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Abstract
2-boostrap percolation on a graph is a diffusion process where a

vertex gets infected whenever it has at least 2 infected neighbours,
and then stays infected forever. It has been much studied on the
infinite grid for random Bernoulli initial configurations, starting from
the seminal result of van Enter that establishes that the entire grid gets
almost surely entirely infected for any non-trivial initial probability of
infection.

In this paper, we generalize this result to any adjacency graph of
any rhombus tiling of the plane, including aperiodic ones like Penrose
tilings. We actually show almost sure infection of the entire graph for
a larger class of measure than non-trivial Bernoulli ones.

Our proof strategy combines a geometry toolkit for infected clusters
based on chain-convexity, and uniform probabilistic bounds on partic-
ular geometric patterns that play the role of 0-1 laws or ergodicity,
which are not available in our settings due to the lack of symmetry of
the graph considered.

1 Introduction
Bootstrap percolation was first introduced by [CLR79] as a simplified model
of a magnetic system progressively loosing its magnetic order1. When ab-
stracted away from this physical modeling, it can be seen as a simple growing
or diffusion process on a graph: at each time step, any vertex with m or more
infected neighbours becomes infected, and infected vertices remain infected
forever. As in classical percolation theory, this system is usually studied on
random initial condition (each vertex is initially infected with some proba-
bility p), and the main question is to determine whether the entire graph
will be infected almost surely (depending on p).

This process has been first studied on the bi-dimensional grid where the
case m = 2 is the most interesting one. [vEnt87] proved in that case that
whenever p > 0, the entire graph is infected almost surely. Then [AL88] and

1Due to initial non-magnetic impurities and competition between exchange interactions
(which tends to align atomic spins) and crystal fields interactions (which tends to force
atoms into a singlet state, and thereby suppressing magnetic moments).
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later [Hol03] obtained sharp thresholds on p for finite grids as a function
of their size. Still on the grid (in dimension two or higher), these seminal
results were considerably generalized to a large class of monotone cellular
automata called U-bootstrap and introduced in [BSU15] (see [Mor17] for a
detailed survey of this family and [Bol+23; Bal+23] for a taste of the most
recent results).

On the other hand, bootstrap percolation was studied on many differ-
ent graphs: finite ones like in [GS17; Gra+15], tilings by regular polygons
[BC18] where critical probabilities are trivial (0 or 1) like on the infinite
grid, or hyperbolic lattices [Sau+09] or regular trees and Cayley graphs of
non-amenable groups [BS09; BPP06] where non-trivial critical probabilities
were established. A common aspect to these works (and to most of the
literature to our knowledge) is that the graphs considered are highly sym-
metric which gives, on one hand, powerful probabilistic tools for tackling
the problem (0-1-laws, ergodicity, etc), and, on the other hand, a nicer and
more uniform geometry to infected clusters.

There is a general observation (or belief) in statistical mechanics that
many features of studied systems only depend on a few parameters and
should be independent of the details of the system. This is often referred
to as universality, but there is no rigorous mathematical definition of the
concept to our knowledge. More modestly and back to the precise context
of bootstrap percolation, one could ask how robust is the seminal result of
[vEnt87] when modifying the underlying graph. First, as mentioned above,
there is a dramatic change of behavior when going from the grid to trees,
Cayley graphs of non-amenable groups or hyperbolic graphs (non-critical
probabilities arise). But what is special about the regular grid Z2 among
planar graphs that are quasi-isometric to it? what is the importance of
symmetry (in particular translation invariance) that allows to make concise
proofs?

In this paper, we consider boostrap percolation on any adjacency graph
of any rhombus tiling of the plane with finitely many tile types up to trans-
lation, including the regular grid but also highly non-symmetric ones like
Penrose tilings. Our main result is a generalization of the seminal result
of [vEnt87] to this entire class of graphs, precisely: on the adjacency graph
of any rhombus tiling, for any non-zero initial probability of infection, the
entire graph will get infected almost surely.

