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Abstract
Since the end of the 20th century, each decade has been warmer than the previous one in the
European Alps. As a consequence, Alpine rock walls are generally facing high rockfall activity, likely
due to permafrost degradation. We use a unique terrestrial laser scanning derived rockfall catalog
over 18 years (2005–2022) compared with photographs (1859–2022) to quantify the evolution of
the east face of Tour Ronde (3440–3792 m a.s.l.) in the Mont-Blanc massif (western European
Alps) that is permafrost-affected. Overall, 210 rockfalls were identified, from 1 to 15 500 m3.
Forty-five events were>100 m3 while cumulated volume of events<10 m3 represents<1% of the
fallen rocks. The rockfall magnitude-frequency distribution of the overall inventory follows a
power law, with a mean exponent b of 0.44± 0.03, characterizing a high contribution of large
rockfalls. The depth of failure ranges from a few centimeters to more than 20 m while 95% of the
rockfalls depth is<5 m, highlighting the role of the active layer. The mean rock wall erosion rate is
18.3± 0.2 mm yr−1 for the 2005–2022 period and ranks in the top range of reported values in the
Alps. It has greatly increased between the periods 2006–2014 and 2016–2022, probably in relation
to a series of summer heat waves. The exceptional erosion rate of 2015 is driven by one large
rockfall in August. Since 2006, an ice apron that covered 16 100 m2 has now almost vanished, and
the surface of the glacier du Géant at the rock wall foot has lowered by several tens of meters. The
retreat of these two ice masses contributed to the rock wall instability as more than 35% of the
rockfall volume detached from the deglaciated surfaces.

1. Introduction

Over the past three decades, a significant number
of rockfalls from high Alpine rock walls located in
permafrost-prone areas (Noetzli et al 2003, Legay et al
2021) globally have been studied (Haeberli et al 2004,
Huggel et al 2005, Lipovsky et al 2008, Frauenfelder
et al 2018). In the European Alps, studies focused on
high-magnitude events like rock/ice avalanches, with
volumes exceeding 2 × 106 m3 (Deline 2001, Pirulli

2009, Deline et al 2015, Phillips et al 2017, Mergili
et al 2020, Walter et al 2020). Smaller rockfalls have
also been studied, such as at the Aiguilles Marbrées
(Mont-Blanc massif, MBM hereafter; Curtaz et al
2014).

A clear correlation between periods of high
temperature and rockfalls has been shown in the
European Alps (Huggel et al 2012, Stoffel and Huggel
2012). Schiermeier (2003) showed that normally
frozen landscapes were destabilized because ice was
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thawing below 4500 m a.s.l. (all elevations are in
m above sea level). In the MBM, this correlation
has been demonstrated since the end of the Little
Ice Age at the west face of the Petit Dru (3754 m)
and on the north side of the Aiguilles de Chamonix
(2300–3842m; Ravanel andDeline 2008, 2011).More
recently, Ravanel et al (2017) showed the impact of
the 2003 and 2015 summer heatwaves on permafrost-
affected rock walls in the MBM. In high Alpine areas,
permafrost degradation (i.e. warming) due to global
warming (Magnin et al 2017, Biskaborn et al 2019)
is increasingly considered as a major factor for rock
wall destabilization (Gruber et al 2004, Gruber and
Haeberli 2007, Krautblatter et al 2013). This is in rela-
tion to a deepening of the active layer (the layer above
the permafrost, subject to annual freeze/thaw cycles).

Other potential factors such as seismic activity
(Keefer 2002, Jibson et al 2006, Kargel et al 2016),
rock structure and lithology (McColl 2012), rock wall
slope angle, hydrostatic pressure (Gruber et al 2004,
Gruber and Haeberli 2007, Draebing et al 2014),
thermal stress (Hall 1999, Matsuoka and Murton
2008, Huggel 2009, Gischig et al 2011, Draebing and
Krautblatter 2019, Legay et al 2021), and paraglacial
rock slope readjustment also contribute to destabil-
ize rock walls (Ballantyne 2002, Cossart et al 2008,
Grämiger et al 2017, 2018).

Rockfalls are a threat for alpinists (Soulé et al
2014, Mourey et al 2018), with mountain infra-
structures subject to deterioration related to perma-
frost degradation (Duvillard et al 2019). The ongoing
effects of global warming are likely to exacerbate these
issues (Chiarle et al 2021), making long-term rock-
fall monitoring necessary for effective risk assessment
and mitigation (Bommer et al 2010, Duvillard et al
2021).

