Q))f |qt|HCg”Lp+z @ \q|H6’ ( (55 y)gy)HLP+2

< OB o ey (gl o + 10, (b, )9, o2 o) s 0.

< EHG‘|IL):;§(O7T);LP+2(Q)) + C( )(||CgHiﬁz(Q) + Hay(k?(x, y)gy)HZﬂJ_EZ(Q)) HqHZﬁ%o,T)-

Thus, for any e small enough, estimate (30) leads to (27).
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For p = 0, remembering that 6 := 6 — g(y)q(t), we then obtain :

IV L= 0.1y 22 () HIVEV O L2((0.1:L2(2)2) + V00 L2((0.10:22(50)) + IV F20ll 20,1222 (20))

+102) 01 25 (0,125 () < Claler 0.7

(31)
for some constant C' > 0 which depends on the norm of the data fs,¢e,v, etc, that is

T is Lipschitz continuous from H1 (0,T) onto L*(0,T; L*(2)) n L*(0,T; H*(Q)).
Let now (gn)nen be a sequence of HY(0,7) and ¢ € H1(0,T) such that g, — ¢
in H'(0,T) and 6,, and 6, n € N being the solutions of (12) associated respectively
to ¢, and ¢, given in Theorem 1. From (22) and (24) we deduce, since (g )nen is
bounded in H'(0,7) that (6,)nen is bounded in H'(0,T; L?(2)) n L*(0,T; H'(Q)).
Thus there exists a subsequence (6,,)nen and g such that 6,6 in HY0,T; L*(Q)) n
L*®(0,T; H(Q)). Since H'(0,T; L?(Q)) n L®(0,T; H'(Q)) — L>((0,T) x %) is com-
pact, 0 is clearly solution of (12) associated with ¢, by uniqueness, 0 = 0 and all the
sequence (0, )nen Weakly* converges to 6 in H(0,T; L*(Q)) n L®(0,T; HY(Q)). O

3 Analysis of the optimal control problem (10)

3.1 Well-posedness

Recalling that 8 is the minimal prescribed temperature on ¥;, we denote by
C={qge HL(0,T) | T(q)=60=>0 ae on % x (0,7)}.

As a direct consequence of Theorem 2, we have
Lemma 2. If 0 satisfies qo =0 > 0 a.e. in Q and fi(t) — f2(t)0 — oe(t)8*(t) = 0 for
allt € (0,T), then the set C is non empty.

In the sequel, we will assume that § > 0 is small enough. In particular, in view of
Remark 1, if 8; > G, then C is not empty for any 6 < G, achieved with a control ¢
such that ¢(¢t) = G in [0,T].

Moreover, the solution # enjoys a concavity property with respect to the control q.
Lemma 3. Assume q,q€ H.(0,T). For any X € (0,1), let 05 be the solution of (12)
associated with the control function Aq + (1 — X)q and let [0] := A0, + (1 — \)b5 where
0, solves (12) associated with the control q. Then [0] < 6x on Q x (0,T).

Proof. Theorem 2 implies that for all ¢t € [0,T], 6,(t) = 0, 65(t) = 0 and 65(¢) = 0.
From (12), W := 0, — [0] solves, a.e. t € (0,T)

f Wi () + f KVW(t) - Ve — J KW (t) - v + v(t) J+ W =0, VYoeV.
Q Q by

€1
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Taking ¢ = W~ (t), integrating over (0,¢) and using that W (0) = 0, we get

1 i t
ff c|W—(t)\2+fJ k\VW‘|2—JJ EVW - vW ™
2 Q 0JQ 0Jx

¢ (32)
+J ’U(T)J Liey,erten)(W)0WW™ =0, ae.te(0,T).
0 Q

But since H; = 0 and W = 0 on X, we can write that

1ftv( )J Lerorsen) (40| W[2

= JJ W™ (- y, 7)dydr >
3a

On the other hand, since 6y >0, 6, > 0 and 05 > 0

t
J ,U(T)L JQ 1(61,61+€2)(y)6IWW_

0

t
JJ KVW - vW™ = J kKVW - vW—

f L,,“ J(O3 = Ay = (L= XYW~ + f fa(r) W2,

ols,
The convexity of z — 2% leads to [0]*(,0,s) < A0;(x,0,5) + (1 —X)02(,0,5), then to
ai(l’, Oa 5) - [0]4(1'707 5) = 0;1\(‘%, 07 S) - Aag(z707 5) - (1 - A)ag(x707 S)'