Classical percolation was already studied on Penrose tilings in [Hof98],
where the lack of translation invariance and symmetry is tackled by intro-
ducing an ergodic measure that averages over all possible Penrose tilings.
Our approach is different and gives results for bootstrap percolation on any
single tiling without averaging. We generalize Enter’s argument to this set-
ting by combining a geometrical analysis of blocked infected cluster based
on chain-convexity (which are simply rectangles in the case of the grid) and
uniform probability upper bounds on blocked cluster events that bypass the
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lack of translation invariance (whereas thanks to ergodicity in the case of
the grid, it is enough to bound the probability of a blocked infected cluster
containing the origin).

Contents of the paper. In section 2, we introduce bootstrap percolation
cellular automata on any graph, the main problem, and some basic proba-
bilistic notions and ingredients to be used later. In section 3, we introduce
rhombus tiling and some of their geometric features. The two previous ob-
jects introduced separately meet in section 4, where we establish our main
result in two steps: first, by a detailed analysis of infection clusters based
on chain-convexity (sub-section 4.1), and then, by a probabilistic argument
applied to specific geometric objects previously identified (sub-section 4.2).
In the appendices we present two examples that limit the generalization of
our result to other graphs and percolation processes. In Appendix A we
show that 2-neighbour percolation does not have a critical threshold (or
0 − 1) behaviour on the adjacency graphs of arbitrary quadrilater tilings. In
Appendix B we show that arbitrary percolation processes (here a variant of
oriented bootstrap percolation) do not have a critical threshold behaviour
on the adjacency graphs of arbitrary rhombus tilings.

2 Bootstrap cellular automaton and probability
measures

In this section, we introduce the bootstrap cellular automaton on an arbi-
trary abstract graph and present basic facts around probability measures
(to be used later in Section 4.2).

Given a graph G = (V, E), a configuration is a map giving a value 0 or
1 to each vertex. We denote by X = {0, 1}V the set of configurations. If
c ∈ X and v ∈ V , we use notations c(v) and cv interchangeably. The set
X can be endowed with the pro-discrete topology (product of the discrete
topology over {0, 1}) which is generated by the collection of cylinder sets for
D ⊆ V a finite domain of V and P : D → {0, 1} a partial configuration of
domain D:

[P ] = {c ∈ X | ∀t ∈ D, c(t) = P (t)}.

X endowed with this topology is compact. We will often use the nota-
tion shortcut qD for q ∈ {0, 1} and D ⊆ V to denote the constant partial
configuration equal to q on domain D. Therefore [qD] denotes the set of
configurations in state q on domain D.

In this paper, we are interested in a dynamical process acting on con-
figurations which is a particular cellular automaton often called bootstrap
percolation [CLR79; vEnt87; BPP06].
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The m-neighbour contamination or m-bootstrap cellular automaton F : X → X
for some integer m is defined as follows:

F (c)v =
{

1 if cv = 1 or
∣∣{v′ | (v′, v) ∈ E and cv′ = 1}

∣∣ ≥ m,

0 else,

for any configuration c ∈ X and any vertex v ∈ V .
This cellular automaton is both freezing and monotone (see [STT22]),

which means that:

1. F (c)v ≥ cv for any c ∈ X and v ∈ V (freezing),

2. F (c′)v ≥ F (c)v for all v ∈ V whenever c′
v ≥ cv for all v ∈ V (mono-

tone).

The freezing property lets us see F as a growing process: starting from
any initial configuration seen as a set of selected vertices of value 1, F can
only make this set increase with time. In particular, for any c ∈ X and
any v ∈ V , the sequence

(
F n(c)v

)
n

is ultimately constant of limit value c∞
v .

Equivalently, the sequence of configurations
(
F n(c)

)
n

always converges and
its limit is precisely c∞.

We will focus on the set I of initial configurations that invade the entire
graph during this growing process, formally:

I =
{
x ∈ X | ∀v ∈ V, ∃n ∈ N, F n(c)v = 1

}
.

Clearly not all configurations lie in I. We want to understand how
big I is. Topologically, it is a Gδ set (intersection over v ∈ V of sets
∪n{c | F n(c)v = 1} which are open), but following motivations from sta-
tistical physics and percolation theory, we will study I through probability
measures.

