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A host-pathogen coevolution model. Part I: Run

straight for your life

September 3, 2024

Matthieu Alfaro1, Florian Lavigne2, and Lionel Roques3

Abstract
In this study, we propose a novel model describing the coevolution between hosts and

pathogens, based on a non-local partial differential equation formalism for populations struc-
tured by phenotypic traits. Our objective with this model is to illustrate scenarios correspond-
ing to the evolutionary concept of “Chase Red Queen scenario”, characterized by perpetual
evolutionary chases between hosts and pathogens. First, numerical simulations show the emer-
gence of such scenarios, depicting the escape of the host (in phenotypic space) pursued by the
pathogen. We observe two types of behaviors, depending on the assumption about the presence
of a phenotypic optimum for the host: either the formation of traveling pulses moving along
a straight line with constant speed and constant profiles, or stable phenotypic distributions
that periodically rotate along a circle in the phenotypic space. Through rigorous perturbation
techniques and careful application of the implicit function theorem in rather intricate function
spaces, we demonstrate the existence of the first type of behavior, namely traveling pulses mov-
ing with constant speed along a straight line. Just as the Lotka-Volterra models have revealed
periodic dynamics without the need for environmental forcing, our work shows that, from the
pathogen’s point of view, various trajectories of mobile optima can emerge from coevolution
with a host species.

Keywords: coevolution, Red Queen hypothesis, integro-differential systems, traveling pulse,
perturbation techniques.

AMS Subject Classifications: 45K05, 35C08, 92D15.

1 Introduction

In Lewis Carroll’s novel Through the Looking-Glass [12], the Red Queen says the famous sentence:
“It takes all the running you can do, to keep in the same place”. This metaphor was later adopted
by Van Valen, see [29], to formulate his evolutionary theory (extensively reviewed in [8]):
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“The Red Queen does not need changes in the physical environment, although she can
accommodate them. Biotic forces provide the basis for a self-driving... perpetual motion
of the effective environment and so of the evolution of the species affected by it.”

In the framework of host-pathogen interactions, this theory, known as the “Red Queen Hypothesis”,
posits that pathogens apply evolutionary pressure on hosts to develop resistance, while simultane-
ously evolving to sustain their infectivity [28]. These interactions can manifest in three distinct
scenarios, summarized in [8]:

• Fluctuating Red Queen: this scenario describes how allele frequencies within a population
oscillate over time. Predators, parasites, or competitors target the most common genotypes,
providing an opportunity for rarer genotypes to flourish. This cyclical pattern ensures genetic
diversity is maintained as environmental conditions and selective pressures change [5].

• Escalatory Red Queen: here, species are engaged in an evolutionary arms race, constantly
adapting to outdo each other. Each new adaptation by one species prompts a counter-
adaptation by its competitors or predators, leading to a continuous cycle of escalation. This
process drives significant evolutionary changes as species strive to surpass one another’s adap-
tations [14, 24, 27].

• Chase Red Queen: this scenario focuses on the evolutionary chase between pathogens and
hosts. Hosts evolve to become less exploitable, while pathogens evolve to counter these adap-
tations, aiming to reduce the phenotypic gap. This results in a perpetual cycle of adaptation
and counter-adaptation, with neither side gaining a lasting upper hand [17, 20].

Several modeling approaches have been proposed to address the coevolutionary dynamics in
host-pathogen interactions. These range from simple genetic models focusing on one or two loci to
sophisticated simulations incorporating population dynamics, quantitative traits, and complex ge-
netic structures [9]. Alongside this, numerous single-species PDE models of populations structured
by traits have recently emerged [2, 13, 18, 19, 23]. These models track the dynamics of the distri-
bution of phenotypic traits described by a vector x ∈ Rn over time, influenced by mutations and
selection. Most of these models assume a unique phenotypic optimum, with fitness decreasing as
one deviates from this optimum, following the paradigm of Fisher’s Geometrical Model. Following
this paradigm, a first objective of this work is to develop and analyze a host-pathogen coevolution
PDE model for asexual populations structured by traits, aiming to encapsulate the principal aspects
of their interactions. We particularly focus on the emergence of the Chase Red Queen scenario with
this formalism. Another goal is to justify the existence of a shifting phenotypic optimum over time
from the pathogen’s perspective. Indeed, several studies have recently focused on analyzing single-
species PDE models with a shifting phenotypic optimum that either moves at a constant speed
[1, 10], fluctuates periodically [11, 16, 22], or exhibits general dynamics [21, 26]. In all these works,
the trajectory of the phenotypic optimum was a given. Our goal is to demonstrate that, just as the
Lotka-Volterra models have revealed periodic dynamics without the need for environmental forcing,
these various trajectories of mobile optima can emerge from coevolution with a host species.

2 A new host-pathogen coevolution model

Demographic model. We model the dynamics of the host population size using a logistic growth
term, complemented by a Lotka-Volterra-like term to represent the impact of the pathogen on the
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host compartment,
dH

dt
= rHH − γHH

2 − ρHP, t > 0,

where H(t) and P (t) respectively denote the host and pathogen population sizes at time t. Here, rH
represents the host’s intrinsic growth rate, γH > 0 is a constant measuring the effect of intraspecific
competition, and ρ > 0 quantifies the pathogen’s impact on the host growth rate. On the other
hand, the pathogen population grows at a rate rP > 0 but is constrained by the number of hosts,

implying that the carrying capacity for P is determined by rPH(t)
γP

, as follows:

dP

dt
= rPP − γP

P 2

H
, t > 0.

For any initial data H(0) > 0, P (0) > 0, the long time behavior is coexsitence of both populations:

lim
t→+∞

P (t) =
rHrP

γHγP + ρrP
and lim

t→+∞
H(t) =

rHγP
γHγP + ρrP

.

Phenotypically structured population model. We now extend the model to include that
both the host and pathogen populations are structured by their respective phenotypes, denoted
as x = (x1, . . . , xm) ∈ Rm for the host and y = (y1, . . . , yn) ∈ Rn for the pathogen. Here, each
coordinate xi for the host (and correspondingly, yj for the pathogen) represents a distinct biological
trait. For simplicity, we posit that the number of biological traits of interest is the same for both
the host and the pathogen, that is

n = m.

Let h(t,x) be the density of hosts with phenotype x ∈ Rn and p(t,y) the density of pathogens
with phenotype y ∈ Rn at time t ≥ 0. The coevolutionary dynamics of the host and pathogen
populations are described by the system

∂th = µ2
H∆xh+ rH [h,x]h− γHHh− ρ[p,x]hP, t > 0, x ∈ Rn,

∂tp = µ2
P∆yp+ rP [h,y]p− γP

P

H
p, t > 0, y ∈ Rn,

(1)

where H = H(t) and P = P (t) are the total populations of hosts and pathogens, that is

H(t) :=

∫
Rn

h(t,x) dx and P (t) :=

∫
Rn

p(t,y) dy.

The Laplacian terms in (1) model the effects of mutations, that act on x for the hosts and on y
for the pathogens. The coefficients µ2

H and µ2
P measure the intensity of the mutations (i.e., their

strength and rate, under a weak selection strong mutation assumption, see the Appendix in [18]).
By formally integrating (1) over Rn, we obtain a system that is closely related to our initial

ODE system, namely 
dH

dt
= rH(t)H − γHH

2 − ρ(t)HP,

dP

dt
= rP (t)P − γP

P 2

H
,

(2)

where rH(t) represents the mean fitness of the host population, rP (t) denotes the mean fitness of
the pathogen population, and ρ(t) is the mean value of ρ[p,x] within the host population.
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Fitness functions. To define the fitness functions rH and rP , we draw inspiration from Fisher’s
Geometric Model. More precisely, each fitness function has a unique maximum and decreases
quadratically from it.

The function rH [h,x] describes the fitness of the hosts with phenotype x in the absence of
pathogens:

rH [h,x] = RH − α2
H∥x∥2 − β2∥x− x(t)∥2, (3)

with RH > 0 the fitness of the optimal phenotype. When αH > 0, the term αH∥x∥2 indicates that,
all else being equal, phenotypes x close to 0 tend to have higher fitnesses. As for the less usual
term involving β and the mean host phenotype

x(t) :=
1

H(t)

∫
Rn

xh(t,x) dx, (4)

it can be considered as a “concerted evolution” term, modeling selection around the mean pheno-
type, thus preventing excessive variance in the distribution of h(t,x) over time. We will see later
that, for the model (1) presented here, this term plays a crucial role in achieving trajectories that
describe a Chase Red Queen scenario.

For simplicity, we assume that the pathogen phenotype optimum only depends on the host
phenotype distribution through the mean host phenotype x(t):

rP [h,y] = RP − α2
P ∥y −O(x(t))∥2, (5)

where RP > 0 represents the fitness of the optimal phenotype, αP > 0 is the selection pressure on
pathogens, and O : Rn → Rn is a function to be specified, describing how the pathogen phenotype
optimum is influenced by the mean host phenotype.

The second equation in (1) is thus recast

∂tp = µ2
P∆yp+

(
RP − α2

P ∥y −O(x(t))∥2
)
p− γP

P

H
p, t > 0, y ∈ Rn. (6)

If O(x(t)) were independent of hosts and defined as a given function O(t), (6) could be considered
as a moving optimum problem. As mentioned above, this type of problem has been studied for
several types of environmental fluctuations. For instance, the constant speed assumption in [1, 10],
corresponds to O(t) = O0 + ctu for some speed c and unit vector u ∈ Rn. In previous studies,
periodicity was considered along a line: O(t) = f(t)u for some scalar periodic function f , see
[11, 16, 22, 26]. We will explore here how this type of mobile optimum, or generalizations where
the optimum does not necessarily remain on a line, can emerge from interactions with the host.

Pathogen’s impact. The function ρ[p,x] measuring the strength of the impact of the pathogen
on the host in the first equation of (1) has to remain positive so we use a Gaussian profile, namely

ρ[p,x] = ρmax e
− θ∥x−W(y(t))∥2

, (7)

where ρmax > 0 is the maximal impact, θ > 0 and W : Rn → Rn a function describing the host
“worst” phenotype, which is the most sensitive to the pathogen. We assume that it only depends
on the mean pathogen phenotype y(t):

y(t) :=
1

P (t)

∫
Rn

y p(t,y) dy. (8)
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The full model. For biological realism, host and pathogen phenotypes should not be comparable
except through complex functions O and W. Nevertheless, for simplicity and to allow for a rigorous
mathematical study, we assume here that the pathogen’s phenotypic optimum is a translation of the
host’s mean phenotype, while the worst phenotype for the host corresponds to the mean phenotype
of the pathogen. Thus, from now on, for ℓ ≥ 0 and a given unit vector u, we choose

O(x) = x− ℓu, W(y) = y,

and we focus on
∂th = µ2

H∆xh+
(
RH − γHH − α2

H∥x∥2 − β2∥x− x(t)∥2 − Pρmax e
− θ∥x−y(t)∥2

)
h,

∂tp = µ2
P∆yp+

(
RP − γP

P

H
− α2

P ∥y + ℓu− x(t)∥2
)
p.