Rockfall monitoring helps in both understanding
steep slopes response to climatic change and quantify-
ing rockfall volume and rock wall erosion rate. Many
studies used terrestrial laser scanning (TLS hereafter)
to quantify rock wall erosion rates. However, the dur-
ation of these studies is generally less than 10 years
(Rabatel et al 2008, Ravanel et al 2011, Kenner et al
2011, Hartmeyer et al 2020a, 2020b, Guerin et al
2020, Draebing et al 2022). Long-termmonitoring of
permafrost-affected rock walls is necessary to assess
frequency, as well as volume and triggering factors, of
rockfalls.

This article aims to address this need using a rock-
fall catalog from TLS campaigns over 18 years (2005–
2022) on a particularly active rock wall of the MBM,
the Tour Ronde east face (TREF hereafter, 3792 m).
Some preliminary results were analyzed by Rabatel
et al (2008) and Ravanel et al (2011) we present here
the whole set of data, and analyze the distribution
of the rockfall magnitude and thickness, their spatial
distribution and the relation with the glacier retreat.
Finally, the role of active layer thickening and paragla-
cial processes are discussed.

2. Study area

2.1. Geographical and geological context
The MBM extends over 550 km2 in the western
European Alps, with approximately 30% covered by
glaciers (figure 1, Gardent et al 2014). Permafrost cov-
ers 45% of the 86 km2 of rock walls steeper than 40◦

on the French side of the massif (Magnin et al 2015a).
Air temperature rose by+2 ◦CatChamonix (1042m)
between 1980 and 2020.

The MBM is formed of a complex metamorphic
basement intruded by the large ( ∼225 km2) and
homogeneousMont-Blanc granite pluton (Bussy and
von Raumer 1994). This granite is affected by subver-
tical faults, shear zones of which two main clusters
are oriented ∼N40 and N70 (Rossi 2005, Matasci
et al 2018). These faults determine the distribution
of granite peaks and couloirs (Bertini et al 1985).
Seismic activity in the MBM is far from negligible
with around forty events between 2005 and 2022
ranging in the magnitude between 2 and 4.9 (Cara
et al 2007). Several rock avalanches occurred over
the past centuries (Deline 2001, Deline and Kirkbride
2009). Since the 2000s, the MBM has been increas-
ingly affected by numerous small-scale rockfall events
(Ravanel et al 2010, Deline et al 2012). TREF was one
of the most active rock walls in the MBM during the
period 2005–2009 (Ravanel et al 2011).

TREF is a rock wall of approximately 82 000 m2

between 3440 and 3792 m, in the central part of
the MBM, close to the Italian border (figure 1). Two
major faults oriented N68E, passing by the Freshfield
Pass and at the footwall of the Bernezat Spur, define
three distinct areas from a fracturing point of view
(figure 2(a)). To the South of the Freshfield Pass,
fracturing is almost vertical and very dense. To the
North, the Bernezat Spur is formed of a rather com-
pact rock. The center of the rock wall can be divided
in two parts: the upper part and lower part. The
upper part, formerly covered by an ice apron (IAhere-
after, figure 2(b)), defined as small ice bodies lying
on slopes >40◦ (Guillet and Ravanel 2020, Kaushik
et al 2022, Ravanel et al 2023), depicts a complex pat-
tern formed by a block chaos lying on a complex sub-
stratum. The lower part shows at least three fracture
sets: one very steep with a N-trend, one parallel to the
sub-verticalN70◦Emajor faults, and one almost hori-
zontal. TREF has a mean slope angle of 62◦, varying
from 45 to 85◦.

More than 350 archive photographs of the TREF
from the late 1850s onwards (figure 3) show the evol-
ution of the Glacier du Géant and the IA on the top of
TREF. Analysis of these photos shows a decreasing ice
coverage and the continuous thinning of the Glacier
duGéant since themid-1980 (figure 2(b), Fischer et al
2015, Vincent et al 2017).

Tour Ronde was first climbed in 1867 and
its normal route is a popular and relatively easy
mountaineering route on the margin of the east
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Figure 1.Mont-Blanc massif. Red square: location of the Tour Ronde east face (TREF, 3792 m a.s.l.); blue polygons: glaciers
(Randolph Glacier Inventory (RGI) 2017).

face (figure 2(a)). In recent years the use of this
route is declining in summer due to insufficient or
no snow cover and hazardous conditions, making
the Freshfield ridge a safer choice (Mourey et al
2019). The Bernezat spur was another well-known
route.