A Borel probability measure is uniquely determined by its value on
cylinders (by Carathéodory-Fréchet extension theorem, see [Wal81, Theo-
rem 0.5]). We mainly consider Bernoulli measures µp which are product
measures determined by a parameter p ∈ [0, 1] giving the “probability of
having a 1 at one vertex”, as follows:

µp([P ]) =
∏

v∈D,P (v)=1
p ×

∏
v∈D,P (v)=0

(1 − p).

The monotony property of F mentioned above implies that the mea-
sure of I under Bernoulli measures can only increase with p: µp(I) ≤ µp′(I)
whenever p ≤ p′ (this can be shown by a straightforward coupling argument).
Since µ0(I) = 0 and µ1(I) = 1, there are two critical values of the parame-
ter p to consider: p0

c = sup{p | µp(I) = 0} and p1
c = inf{p | µp(I) = 1} which

verify p0
c ≤ p1

c .
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Remark 1. In many proofs, an event is shown to be of probability either 0
or 1 for a given measure µ using 0-1 laws.

One of them is the Kolmogorov 0-1-law; but it applies to tail events,
which I is not: it might depend on a finite portion of the configuration.

Another of them is that, if the graph G has enough symmetry, Bernoulli
measures follow a 0-1 law on Borel sets of configurations that preserve these
symmetries.

More precisely, denoting Γ the group of automorphisms of graph G, if
the action of Γ on G has an infinite orbit (intuitively meaning that infinitely
many vertices of G are indistinguishable) and if G is locally finite, then, for
any Bernoulli measure µ and any set X of configurations which is invariant
under Γ (i.e., c ∈ X and ϕ ∈ Γ implies c ◦ ϕ−1 ∈ X), we have µ(X) ∈ {0, 1}
(see [BR06, Lemma 1, chapter 5]).

Whatever the graph G, the set I is always invariant under Γ, simply
because F (c) ◦ ϕ−1 = F (c ◦ ϕ−1) for any configuration c and c ∈ I is deter-
mined by a uniform constraint on all vertices: ∀v ∈ V, c∞(v) = 1. Conse-
quently, for this 0-1 law to hold on I, the only requirement is for the graph to
have enough symmetry. It is the case in particular for Cayley graphs of infi-
nite groups (typically Z2), and is often expressed as the fact that the action
of translation with Bernoulli measure is ergodic [Wal81, Theorem 1.12].

Following remark 1, in the case of a graph with enough symmetry,
µp(I) ∈ {0, 1} for all p so that p0

c = p1
c . We will however consider graphs

that have few or no symmetry and there is a priori no reason to expect
this 0-1 law to hold (see counter-example in appendix A and Proposition 1
therein).

Furthermore, this 0-1 law uses Bernoulli measures: percolation theory
often focuses on these measures to study critical values of parameter p. Here,
we will actually consider a larger class of measures in Section 4 that are not
necessarily product measures but are sufficiently well-behaved.

Our goal here is not to look for abstract generality, but rather to make
explicit and clear the requirements we use in the probabilistic arguments
of our main result (Section 4.2). There are three such requirements that
we detail below: bounded correlations (Markov property), non-vanishing
probability of patches of 1 of any fixed size, and positive correlation of
upward-closed sets.

Fix some integer k ∈ N. We say that a measure µ is k-Markov if, for any
finite D ⊆ V and any set X ⊆ V which is at distance at least k from D in
graph G and any patterns u : D → {0, 1} and P : X → {0, 1}, the following
holds:

µ([u] ∩ [P ]) = µ([u])µ([P ]).
In addition, we say a measure is non-vanishing if for all r there is some

constant α > 0 such that for all v ∈ V , µ([1B(v,r)]) ≥ α where B(v, r) is the
ball of radius r centered in v in graph G. Finally, a set of configurations
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X ⊆ X is upward-closed if, whenever x ∈ X and xv ≤ yv for all v ∈ V , then
y ∈ X.

A measure µ is called MNVPC (Markov-Non Vanishing-Positively Cor-
related) if it is k-Markov for some k, non-vanishing, and any pair X, Y of
upward-closed Borel sets are positively correlated, i.e. µ(X ∩ Y ) ≥ µ(X)µ(Y ).

Lemma 1. Any non-trivial Bernoulli measure on a bounded degree graph is
MNVPC.