(9)

In the present work, we focus on solutions corresponding to a demographic equilibrium, that is
H(t) = cste = H and P (t) = cste = P .

Organization of the paper. System (9) is the starting point of the present work. We aim at
performing a rigorous analysis of such nonlocal PDE systems, thus shedding light on the aforemen-
tioned biological scenarii.

We start with some numerical explorations of (9) in Section 3, revealing different outcomes
depending on parameters αH and β. In Section 4, we consider the case β = 0 and construct some
steady state solutions. This suggests that this cannot serve as a model for the Chase Red Queen
scenario. In Section 5, we consider the case with aggregation β > 0, but with αH = 0, and start
the construction of solutions having the form of two traveling pulses, the pathogen distribution
tracking the escaping host distribution. The actual construction is achieved in Section 7. It relies
on perturbation techniques in rather intricate ad-hoc function spaces, on refined estimates for the
eigenelements of the multivariate harmonic oscillator gathered in Appendix A, and a technical
lemma on series involving binomial coefficients in Appendix B. This reveals that this acts as a
model for the Chase Red Queen scenario without adding any external environmental force. A short
discussion is also presented in Section 6, between the setting of our main result, namely Theorem
5.5, and its proof in Section 7, Appendix A and Appendix B.

3 Numerical exploration of the possible outcomes

In this section, we will verify that model (9) is capable of describing situations corresponding to
the Chase Red Queen scenario, that is, situations where the mean phenotypes of the host x(t) and
the pathogen y(t) do not converge but instead engage in a form of perpetual chase.

In all cases, we operate in two dimensions (n = 2) and set ℓ = 0. The numerical resolution relies
on a method of lines (a combination of a finite difference method for spatial discretization and the
Runge-Kutta method for time integration), which easily handles non-local terms. The programs
are written in Python, and are available in a Jupyter notebook and can also be executed on Google
Colab. The parameter values are µ2

H = µ2
P = 0.1, RH = 4, RP = 1, γH = 1, γP = 0.01, ρmax = 0.1,

θ = 1 and αP = 1. The initial distributions of h and p have initial mass 10 and are respectively
concentrated at x0 = (0.5, 0.5) and y0 = (0.7, 0).
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Model without aggregation term (β = 0), Figure 1. We first consider the case αH = 0 and
β = 0, meaning that, in the absence of pathogen, there is no phenotypic optimum for the host
(all phenotypes have the same fitness). In this case, we observe that the host density appears to
form a ring that diffuses towards infinity. Since the optimum for the pathogen is O(x(t)) = x(t),
the pathogen distribution tends to concentrate around x(t) (which slightly deviates from its initial
position). The hosts with the worst phenotype W(y(t)) = y(t) are therefore those whose phenotype
is close to x(t). Selection thus enables the host to avoid the pathogen by forming a ring-shaped
distribution. This ring diffuses towards infinity by mutation, reducing the effect of the pathogen
on the host, without diminishing the fitness of the pathogen.

When αH > 0, the position 0 corresponds to a phenotypic optimum for the host in the absence
of pathogen. We observe the same phenomenon as before, namely the formation of a ring. The
essential difference from the previous case lies in the fact that x(t) tends towards 0, and the ring
tends to stabilize instead of diffusing to infinity, as hosts must find a compromise between being
near 0 and away from the pathogens, which concentrate around x(t), which itself tends towards 0.

Thus, under these assumptions, the model does not reproduce the Chase Red Queen scenario,
and above all, it lacks realism: artificially, the pathogen maintains a high fitness by being close
to x(t), while the host distribution, in the form of a ring, avoids the position x(t). The pathogen
thus lives on hosts that do not even exist. In Section 4, we offer an analysis of this model, which
confirms that it does not capture the Chase Red Queen Scenario.

A more complex model, involving the entire distributions of h and p in the interactions between
the two species, rather than just the mean, might not have this problem. However, its mathematical
analysis is out of reach. Hence the introduction of the aggregation term with β > 0.

Model with aggregation term (β > 0), Figure 2. Once again, we begin by analyzing the
case where αH = 0 (no phenotypic optimum for the host). The mean phenotypes of the host
and pathogen, x(t) and y(t), appear to move at a constant speed along a straight line defined by
the initial phenotypes x0 and y0. The host density is bean-shaped, while the pathogen density
remains Gaussian-shaped and follow the host density with a constant lag. These two densities
seem to move at a constant speed along the line (x0,y0) and with constant profiles, thus forming
a couple of traveling pulses. Thus, we have indeed achieved a scenario akin to the Chase Red
Queen. Furthermore, this model also appears to show that a mobile optimum O(t) = O0 + ctu, as
in [1, 10, 26], can naturally emerge from interactions between hosts and pathogens. We provide a
rigorous analysis of this model and prove the existence of traveling pulses in Sections 5 and 7.

When αH > 0, the fitness of the host decays for phenotypes x away from the position 0. As a
result, host densities can no longer shift to infinity to escape pathogens. We observe here that the
mean phenotypes of the host and pathogen, x(t) and y(t), converge towards circular trajectories,
rotating around 0 with a constant radial speed and a constant lag between the host and the
pathogen. The host density is again bean-shaped, while the pathogen density is Gaussian-shaped.
They form a pair of generalized traveling pulses, moving at constant speed along a circle. Thus, we
again encounter a Chase Red Queen scenario, but this time with cyclic trajectories. In this case,
from the pathogen’s perspective, periodic trajectories for O(t) emerge, as in [11, 16, 22, 26], but
along a circle (these works only considered optima moving along a straight line). The mathematical
analysis of the model under these assumptions will be the subject of a future study.
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Figure 1: Model without aggregation term (β = 0). Left column: model without phenotype
optimum for the host (αH = 0); Right column: model with a phenotype optimum x = 0 for the
host (αH = 0.5). The first row represents the trajectories of the mean phenotypes x(t) and y(t)
for t ∈ (0, 20); the crosses correspond to the positions of the mean phenotypes at successive times,
going by twos. The subsequent rows represent snapshots of the distributions h(t,x) and p(t,y) at
successive times t = 1, 10, 20.
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Figure 2: Model with aggregation term (β = 1). Left column: model without phenotype
optimum for the host (αH = 0); Right column: model with a phenotype optimum x = 0 for the
host (αH = 0.2). The first row represents the trajectories of the mean phenotypes x(t) and y(t)
for t ∈ (0, 12) (left) or t ∈ (0, 40) (right); the crosses correspond to the positions of the mean
phenotypes at successive times, going by twos. The subsequent rows represent snapshots of the
distributions h(t,x) and p(t,y) at different times.
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4 Model without aggregation term (αH > 0, β = 0, ℓ = 0)

In this section we focus on (9) in the special case β = 0. If ℓ > 0, one would need to use a
perturbation approach as performed in the much more complex case of Section 5. Since our goal is
here to confirm the numerical evidence that β = 0 is not adequate to capture the Chase Red Queen
scenario, we assume ℓ = 0. We thus focus on

∂th = µ2
H∆xh+

(
RH − γHH − α2

H∥x∥2 − Pρmax e
− θ∥x−y(t)∥2

)
h, t > 0, x ∈ Rn,

∂tp = µ2
P∆yp+

(
RP − γP

P

H
− α2

P ∥y − x(t)∥2
)
p, t > 0, y ∈ Rn,

(10)

where all parameters are positive. In the sequel, we are concerned with the following particular
solutions.

Definition 4.1 (Stationary solution). A stationary solution of (10) is a quadruplet (H,P, φ, ψ)
with H > 0 (the host population size), P > 0 (the pathogen population size), φ and ψ two positive
probability densities on Rn, that is

φ > 0, ψ > 0,

∫
Rn

φ(x) dx =

∫
Rn

ψ(y) dy = 1, (11)

with zero means ∫
Rn

xφ(x) dx =

∫
Rn

yψ(y) dy = 0, (12)

such that the couple (h(t,x), p(t,y)) = (Hφ(x), Pψ(y)) solves (10).

Theorem 4.2 (Stationary state). A stationary solution of (10) exists if and only if

RP > nµPαP and RH > nµHαH . (13)

If (13) holds, the stationary state is unique, radial, ψ is explicit

ψ(y) =

(
αP

2πµP

)n/2

exp

(
− αP

2µP
∥y∥2

)
, (14)

and we have the relation RP − γP
P
H = nµPαP .

Proof. We plug the ansatz (h(t,x), p(t,y)) = (Hφ(x), Pψ(y)) into (10). Observe that (12) enforces

x(t) = 0 and y(t) = 0,

so that we get the elliptic system (where H and P are also to be determined)
µ2
H∆φ+

(
RH − γHH − α2

H∥x∥2 − Pρmaxe
−θ∥x∥2

)
φ = 0, x ∈ Rn,

µ2
P ∆ψ +

(
RP − γP

P

H
− α2

P ∥y∥2
)
ψ = 0, y ∈ Rn.

(15)
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On the one hand, from the second equation in (15), the function ψ and the scalar RP − γP
P
H

have to be the (L1 normalized) principal eigenelements of the differential (harmonic oscillator)
operator −µ2

P ∆+ α2
P ∥y∥2, that is (see Proposition A.1) ψ is given by (14) and

RP − γP
P

H
= nµPαP ⇔ H = H(P ) :=

γP
RP − nµPαP

P, (16)

which, in particular, enforces RP > nµPαP .
On the other hand, for fixed P ≥ 0, we define (λP , φP ) as the unique principal eigenpair such

that φP > 0 in Rn,

µ2
H∆φP +

(
RH − γHH(P )− α2

H∥x∥2 − Pρmaxe
−θ∥x∥2

)
φP = λP φP , (17)

with the normalisation condition
∫
Rn φP (x) dx = 1. From the invariance by rotation of the operator,

we know that φP is radial, and so its mean value is null. We know that φP ∈ H1(Rn) ∩ L2
w(Rn),

where
L2
w(Rn) :=

{
f : Rn → R such that x 7→ ∥x∥ f(x) ∈ L2(Rn)

}
,

and that the Rayleigh formula is available, namely

λP = RH − γHH(P )−min

{
QP (f) : f ∈ H1(Rn) ∩ L2

w(Rn),

∫
Rn

f2(x) dx = 1

}
, (18)

where

QP (f) := µ2
H

∫
Rn

∥∇f(x)∥2 dx+

∫
Rn

(
α2
H∥x∥2 + Pρmaxe

−θ∥x∥2
)
f2(x) dx. (19)

The function P 7→ λP is continuous and, as clear from (16), (18) and (19), decreasing on [0,+∞).
When P = 0, the eigenpair is

φ0(x) =

(
αH

2πµH

)n/2

exp

(
− αH

2µH
∥x∥2

)
, λ0 = RH − nµHαH .