2.2. Permafrost at TREF
Mean annual rock surface temperature (MARST)
modeling of the whole face is around−2 ◦C (Magnin
et al 2015a). Sub-surface thermistors recorded tem-
perature at TREF between 2006 and 2009 (supple-
mentary figure 1) and showed mean temperatures of
−0.5 to −1.1, −0.7 to −1.3, and −1.1 to −1.7 ◦C,
at depth of −3, −30, and −55 cm, respectively.
Temperature ranges from −19 ◦C to +14 ◦C at the
surface, and from −12 ◦C to +9 ◦C at −55 cm.
Compared to Aiguille du Midi (3745 m, Magnin
et al 2015b), TREF has a warmer permafrost thermal
regime, with likely a thicker active layer which is at
least 3 m thick. Furthermore, thermal modeling per-
formed by Legay et al (2021) at the location of the
largest rockfall of TREF (August 2015) indicates a

temperature of 0 ◦C at a depth of around 8 m just
before the collapse.

3. Methods

3.1. TLS data acquisition and processing
TLS technology is based on the acquisition of point
clouds of topography using a time-of-flight distance
measurement of an infrared laser pulse (see supple-
mentarymaterials for details). It is a powerfulmethod
to monitor rock wall erosion (Rosser et al 2005,
Oppikofer et al 2009, Ravanel et al 2014). Our TLS
campaigns are most generally carried out at the end
of the summer to ensure minimum snow cover on
the rock walls, with data acquisition from the Glacier
duGéant surface. Over the 18 yearmonitoring period
(2005–2022), the TREF was scanned 16 times with an
average acquisition of 10 000 000 points and an accur-
acy of 7 mm at a distance of 100 m.

The obtained individual point clouds were
aligned using CloudCompare software (Girardeau-
Montaut 2015) to get a full high-resolution 3D-model
of the rock wall. The difference between the most

3
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Figure 2. Tour Ronde east face in 2022. (a) Fracture types and distribution. Yellow: main faults; red: mountaineering routes; white
star: location of the sub-surface thermistors; (b) shrinkage of the Glacier du Géant at the foot of the rock wall and of the ice apron
(IA) on the upper part of TREF between 1859 and 2022.

recent acquisition and an older one allows morpho-
logical changes to be mapped (figure 4). Once dif-
ferences resulting from changes in glacier, IA, and
snow cover are removed, rockfalls are visually iden-
tified and their volumes computed using Poisson
surface reconstruction algorithms (Kazhdan et al
2020). Every identified rockfall was measured using
the software Cyclone 3DR (supplementary table 3;
Leica Geosystems and Hexagon 2023). The erosion
rate is the total volume lost between two success-
ive field campaigns, divided by the smallest surface
of acquisition of the rock wall (see supplementary
materials for details).

Since only rockfalls with a minimum volume
of several m3 are relevant to study the potential
effects of glacier retreat and permafrost degradation

(Hartmeyer et al 2020a, 2020b, Graber and Santi
2022), rockfalls with volume <1 m3 have been
excluded.

3.2. Rockfall magnitude-frequency analysis
The frequency of rockfalls has a non-linear inverse
relationship to its magnitude and follows a power law
(equation (1); Dussauge et al 2003, Hantz et al 2003,
Guerin et al 2020, Graber and Santi 2022):

Fp (V) = aV−b (1)

where Fp(V) is the cumulative number of rockfalls in
a given inventory, V the rockfall volume, p the period
of interest, a the intercept and b the scaling expo-
nent of the power law. The parameters a and b allow
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Figure 3. Archive photographs of TREF from the end of the little ice age (1859) to 2022. (a) Bisson brothers, Summer 1859
(detail); (b) V. Sella, Summer 1884 (detail); (c) W. Mittelholzer, Summer 1926; (d) IGN orthophoto, July 1995; (e) A. Rabatel,
October 2006; (f) September 2011; (g) September 2018. These photographs particularly illustrate the evolution of Glacier du
Géant located at the footwall of Tour Ronde. White triangle: summit (3792 m), red arrow: common point of reference, red
polygons: pillar that collapsed on December 4th, 2018. The pillar culminates at 3510 m and the distance between TREF’s summit
and the pillar is 369 m.