Proof. Any such measure is clearly 1-Markov. It is non-vanishing on any
graph of bounded degree because the cardinal of balls of radius r is uniformly
bounded. Finally, Bernoulli measures are positively correlated on upward-
closed events, a fundamental fact often referred to as Harris inequality (see
[BR06, Lemma 3 of chapter 2] for a complete proof).

One of the basic property of MNVPC measures is that imposing a large
patch of 0 at a fixed position has a decreasing probability with the patch
size that can be uniformly exponentially upper-bounded.

Lemma 2. If G is of bounded degree and µ a MNVPC measure, then there is
some β with 0 < β < 1 such that, for any D ⊆ V with |D| = n it holds that
µ([0D]) ≤ βn.

Proof. Let k be such that µ is k-Markov, and α > 0 be such that µ([1{v}]) ≥ α
for all v (α exists because µ is non-vanishing). If ∆ is a bound on the degree
of G then any ball of radius k in G has cardinality at most ∆k. Therefore,
one can choose at least N = ⌊ n

∆k ⌋ vertices v1, . . . , vN in D which are pairwise
separated by distance at least k. By the k-Markov property we get

µ([0D]) ≤
∏

1≤i≤N

µ([0{vi}]) ≤ (1 − α)N .

Taking β = (1 − α)
1

2∆k proves the lemma.

3 Rhombus tilings
We call tiling, denoted by T , a countable set of tiles that covers the euclidean
plane R2without overlap. That is, T = {ti, i ∈ N} is a tiling when ⋃

i∈N
ti = R2

and for any i, j ∈ N, t̊i ∩ t̊j = ∅. In all that follow, we consider the case
of rhombus tilings, where there are finitely many tiles up to translation, all
the tiles are rhombuses and the tiling is edge-to-edge, i.e., any two tiles
either intersect on a single common vertex, on a full common edge, or not at
all. Throughout the article we use the famous example of Penrose rhombus
tilings [Pen79], see Fig. 1.

In the case of edge-to-edge tilings, the condition that there are finitely
many tiles up to translation is equivalent to finite local complexity (FLC)
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Figure 1: A fragment of a Penrose rhombus tiling.

[Ken92] that is: for any given size there are finitely many patches of that
size.

We say that two tiles t and t′ are adjacent, denoted by t ∼ t′, when they
share a full edge, that is, when there exists an edge e such that t ∩ t′ = e.
This notion, also called edge-adjacency, is the natural notion of adjacency
on edge-to-edge tilings. However, we also define a weaker notion of vertex-
adjacency. We say that two tiles t and t′ are vertex-adjacent, denoted by
t ∼v t′, when they are distinct and share at least one vertex, i.e. t ∩ t′ ̸= ∅
and t ̸= t′.

Given a tiling T and a tile t ∈ T , we define the neighbourhood of t,
denoted by N (t), as the set of tiles which are adjacent to t, i.e., N (t) :=
{t′ ∈ T | t ∼ t′}. We also define the weaker vertex-neighbourhood of t,
Nv(t) := {t′ ∈ T | t ∼v t′}. We define similar notions for a set of tiles
S, that is, N (S) := {t′ ∈ T \ S | ∃t ∈ S, t ∼ t′} and Nv(S) := {t′ ∈
T \ S | ∃t ∈ S, t ∼v t′}. They are respectively the tiles adjacent and vertex-
adjacent to the set S. Note that all these notions are not neighbourhoods
in the topological sense, notably since they do not contain the original set.
However, this denomination, which is ultimately about adjacent tiles, is
widely used and understood in tilings theory.

We call patch P a set of adjacent tiles in a tiling. We also sometimes
consider vertex-patches, which are sets of vertex-adjacent tiles. We consider
only finite patches unless specified otherwise.

The key structure in rhombus tilings are the chains which generalize the
rows and columns of the square grid.

Definition 1 (Chain χ). Given a rhombus tiling T .
Given an edge direction e⃗, we say that two tiles t and t′ are e⃗-adjacent,

denoted by t
e⃗∼ t′, when they share an edge of direction e⃗.