Thus, since W~ < 0, we get

t

ﬁ oe(r) (03 — Ny — (1= N)IHW ™ > f oe(T) (63 — [A1HYW .
0J3, Xy

0

But, the right-hand side is exactly (a* — 8*)(a — 8)” = ((a — 5)7)2(042 + ) (a +
B) with a = 0x(2,0,s) = 0 and 8 = [0] = M4(x,0,s) + (1 — N)bz(z,0,5) = 0
leading to Sé §s,, 7e(T) (0% — Mg — (1 = N)05)W~ > 0. Since fo > 0, we also have
So S5, f2(T) W™ |2 > 0. Consequently, (32) gives a.e. t € (0,T) :

1 t t 1 t
o | e @ps [ | Hvw | [ a@mwepeg | [ enwe P ndydr <o
2 Q 0JQ 0J%, 2 0J3g

that is, since ¢ > 0, k > 0 and v > 0, W~ = 0 on Q x (0,7). Thus 6, > [6] on
Q% (0,7). O

Lemma 4. Assume the hypotheses of Lemma 2. C is a closed convex set of H'(0,T).
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Proof. Let ¢,q € C and check that for any A € (0,1), A\¢g + (1 — \)g belongs to C. g€ C
implies that for all ¢ € [0,T], 8,(t) = 8 > 0 where 6, solves (12) associated with the
source ¢. Similarly, 65(t) = 8 > 0. Let 65 be the solution associated with the control
function Ag+ (1 — A\)g and let [0] := A0, + (1 — \)fg. From Lemma 3 we have 65 > [0]
on Q2 x (0,7) and the convexity of C follows. O

Lemma 5. Assume the hypotheses of Lemma 2. For any o > 0, the functional J,
defined in (10) is strictly convex on HY(0,T).

Proof. We decompose J,, as follows J,(q) = J1(q) + Ju,2(q) with

€1 0

T e1+ez 2 T
J1<q>—§<cf | oo <q<t>—9<L7y7t>>+dydt> C Jaale) = o | g

Ja,2 is strictly convex. Let us prove that J; is convex.

For any ¢,q € H1(0,T) and A € (0,1), let ) be the solution associated to the
control function Ag+ (1—A)g and let [0] := A0, + (1 — X)f7. We have previously proved
that 8y = [0] on {L} x (e1,e1 + e2) x (0,T) and thus

A+ (1 =N =0 < Ag+ (L=N7—[0] < Ag—0g) + (1 —A)(q—b)
which gives

A+ (1 =N7—0)" <(Mg—0y)+ (1 —=N)(G—0g)"
SMg—=0) "+ (1 =M@ —6)".

Thus, since for all ¢ € [0,T], v(t) > 0:

T e1tez
0< J vf ()\qu(lfA)QfGA(L,y,t))erydt
€1+€2 e1tez i
J J 04(L,y, )) dydt + (1 — J f *(t) - Qq(L,y,t)) dydt

which implies that J; is convex since z — 2 is convex. O]

Lemma 6. Assume the hypotheses of Lemma 2. J, is continuous and weakly lower
semi-continuous on H(0,T).

Proof. J, is continuous on H? (0,T). Let (g, )nen a sequence of H}(0,T) and g €
H:(0,T) such that ¢, — ¢ in H*(0,7) and 6,, and 6, n € N being the solution of (12)
associated respectively to ¢, and ¢, given in Theorem 1. Then J5(g,) — J2(q).

Moreover from Theorem 3, 6, — 6 in L*(0,7; H'(Q)) and thus 6, — 6 in
L?(0,T; L*(X)). Since for all a € R, a™ = 1(|a| + a), for all g € C:
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J v(t) Jeﬁ@ (q(t) - 9(L,y7t))+dydt

0 €1

1 T e1tes 1 T e1+eo

=5 | e® [ a0 - oyt 5 o) [ () 0Ly
0 €1 0 el

and thus, since v € L*(0,T), Ji(¢n) — J1(q). So Ju(gn) — Ja(q), that is J, is

continuous on H1 (0,T).

Jo, is weakly lower semi-continuous on H i (0,T). Jqo.2 is clearly weakly lower
semi-continuous on H1 (0,T).

Let (¢n)nen a sequence of HY(0,T) and q € H1 (0,T) such that g, — ¢ in H*(0,7)
and 6,, and 6, n € N being the solutions of (12) associated respectively to ¢, and
g, given in Theorem 1. Then from Theorem 3, (6,)neny weaklyx converge to € in
HY(0,T; L*(Q)) n L®(0,T; HY(Q)).