Moreover, we have that

QP (f) ≥ µ2
H

∫
Rn

∥∇f(x)∥2 dx+

∫
Rn

α2
H∥x∥2f2(x) dx,

≥ min

{
µ2
H

∫
Rn

∥∇f(x)∥2 dx+

∫
Rn

α2
H∥x∥2f2(x) dx

}
= nµHαH ,

implying that
λP ≤ RH − nµHαH − γHH(P ) → −∞ as P → +∞.

As a result, there is (a unique) P > 0 such that λP = 0 (which corresponds to constructing a
stationary state) if and only if λ0 > 0, from which the result follows.
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5 Pursuit model (αH = 0, β > 0, ℓ > 0)

The objective of the rest of the present work is to prove the existence of traveling pulses moving along
a straight line, as observed in Section 3 and Figure 2 (left column), under the same assumptions
that is αH = 0 and β > 0. We start with the problem where the pathogen has no impact on
the host (ρmax = 0) and show that in this case, there exist stationary pulses with velocity c = 0.
By perturbing this parameter, we manage to construct pulses moving at a velocity c > 0. This
perturbation technique only works when ℓ > 0 and not in the case ℓ = 0.

Indeed, in the case ℓ = 0, the stationary solutions (ρmax = 0) we construct are symmetric with
respect to 0; after perturbation, due to the symmetry of the problem, the existence of a solution
with c > 0 would imply the existence of a solution with c < 0. However, the constructed solution is
unique and would therefore also have zero velocity. Numerical computations (not shown) indicate
that this solution corresponds to a ring-shaped host density, as in the case β = 0 and is unstable:
we obtain it as the long time behavior of the Cauchy problem only when x0 = y0, i.e. when the
problem is symmetric with respect to x0 = y0. On the other hand, as soon as x0 ̸= y0 the numerical
results of Section 3 show that traveling pulses can be achieved even with ℓ = 0.

In light of this, to rigorously establish the existence of traveling pulses with nonzero speed, we
break the symmetry of the problem by assuming the technical condition ℓ > 0. Our main result is
presented in Theorem 5.5.

We thus focus on (9) in the special case αH = 0, β > 0, ℓ > 0, that is
∂th = µ2

H∆xh+
(
RH − γHH − β2∥x− x(t)∥2 − Pρmax e

− θ∥x−y(t)∥2
)
h, t > 0, x ∈ Rn,

∂tp = µ2
P∆yp+

(
RP − γP

P

H
− α2

P ∥y + ℓu− x(t)∥2
)
p, t > 0, y ∈ Rn,

(20)
where all parameters are positive, and u is a given unit vector. In the sequel, we are concerned
with the following particular solutions.

Definition 5.1 (Pursuit pulse). A pursuit pulse solution of (20) is a sextuplet (c, τ,H, P, φ, ψ)
with c ̸= 0 (the propagation speed), τ > 0 (the delay of the pathogen), H > 0 (the host population
size), P > 0 (the pathogen population size), φ and ψ two positive probability densities on Rn, that
is

φ > 0, ψ > 0,

∫
Rn

φ(z) dz =

∫
Rn

ψ(w) dw = 1, (21)

with means ∫
Rn

zφ(z) dz = 0,

∫
Rn

wψ(w) dw = −ℓu, (22)

such that the couple

(h(t,x), p(t,y)) := (Hφ(x− ctu), Pψ(y − c(t− τ)u)) , (23)

solves (20).

We now plug the ansatz (23) into (20). Observe that (21) and (22) enforce

x(t) = ctu and y(t) = (c(t− τ)− ℓ)u, (24)
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so that we get the elliptic system (where c, τ , H and P are also to be determined)
−c∇φ · u = µ2

H∆φ+
(
RH − γHH − β2∥z∥2 − Pρmaxe

−θ∥z+(cτ+ℓ)u∥2
)
φ, z ∈ Rn,

−c∇ψ · u = µ2
P∆ψ +

(
RP − γP

P

H
− α2

P ∥w − (cτ − ℓ)u∥2
)
ψ, w ∈ Rn,

(25)
for φ = φ(z), ψ = ψ(w) where, roughly speaking, z = x− ctu and w = y − c(t− τ)u.

Determination of ψ. Letting

ψ(w) := exp

(
c

2µ2
P

w · u
)
ψ(w), (26)

the second equation in (25) becomes

µ2
P∆ψ +

(
RP − γP

P

H
− c2

4µ2
P

− α2
P ∥w − (cτ − ℓ)u∥2

)
ψ = 0.

Thus, the function ψ and the scalar RP −γP P
H − c2

4µ2
P
have to be the principal eigenelements of the

differential (harmonic oscillator) operator −µ2
P ∆ + α2

P ∥w − (cτ − ℓ)u∥2, that is (see Proposition
A.1)

ψ(w) = K exp

(
− αP

2µP
∥w − (cτ − ℓ)u∥2

)
and RP − γP

P

H
− c2

4µ2
P

= nµPαP ,

for some normalization constant K > 0 ensuring
∫
Rn ψ(w) dw = 1. From now, we assume without

loss of generality that
u = (1, 0, . . . , 0), (27)

and check, using straightforward computations based on Lemma 5.2, that

K−1 =

(
2πµP

αP

)n
2

e
− (cτ−ℓ)c

2µ2
P

+ c2

8αP µ3
P . (28)

Lemma 5.2. For any a > 0, b ∈ R, c ∈ R, one has∫
R
e−ax2+bx+c dx =

√
π

a
e

b2

4a+c,

∫
R
xe−ax2+bx+c dx =

b

2a

√
π

a
e

b2

4a+c.

As for the mean value of ψ, we need to ensure
∫
Rn w1ψ(w) dw = −ℓ. Using again straightforward

computations based on Lemma 5.2, we see that this requires the relation

c

(
τ − 1

2µPαP

)
= 0

to hold.
To sum up, we have the following.

12



Lemma 5.3. If a pursuit pulse solution (c, τ,H, P, φ, ψ) of (20) exists then, necessarily,

ψ(w) = K exp

(
− c

2µ2
P

w · u
)

exp

(
− αP

2µP
∥w − cτu∥2

)
, (29)

where K > 0 is given by (28) (so that
∫
Rn ψ(w) dw = 1),

τ =
1

2µPαP
(30)

(so that
∫
Rn wψ(w) dw = −ℓu), and we have the relation

RP − γP
P

H
− c2

4µ2
P

= nµPαP . (31)

Therefore it remains to find the function φ, the speed c (which has to be nonzero) and the
population size H. Obviously, the difficulty comes from the exponential term in the equation for
φ. Since the case ρmax = 0 is decoupled, our strategy consists in using ρmax as a perturbation
parameter to finish the construction of pursuit pulse when 0 < ρmax ≪ 1.

When ρmax = 0 the pulse is actually stationary, as revealed by the following which is proved
using exactly the same arguments as above for ψ.

Lemma 5.4. Assume
RH > nµHβ.

If c0 ∈ R, H0 ∈ R and φ0 a probability density on Rn with zero mean are such that

−c0∇φ0 · u = µ2
H∆φ0 +

(
RH − γHH

0 − β2∥z∥2
)
φ0, z ∈ Rn, (32)

then they are given by

c0 = 0, φ0(z) =

(
β

2πµH

)n/2

exp

(
− β

2µH
∥z∥2

)
, H0 =

RH − nµHβ

γH
> 0.

The main result of this work is the following.

Theorem 5.5 (Run straight for your life). Let n = 1 or n = 2. Let µH , RH , γH , β, θ, µP , RP ,
γP , αP be positive parameters such that

RP > nµPαP , RH > nµHβ, β > max

(
3× 2n−2 − 1,

1√
5− 2

)
µHθ.

Then there is ℓ0 > 0 small enough such that, for all 0 < ℓ < ℓ0, the following holds.
There exists ε∗ > 0 small enough such that, for all 0 < ρmax < ε∗, there is a pursuit pulse

solution (c, τ,H, P, φ, ψ) to (20). Furthermore, ψ is given by (29), the delay τ by (30), we have the
relation (31), c > 0 and H < H0 = RH−nµHβ

γH
.

Our result holds in dimension 1 or 2. However, it would suffice to improve the technical Lemma
7.2 for the construction to hold in any dimension, see Remark 7.3 for further details. Note also that
H < H0 means that the pathogen has a negative impact on the host population size.
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6 Discussion

Inspired by recent literature on phenotypically-structured PDE models, particularly those in which
the phenotypic optimum is mobile, we developed a new host-pathogen coevolution model. In this
model, the pathogen follows a classic adaptation dynamic in the presence of a mobile optimum;
however, unlike existing PDE models, the trajectory of the optimum here results from interactions
with a host population. Our results, derived from rigorous mathematical analysis and numerical
simulations, illustrate scenarios where hosts and pathogens engage in a perpetual evolutionary race,
characterized by the formation of traveling pulses and cyclical adaptations.

Although the model is based on simplifying assumptions, it provides an initial mathematical
justification for the emergence of moving optima, such as those considered in [1, 10] (constant speed),
or [11, 16, 22, 26] (periodic fluctuations), without relying on external forcing terms (e.g., climate
change, pharmacokinetics, etc.). Furthermore, in all these studies (except [21]), the assumption
was that the moving optimum traveled either in a one-dimensional space or along a straight line
in a higher-dimensional space. Simulations in the case where α, β > 0 (Figure 2, right column),
which include an aggregation term and a phenotype optimum for the host, show that curvilinear
trajectories (in this case, circular) can also naturally emerge.

Among these simplifying assumptions, we assumed that the interactions terms between hosts
and pathogens are influenced solely by the mean phenotypes and the total populations. This simpli-
fication makes the model more tractable for mathematical analysis. However, as a consequence of
this assumption, unrealistic behaviors can emerge (see Figure 1). To mitigate these, we introduced
an aggregation term for the host population (case β > 0), which forces the phenotypic population
to remain concentrated around its average value. This aggregation term is crucial for the emergence
of Chase Red Queen scenarios.