Given an edge direction e⃗ and a normal vector n⃗ (orthogonal to e⃗), we
say that a tile t′ is e⃗-adjacent to t in direction n⃗ when t

e⃗∼ t′ and ⟨t⃗t′|n⃗⟩ > 0
where t⃗t′ is the vector from the barycenter of t to the barycenter of t′ and ⟨|⟩
denotes the scalar product.

We call chain χ of edge direction e⃗ a bi-infinite patch χ = (ti)i∈Z such
that there exists n⃗ orthogonal to e⃗ such that for any i, ti+1 is e⃗-adjacent to
ti in direction n⃗.

We call half-chain χ+ of edge direction e⃗, orientation n⃗ and starting tile
t the infinite patch χ+ = (ti)i∈N such that t0 = t and for any i, ti+1 is
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e⃗-adjacent to ti in direction n⃗.
We call chain segment a finite connected subset of a chain. For a chain

χ and i < j, we write χj
i to denote the subset {ti, . . . , tj}.

We denote χ ≡ χ′ when two chains are identical up to shift of index
and/or multiplication of one’s indices by −1.

Figure 2: In light grey a chain of rhombuses, in darker gray and with the
starting tile in bold a half-chain of rhombuses.

Lemma 3 (Chain crossing [Ken93]). Given a rhombus tiling T and two
chains χ of direction e⃗ and χ′ of direction e⃗′. The following hold:

1. if χ ̸≡ χ′ then χ and χ′ intersect at most once;

2. if χ ̸≡ χ′ and χ ∩ χ′ ̸= ∅ then the intersection tile t has edge directions
e⃗ and e⃗′

3. if e⃗ = ±e⃗′ then either χ ≡ χ′ or χ ∩ χ′ = ∅

Note however that, in an arbitrary rhombus tiling, non-intersecting chains
might have different edge directions.

Lemma 4 (Uniform monotonicity). Let T be a rhombus tiling with finitely
many edge directions. There exists a constant θ > 0 such that any chain χ is
θ-uniformly monotonous, that is, if χ = (χi)i∈Z has direction e⃗, there exists
a unit normal vector n⃗ orthogonal to e⃗ such that for any i ∈ Z, ⟨ ⃗titi+1|n⃗⟩ ≥ θ
where ⃗titi+1 is the vector from the barycenter of ti to the barycenter of ti+1.

Proof. Let T be a rhombus tiling with d edge directions {e⃗0, . . . ⃗ed−1}. De-
note e⃗⊥ the unit vector orthogonal to e⃗ in the positive orientation.

Let θ := min
0≤i,j<d,i̸=j

|⟨e⃗i|e⃗j
⊥⟩|.

Any chain χ ⊂ T is θ-uniformly monotonous. Indeed, let χ be a chain
of edge direction e⃗. Let t and t′ be two consecutive tiles in χ. There exists
two directions e⃗i and e⃗j (possibly the same) such that t has edge directions
e⃗ and e⃗i and t′ has edge directions e⃗j and e⃗. Without loss of generality
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(changing the choice of orientations of the directions), assume ⟨e⃗i|e⃗⊥⟩ > 0
and ⟨e⃗j |e⃗⊥⟩ > 0. Since t and t′ are parallelograms and adjacent along an e⃗

edge, this means that t⃗t′ = 1
2(e⃗i + e⃗j). So ⟨t⃗t′|e⃗⊥⟩ = 1

2(⟨e⃗i|e⃗⊥⟩+⟨e⃗j |e⃗⊥⟩) ≥ θ.

Figure 3: Adjacent tiles along a chain and vector.

Remark 2 (Rhombus and parallelograms). The keen reader might have al-
ready noticed that the combinatorial structure of chains only uses the fact
that rhombuses have two pairs of opposite parallel edges, that is, they are
parallelograms. However for simplicity of redaction we chose to only men-
tion rhombus tilings as any edge-to-edge parallelogram tiling is combinato-
rially equivalent to an edge-to-edge rhombus tiling, meaning they have the
same adjacencies. Indeed the transformation consisting in rescaling all edge
directions so they have the same length transforms an edge-to-edge paral-
lelogram tiling to a combinatorially equivalent edge-to-edge rhombus tiling.
Note however that, by transforming a tileset in this manner we might allow
more tilings as collinear edge directions merge in this process.