On the other hand, the imbedding H(0,7T;L%*(Q)) n L°(0,T; H'(Q)) —
L?(0,T, L*(X)) is compact, thus 6,, — 6 in L?(0,T, L?(X)). Therefore:

e1+e2

T e1+es n T n
f o(t) f (4n(t) — 6u(L,5,1)) dydtajo v<t>j (a(t) — (L, y,1)) " dydt

0 el el

and thus Ji(g,) — J1(q).
Therefore J, = Ji + Ju 2 is weakly lower semi-continuous on H1 (0, T). O

Theorem 4. Assume the hypotheses of Lemma 2. For any o > 0, the optimal problem

inf Jo(q) (33)

qeC

admits a unique solution.

Proof. J, is strictly convex, weakly lower semi-continuous on C. Since C is closed

and convex, C is weakly closed. Since limyq, , s io ||th%2(O,T) = 400 we have
L Jo(q) = +00. Therefore, H'(0,T) being an Hilbert space, J, admits
a unique global minimum in C. O

In practice, as in [1], the condition 6 > 8 on 3, in C is taken into account through
a penalty method. For any parameter ¢ > 0, we introduce the penalized problem:

Pae) : inf Joe 34
(Pev.e) werilh z T (9) (34)
with
. et 2
Jac®) = Ja@) + S 10 =0 [ ryem,y (3)
a~ = min(a,0) denotes the negative part of any real a.

Theorem 5. For any € > 0, Problem (Pa.) admits a unique solution g..
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Proof. For all ¢ € H{(0,T), let Jo(q) = Ja(q) + J5(q) with J5(q) = %H(G(O, )=
O~ Z2 01y x5

Ja,e is strictly convex on Hi (0,T). It suffices to check that J§ is convex.
Let q,q € H}_(O, T) , 0, be the solution associated with the control function Ag +
(1—X)g and let [0] := A0, + (1 — \)b5. From Lemma 3 0 > [¢] on (0,T") x 3 and thus

6x— 0> [0] — 6 = A6, — 6) + (1— \)(6; — 0)
which gives
(62— 8 < —(AO— 8) + (L= N)(Og — 8)” < ~A(F — )" — (1= Nt~ 0)".

The convexity of z — z? leads to the convexity of J§.

Jo,e is weakly lower semi-continuous on H! (0,7). It suffices to check that J5 is
weakly lower semi-continuous on H1 (0,7).

Let (gn)nen be a sequence of HY(0,T) and ¢ € HL(0,T) such that g, — ¢ in
H'(0,7T); let then 6, = T(gq,) n € N and 6 = T(q) be the solutions of (12) given in
Theorem 1 associated respectively with g,, and ¢. Then we deduce from Theorem 3 that
the sequence (6,,)nen weakly * converges to 6 in H(0,T; L?(2)) n L®(0,T; H*(Q)).

On the other hand, the embedding H'(0,7T;L*(Q)) n L*(0,T; H'(Q)) —
L?(0,T, L*(X)) is compact, thus 6,, — 6 in L*(0,T; L*(X)). Therefore J5(q,) — J5(q)
and thus J, . = J1 + Jo,2 + J§ is weakly lower semi-continuous on Hi (0,7).

Moreover, limjg,, ;. —+o0 Ja,e(q) = +00 since Wm0 o gy =t Ja(q) = +0 .

Eventually, since the set H}(0,T) is a non empty closed convex set of H'(0,T),
we conclude that the problem (P,,) admits a unique solution g.. O

Theorem 6. The unique solution q. of Problem (P, ) strongly converges in H'(0,T)
as € — 0 to the unique solution q of (33).

Proof. If g € C is the unique solution of (33), then ¢ € H1(0,T) and thus, for all € > 0,
Jo,e(qe) < Jue(q) = Jo(q). Therefore, Jy 2(ge) = %H(qE)tH%Q(O;T) < Ju(g) and since
qc(0) = qo, (g¢)c is bounded in H'(0,T). Thus there exists a subsequence (qe,, )nen and
g€ HY(0,T) such that g., — g in H'(0,T). Let us prove that g€ C and g = g.

geC. It suffices to prove that 8 > 6 ae. on ¥, x (0,7). Since ¢, — ¢
in H'(0,7), we deduce from Theorem 3 that T(q.,) = 65 —T(¢q) = 6 in
HY(0,T;L*(Q)) n L®(0,T; H*(2)) and thus that 6, — 6 in L*(0,T; L?(X)). More-

over, sinceffor all n € N, J§5"(qe,) = <—[(0,., — Q)7”%2((O,T)><Zb) < Jae, (e,) <
Ja(@); (“5=[(0g., — 017201y x5) ) nen 18 bounded in L2(0,T;L*(X)), and thus

1(0g., _Q)_H%Z((O,T)XEI)) — 0, which gives | (¢ _Q)_||2L2((0,T)xzb) =0 that is § > 0 a.e.
on Xy x (0,7). Thus g € C.
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g = g¢. Since for all n € N, Jo(qe,) < Jae, (Ge,) < Jae, (@) = Ja(q) and J, is lower
semi-continuous on H3 (0,T), we have J,(q) < liminf,, 4 Ja(ge,) < Ja(g). Thus,

since § € C, Jo(q) = Jo(g) and uniqueness argument gives g = q.