Figure 4.Workflow of the 3D point cloud comparison method for rockfall detection and volume estimation. Blue: small changes
excluded from the interpretation. Green: changes related to glacier retreat (lower part of the face) or IA retreat (upper part). Red:
major changes between two acquisitions with more than 10 m distance.
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the comparison of different rockfall inventories from
various locations or time periods (Graber and Santi
2022). The value of a gives the overall rockfall activ-
ity while the b-value gives information on the rel-
ative contribution of small rockfalls. Linear correla-
tions r2 of power laws and∆b uncertainty (Aki 1965)
have also been calculated (see supplementary mater-
ial, equation (3)).

4. Results

4.1. Rockfall inventory andmagnitude-frequency
relationship
On the 2005–2022 period, 210 rockfalls ⩾1 m3 were
identified on the TREF. Rockfall volumes reach up
to 15 578.3 ± 188 m3 and the total rockfall volumes
per year range from 71 ± 4 to 17 861 ± 204 m3

(table 1). Rockfall volumes have a median of 10.3 m3

and a mean of 248.9 m3. Forty-five rockfalls (21%)
are>100 m3 and 104 (50%)<10 m3. The total rock-
fall volume is 52 264.8 ± 631 m3 corresponding to a
mean erosion rate of 18.3 mm yr−1 (table 1).

2011–2015 is dominated by the 15 578 ± 188 m3

rockfall. As this event occurred on 27th August
2015 (Ravanel et al 2017), the cumulated volume of
2011–2014 is therefore smaller than the difference
between the cumulated 2011–2015 volume and the
2015 volume (table 2).

Mean detachment depths, inferred from themean
block thickness, range from 0.1 to 25 m (figure 5).
95% of the detachments are <5 m thick, 3% are
between 5 and 10 m and 2% are >10 m. Over the
entire period, themean depth is 2.1m and themedian
is 1.2 m. For the periods 2005–2008 (first period of
acquisition) and 2021–2022 (last period of acquisi-
tion), with a total of 34 and 30 rockfalls respectively,
the average maximum detachment depth is 1.5 m
(median 1.0 m) and 2.1 m (median 1.8), respectively.

For the overall period (2005–2022), the rockfall
magnitude-frequency distribution follows the power
law function: F2005-2022(V) = 0.18 V−0.44 (figure 6),
with b= 0.44± 0.03. The b-value evolution over time
was studied for periods with at least 18 rockfalls, in
order to reduce the ∆b uncertainty to less than 0.1.
Five single-year periods follow such a criterium and
showa significant decrease, with values above-average
in 2006 and 2009, and below-average in 2015, 2019
and 2022. When considering binning groups includ-
ing all the data (class A, figure 7), the evolution is
more complex, with in particular an increase in b for
the period 2016–2018. This increase is not binning-
dependent (see supplementary figure 2).

4.2. Description of the twomain rockfalls at TREF
The largest rockfall occurred in August 2015 (www.
youtube.com/watch?v=O2LL6fmKXck) on the left

side of TREF, in a rather gentle slope area still covered
by an IA in 1859 and characterized by a complex frac-
ture pattern (figure 2(a)). Ravanel et al (2017) estim-
ated its volume at 15 000 ± 3 000 m3. Our study
measured a volume of 15 578± 188 m3 with an aver-
age thickness of 17 m. The MARST modeled there
is between −1.6 ◦C (Legay et al 2021) and −2.3 ◦C
(Ravanel et al 2017). According to Legay et al (2021),
the temperature averaged over one day before the col-
lapse was 10 ◦C at the surface and 0 ◦C at around 8 m
depth. Massive ice and water flows were observed in
the detachment scar.

A rockfall of 6791 ± 228 m3 occurred on
December 4th, 2018 in the lower part of the face (see
supplementary material, figure 2). Tilting has been
observed between September 2016 and September
2018. The collapsed pillar was 42 m high and 29 m
wide, with amaximum thickness of 6m. The scar cor-
responds to a large regular surface with a slope angle
of 80◦. Ice occupied the entire width of the scar with
a thickness from a few tens of centimeters (bottom)
to several meters (top; see supplementary material,
figure 2(c)).