4 Critical probability for 2-bootstrap percolation
on rhombus tilings

The 1-bootstrap dynamics is not interesting on connected graphs (I con-
tains all configurations except one). Moreover, on rhombus tilings, the 3-
bootstrap dynamics always admits finite obstacles and therefore has a trivial
critical probability (p0

c = p1
c = 1): indeed, considering any vertex of the tiling

and assuming that all tiles sharing this vertex are in state 0 (not infected),
then they will stay in state 0 forever, because each of them has at most 2
neighbours in state 1 at any moment.
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In this section we investigate 2-neighbour contamination on rhombus
tilings, and we prove almost sure invasion on any rhombus tiling with finitely
many edge directions for any MNVPC measure µ. In particular, it implies
almost sure invasion for any non-trivial Bernoulli measure so that the critical
percolation threshold of 2-neighbour contamination on any rhombus tiling
with finitely many edge directions is p0

c = p1
c = 0.

Formally, to fit the formalism of Section 2, we can consider the adjacency
graph of the rhombus tilings. The adjacency graph, or dual graph, GT of
the rhombus tiling T is GT = (T , ET ) where (t, t′) ∈ ET ⇔ t ∼ t′. However,
for simplicity, we identify T and GT in this section.

In Section 4.1, we study the geometry and combinatorics of clusters
(stable contaminated patterns) and prove that any finite cluster is enclosed
in a “wall” which is a polygon of a bounded number of chain segments,
generalising the fact that in Z2 clusters are enclosed in a rectangle that is
in particular a polygon of 4 chain segments. We also prove that infinite
clusters are bounded by some chain path including an infinite half-chain.

In Section 4.2 we use the geometrical and combinatorial results on clus-
ters to prove that invasion is almost sure for any MNVPC measure. The key
idea is counting the possible finite “walls” of length n around a tile and
bounding their number by a polynomial in n. From this we deduce for any
MNVPC measure µ :

• a uniform bound λ < 1 on the measure of the event Et of a tile being
enclosed in a finite “wall”, and

• a uniform approximation of Et by the tail event Et,≥n of the tile t
being enclosed in a finite “wall” of length more than n.

Remarking that the head events Et,≤n of being enclosed in a wall of length
less than n are independent for sufficiently far away tiles for Markov mea-
sures, we obtain almost independence of far away events Et from which we
conclude almost sure invasion for any MNVPC measure.

4.1 Geometrical and combinatorial elements

The first observation that we can make is that a chain of 0s can stop a
contaminated cluster, see Fig 4. Actually we prove that chains of 0s are the
only possible “walls” for 2-neighbour contamination. To formalize this we
introduce the notion of chain-convexity.

Definition 2 (Chain convex). A connected set of tiles S ⊂ T is called
chain-convex when for any chain of tiles χ = (χi)i∈Z the following hold:

1. {j ∈ Z | χj ∈ S} is an interval of Z;

2. if there exist i < j such that χi and χj are vertex-neighbours of S (that
is {χi, χj} ⊂ Nv(S)) then either χj−1

i+1 ⊂ N (S) and no tile of χ is in S,
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Figure 4: On the left a stable half plane of 1s (represented in dark gray), on
the right a simple stable finite cluster of 1s.

or N (S) ∩ χ = {χi, χj} and the tiles of χ that belong to S are exactly
χj−1

i+1 .

Note that a chain convex set of tiles, as it is connected and contains no
hole due to item 1 of the definition, is simply connected.

Remark 3. If a tile χi from a chain χ is vertex-adjacent to a set S, then
among χi+1 and χi−1, one of them is either vertex-adjacent to S too, or in
S. Indeed, χi+1 shares half the vertices of χi with it, and χi−1 the other
half; consequently one of them also shares a vertex with a tile of S, unless
it is itself a tile of S.