Since 0, — 0 in L*(0,T;L*(¥)) and ¢, — q in L*(0,T), limy—io0 J1(ge,) =
J1(g) and thus T, - 4o Ja2(de,) = 10 o0 (g0 )el3 = Jaa(@) = lgol3. Thus g,
converges in H'(0,7T) to q.

Therefore the whole sequence (g.). converges in H'(0,7T) toward g. Moreover,
in view of Theorem 3, this strong convergence implies the convergence of the cor-
responding solution 6. = T(q.) to the solution § = T(q) in H(0,T;L*(Q)) n
L2(0,T; HY(Q)). O

3.2 Regularization and differentiability of the cost

Proposition 7. For any ¢ € H}(0,T) such that ¢ > 0 and any g € H*(0,T) such
that G(0) = 0, the map T is differentiable at the point q in the direction .

Proof. For any g € H1(0,T) such that ¢ > 0 and any g € H*(0,T), (0) = 0, there
exists 1y such that, for all n € R, |n| < no, ¢ +ng € H1(0,T). We expand the solution
04+ng = T (¢ + ng) associated with the control function ¢ + 1g as follows

T(q+n3) = T(q) +nb + n*6,

where 6 and 0, respectively solves

c(z,y)00 — div(k(x,y)VO) + U(t)l(ehelﬂz)(y)@x? =0, Q% (0,7),
kVO-v =0, (OQ\(Zp U X.)) x (0,7),

0 =1, Ye x (0,7), (36)
k(z,y)0,0 = 40=(1)0:6 + fa(t)0, ¥ x (0,7),
6=0, Q x {0}

and

c(x,y)0:0, — div(k(x,y)V0,) + v(t) (e, e1+e0) () 0ty = 0, Q% (0,7),

kv, -v =0, (0O\(Zp U ¢)) x (0,7,

6, =0, 2. x (0,7), (37)
k(z,y)0y0n = oe(t) fy(t) + fo(t)0n, 2y x (0,7),
6, =0, Q x {0}

with 0, := T (q) and f,(t) = 4630, + 602(0 + 10,)* + 4n0,(0 + 1n6,)* + (0 + n6,)*.
Proceeding as in the proof of Theorem 1, we get that the linear system (36) is well-
posed: the unique solution § € L*(0,T; L?(Q)) n L?(0, T; H'(2)) satisfies the estimate
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T T T
_ _ 52 —2 _
VDI 07120y + J J kIO + J J e (t)[0,°0" + J F2(0)0" < ClglFr 0.7y
0JQ 0J3, 0JX, (38)

This implies that the linear application § — D7 (q)-g := 0 from {ge H'(0,T),q(0) =
0} into L*(0,7T; L?(2)) n L2(0,T; H'(2)) is continuous.

In order to get the announced result, it is sufficient to show that the solution 6,
is uniformly bounded with respect to n in L®(0,7T; L?(2)) n L?(0,T; H*(£2)). First,
from Theorem 3 with p = 2, we deduce that

1= = 1 1=
e (0 + nby )HLOO((O T):LA(Q)) T H\/va + 10y |2||22 (0,T);L2(Q )2) + [loz (0 + 77677)‘|L4((07T);L4(Ed))
+ Hf2 (9 + 779 )HL4((0 T);L4(Z4)) + nt H(UE) (9 + 770 )H[ﬂ( 0,T);L7(Zs)) < C“qHHl(O,T)
(39)
for some constant C' > 0 independent of 7). Then, multiplying the system (37) by 6,
and integrating by parts yields, with ,(-,0) = 0, to, for all t € (0,7T")

t
f\lee )72y + jf k|VO,|? + Jf )|0,]% + J Fa(T) |0, + jJ oe(7)46202
Zd 0 Eb Eb
- JJ oe(T) (693(9 +n0y)? + 410, (0 + 16,)* + n* (0 + 779,7)4) 0,-
3

Using { §y., 0+ noy|* < C 55, [VI0 + 0, 2> and that if u € H() A L*(), then
ue L*(0Q) and |[ul Lo o) < [u|r=(0), we get that, for any € > 0