4.3. Rockfall locations compared to the retreat of
Glacier du Géant and the IA, and the fracturing
pattern
Photo-comparison (figure 2(b)) shows the lowering
of the surface of the Glacier du Géant between 1859
and 2006, averaging 10 m between 2006 and 2022
(min: 0.9, max: 23.0 m; figure 8(a)). The surface
area of the IA on the steep upper part of the face
decreased by 68% (approximately 16 100 m2 in 2006
and 5170m2 in 2022), hence dropping from 11%–3%
of the total rock wall surface. Rockfall locations illus-
trated on figure 8 show that:

• Before 2018, only three rockfalls detached from
areas deglaciated since 2006.

• During the 2018–2019 period, five and four rock-
falls occurred, respectively, in the area uncovered
by the IA and the Glacier du Géant since 2006, cor-
responding to 9% and 75% of the rockfall volume
for this period.

• Between 2019 and 2021, three rockfalls occurred
from the area uncovered by the IA, corresponding
to 93% of the period volume, whereas no rockfall
occurred in the Glacier du Géant deglaciated area.

• During the 2021–2022 period, six rockfalls (32% of
the volume) were identified in the Glacier duGéant
deglaciated area.

• 18 rockfalls out of 210 (around 10% of the total
rockfall volume) affected the very weakly fractured
area of the Bernezat Spur.
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Table 1.Main characteristics of the rockfall inventory.

Scanning period
Rockfall number

V>1 m3
Maximum volume
(m3)

Total rockfall volume
(m3)

Erosion rate
(mm yr−1)

Jun 2005–Jul 2006 (1 yr) 13 490± 126 728± 128 10.2± 1.8
Jul 2006–Oct 2007 (1 yr) 14 566± 21 734± 48 7.0± 0.5
Oct 2007–Sep 2008 (1 yr) 7 179± 2 485± 253 4.6± 2.4
Sep 2008–Sep 2009 (1 yr) 22 262± 20 503± 277 4.4± 2.4
Sep 2009–Oct 2010 (1 yr) 6 20± 2 71± 4 0.7± 0.0
Oct 2010–Sep 2011 (1 yr) 3 134± 6 194± 7 2.0± 0.1
Sep 2011–Sep 2015 (4 yrs) 22 15 578± 188 17 861± 204 58.9± 0.7
Sep 2015–Sep 2016 (1 yr) 8 3 395± 167 5 961± 191 78.6± 2.5
Sep 2016–Sep 2018 (2 yrs) 57 4 173± 245 5 062± 246 21.7± 1.1
Sep 2018–Sep 2019 (1 yr) 20 6 791± 228 9 393± 573 80.6± 4.9
Sep 2019–Sep 2021 (2 yrs) 8 2 528± 265 3 835± 488 12.3± 1.6
Sep 2021–Aug 2022 (1 yr) 30 2 658± 119 7 439± 755 47.6± 4.8
Jun 2005–Aug 2022 (18 yrs) 210 15 578± 188 52 265± 631 18.3± 0.2

Table 2. Estimate (E) of the distribution of the rockfall volume during the 2011–2015 period, inferred from the cumulated volume
between 2011 and 2015 and the occurrence of the large rockfall of 27th August 2015.

Type Period Maximum volume (m3) Total rockfall volume (m3) Erosion rate (mm yr−1)

Scan acquisition Sep 2011—Sep
2015 (4 years)

15 578± 188 17 861± 204 58.9± 2.1

Estimate (E)
Sep 2011–2014
(3 years)

? 0< E < 2 282± 392 0< E < 10± 1.7

2014–Sep 2015 (1 year) 15 578± 188 15 578± 188< E 205± 2.1< E
E < 17 861± 204 E < 235.7± 204

Figure 5.Maximum detachment depth from the 2005–2022 inventory. Red dots are for the entire 2005–2022 period. Grey
rectangle: estimated depth of the active layer on the east face of Tour Ronde (see text). Grey triangles: 34 first rockfalls
(2005–2008). Black squares: 30 last rockfalls (2021–2022).
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Figure 6.Magnitude-frequency distribution for all rockfalls between 2005 and 2022 (red dots). For comparison, black squares are
66 rockfalls from Ravanel et al (2011) in the Mont-Blanc massif, including eight rock walls located between 3320 and 4165 m
(total volume: 2223 m3).