Remark 4 (Intersections of chains with the boundary of chain-convex sets).
This definition states that if χ is a chain and S is chain-convex, we have
the following possibilities for the adjacency of χ and S:

• χ has no element that is vertex-adjacent to S (this also holds if χ ⊂ S);

• χ has exactly one element χi that is vertex-adjacent to S; then by the
above remark either {χi+1, χi+2, . . . } or {χi−1, χi−2, . . . } is in S;

• χ has exactly two elements χi and χj that are vertex-adjacent to S
(and in particular no other element can be adjacent to S); then χi and
χj are adjacent to S and the intersection with S is exactly the (possibly
empty) set {χi+1, . . . , χj−1};

• χ has at least three elements that are vertex-adjacent to S (and notably
not in S), and a finite number of them; then let us take χi and χj be
the ones with smallest and largest indices. We cannot have the second
case of point 2 of the definition above, therefore χ does not intersect
S, all elements in {χi+1, . . . , χj−1} neighbour S, and no element of χ

outside of χj
i is adjacent or vertex-adjacent to S.

• χ has infinitely many elements that are vertex-adjacent to S. Then
similarly χ does not intersect S, and either has a half-chain adjacent
to S, or is adjacent to S in its entirety.
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With the following two results, we prove that any vertex-connected set
of tiles that is stable for 2-neighbour contamination is chain convex, as
we would want it to be. We start by a more technical lemma on vertex-
connected stable sets of tiles.

Lemma 5 (Technical result on chains and stable clusters). Let S be a vertex-
connected set of tiles S ⊂ T that is stable for 2-neighbour contamination.
Let χ ∈ T be a chain of rhombuses of edge direction e⃗ such that there exist
i < j ∈ Z with χi, χj ∈ Nv(S). Denote vi (resp. vj) a vertex common to χi

and S (resp. common to χj and S).
If no tile of χj−1

i+1 is in S, and if vi and vj are in the same half-space of
T \χ, (that is, vi and vj are connected in S ∩ (T \χ), as in Fig. 5), then the
edge path pχ from vi to vj along the boundary of χ is also in the boundary
of S.

Note that in the following proofs, T \ χ and S ∩ (T \ χ) are understood
as sets of tiles.

Proof. Let S be a vertex-connected set of tiles S ⊂ T that is stable for
2-neighbour contamination. Let i < j ∈ Z and χ = (χi)i∈Z a chain of
rhombuses of edge direction e⃗ satisfying the condition above. Notably, χj−1

i+1
has no tile in S; and there are vertices vi and vj vertices of χi ∩S and χj ∩S
which are in the same half-space of T \ χ, and connected in S ∩ (T \ χ) as
depicted in Fig. 5.

We prove that all the rhombuses χk ∈ χj−1
i+1 are adjacent to S through

a non-e⃗ edge. More precisely, the edge path pχ from vi to vj along the
boundary of χ (it exists as vi and vj are in the same half-space) is also in
the boundary of S.

Denote pS a path from vj to vi along the boundary of S such that
S does not intersect the domain delimited by pχ · pS , where · is the path
concatenation. To obtain such a path, one can first take an arbitrary path p0
along the boundary of S connecting vj to vi (vj and vi lie on the boundary of
S by hypothesis, since χi, χj ∈ Nv(S)). If the (finite) domain D0 delimited
by pχ · p0 doesn’t intersect S we are done, otherwise there must be a tile
t ∈ S ∩ D0 with a vertex on p0. Considering the edge-connected component
of S ∩ D0 containing t, we can define a new path p1 along the boundary of
S still connecting vj to vi but such that the domain D1 delimited by pχ · p1
is included in D0 but does not contain t.

Iterating this process a finite number of times (since S ∩D0 is finite), we
obtain the desired path pS .

First, remark that if pS is trivial, that is if vi = vj , then by uniform
monotonicity of χ in direction e⃗⊥ (Lemma 4), j = i+1 and so the conclusion
holds vacuously with χj−1

i+1 = ∅.
Now we assume that pS is non trivial, as depicted in Fig. 5. Assume for

contradiction that the finite patch of tiles D defined as the interior of the
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Figure 5: A chain χ touching twice a stable set S. We prove that the domain
D must be empty.

cycle p = pχ · pS is non empty. We now construct a subset D′ ⊊ D that
satisfies the same hypothesis and has to be non-empty. We consequently
reach a contradiction by iterating this construction which builds a strictly
decreasing sequence of non-empty finite sets of tiles.