‘ LL 602 ()62(8 + 16,)6,

t
< 606,112 o1y | J o=(7)(8 + 0620316,

1/2 /2
<6012 (01w (U oe(7)(0 + nb,) ) (U oe( )9392)
2y S
< O|0q|L°G((O,T)><Q)€1fJ (0 +n6,)* +€JJ oe(T)0202
3y >
t
Clecallally o +e | | actrsse:
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Similarly,

fj dnoe(T)0,(0 + nb,)>0,
P

t
B P f J oe(r)(@ + 00,)F (@ + 16,) 316,

< Ol omg( JLbaa @+ n6,) ) (J Eb9+n9 ) (”29)
eq( JLbo—g @+ n0,) ) (j Ebeme ) JLkaQ 2

< Cle i [ [ H90,7
0J3,

We also have

JJ noe(r)(@ + n6,)0,

= UOL oe(T)(0 + 10y)2 (041 ng — 0,)%0,

LLb oe(1)(0 + n6,)?6,

T
< Cleaa.m)llipon +< | | H9o,P
0J3%

< [0g4ng — 911”%‘30((0,T)><Eb)

It follows, for € = i, that

I/t (- \|L2(Q)+H KV, 2+ ” 5)[62+ J F2(5)[6,] +“ oe(s)46367
Ya P31 Zp

< C(q,q,m0),

implying the uniform boundedness of the solution 6, in L%(0,7;L*()) n
L2(0,T; HY(Q)) for 1 small enough. O

In order to apply a gradient method, we consider a regularization of J, ., and
introduce for any r > 1 the functional

1 2

1 a (T € _
Ja,en‘(q) = ?CJ%GT(Qae)Q + *J‘ q?(t)dt+ (H(aoa) _Q) ) (40)
r 2 Jo 2

L2((0,T)xXy)

with a,(q,0) := So t) §s., 9r(a(t) — 0)dydt and g,(s) := (sT)" for all s.
Pr0p051t10n 8. For any q € HL(0,T) such that ¢ > 0 and any g € H'(0,T) such
that §(0) = 0, the functional Ju.er is differentiable at the point q in the direction G,

26



Jo,e,r (@410 —Ja,e,r(9)

and the directional derivative DJy ¢ »(q) - @ = lim, g . 18 given by
T r—1 - T
DJaer(q) -7 = CFar(q,0) f ’U(t)f ((gt) =0)")" (@t) - 0) + Oéf 47,
0 o 0

+e! LTLb 0—0)"6 (41)

where 6 solves (36).

Proof. The directional differentiability of J, . follows for Proposition 7, the fact that
s—((s—8)7)? and s — g,(s) are C}(R) for any r > 1 and ¢/(s) = r(s*) L. O

3.3 Descent direction of the cost

Before to set up a minimizing sequence for the cost, we reformulate the derivative
DJ, ¢ r(¢) into a more explicit form in term of an adjoint solution. Preliminary, we
consider the following simplified cost (still denoted by Ju. e )

2

Jo,er(q) = iLTL ((q(t) - e(s,t)ﬁ)rdsdﬁgf qf(t)dH%

(9('7 0, ')_Q)_

L2((0,T)xXp)
(42)
for which (i) we consider a unit constant in the original first term, (ii) we assume that
the hydraulic load H; (and so v = KHy/L) is time-independent and (iii) we remove
the square in the original first term.
We then introduce the following linear problem : find p solution

. Hq(t
- c(xay)atp - dlv(k(x,y)Vp) - K%l(el,elJr@)(y)amp = 07 Q x (OaT)a
kVp-v =0, (O (Zp U B U 2y)) x (0,T),
4 k(xay)azp = ((*§)+)T717 Xg x (OaT)a
p=0) ZCX (OaT)a
k(z, y)oyp = (o200 + fo)p — (@ - 0)", 3 x (0,T),
p= 07 Q X {T}
(43)

where 6 = 6 — g(y)q(t) is the solution of (21). Proceeding as in Section 2 and using
that @ belongs to H(0,T; L?(0,T)) n L®(0,T; H*(Q)) (see Theorem 1), we get that
problem (43) admits a unique solution in L2(0,T; H(Q)). p is the adjoint variable
associated with 6.