Among the future research directions, we can mention the improvement of certain technical
results (see Remark 7.3) that would allow us to extend our findings to dimensions n ≥ 3. Future re-
search should also focus on rigorously demonstrating the existence of periodic circular trajectories,
as observed numerically. Another promising direction could involve introducing non-perturbative
methods to prove results over a broader range of parameters. If the pathogen’s distribution remains
Gaussian, as in the existing literature (e.g., [18]), numerical simulations suggest that the pathogen’s
effect on the host leads to a bean-shaped distribution of the latter. Therefore, we cannot expect to
explicitly construct Gaussian solutions to the system. One possible approach could be to use meth-
ods based on the principal eigenfunctions of elliptic operators, as discussed in Section 4. Finally,
the emergence of periodic trajectories along circles opens the door to revisiting the existing results
in [11, 16, 22, 26] for more general periodic trajectories.

7 Proof of Theorem 5.5

Let us recall that it remains to construct c ̸= 0, H > 0 and φ a probability density with zero mean
so that the first equation in (25) holds.

Let us remark that, recalling (27), if we are equipped with a probability density φ solving the
first equation in (25) and satisfying ∫

Rn

z1φ(z) dz = 0, (33)
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then the function φ̃ defined by

φ̃(z) :=
φ(z) + φ(ι(z))

2
, where ι(z) := (z1,−z2,−z3, . . . ,−zn),

is still a probability density solving the first equation in (25) and, additionally, it has zero mean.
Thus, it is enough to consider the constraint (33).

In the sequel use ε as a shortcut for ρmax. As explained above, we will rely on perturbations
technics around the case ε = 0 solved in Lemma 5.4. We recall the Implicit Function Theorem, see
[30, Theorem 4.B] for instance.

Theorem 7.1 (Implicit Function Theorem). Let X, Y and Z be three Banach spaces. Suppose
that

(i) The mapping F : U ⊂ X × Y → Z is defined on an open neighborhood U of (x0, y0) ∈ X × Y
and F(x0, y0) = 0.

(ii) The partial Fréchet derivative of F with respect to y exists on U and

Fy(x0, y0) : Y → Z is bijective.

(iii) F and Fy are continuous at (x0, y0).

Then, the following properties hold.

(i) Existence and uniqueness. There exist r0 > 0 and r > 0 such that, for every x ∈ X satisfying
∥x− x0∥ ≤ r0, there exists a unique y(x) ∈ Y such that ∥y − y0∥ ≤ r and F(x, y(x)) = 0.

(ii) Continuity. If F is continuous in a neighborhood of (x0, y0), then the mapping x 7→ y(x) is
continuous in a neighborhood of x0.

(iii) Higher regularity. If F is of the class Cm, 1 ≤ m ≤ ∞, on a neighborhood of (x0, y0), then
x 7→ y(x) is also of the class Cm on a neighborhood of x0.

In the sequel, we shall use the notations (multi-indexes k or j in Nn, their L1 norm σ(k), σ(j),
eigenfunctions Γk = Γk(z), etc.) and results of Appendix A.
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7.1 The functional spaces and the map F
For b > 0 to be precised later, we consider the spaces

X :=



(c, φ) ∈ R× C2(Rn)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∃C > 0,∀j ∈ Nn with σ(j) ≤ 2,∀z ∈ Rn,

|Djφ(z)| ≤ C

n∏
i=1

1

(1 + z2i )
2
,

and

∃K > 0,∀j ∈ Nn with σ(j) ≤ 2,∀k ∈ Nn,∣∣∣∣∫
Rn

Djφ(z)Γk(z) dz

∣∣∣∣ ≤ n∏
i=1

K

(1 + ki)b−
σ(j)
2n

,

and

∃M > 0, ∀k ∈ Nn,∣∣∣∣∣
∫
Rn

φ(z)e−θ∥z+(cτ+ℓ)u∥2

Γk(z) dz

∣∣∣∣∣ ≤
n∏

i=1

M

(1 + ki)b−
1
n



,

where Dj = ∂j1z1 . . . ∂
jn
zn , and

Y :=


f ∈ C0(Rn)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∃C > 0,∀z ∈ Rn, |f(z)| ≤ C

n∏
i=1

1

1 + z2i
,

and

∃K > 0,∀k ∈ Nn,

∣∣∣∣∫
Rn

f(z)Γk(z)dz

∣∣∣∣ ≤ n∏
i=1

K

(1 + ki)b−
1
n


.

They are Banach spaces, see [3, Lemma 4.1] for a related situation, when equipped with their
respective norm defined by

∥(c, φ)∥X := |c|+
∑

σ(j)≤2

sup
z∈Rn

∣∣∣∣∣Djφ(z)

n∏
i=1

(1 + z2i )
2

∣∣∣∣∣+ ∑
σ(j)≤2

∥Djφ∥
b−σ(j)

2n
+
∥∥∥φe−θ∥•+(cτ+ℓ)u∥2

∥∥∥
b− 1

n

,

and

∥f∥Y := sup
z∈Rn

∣∣∣∣∣f(z)
n∏

i=1

(1 + z2i )

∣∣∣∣∣+ ∥f∥b−1/n ,

where, for m ∈ R,

∥w∥m := sup
k∈Nn

(∣∣∣∣∫
Rn

w(z)Γk(z) dz

∣∣∣∣ n∏
i=1

(1 + ki)
m

)
.

For ε > 0, we are thus looking for a perturbation of the triplet (c0 = 0, φ0, H0) defined in
Lemma 5.4. Precisely we look for cε, ϕε, ηε so that the triplet

(cε, φε, Hε) := (cε, φ0 + ϕε, H0 + ηε)

16



validates the first equation in (25). Recalling (31), this means nothing else that R(ε, cε, ϕε, ηε) = 0
where

R(ε, c, ϕ, η) := µ2
H∆ϕ+ c∇ϕ · u

+

[
RH − γH(H0 + η)− β2∥z∥2 − ε

(
RP − c2

4µ2
P

− nµPαP

)
H0 + η

γP
e−θ∥z+(cτ+ℓ)u∥2

]
ϕ

+ c∇φ0(z) · u− γHηφ
0(z)− ε

(
RP − c2

4µ2
P

− nµPαP

)
H0 + η

γP
e−θ∥z+(cτ+ℓ)u∥2

φ0(z).

We thus consider the map

F : R×X × R → Y × R2

(ε, (c, ϕ), η) 7→
(
R(ε, c, ϕ, η),

∫
Rn

ϕ(z) dz,

∫
Rn

z1ϕ(z) dz

)
.

(34)

Obviously F(0, 0, 0, 0) = 0. Let us now check the hypotheses of the Implicit Function Theorem.

F is well-defined. From our choices of the spaces X and Y, for (ε, c, ϕ, η) ∈ R × X × R, the
function R(ε, c, ϕ, η) is well defined and in Y, and F(ε, c, ϕ, η) is well defined and in Y × R2. This
follows from a straightforward adaptation of [3, Lemma 4.2], the adequate linear material coming

from Appendix A. Let us simply note that, because of the term e−θ∥z+(cτ+ℓ)u∥2

ϕ appearing in the
definition of R above, we had to choose X not as a single function space but as a “scalar-function
space” (see the third condition in the definition of X ). This contrasts with the analysis in [3].

L := D(c,ϕ,η)F(0, 0, 0, 0) the Fréchet derivative of F along (c, ϕ, η) at point (0, 0, 0, 0). It is
straightforward to check that it exists and is given by the linear continuous operator

L : (c, ϕ, η) ∈ X × R 7→
(
R(c, ϕ, η),

∫
Rn

ϕ(z) dz,

∫
Rn

z1ϕ(z) dz

)
∈ Y × R2, (35)

where

R(c, ϕ, η) := µ2
H∆ϕ+

(
RH − γHH

0 − β2∥z∥2
)
ϕ+ c∇φ0(z) · u− γHηφ

0(z)

= µ2
H∆ϕ+

(
RH − γHH

0 − β2∥z∥2
)
ϕ− cβ

µH
z1φ

0(z)− γHηφ
0(z), (36)

since ∇φ0(z) = − β
µH

φ0(z) z from Lemma 5.4 and u = (1, 0, . . . , 0).

Also, one may check that D(c,ϕ,η)F is well-defined on a neighborhood of (0, 0, 0, 0), and that
both F and D(c,ϕ,η)F are continuous at (0, 0, 0, 0).

The next two subsections are dedicated to prove that the map L is one-to-one. This is the core
of the proof. We proceed by analysis and synthesis.

7.2 Construction of the antecedent

Let (f, h, r) ∈ Y ×R2 be given and assume there is (c, ϕ, η) ∈ X ×R such that L(c, ϕ, η) = (f, h, r).
By definition of X and Y, the functions ϕ and f belong to L2(Rn) so we may use the Hilbert basis
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(Γk)k∈Nn of Proposition A.1 to write

ϕ(z) =
∑
k∈Nn

ϕkΓk(z), and f(z) =
∑
k∈Nn

fkΓk(z),

where the coordinates (fk)k∈Nn are given, while the coordinates (ϕk)k∈Nn are to be found. From
Proposition A.1 and the expression of H0 in Lemma 5.4, we have

µ2
H∆ϕ− β2∥z∥2ϕ+

(
RH − γHH

0
)
ϕ = −

∑
k∈Nn

λkϕkΓk + nµHβϕ

= −2µHβ
∑
k∈Nn

σ(k)ϕkΓk.

Also, from the expression of φ0 in Lemma 5.4 and Proposition A.1, we have

φ0(z) =

(
β

2πµH

)n/2
1

C0
Γ0(z) =

(
β

4πµH

)n/4

Γ0(z). (37)

From the above and (36), we have

R(c, ϕ, η)(z) = −2µHβ
∑
k∈Nn

σ(k)ϕkΓk(z)−
cβ

µH

(
β

4πµH

)n/4

z1Γ0(z)− γHη

(
β

4πµH

)n/4

Γ0(z).

(38)
Hence, projecting R(c, ϕ, η) = f on all Γk’s, we collect the following relations according to k ∈ Nn.

(i) The case k = (0, . . . , 0). From Lemma A.2 (ii) we have
∫
Rn z1Γ0(z)Γ0(z) dz = 0 and thus

f0 = −γHη
(

β
4πµH

)n/4
. In other words, η is given by

η = − f0
γH

(
4πµH

β

)n/4

. (39)

(ii) The case k = u = (1, 0, . . . , 0). From Lemma A.2 (iii) we have
∫
Rn z1Γ0(z)Γu(z) dz =

√
µH

2β

and thus

fu = −2µHβϕu − cβ

µH

(
β

4πµH

)n/4√
µH

2β
.