5. Discussion

5.1. Rock wall erosion rate
In the Hohe Tauern range culminating at 3203 m
(Austrian Alps), Hartmeyer et al (2020b) measured
a mean annual erosion rate of 1.9 mm yr−1 over
six years, with a maximum of 10.3 mm yr−1. In the
Hungerli valley (Swiss Alps), Draebing et al (2022)
found a maximum erosion rate of 1.7 mm yr−1 over
three years for rock walls at 3100–3200 m. On rock
walls in the MBM, Ravanel et al (2011) measured
erosion rates ranging from 0.03 (Piliers du Frêney,
over three years) to 6.3 mm yr−1 (Aiguille Blanche
de Peuterey, over three years). Guerin et al (2020)
found on the west face of the Drus (2730–3730 m)
an erosion rate of 14.4 mm yr−1 over 11 years. The
mean erosion rate of 18.3 ± 0.2 mm yr−1 at TREF is
thus the highest measured in the European Alps.

Rabatel et al (2008) found an erosion rate of
8.4 mm yr−1 at TREF between 2005 and 2006. The
2021–2022 erosion rate is now almost six times higher
(47.6 ± 6.1 mm yr−1). During the 18 years of the
scanning period, the annual erosion rate at TREF has
often been higher than at other Alpine rock walls,
and it abruptly increased from 2015, with aminimum
value of 12 mm yr−1 (figure 9). The mean value of
annual rockfall volume has been multiplied by more

than eight between 2005–2014 and 2016–2022 (500
and 4527 m3 yr−1, respectively; figure 9).

The erosion rate of 205 mm yr−1 in 2015 resulted
from the large rockfall of August 27. This highlights
the need for long-term acquisition to consider the role
of large and less frequent rockfalls.

5.2. Frequencies and volumes
The power law exponent b obtained for the overall
period at TREF is 0.44 ± 0.03, slightly under most
of those previously published. The most complete
compilation of power laws on 32 rock walls shows
a median value of the b exponent of 0.8 (Graber
and Santi 2022). Hartmeyer et al (2020b) found a b-
value of 0.64 in the Hohe Tauern range, and Draebing
et al (2022) b-values ranging from 0.57 to 0.76 in the
Hungerly valley. In the MBM, the b-value has been
estimated as 0.77 ± 0.04 (Ravanel et al 2017) but
this inventory is not exhaustive as the methods used
(Ravanel and Deline 2013) under-represent volumes
<300 m3, and possibly volumes >12 × 103 m3 due
to the short study period. The b-value of Guerin
et al (2020) and TREF, based on the same method-
ology, are consistent (0.48 ± 0.03 and 0.44 ± 0.03,
respectively).

Since a greater the b-value corresponds to a
greater relative contribution of small rockfalls,
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Figure 7. Power law’s b-value depending on various binning groups. Black circles: class A. Blue circles: class D. Red dot: mean b
for the overall period. Vertical lines: uncertainty. Grey boxes and dashed blue lines: period encompassed by the binning group.

a b-value of 0.4–0.5 means that the relative contri-
bution of large rockfalls for these rock walls is greater
than on other studied rock walls in the European
Alps, at least for rockfalls<10 000 m3.

At TREF, the b-values show a weak decreasing
trend (figure 7), which could illustrate the increased
proportion of large rockfalls in the overall inventory
that could be related to deeper rock detachment: the
mean thickness increased from 1.5 to 2.1 from 2005–
2008–2021–2022 (figure 2(b)). It would be tempting
to link this increase to a deepening of the active layer
due to the climatewarming, but the following detailed
analysis shows that processes are more complex.

5.3. Preconditioning factors
Review on rock slope stability (McColl 2012, Hantz
et al 2021) argued that the structure of the rock walls
(pre-existing tectonic joints, foliation, degree of frac-
turing) is of critical importance. The b-value reflects
processes which are scale-invariant and possibly the
rockmass structure (Turcotte 1986). TheMBM gran-
ite is a very hard rock with continuous and regular
brittle fractures that separate blocks generally several
tens of meters wide. This can explain the high pro-
portion of large rockfalls, evidenced by our b-value
(0.44 ± 0.03). Nevertheless, the downward trend of

the b-value suggests an influence of climatic con-
ditions (Graber and Santi 2022). In addition, the
TREF rockfalls occurred both in the weakly fractured
Bernezat Spur and in more fractured areas, suggest-
ing that the climatic factor could sometimes override
the geology.