Proceeding for instance as in the proof of [1, Theorem 4.5]), we then get the
following expression for the derivative of the penalized /regularized cost.
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Proposition 9. For any q € HL(0,T) such that ¢ > 0, let 6 be the unique corre-
sponding solution in H'(0,T; L*(Q)) of (21). Let then p be the unique corresponding
solution of (43). For anyge H'(0,T) such that (0) = 0, the derivative of Ju ., at q
in the direction q is given by

T T
DJger(q) = af q:q; + f JQ(C(% Y)9(y)qp + qk(x,y)gyOyp).
0 0

As in [1], this expression of the derivative allows to define a minimizing sequence
for Jy.e,r. More precisely, for any initial function ¢° € HZ(0,T) with ¢°(0) = g and
n > 0 small enough, we define the sequence (¢*)ren by:

"' = Pr+ (¢" — "), k=0 (44)

where ¥ € H'(0,T) such that g*(0) = 0 solves (qk,q)Hl(o’T) = DJy.cr(¢%) - g for all
ge H'(0,T) and where Pg+ denotes the projection operator on R™.

4 Numerical experiments

4.1 Experimental data and initial condition

We use real data obtained from measurements on the French highway A75 in Cantal
(1100 meter altitude) from october 2009 to march 2010. Measurements are made each
hour and allow to compute the time functions f; and f defined in (3). We refer to [1,
Figure 4, page 792] where the functions f; and fo are depicted.

As in [1], we use the following numerical values identified for the Egletons
demonstrator road [17]:

e1 = 0.06, eo = 0.08, e3 = 0.05, e, = 14.81, h, =15, L =4
c1 = 2144309, ¢y = 1769723, c5 = 2676728, ¢4 = 1947505
ki =2.34, ko = 1.56, ks = 1.76, ks = 2.08

K=22x10"2 0=567x10"% ¢ =10.92, 6, = 288.15.

(45)

The reals ¢; and k; (1 < i < 4) denote the constant values of the function ¢(z,y) and
k(z,y) in each layers. Moreover we define the initial condition, a priori not determined
by experiments, as the solution of the stationary 1D-model:

{ — (k®)0oy (1), =0,  ye(0,he),

46
— k(0)80,4(0) = f1(0) — f2(0)80(0) — 02(0)80(0)*,  Oo(he) = 5. (46

The resolution of (46) leads to a continuous function, affine on each layers, and
increasing from the value 0y(y = 0) ~ 273.15 + 6.29 Kelvin at the road surface to
Oo(y = he) = 65 Kelvin.
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4.2 Numerical experiments

We discuss some numerical experiments related to the extremal optimal problem (34).
The direct (7) and the adjoint problem (43) are discretized using finite differences
schemes. The time discretization parameter At is equal to 7200 s which corresponds
4.65x10* T with T=4304 h (6 months). The spatial discretization is not uniform and
is determined by the method described in [27] and used in [20].

The descent algorithm is initialized with a time-independent initial control gg =
10°C and stop when the k*! iterate ¢ satisifies

|Ja,e,r (Qk) - Ja,e,r (Qk—l)‘

< 10710,
Jaer(0)

We start formally with the case a = 0 (corresponding to controls in L?(0,7)) then
consider increasing values of « (the limiting case “a = 00” leads to constant controls).
Tables 1-2 collect some results with respect to € in {102,107} for » = 1.01 and
r = 1.1 leading to a constraint [(6(-,0,) = 8)~ [ 12, 1)xx,) less than 101, Figure 3
depicts the optimal control ¢ and the associated surface temperature 6(L,0,-) for
r=1.01,a=0and e= 1072

(4]
o

40

— ¢ minimizing J, ., 7 = 1.01, a =0, ¢ = 1072 —0(L,0,), r=1.01,a=0,e=10"2

——0=3

35

»
o
°C)

¢ 30-

w
o
N
o

N
o

Temperaure (°C)
Temperaures (°C
a S

-

o
-
o

u‘h“” l\lm ‘Hul‘ W |‘ i ﬂ

5

0 0
0 5 10 15 0 5 10 15
Time (s) %108 Time (s) %108

Fig. 3 The optimal control g (left) and the associated surface temperature (L, 0, -) (right) for § = 3,
r=1.01,a=0and e = 1072,

In order to lighten the notations, we put:

Az = H(Q("O’ )= Q)7HL2((0,T)XZZ7) A = H(9(~,O, )= Q)iHLCO((o,T)be) » 7€
lalls = lall ooy » CCLIP@I = 1P(@) Lo 0,7y » (KW ™?]
where P, denotes the power heating defined by  P,(t;9) =
vCy S:Trez (q(t) — (L, y,t))" dy for all t € [0,T]. In the sequel, the energy Ej(q)

is expressed in KWh.m~2. As expected more € is high, more the constraint on the
surface temperature is relaxed: Ay is a non-decreasing function w.r.t. € as Ay, is. As
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observed in lines 5 and 6 of Tables 1-2, the maximum inlet fluid temperature ||,

and the maximal power |Pr(q)|., are very sensitive to the small values of e: divide

[
the constraints of lines 3 and 4 by 2 is very low sensitive on |¢|,, and |Py(q)|,, for
€ > 3.33 x 1072 but leads to a doubling of these latter variables for ¢ < 3.33 x 1072,
By comparing Table 1 and Table 2, we observe higher values for all variables for

r = 1.01 in comparison with those corresponding to r = 1.1. On the other hand, the

Table 1 Numerical norms of the optimal control minimizing (42) with e = 0, r = 1.1,
0 = 3 and with respect to € € {1072, 107 1}.