In other words, ϕu is given by (note that c is still to be found)

ϕu = − 1

2µHβ
fu − c

2µH

1√
2µHβ

(
β

4πµH

)n/4

. (40)

(iii) The case k ∈ Nn \ {0,u}. This time, from Lemma A.2 (iii) we have
∫
Rn z1Γ0(z)Γk(z) dz = 0

and thus ϕk is given by

ϕk = − 1

2µHβσ(k)
fk, k ∈ Nn \ {0,u}. (41)
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Next, we need h =
∫
Rn ϕ(z) dz which, in view of Lemma A.2 (i), translates to the equality

h =
∑

k∈Nn ϕ2km2k. In other words, ϕ0 is given by

ϕ0 =
h−

∑
k∈Nn\{0} ϕ2km2k

m0
,

or equivalently, in view of Lemma A.2 (i) and (41),

ϕ0 =

(
β

4µHπ

)n/4

h+
1

4µHβ

∑
k∈Nn\{0}

(
n∏

i=1

√
(2ki)!

2kiki!

)
f2k
σ(k)

. (42)

Note that, for b > 0 large enough, the above series does converge. Indeed, from Stirling’s formula

there is C > 0 such that

√
(2ki)!

2kiki!
≤ C

k
1/4
i

≤ C and since, by the second condition in the definition of

Y, |fk| ≤
∏n

i=1
K

(1+ki)b−1/n one has
∑

k∈Nn\{0}
|f2k|
σ(k) < +∞ for b > 0 sufficiently large.

Last, we need r =
∫
Rn z1ϕ(z) dz which, in view of Lemma A.2 (ii), translates to

r =
∑

k=(k1,...,kn)∈Nn

k1 odd,
k2,...,kn even

ϕkw1,k.

In other words, in view of (40), c is given by

c =

(
1

2µH

1√
2µHβ

(
β

4πµH

)n/4
)−1

− 1

2µHβ
fu − r

w1,u
+

1

w1,u

∑
k=(k1,...,kn)∈Nn\{u}

k1 odd,
k2,...,kn even

ϕkw1,k

 .

Using Lemma A.2 (ii) and (41), some tedious but straightforward computations show that this can
be recast

c = −2βµHr − 2

√
µH

β

(
4πµH

β

)n/4 ∑
k=(k1,...,kn)∈Nn

k1 odd
k2,...,kn even

n∏
i=1

√
ki!

[(k1 − 1)/2]!

n∏
i=2

(ki/2)!

fk
2σ(k)/2σ(k)

,

or, equivalently,

c = −2βµHr − 2

√
µH

β

(
4πµH

β

)n/4 ∑
k=(k1,...,kn)∈Nn

k1 odd
k2,...,kn even

( √
k1!/2k1

[(k1 − 1)/2]!

n∏
i=2

√
ki!/2ki

(ki/2)!

)
fk
σ(k)

. (43)

Under the above form, using very similar arguments as above, one can check that, for b > 0 large
enough, the above series does converge.
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Hence, (c, ϕ, η) is uniquely determined by (39), (40), (41), (42), and (43).

Conversely, we have to check that (c, ϕ) — given by (40), (41), (42), and (43)— belongs to X .
In the sequel, C denotes a positive constant depending on the different parameters (µH , β, etc.)
but not on the multi-index k ∈ Nn, and that may change from line to line. For all k ∈ Nn \ {0,u},
it follows from (41), the second condition in the definition of Y and Lemma A.3, that

∥ϕkΓk∥∞ ≤ C
|fk|
σ(k)

∥Γk∥∞ ≤ C

σ(k)

n∏
i=1

k
1/4
i

(1 + ki)b−1/n
≤ C

n∏
i=1

1

(1 + ki)b−1/4
.

Taking b > 0 sufficiently large ensures the normal convergence of
∑

k ϕkΓk and, by very similar
arguments, that of

∑
k ϕk∂zjΓk,

∑
k ϕk∂zj∂zlΓk. Hence ϕ ∈ C2(Rn). It remains to check the three

conditions appearing in the definition of X .

The function ϕ satisfies the first property in the definition of X (algebraically decay).
Using successively (41), estimates (65), (67) from Lemma A.3, and the fact that f satisfies the
second condition in the definition of Y, we get∣∣∣∣∣(ϕ(z)− φ0Γ0(z)− ϕuΓu(z))

n∏
i=1

(1 + z2i )
2

∣∣∣∣∣ ≤ ∑
k∈Nn\{0,u}

∣∣∣∣∣ϕk
(

n∏
i=1

(1 + z2i )
2

)
Γk(z)

∣∣∣∣∣
≤ C

∑
k∈Nn\{0,u}

|fk|
σ(k)

n∏
i=1

k
9/4
i

≤ C
∑

k∈Nn\{0,u}

1

σ(k)

n∏
i=1

k
9/4
i

(1 + ki)b−1/n
,

which, again, is finite for b > 0 sufficiently large. Thus there is a constant C > 0 such that

∀z = (z1, . . . , zn) ∈ Rn, |ϕ(z)| ≤ C

n∏
i=1

1

(1 + z2i )
2
. (44)

Now let us fix 1 ≤ i ≤ n, with ki > 0 and define the multi-indexes

k− := (k1, . . . , ki−1,−1 + ki, ki+1, . . . , kn), k+ := (k1, . . . , ki−1, 1 + ki, ki+1, . . . , kn).

By (61), (62) and the recursive relations (63), we have

∂ziΓk(z) = Ck

√
β

µH
e
− β

2µH
∥z∥2

[
H ′

ki

(√
β

µH
zi

)
−

√
β

µH
ziHki

(√
β

µH
zi

)]
n∏

j=1
j ̸=i

Hkj

(√
β

µH
zi

)

= Ck

√
β

µH
e
− β

2µH
∥z∥2

[
kiHki−1

(√
β

µH
zi

)
− 1

2
Hki+1

(√
β

µH
zi

)]
n∏

j=1
j ̸=i

Hkj

(√
β

µH
zi

)

=

√
β

µH

(√
ki
2
Γk−(z)−

√
ki + 1

2
Γk+(z)

)
. (45)

Thanks to these relations, similar arguments as above show that, for any j ∈ Nn with σ(j) ≤ 2,
Djϕ also satisfies (44) (for b > 0 sufficiently large).
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The function ϕ satisfies the second property in the definition of X (decay of L2 pro-
jections). For all k ∈ Nn \ {0,u}, it follows from (41) and the fact that f satisfies the second
condition in the definition of Y that∣∣∣∣∫

Rn

ϕ(z)Γk(z) dz

∣∣∣∣ = |ϕk| ≤ C
|fk|
σ(k)

≤ C

∏n
i=1(1 + ki)

1/n

σ(k)

n∏
i=1

1

(1 + ki)b
≤

n∏
i=1

C

(1 + ki)b
,

since σ(k) =
∏n

i=1 σ(k)
1/n ≥

∏n
i=1 k

1/n
i . Next, integration by parts and (45) yields, for all 1 ≤ i ≤

n, ∣∣∣∣∫
Rn

∂ziϕ(z)Γk(z) dz

∣∣∣∣ = ∣∣∣∣∫
Rn

ϕ(z)∂ziΓk(z) dz

∣∣∣∣
≤ C

(√
ki|ϕk− |+

√
ki + 1|ϕk+ |

)
≤ C

(√
ki

|fk− |
σ(k−)

+
√
ki + 1

|fk+ |
σ(k+)

)
≤ C

n∏
l=1

1

(1 + kl)b−
1
2n

,

since σ(k±) = σ(k±)1/2σ(k±)1/2 ≥ Ck
1/2
i

∏n
l=1 k

1/(2n)
l and f ∈ Y. Very similar arguments reveal

that ∣∣∣∣∫
Rn

Djϕ(z)Γk(z) dz

∣∣∣∣ ≤ n∏
i=1

C

(1 + ki)b−
1
n

,

for all j ∈ Nn with σ(j) = 2, which concludes this part.

Last, the fact that ϕ satisfies the third property (involving the speed c) in the definition of X
deserves a full subsection.

7.3 The function ϕ satisfies the third property in the definition of X
Let us fix k = (k1, . . . , kn) ∈ Nn. For the sake of clarity, we use the shortcuts

θ :=
µH

β
θ > 0, c :=

√
β

µH
c, ℓ =

√
β

µH
ℓ, (46)
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Using successively that ϕ(z) =
∑

j∈Nn ϕjΓj(z), Fubini’s theorem, (61) and (62), we get

∣∣∣∣∫
Rn

ϕ(z) e−θ∥z+(cτ+ℓ)u∥2

Γk(z) dz
∣∣∣ =

∣∣∣∣∣∣
∑
j∈Nn

ϕj

∫
Rn

Γj(z)Γk(z)e
−θ∥z+(cτ+ℓ)u∥2

dz

∣∣∣∣∣∣
=

∣∣∣∣∣∣Ck

∑
j∈Nn

ϕj Cj

n∏
i=1

∫
R
Hji

(√
β

µH
zi

)
Hki

(√
β

µH
zi

)
e
− β

µH
z2
i −θ(zi+(cτ+ℓ)ui)

2

dzi

∣∣∣∣∣∣
=

∣∣∣∣∣∣π−n
2

∑
j∈Nn

ϕj√
2σ(k)+σ(j)

∏n
i=1 ki!ji!

n∏
i=1

∫
R
Hji(y)Hki(y)e

−y2−θ
µH
β

(
y+

√
β

µH
(cτ+ℓ)ui

)2

dy

∣∣∣∣∣∣
≤ π−n

2

∑
j∈Nn

|ϕj|√
2σ(k)+σ(j)

∏n
i=1 ki!ji!

n∏
i=1

∣∣∣∣∫
R
Hji(y)Hki

(y)e−y2−θ(y+(cτ+ℓ)ui)
2

dy

∣∣∣∣
=: π−n

2

∑
j∈Nn

γkj .

We now investigate on γkj , j ∈ Nn. In the sequel, C denotes a positive constant depending on the
different parameters (µH , β, etc.), but not on the multi-indexes k, j ∈ Nn, and that may change
from line to line.

First case: j = 0. Thanks to Lemma A.4, as H0 ≡ 1, we have, denoting κ = −(cτ + ℓ)ui,∣∣∣∣∫
R
H0(y)Hki

(y)e−y2−θ(y+(cτ+ℓ)ui)
2

dy

∣∣∣∣ =√ π

1 + θ

(
θ

1 + θ

)ki/2

exp

(
− θ κ2

1 + θ

) ∣∣∣∣∣∣Hki

√ θ

1 + θ
κ

∣∣∣∣∣∣
≤ C

(
θ

1 + θ

)ki/2

2ki/2
√
ki!

≤ C2ki/2
√
ki!,

where we have used Cramer’s inequality for Hermite polynomials, namely

∀k ∈ N, ∀x ∈ R, |Hk(x)| ≤ C
√
2kk! e

x2

2 . (47)

As a result,

γk0 =
|ϕ0|√

2σ(k)
∏n

i=1 ki!

n∏
i=1

∣∣∣∣∫
R
H0(y)Hki

(y)e−y2−θ(y+(cτ+ℓ)ui)
2

dy

∣∣∣∣ ≤ C|ϕ0| ≤
n∏

i=1

C

(1 + ki)b
,

since ϕ satisfies the second property in the definition of X . It thus remains to estimate
∑

j ̸=0 γ
k
j .