When shrinking, glaciers and IAs free boulders
and rock masses become unstable (Krautblatter et al
2013). Ravanel et al (2023) found that after the 2003
and 2015 summer heatwaves, rockfall deposits heavily
accumulated at the foot of recently deglaciated areas
in the MBM due to retreat of IAs. Permafrost degrad-
ation at TREF was enhanced by the reduction of the
IA surface area. Eleven rockfalls occurred in this area,
accounting for 17% of the total volume during 2005–
2022. In detail, 27%, 70%, 9% and 93% of the total
rockfall volume detached from the upper deglaciated
area in 2007–2008, 2016–2018, 2018–2019 and 2019–
2021, respectively.

Glacial debuttressing is a significant precondi-
tioning factor (Grämiger et al 2017, 2018): the lower-
ing of the glacier surface induces a removal of the ice
load and consequently a stress-release at the base of
the rock wall (Ballantyne 2002, Cossart et al 2008).
This debuttressing may lead to failure along critic-
ally stressed discontinuities (Davies et al 2001). In
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Figure 8. Rockfall distribution between 2005 and 2022 (figure 7 class A binning group). (a) From 2005 to 2009; (b) from 2009 to
2016; (c) from 2016 to 2018; (d) from 2018 to 2022. Upper white surface: ice apron extent in 2006; lower white surface: lowering
of the Glacier du Géant surface between 2006 and 2022.

the MBM, glacial debuttressing could have played a
role at the foot of the north side of the Aiguilles de
Chamonix (Ravanel and Deline 2011) and for 15% of
the rockfalls during the heat waves of 2003 and 2015
(Ravanel et al 2017). At TREF, rockfalls have occurred
in the Glacier du Géant deglaciated area since 2006,
with a delay: no rockfall occurred between 2005 and
2018, against ten between 2018 and 2022, represent-
ing 37% of the total volume of the period. Glacier
retreat also exposes steep rock walls to thermal stress
linked with freeze-thaw cycles. The rock surface is no
longer insulated by snow and ice, and its temperature
can rise further when exposed to the sun (Matsuoka
and Murton 2008).

5.4. Triggering factors
The seismic activity in the vicinity of Tour Ronde
east face between 2005 and 2022 is far from negligible

but the intensity did not exceed IV on the European
Macroseismic Scale (EMS-98) at the surface and
caused no damage (Bureau Central Sismologique
Français 2023), thus having minimal impact on the
rock wall.

Extreme meteorological conditions with high
temperature amplitudes and sudden temperature
changes may result in rock wall instability in high-
Alpine rock walls (Hall 1999, Matsuoka and Murton
2008, Draebing and Krautblatter 2019) that are unex-
pected in their location, magnitude, frequency, and
timing. The year 2022 has been extremely hot in the
Western Alps, particularly at high elevation. During
the winter and spring, Chamonix experienced a rain-
fall shortage of 136 mm, while May was the warmest
month since 1900 (3.5 ◦C above the average) and the
driest since 1959. In mid-June, while the snow cover
was very low, the earliest recorded heat wave started
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Figure 9. Evolution of the total rockfall volume (m3) and the erosion rates (mm yr−1) throughout the monitoring period
(2005–2022). Note that the scan surface varied from one year to the other and the two curves are not homothetic. Dotted lines:
mean annual cumulated rockfall volume for 2005–2014 and 2016–2022.

with air temperatures reaching 10.4 ◦C at 4750 m
(Blard and Agenzia Regionale Protezione Ambiente
Valle d’Aosta 2022). From July, access to moun-
tain huts and famous Alpine summits became more
difficult or even too risky. On August 24, the Fourche
hut (3674 m) 1.5 km West from the TREF collapsed.
The year 2022 has been exceptional but followed the
trend of the summers since 2015, with hot—even
scorching—summers having become the norm. Their
influence is clearly recorded in the abrupt increase of
the TREF rockfall occurrence since 2015.

As observed in several detachment scars, fractures
in permafrost-affected rock walls are likely to con-
tain ice and experience strong changes during warm-
ing and thaw, while freeze/thaw cycles in the active
layer weaken the fractures. This can be a preparat-
ory and sometimes triggering factor to the rockfall
occurrence (Gruber and Haeberli 2007). Legay et al
(2021) and Ravanel et al (2023) concluded that shal-
low rockfall sources (<4–6 m depth) would result
from daily and seasonal freeze/thaw cycles within the
active layer, whereas active layer thickening due to
permafrost degradation would involve deeper source
areas. The increase in the mean rockfall thickness
from 1.5 to 2.1 m at TREF suggests a response to
the 1 ◦C increase of the mean annual air temperat-
ure (MAAT) from 2006–2008–2021–2022. Between
2005 and 2014, the mean summer air temperature
Chamonix was 16.2 ◦C, well above the MAAT of

7.9 ◦C. Between 2016 and 2022, these means rise to
17.6 ◦C and 8.8 ◦C, respectively (figure 10).