€ 10—2 2 x 1072 3.33 x 10~2 5 x 102 10-1
En(q) 2.41 x 102 2.23 x 102 2.19 x 102 2.18 x 102 2.17 x 102
Ao 9.98 x 100 1.62 x 101 2.33 x 10! 3.23 x 10! 5.56 x 101
Ao 7.22x 1072  1.09x 107! 1.34x107' 1.85x 107! 2.61x10"1!
lglo 79.9 45.2 36.1 36.0 35.9
[Py ()] 1.55 0.87 0.73 0.73 0.73
f iterates 185 118 110 98 96
Table 2 Norms of the optimal control minimizing (42) with « =0, » = 1.01, § =
and with respect to ¢ € {1072,1071}.
€ 102 2 x 1072 3.33 x 10~2 5 x 102 10-1
En(q) 2.57 x 102 2.25 x 102 2.19 x 102 2.18 x 102 2.17 x 102
Ao 9.67 x 100 1.57 x 101 2.08 x 10! 2.93 x 10! 5.16 x 101
Ao 6.08 x 1072 1.05x 10! 1.20x 107! 1.60x 10~! 238 x10~!
lqllo 90.9 49.5 36.7 36.6 36.4
[Py (9)] o 1.76 0.96 0.75 0.75 0.75
f iterates 166 104 116 120 81

limiting case “o

= 4o0” displays different behaviors. We give in Tables 3-4 similar
results to those of Tables 1-2. We fit the values of ¢ in order to have the same values

of Ay for the cases v = 0 and “a = +0”.

Table 3 Norms of the optimal control minimizing (42) with “a = +00”, r =1.1, 0 = 3
and with respect to the parameter € € {3.45 x 1072,8.67 x 10—3}.

€ 3.45x 1073 3.76 x 1073 4.30 x 1073 5.21 x 1073 8.67 x 103
En(q) 7.82 x 102 7.82 x 102 7.80 x 102 7.75 x 102 7.60 x 102
Ao 9.98 x 100 1.62 x 101 2.33 x 10t 3.23 x 10t 5.56 x 101
Ao 5.05x 1071 5.20x 10! 545x 1071 583 x 10! 6.96 x 10~!
lallo 29.95 29.89 29.79 29.65 29.24
[Pr(9)] o 0.78 0.77 0.77 0.77 0.75
f iterates 12 12 12 12 12
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Table 4 Norms of the optimal control with @ = 400, r = 1.01, § = 3 and with respect

to e € {3.1073,8.8973}.

€ 3.10 x 1073 3.49x 1073 396 x 1073 4.99 x 103  8.89 x 103
En(q) 7.90 x 102 7.87 x 102 7.85 x 102 7.80 x 102 7.65 x 102
Ag 9.67 x 109 1.57 x 101 2.08 x 10! 2.93 x 10! 5.16 x 10!
A 462 x 1071 4.82x1071 5.04x107! 547x1071  6.70 x 10~
l4llo 31.31 31.21 31.10 30.89 30.30
[P (@) o 0.78 0.78 0.78 0.77 0.76
f iterates 12 12 12 12 12

Comparing Table 1 and Table 3, or Table 2 and Table 4, the energy FEj, the

maximal inlet temperature ||¢|, and the maximal power ||P,(q)|,, are almost non-

loo
varying functions w.r.t. e. Note that the energy is approximatively three times greater
than in the L? case and the maximal inlet temperature is much smaller (6°C or much
higher in the case of stricter compliance with the surface temperature constraint). We
can observe that a constant control has less effect on A, than a L? control, what is
illustrated in Figure 3: the L? control acts locally.

We illustrate the H1 (0, 7)) minimization in Figure 4 and in Table 5 for e = 5.1072,

r=1.1, 0 =3 and o between 10° and 10'3.