Second case: j ̸= 0. With a slight abuse of notation, we now redefine fu as the quantity such
that

ϕu = − fu
2µHβσ(u)

,
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see (40). This enables to make the relation (41) valid for any non trivial multi-index and, in
particular, ∑

j∈Nn\{0}

γkj ≤ Csc(k),

where

sc(k) :=
∑

j∈Nn\{0}

|fj|
σ(j)

n∏
i=1

1√
2ki+jiki!ji!

∣∣∣∣∫
R
Hji(y)Hki(y)e

−y2−θ(y+(cτ+ℓ)ui)
2

dy

∣∣∣∣ .
Since f ∈ Y, we have

sc(k) ≤ C
∑

j∈Nn\{0}

n∏
i=1

1√
2ki+jiki!ji!

1

p(ji)1/n(1 + ji)b−1/n

∣∣∣∣∫
R
Hji(y)Hki

(y)e−y2−θ(y+(cτ+ℓ)ui)
2

dy

∣∣∣∣ ,
where

p(j) =

{
1, if j = 0,
j, if j > 0.

We have finally simplified the problem into the study of a one-dimensional indexed series, depending
on an integer k and a real u ∈ {0, 1}, namely

Σ(k, u) :=

+∞∑
j=0

1√
2k+jk!j!

1

p(j)1/n(1 + j)b−1/n

∣∣∣∣∫
R
Hj(y)Hk(y)e

−y2−θ(y+(cτ+ℓ)u)
2

dy

∣∣∣∣︸ ︷︷ ︸
:=γk

j

, (48)

as sc(k) ≤ C
∏n

i=1 Σ(ki, ui). In the sequel, we fix u ∈ {0, 1} (recall (27)), and focus on Σ(k, u).
Applying Lemma A.4, we get

γkj ≤ C√
2k+jk!j!

(
1 + j

p(j)

)1/n
1

(1 + j)b

(
θ

1 + θ

) j+k
2

exp

(
− θκ2

1 + θ

)

×
min(k,j)∑

l=0

j!k!

l!(j − l)!(k − l)!

(
2

θ

)l
∣∣∣∣∣∣Hk−l

√ θ

1 + θ
κ

∣∣∣∣∣∣
∣∣∣∣∣∣Hj−l

√ θ

1 + θ
κ

∣∣∣∣∣∣ ,
so that, using the shortcut λ =

√
θ

1+θ
,

γkj ≤ C√
2k+j

1

(1 + j)b
λjλke−λ2κ2

min(k,j)∑
l=0

√
j!k!

l!(j − l)!(k − l)!

(
2

θ

)l

|Hk−l (λκ)| |Hj−l (λκ)| .

At this point we need a (local) refinement of the (uniform) Cramer’s inequality (47), namely [6,
Theorem 1, (i)] (see also [15]) which, in our setting, rewrites as

∀k ∈ N, |Hk(λκ)| ≤ C

√
2kk!

max(1, k1/4)
e

λ2κ2

2 . (49)
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Using this twice we reach

γkj ≤ C

(1 + j)b
λjλk

min(k,j)∑
l=0

√(
j
l

)(
k
l

)
max(1, (k − l)1/4)×max(1, (j − l)1/4)

(θ
−1

)l. (50)

Based on this, we prove in Appendix B the following.

Lemma 7.2. There holds

lim sup
k→+∞

(1 + k)b−
1
2

+∞∑
j=0

γkj < +∞. (51)

We have finally proven that

Σ(k, u) ≤ C

(1 + k)b−
1
2

,

which ends the proof that ϕ ∈ X , at least when n = 1 or n = 2.

Remark 7.3. A numerical conjecture is that a stronger property than (51) holds true, namely that,
for any n ≥ 1,

lim sup
k→+∞

(1 + k)b−
1
n

+∞∑
j=0

γkj < +∞. (52)

If so then our whole construction works in any dimension n ≥ 1. We leave this as an open question.

7.4 End of the proof

Hence, from the above we can apply the Function Implicit Theorem: there exists ε∗ > 0 such that
for all 0 ≤ ε < ε∗, there exists (cε, ϕε, ηε) ∈ X × R such that (cε, Hε, φε) = (cε, H0 + ηε, φ0 + ϕε)
satisfies the first equation in (25), namely

−cε∇φε · u = µ2
H∆φε +

(
RH − γHH

ε − β2∥z∥2 − εP εe−θ∥z+(cετ+ℓ)u∥2
)
φε, z ∈ Rn, (53)

where

P ε :=
1

γP

(
RP − nµPαP − (cε)2

4µ2
P

)
Hε.

Also, up to reducing ε∗, we have Hε > 0 (since H0 > 0), P ε > 0 (since RP − nµPαP > 0).
To conclude the proof of Theorem 5.5, it remains to prove the positivity of the speed cε, of the

profile φε, and the negativity of the mass ηε (meaning Hε < H0 for ε > 0).

The sign of ηε and of cε for 0 < ε ≪ 1. Let us recall that the map F was defined in (34).
Differentiating the equality F(ε, cε, ϕε, ηε) = 0 with respect to ε and evaluating at ε = 0, we get

∂F
∂ε

(0, 0, 0, 0) + L
(
dcε

dε

∣∣∣∣
ε=0

,
dϕε

dε

∣∣∣∣
ε=0

,
dηε

dε

∣∣∣∣
ε=0

)
= 0Y×R2 ,

where L was defined in (35). Computing ∂F
∂ε (0, 0, 0, 0), usingH

0 = RH−nµHβ
γH

and (37), this transfers
to

L
(
dcε

dε

∣∣∣∣
ε=0

,
dϕε

dε

∣∣∣∣
ε=0

,
dηε

dε

∣∣∣∣
ε=0

)
= (f, 0, 0), (54)
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with

f(z) :=M

(
β

4πµH

)n
4

e−θ∥z+ℓu∥2

Γ0(z), M :=
(RH − nµHβ)(RP − nµPαP )

γHγP
> 0.

At this point we take advantage of subsection 7.2 to invert (54).
First, (39) provides

dηε

dε

∣∣∣∣
ε=0

= − f0
γH

(
4πµH

β

)n/4

= −M

γH

∫
Rn

e−θ∥z+ℓu∥2

Γ2
0(z) dz

= −M

γH

(
β

πµH

)n
2
∫
Rn

e−θ∥z+ℓu∥2

e
− β

µH
∥z∥2

dz

= −M

γH

(
β

β + µHθ

)n
2

e
− βθℓ2

β+µHθ ,

using straightforward computations based on Lemma 5.2. In particular dηε

dε

∣∣∣
ε=0

< 0, insuring that,

up to reducing ε∗ > 0 if necessary, ηε < 0 for any 0 < ε < ε∗.
Next, (43) provides

dcε

dε

∣∣∣∣
ε=0

= −2

√
µH

β

(
4πµH

β

)n/4 ∑
k=(k1,...,kn)∈Nn

k1 odd
k2,...,kn even

( √
k1!/2k1

[(k1 − 1)/2]!

n∏
i=2

√
ki!/2ki

(ki/2)!

)
fk
σ(k)

. (55)

Our task is now to show that this quantity is positive (so that, up to reducing ε∗ > 0 if necessary,
cε > 0 for any 0 < ε < ε∗). To do so, for

k = (2j1 + 1, 2j2, . . . , 2jn), (56)

we focus on fk. We shall use the notation Ak ∝ Bk when Ak = CBk for some constant C > 0
depending on M , parameters n, β, µH , θ, but not on ℓ (that we need to take small enough at some
point) nor on the multi-index k. Hence, recalling Proposition A.1,

fk ∝
∫
Rn

e−θ∥z+ℓu∥2

Γ0(z)Γk(z) dz

∝ Ck

∫
R
e−θ(z1+ℓ)2e

− β
µH

z2
1H2j1+1

(√
β

µH

z1

)
dz1

n∏
i=2

∫
R
e−θz2

i e
− β

µH
z2
1H2ji

(√
β

µH

zi

)
dzi

∝ Ck

∫
R
e−θ(y+ℓ)2e−y2

H2j1+1 (y) dy

n∏
i=2

∫
R
e−θy2

e−y2

H2ji (y) dy,

using again the shortcuts (46). Note that the assumption ℓ > 0 is here crucial since ℓ = 0 would
imply the vanishing of the first integral in the above term. In view of Lemma A.4 (with k = 0,
j = 2j1 + 1, κ = −ℓ and with k = 0, j = 2ji, κ = 0), this yields

fk ∝ e−λ2ℓ
2

Ckλ
2j1+1H2j1+1(−λℓ)

n∏
i=2

(−λ2)ji ,
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with the shortcut λ =
√

θ
1+θ

. Plugging this into (55) and using (62), we reach (note that σ(k) =

2σ(j) + 1)

−eλ
2ℓ

2 dcε

dε

∣∣∣∣
ε=0

∝
∑

j2,...,jn

n∏
i=2

1

ji!

(
−λ

2

4

)ji +∞∑
j1=0

1

2σ(j) + 1

1

j1!

(
λ

2

)2j1+1

H2j1+1(−λℓ).

Using the expression of the odd Hermite polynomials, namely

H2j+1(x) = (2j + 1)!

j∑
m=0

(−1)j−m

(2m+ 1)!(j −m)!
(2x)2m+1,

and Fubini theorem, we get

−eλ
2ℓ

2 dcε

dε

∣∣∣∣
ε=0

∝
+∞∑
m=0

(−1)m
(−2λℓ)2m+1

(2m+ 1)!
αm,

where

αm :=
∑

j2,...,jn

n∏
i=2

1

ji!

(
−λ

2

4

)ji +∞∑
j1=m

1

2σ(j) + 1

1

j1!

(
λ

2

)2j1+1
(2j1 + 1)!(−1)j1

(j1 −m)!
.

As announced above we now turn to sufficiently small ℓ ∝ ℓ: the above provides the equivalent
(still up to a positive multiplicative constant)

dcε

dε

∣∣∣∣
ε=0

∼ 2λℓα0, as ℓ→ 0.

Hence dcε

dε

∣∣
ε=0

> 0 for sufficiently small ℓ (see the setting of Theorem 5.5) provided α0 > 0 which
we now aim at proving. If n = 1, this reduces to

α0 =

+∞∑
j=0

(−1)j
(2j)!

(j!)2

(
λ

2

)2j+1

an alternating series which, as easily checked, is positive since λ2 < 1. Hence, it only remains to
consider the case n ≥ 2. To so do, we rewrite α0 as

α0 =
∑

j=(j1,...,jn)

(−1)σ(j)g(j), g(j) :=
1

2σ(j) + 1

(2j1 + 1)!