The depth of 95% of TREF rockfalls is <5 m, i.e.
in the active layer. They could be linked with daily
surface temperature changes, or seasonal freeze-thaw
cycles (Magnin et al 2023). 3% of the TREF rockfalls
detached below 5 and 10 m. Permafrost degradation
linked to the active layer thickening could be their
triggering factor (Legay et al 2021, Ravanel et al 2023),
as these deep scars generally contain ice. Finally, 2%
of the rockfalls are>10 m thick, i.e.much more than
the estimation of the active layer depth.

The largest rockfall (27 August 2015) occurred
during a heat wave. Modeling gives a temperature of
0 ◦C at a depth of 8 m (Legay et al 2021), much shal-
lower than the 17 m-thick collapsed rock mass. This
difference suggests (i) an entrainment effect: a large
proportion of the blocks of varied thickness that form
the slab were in the active layer, or (ii) water per-
colation in the source area, resulting in heat advec-
tion (Hasler et al 2011, Magnin and Josnin 2021).
The second largest rockfall at TREF (4 December
2018) occurred at the winter’s onset. A first motion
occurred between 2017 and 2018, with 80 cm thick
ice in the source area. Thermal and mechanical ice
changes acted as a preconditioning factor, whereas
the deep penetration of heat during the summer and
autumn would have triggered the rockfall (Magnin
et al 2015b).
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Figure 10. Deviation from the mean annual and summer air temperatures in Chamonix (1042 m) and erosion rates throughout
the monitoring period (2005–2022). JJA: June-July-August. Dotted lines: mean deviation from the mean annual and summer air
temperatures for 2005–2014 and 2016–2022.

6. Conclusions

A 18 year rockfall inventory (2005–2022) of the east
face of Tour Ronde (3440–3792 m), based on 15
TLS acquisitions, provides unprecedented insights
into rockfall dynamics in deglaciating and warming
permafrost-affected rock walls. The main results of
the analysis of this inventory are:

• The mean annual rock wall erosion rate of
18.3 mm yr−1 at TREF between 2005 and 2022 is
much higher than comparable rates fromEuropean
Alps. Two distinct periods are evidenced, with a
mean annual rockfall volume of 500 m3 yr−1 for
2005–2014 and 4527 m3 yr−1 for 2016–2022.

• The rockfall magnitude-frequency relationship fol-
lows a power law with a b-value of 0.44 ± 0.03,
which has decreased from0.55± 0.07 in 2005–2009
to 0.37± 0.05 in 2019–2022. This decrease could be
linked with the increase of the relative contribution
of large rockfalls since 2005.

• The glacier shrinkage at the foot of the rock
wall favored rockfall activity: 75% of the total
volume for 2018–2019 and 32% for 2021–2022
detached from areas freed up by a lowering of
around 10 m of the glacier surface elevation dur-
ing the last 15 years. The ice apron surface area,
reduced by two-thirds since 2006, also increased

the rockfall occurrence with 9% and 93% of the
period rockfall volume originated from the upper
deglaciated area for 2018–2019 and 2019–2021,
respectively.

• Ninety five percent of the rockfalls are <5 m
thick. Thermal modeling suggests that most of the
rock mass was located in the active layer before
collapsing, which implies a dominant role for
freeze/thaw cycles. The increase of annual rock-
fall volume since 2015 suggests that summer heat-
waves have more influence than the increase in
the average annual temperature (0.5 ◦C 10 yr−1 in
Chamonix).

The increase in rockfall activity and erosion rate
highlights a climatic driver. This has a significant
impact on mountaineering. Such impact will likely
increasewith the predicted increase in heatwave dura-
tion and frequency (IPCC 2018), while high-elevated
tourist infrastructure like huts and cable-cars in the
European Alps may be threatened. Therefore, the
TREF dataset could serve as a basis formodeling rock-
fall dynamics in high mountain regions for the next
decades including various climatic scenarios. To sup-
port such modeling, more work needs to be done on
the rock wall fracturing analysis to study the influence
of fractures types and distribution on block stabil-
ity. Similarly, continuous temperature data extending
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over a longer period would be beneficial for a better
understanding of the processes.
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