40 T
¢ minimizing J, ., r = 1.1, a = 100, ¢ =5 x 102
Jrnes 7=11L a=5x10", e=5x 102
35— q minimizing J, o, 7 = 1.1, a =5 x 108, e =5x 1072 —
— ¢ minimizing J, .., r = 1.1, a =10°, e =5 x 102
—g minimizing J, .., 7 = 1.1, a = 10", e = 5 x 102
G 30 —¢ minimizing J, .., 7 = L1, a = 10, e = 5 x 102 -
< — | | J —¢ minimizing J,, ., 7 = 1.1, a = 102, e = 5 x 102
e r 4
=1
® o251 1/ | ]
g
0E> | | | II
= 20+ | =
|
15 u | N
AT
[y it Al ! ||,‘|
10 [ (i
5 | | |
0 5 10 15
Time (s) %10°

Fig. 4 The optimal control ¢ € H*(0,T) for ¢ = 5.1072, r = 1.1, § = 3 and « € [10°,10'2].

We see in Figure 4 the effect of o in the cost function for regularizing the control
q. The control for o = 10° has a shape very close to the one of the L?-control: a local
acting to ensure a road surface temperature above 6 in the L? sense. When « increases,
the control ¢ tends to the constant control analyzed previously (case a = +o0). The
choice of « is very depending on the heating strategy. From Table 5, the regularization
of the control has an impact on the A; and Ay criteria: they are approximately
multiplied by five when « increases from 10° to 10'2. If one wants to keep Ay or Ay,
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Table 5 Norms of the optimal control with e = 5.1072, » = 1.1, § = 3 and « € [10°,10'2].

a 100 5 x 107 109 1010 1011 1012
En(q) 2.29 x 102 3.32 x 102 4.52 x 102 5.50 x 102 6.47 x 102 7.30 x 10?
Ao 3.57 x 10! 6.57 x 101 1.08 x 102 1.40 x 102 1.57 x 102 1.73 x 102
A 2.05 x 1071 585 x 1071 872x107! 9.80x10~! 1.15x10° 1.19 x 10°
lallo 39.94 31.76 20.75 29.22 28.52 27.56
I1Pr (@) o0 0.76 0.49 0.72 0.82 0.80 0.77
# iterates 91 862 793 755 422 281

close to target values, a and € have to be adapted. An interesting observation concerns
the power | P;(g)].,: the control for @ = 5 x 107 (red curve in Figure 4) allows to
achieve a minimal spent power to heat the road. Figure 5 depicts the evolution in
time of the road surface temperature 6(L,0,-) for an optimal control ¢ € H}(0,T)
with e =5.1072, 7 = 1.1, § = 3 and o = 10° (red). The black line corresponds to the

uncontrolled case for which a homogeneous Neumann condition is imposed on ..

(
(

forr=11,a=5x10", e=5x 102

40 without control

—0(L,0,-)
—0(L,0,-)
9 =3C

—~ 30
?
®
2 20
o
@
£
5 10
[
0
-10
| | |
0 5 10 15
Time (s) %10°

Fig. 5 The road surface temperature 0(L,0,-) (x = L) for an optimal control ¢ € H'(0,T) with
€=510"2, 7 =1.1,0 = 3 and a = 10° (red) and the road surface temperature 6(L,0,-) (z = L)
without control (black).

5 Conclusion

We have proposed an original approach to approximate the minimal energy for heat-
ing a road in order to keep its surface frost free. The heat exchanger is based on
the circulation of water in a porous bonding layer of the road. A transient 2D vali-
dated diffusion-advection model including a nonlinear Stefan-Boltzmann law is used
to describe the heat exchanger and we look for an optimal inlet fluid temperature
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to maintain the surface temperature above a threshold value. Theoretical results
have established the well-posedeness of the corresponding direct and optimal control
problem.

Different heating strategy have been considered numerically by the use of several
norms. The L? minimization leads to sparse controls with L®-norm higher than the
H' minimization. It appears that the total energy needed to keep the road surface
temperature over 3°C during a winter with snow is between 200 kWh and 700 kWh
per m? of road depending on the choice of the H!-regularization parameter. Moreover,
the L®-norm of the optimal inlet temperature ¢ ranges in 30-90°C: more the control
is regular less is the temperature. The values of energy and power are relevant with
those found in the literature review.

For further works, as done in a 1D setting considered in [1, Section 5.4], it would be
interesting to consider bang-bang controls taking only two values and allowing then to
bound the control. Another perspective is to develop a methodology by optimal control
for an energy retrieving application. Indeed, during the summer season, road surfaces
can reach high temperatures of the order of 70°C. These temperatures are harmful
and cause environmental problems such as urban heat island and structural damage of
roads due to the hardening and rutting produced by thermal cycles. The bituminous
solar collectors are efficient active systems thanks to their ability to recover solar
energy that can be used for various applications. In order to maximize the retrieved
energy, the inlet fluid temperature could be optimized thanks to a methodology similar
to the one proposed in this study for road heating.
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