(j1!)2

(
λ

2

)2j1+1 n∏
i=2

1

ji!

(
λ2

4

)ji

> 0

to side with the work [7] on alternating series in several dimensions. We claim that, for any j ∈ Nn,

g(j) >
∑

k∈{0,1}n

the number of 1 is odd

g(j+ k) =: S(j). (57)

This fact, whose proof is postponed, means that the sign of the alternating sum over any unit
n-cube is decided by the term at the corner nearest the origin, and immediately implies that g
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is n-monotone decreasing in the sense of [7, Section 2], and, similarly, so are all its coordinate
restrictions. In other words, g is fully monotone in the sense of [7, Section 2] and the positivity of
the alternating sum α0 is provided by [7, Theorem 3.1]. To conclude, we prove (57). We have

S(j) ≤ 1

2σ(j) + 3

( ∑
k∈{0,1}n

the number of 1 is odd
k1=0

(2j1 + 1)!

(j1!)2

(
λ

2

)2j1+1 n∏
i=2

1

(ji + ki)!

(
λ2

4

)ji+ki

+
∑

k∈{0,1}n

the number of 1 is odd
k1=1

(2j1 + 3)!

((j1 + 1)!)2

(
λ

2

)2j1+3 n∏
i=2

1

(ji + ki)!

(
λ2

4

)ji+ki
)
,

and thus (note that 3× 2n−2λ2 < 1 from the assumption β > (3× 2n−2 − 1)µHθ in Theorem 5.5)

S(j) ≤ 1

2σ(j) + 3

(
λ2

4

∑
k∈{0,1}n

the number of 1 is odd
k1=0

(2j1 + 1)!

(j1!)2

(
λ

2

)2j1+1 n∏
i=2

1

(ji)!

(
λ2

4

)ji

+
3

2
λ2

∑
k∈{0,1}n

the number of 1 is odd
k1=1

(2j1 + 1)!

(j1!)2

(
λ

2

)2j1+1 n∏
i=2

1

(ji)!

(
λ2

4

)ji
)

≤ 1

2σ(j) + 3
× 3

2
λ2 × 2n−1g(j)(2σ(j) + 1)

< g(j),

and we are done.

The profile φε is positive for 0 < ε ≪ 1. Assume by contradiction that there is a sequence
εp ↘ 0 such that φεp is not nonnegative on Rn. Since lim∥z∥→+∞ φεp(z) = 0, there is a point zp

where φεp reaches its negative minimum. Testing (53) at point zp we get

β2∥zp∥2 ≤ RH − γHH
εp − εpP

εpe−θ∥zp+(cεpτ+ℓ)u∥2

≤ RH .

However, let us underline that φ0 > 0 on Rn and ∥φε−φ0∥L∞(Rn) → 0 as ε→ 0. As a consequence,

for p large enough, there holds φεp(z) > 0 for all z such that ∥z∥ ≤
√
RH

β , which contradicts

φεp(zp) < 0. Therefore, by reducing ε∗ > 0 if necessary, we have that, for all 0 ≤ ε < ε∗, φε is
nonnegative and thus, from the strong maximum principle, positive.

This concludes the proof of Theorem 5.5.

A The multivariate harmonic oscillator

We fix β > 0 and consider the multivariate harmonic oscillator operator acting on u : Rn → R
through

Hu := −µ2
H∆u+ β2∥z∥2u.
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We define the L1-norm σ(k) of a multi-index k as

σ(k) :=

n∑
i=1

ki, for k = (k1, . . . , kn) ∈ Nn. (58)

We denote (Hi)i∈N the family of Hermite polynomials, that is the unique family of real polynomials
satisfying ∫

R
Hi(x)Hj(x)e

−x2

dx = 2ii!
√
πδi,j , degHi = i, (59)

where δ stands for Kronecker delta.
The following is well-known, see [25] or [3] among many others.

Proposition A.1 (Eigenelements of the harmonic oscillator). The operator H := −µ2
H∆+β2∥z∥2

admits a family of eigenelements (λk,Γk)k∈Nn , where, for any k = (k1, . . . , kn) ∈ Nn,

λk = (2σ(k) + n)µHβ, (60)

and

Γk(z) = Ck exp

(
− β

2µH
∥z∥2

) n∏
i=1

Hki

(√
β

µH
zi

)
, (61)

with

Ck =

(
β

πµH

)n/4
1√

2σ(k)
∏n

i=1 ki!
, (62)

a normalization constant so that ∥Γk∥L2(Rn) = 1. Additionally, the family (Γk)k∈Nn forms a Hilbert

basis of L2(Rn).

The following elementary results will also be useful.

Lemma A.2. Let k = (k1, . . . , kn) ∈ Nn be a given multi-index.

(i) The integral of Γk is given by

mk :=

∫
Rn

Γk(z) dz =


(
πµH

β

)n/4

2(n−σ(k))/2
n∏

i=1

√
ki!

(ki/2)!
, if all ki are even,

0, if not.

(ii) Let 1 ≤ i ≤ n be given. We define Ii = {(k1, . . . , kn) ∈ Nn: ki is odd and for all j ̸= i, kj is
even}. Then the i-th mean value of Γk is given by

wi,k :=

∫
Rn

ziΓk(z) dz =


2

√
µH

β

(
πµH

β

)n/4
2(n−σ(k))/2

n∏
j=1

√
kj !

[(ki − 1)/2]!

n∏
j=1
j ̸=i

(kj/2)!

, if k ∈ Ii,

0, if k /∈ Ii.
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(iii) For all 1 ≤ i ≤ n, we have that∫
Rn

ziΓk(z) exp

(
− β

2µH
∥z∥2

)
dz =

√
µH

2β

(
µHπ

β

)n/4

δki,1

n∏
j=1
j ̸=i

δkj ,0.

(iv) For all θ > 0, we have that∫
Rn

Γ2k(z) exp
(
−θ∥z∥2

)
dz = C2k

(
2πµH

β + 2θµH

)n/2 n∏
i=1

(
β − 2θµH

β + 2θµH

)ki (2ki)!

ki!
.

Proof. From the well-known recursive relations on the Hermite polynomials

Hj+2(x) = 2xHj+1(x)− 2(j + 1)Hj(x) and H ′
j+1(x) = 2(j + 1)Hj(x), (63)

one can check that

Ij :=

∫
R
Hj(x)e

− x2

2 dx =


√
2π

j!

(j/2)!
, if j is even,

0, if j is odd,

from which item (i) follows from elementary computations, and that∫
R
xHj(x)e

− x2

2 dx = 2jIj−1,

from which item (ii) follows from elementary computations.

Since zi exp
(
− β

2µH
∥z∥2

)
is nothing else than 1

2
√

β
µH

Cl

Γl(z) where l = (0, . . . , 0, 1, 0, . . . , 0) with

the 1 at the i-th position (because H1(x) = 2x), item (iii) follows from the fact that (Γk)k∈Nn

forms a Hilbert basis of L2(Rn).
Last, let us turn to the proof of item (iv). From (61) and Fubini theorem, we easily see that

the integral to be computed is equal to C2k

(
µH

β

)n/2
Πn

i=1Jki where

Jp :=

∫
R
H2p(x)e

−( 1
2+

θµH
β )x2

dx, p ∈ N.

Using the recursive relation in (63), integration by part and the second relation in (63), we straight-
forwardly reach

Jp = 2(2p− 1)
β − 2θµH

β + 2θµH
Jp−1,

from which we deduce

Jp =

(
β − 2θµH

β + 2θµH

)p
(2p)!

p!
J0 =

(
β − 2θµH

β + 2θµH

)p
(2p)!

p!

√
2πβ

β + 2θµH
,

and the desired result.
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We also need the following L∞ and L1 estimates which are less classical (since, obviously, the
usual framework is L2(Rn)).

Lemma A.3. There is a constant C = C(µH , β) > 0 such that, for all k ∈ Nn,

∥Γk∥1 ≤ C

n∏
i=1

k
1/4
i , (64)

∥Γk∥∞ ≤ C

n∏
i=1

k
1/4
i , (65)

and, for all indexes 1 ≤ j, l ≤ n,

∥∂zjΓk∥∞ ≤ Ck
1/2
j

n∏
i=1

k
1/4
i , ∥∂zj∂zlΓk∥∞ ≤ Ck

1/2
j k

1/2
l

n∏
i=1

k
1/4
i , (66)

together with

||z2jΓk||L∞ ≤ Ckj

n∏
i=1

k
1/4
i , ||z4jΓk||L∞ ≤ Ck2j

n∏
i=1

k
1/4
i . (67)

Proof. From (61), we have Γk(z) = Πn
i=1γki

(zi) where γki
are the one dimensional eigenfunctions

arising in [3, subsection 3.3] (with A = β
µH

). The conclusion is therefore a direct application of [3,

Lemma 3.2], which itself relies on [4].

Next, for γ ∈ R, the Hermite polynomials are known to satisfy

Hk(γx) =

⌊k/2⌋∑
i=0

γk−2i(γ2 − 1)i
k!

i!(k − 2i)!
Hk−2i(x), Hk(x+ y) =

k∑
i=0

(
k
i

)
(2y)k−iHi(x).

As a result, for 0 < γ < 1,

Hk(γ(x+ y)) =

⌊ k
2 ⌋∑

i=0

γk−2i(γ2 − 1)i
k!

i!(k − 2i)!

k−2i∑
j=0

(k − 2i)!

j!(k − 2i− j)!
(2y)k−2i−jHj(x)

=

k∑
j=0

⌊ k−j
2 ⌋∑

i=0

γk−2i(γ2 − 1)i
k!

i!j!(k − 2i− j)!
(2y)k−2i−j

Hj(x)

=

k∑
j=0

k!
j!
γk(2y)k−j

⌊ k−j
2 ⌋∑

i=0

1

i!(k − j − 2i)!

(
γ2 − 1

4y2γ2

)i
Hj(x)

=

k∑
j=0

[
k!

j!(k − j)!
γj
(
1− γ2

)(k−j)/2
Hk−j

(
yγ√
1− γ2

)]
Hj(x),

since the Hermite polynomials are given by Hk(x) = k!
∑⌊k/2⌋

i=0
(−1)i

i!(k−2i)! (2x)
k−2i. We retain that,

for all k ∈ N, 0 < γ < 1, (x, y) ∈ R2,

Hk(γ(x+ y)) =

k∑
j=0

(
k
j

)
γj
(
1− γ2

)(k−j)/2
Hk−j

(
yγ√
1− γ2

)
Hj(x), (68)
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which is useful to get the last following results.

Lemma A.4. For all j, k ∈ N with j ≥ k, and θ > 0, κ ∈ R, we have∫
R
Hj(y)Hk(y) exp

(
−y2 − θ(y − κ)2

)
dy =

√
π

1 + θ

(
θ

1 + θ

)(j+k)/2

exp

(
− θκ2

1 + θ

)
×

k∑
l=0

j!k!

l!(j − l)!(k − l)!

(
2

θ

)l

Hj−l

(√
θ

1 + θ
κ

)
Hk−l

(√
θ

1 + θ
κ

)
.

In particular, for κ = 0, we get∫
R
Hj(y)Hk(y) exp

(
−(1 + θ)y2

)
dy

=


√

π

1 + θ

(
−θ
1 + θ

) j+k
2

(−1)k
⌊k/2⌋∑
i=0

j!k!

i!(k − 2i)![(j − k)/2 + i]!

(
2

θ

)k−2i

, if (j + k) is even,

0, if (j + k) is odd.

Proof. Changing the variable we have∫
R
Hj(y)Hk(y) exp

(
−y2 − θ(y − κ)2

)
dy

=
1√
1 + θ

exp

(
− θκ2

1 + θ

)∫
R
Hj

(
x√
1 + θ

+
θκ

1 + θ

)
Hk

(
x√
1 + θ

+
θκ

1 + θ

)
e−x2

dx

= (1 + θ)−(j+k+1)/2θ(j+k)/2 exp

(
− θκ2

1 + θ

)
×

j∑
l1=0

k∑
l2=0

(
j
l1

) (
k
l2

)
θ−(l1+l2)/2(Hj−l1Hk−l2)

(√
θ

1 + θ
κ

)∫
R
Hl1(x)Hl2(x)e

−x2

dx,

thanks to a double use of (68) (with γ = 1√
1+θ

, y = θκ√
1+θ

). The orthogonality of the family

(Hie
−•2/2)i∈N, more precisely (59), completes the proof for a general κ. The case κ = 0 is then a

direct consequence of H2k(0) = (−1)k (2k)!
k! and H2k+1(0) = 0.

B Proof of Lemma 7.2

Recall that λ =
√

θ
1+θ

. In order to prove Lemma 7.2, in view of (50), we may change the definition

of γkj as

γkj =
1

(1 + j)b
λjλk

min(k,j)∑
l=0

√(
j
l

)(
k
l

)
max(1, (k − l)1/4)×max(1, (j − l)1/4)

(θ
−1

)l.

We set

γ̃kj :=
1

(1 + j)b
λjλk

min(k,j)∑
l=0

√(
j

l

)(
k

l

)
(θ

−1
)l.
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In what follows, C denotes a generic positive constant, independent of j and k, though its value
may change from one occurrence to the next. Observe also that, the assumptions in Theorem 5.5
and the definition of θ in (46) insure that θ ∈ (0,

√
5− 2).

(i) We first show that, for some 0 < q < 1,
∑

0≤j≤ k
2

γkj = O(qk) as k → +∞. For 0 ≤ j ≤ k
2 ,

using the crude estimates

(
j

l

)
≤ 2j and

(
k

l

)
≤ 2k, we get

γkj ≤ γ̃kj ≤ (
√
2λ)j+k

j∑
l=0

(θ
−1

)l = (
√
2λ)j+k (θ

−1
)j+1 − 1

θ
−1 − 1

≤ C(
√
2λ)j+k(θ

−1
)j .

Summing over 0 ≤ j ≤ k/2 (if k/2 is not an integer, this means that we sum over 0 ≤ j ≤ ⌊k/2⌋),
we obtain

∑
0≤j≤ k

2

γkj ≤ C(
√
2λ)k

∑
0≤j≤ k

2

(
√
2λθ

−1
)j ≤ C(

√
2λ)k(

√
2λθ

−1
)k/2 = C

(
2
√
2λ

1 + θ

)k/2

.

As θ <
√
5− 2, we have

2
√
2λ

1 + θ
< 1, and the conclusion of point (i) follows.

(ii) We next show a similar estimate for
∑
j≥ 3k

2

γkj . For j ≥ 3k
2 , using

(
j

l

)
≤ 2j and Cauchy-

Schwarz inequality, we get

γkj ≤ γ̃kj ≤ λj+k

(1 + j)b

√
2
j

k∑
l=0

√(
k

l

)
(θ

−1
)l

≤ λj+k

(1 + j)b

√
2
j

(
k∑

l=0

(
k

l

)
(θ

−1
)l

k∑
l=0

(θ
−1

)l

)1/2

=
λj+k

(1 + j)b

√
2
j

((
1 + θ

θ

)k
(θ

−1
)k+1 − 1

θ
−1 − 1

)1/2

≤ C

(1 + j)b
(
√
2λ)j(θ

−1
)

k+1
2 ≤ C(θ

−1
)

k
2 (
√
2λ)j .

Summing over j ≥ 3k/2, we obtain

∑
j≥ 3k

2

γkj ≤ C(θ
−1

)
k
2
(
√
2λ)

3k
2

1−
√
2λ

= C

(
(
√
2λ)3

θ

)k/2

= C

(
2
√
2λ

1 + θ

)k/2

,

and the conclusion of point (ii) follows.
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(iii) Last, we show that
∑

k
2<j< 3k

2

γkj ≤ C
1

(1 + k)b−
1
2

. We begin with an inequality on the product

of binomial coefficients.

Lemma B.1. Let j, k, l ∈ N such that l ≤ min(j, k). Then(
j

l

)(
k

l

)
≤
( j+k

2

l

)2

.

Proof. We define the function f : x 7→
(
x

l

)
:=

Γ(x+ 1)

Γ(l + 1)Γ(x− l + 1)
for x > l − 1. Then,

(ln f)′′(x) = Ψ′(x+ 1)−Ψ′(x− l + 1),

with Ψ :=
Γ′

Γ
the digamma function. As Ψ is concave on (0,+∞), (ln f)′′(x) ≤ 0 for all x > l − 1.

This implies that ln f is concave on (l − 1,+∞), which in turns implies that

ln f

(
j + k

2

)
≥ 1

2
ln f(j) +

1

2
ln f(k),

which provides the result.

Using Lemma B.1, we obtain

γ̃kj ≤ 1

(1 + j)b
λjλk

min(k,j)∑
l=0

( j+k
2

l

)
(θ

−1
)l

≤ 1

(1 + j)b
λjλk

j+k
2∑

l=0

( j+k
2

l

)
(θ

−1
)l

=
1

(1 + j)b

(
θ

1 + θ

) j+k
2
(
1 + θ

θ

) j+k
2

=
1

(1 + j)b
.

As 1
2k ≤ j ≤ 3

2k, we get

γ̃kj ≤ 2b

(1 + k)b
≤ C

(1 + k)b
. (69)

In the sequel, we define

aj,k,l :=

√(
j

l

)(
k

l

)
(θ

−1
)l,

so that we may write

γkj =
1

(1 + j)b
λjλk

min(k,j)∑
l=0

aj,k,l
max(1, (k − l)1/4)max(1, (j − l)1/4)

,
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and

γ̃kj =
1

(1 + j)b
λjλk

min(k,j)∑
l=0

aj,k,l.

Using Cauchy–Schwarz inequality, we note that

min(k,j)−1∑
l=0

aj,k,l
(k − l)1/4(j − l)1/4

≤

min(k,j)−1∑
l=0

aj,k,l

1/2min(k,j)−1∑
l=0

aj,k,l
(k − l)1/2(j − l)1/2

1/2

. (70)

For l ≤ k
4 , we have (k − l)1/2(j − l)1/2 ≥ (k − k/4)1/2(k/2− k/4)1/2 ≥ Ck. Thus,

⌊k/4⌋∑
l=0

aj,k,l
(k − l)1/2(j − l)1/2

≤ C

k

⌊k/4⌋∑
l=0

aj,k,l

 . (71)

Next, for l ≥ ⌊k/4⌋+ 1 and l ≤ min(j, k)− 1 we have√ (
j
l

)
j − l

=

√(
j

l−1

)
j − l

j − l + 1

l
=

√(
j

l − 1

)
1

l

(
1 +

1

j − l

)
≤ C√

k

√(
j

l − 1

)
,

and, similarly, √ (
k
l

)
k − l

≤ C√
k

√(
k

l − 1

)
.

Thus,

min(k,j)−1∑
l=⌊k/4⌋+1

aj,k,l
(k − l)1/2(j − l)1/2

≤ C

k

min(k,j)−1∑
l=⌊k/4⌋+1

aj,k,l−1

 =
C

k

min(k,j)−2∑
l=⌊k/4⌋

aj,k,l

 . (72)

Adding (71) and (72), we obtain

min(k,j)−1∑
l=0

aj,k,l
(k − l)1/2(j − l)1/2

≤ C

k

aj,k,⌊k/4⌋ + min(k,j)−2∑
l=0

aj,k,l

 ≤ C

k

min(k,j)−1∑
l=0

aj,k,l

 . (73)

Plugging this into (70), we get

min(k,j)−1∑
l=0

aj,k,l
(k − l)1/4(j − l)1/4

≤ C√
k

min(k,j)−1∑
l=0

aj,k,l

 . (74)
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Coming back to γkj , we have

γkj =
1

(1 + j)b
λjλk

min(k,j)∑
l=0

aj,k,l
max(1, (k − l)1/4)max(1, (j − l)1/4)

≤ 1

(1 + j)b
λjλk

aj,k,min(j,k) +

min(k,j)−1∑
l=0

aj,k,l
(k − l)1/4(j − l)1/4


≤ 1

(1 + j)b
λjλk

aj,k,min(j,k) +
C√
k

min(k,j)−1∑
l=0

aj,k,l


≤ C√

k

1

(1 + j)b
λjλk

min(k,j)−1∑
l=0

aj,k,l


≤ C√

k
γ̃kj ,

where we have used (74) and aj,k,min(j,k) ≤ C√
k
aj,k,min(j,k)−1 for 1

2k ≤ j ≤ 3
2k and k ≥ 1. With

(69), we obtain

γkj ≤ C

(1 + k)b+1/2
. (75)

Finally, this shows that
∑

k
2<j< 3k

2

γkj ≤ C
1

(1 + k)b−
1
2

, which concludes the proof of point (iii) and of

Lemma 7.2.
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[13] N. Champagnat, R. Ferrière, and S. Méléard, Unifying evolutionary dynamics: from in-
dividual stochastic processes to macroscopic models, Theoretical Population Biology, 69 (2006),
pp. 297–321.

[14] R. Dawkins and J. R. Krebs, Arms races between and within species, Proceedings of the
Royal Society of London. Series B. Biological Sciences, 205 (1979), pp. 489–511.
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