As D is non-empty and delimited by pS , there exists a tile t ∈ D∩N (S).
As S is stable for 2-neighbour contamination, S touches exactly one edge
of t. So t has another edge direction e⃗t so both e⃗t-edges of t are not in
pS . Denote χ′ the chain of rhombuses of edge direction et passing through
χ′

0 := t. As p is a closed curve containing t, and χ′ is uniformly monotonous
in direction e⊥

t , χ′ crosses p at least twice. As chains can cross at most
once, the pχ part of p cannot be crossed twice by χ′, and so χ′ crosses
pS at least once. Therefore there exists t′ := χ′

k such that χ′k
0 ⊂ D and

χ′
k+1 ∈ S. In particular, χ′

k is adjacent to S through an et edge. Denote
D′ the subset of D delimited by the subpath p′

S between t and t′ along the
boundary of S and the path pχ′ between t and t′ on the boundary of χ′, as
depicted in Fig. 6. D′ ⊊ D and D′ ̸= ∅ as otherwise t′ would be adjacent to
S through both a et edge and a non-et edge, contradicting the stability of
S. Additionnally, the chain χ′ from t to t′ satisfies the same hypothesis as
the chain χ from χi to χj . So we can repeat this decomposition process to
reach a contradiction.

Therefore pS = pχ and all the tiles along the chain χ from vi to vj are
adjacent to S through a non-e⃗ edge.

Remark 5. A direct consequence of that lemma is that if a chain χ (of
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Figure 6: Decomposing the domain D.

direction e⃗) touches a connected set S of tiles that is stable for 2-neigbour
contamination through two vertices vi ∈ χi and vj ∈ χj lying in two different
half-spaces of T \ χ, then the whole portion of chain χj−1

i+1 is in S.
This follows from the fact that vi and vj are connected in S by some edge

path p, which crosses χ by Jordan’s theorem.
Denote vi1 , . . . , vik

the vertices of intersection of p with χ, including vi

and vj, named from the smallest index i1 to the biggest index ik of tiles in
the chain χ that contain these vertices (up to using ′ if a given tile has sev-
eral vertices involved in the process). Applying Lemma 5 on the elementary
intervals between consecutive intersection points, we obtain that all tiles of
χik−1

i1+1 are adjacent to S through a non-e⃗ edge.
Additionally, if p crosses χ, then S also contains some tile χk′ ∈ χ, with

i1 ≤ k′ ≤ ik. Then χk′+1 (or χk′−1 if k′ = ik) is adjacent to S both through
χk′ and a non-e⃗ edge. Hence χk′+1 ∈ S (or χk′−1) by stability of S for
2-neighbour contamination. With a finite number of steps, we deduce that
the entire χik−1

i1+1 chain portion is in S. Notably, χj−1
i+1 is in S.

Lemma 6 (Bootstrap stability). Any vertex-connected set of tiles S ⊂ T
that is stable for 2-neighbour contamination is chain convex.

Proof. Let S ⊂ T be a vertex-connected set of tiles that is stable for 2-
neighbour contamination.

We prove, using Lemma 5, that S is chain-convex, by checking all the
items of that definition. Let χ be a chain of rhombuses in T .

We prove that {j ∈ Z, χj ∈ S} is an interval of Z. Let χj ∈ S and
χj+k ∈ S. If χj and χj+k are not connected in S ∩ (T \χ), then as remarked

14



in Remark 5, we have χj+k−1
j+1 ⊂ S. Otherwise, denote p the edge path from

a vertex vj of χj to a vertex vj+k of χj+k in the same half-space such that
vj and vj+k are connected in S ∩ (T \ χ). For contradiction, assume that
χj+k−1

j+1 is not entirely in S. This means it contains a sub-interval that is
entirely not in S. Up to renaming, we keep the notations j and j +k for that
sub-interval, taken as big as possible (so that we still have χj and χj+k in
S). By Lemma 5, if χj+k−1

j+1 does not intersect S then p is in the boundary
of S. Moreover, χj+1 /∈ S. And yet, χj+1 has two edge neighbours in S: its
neighbour on the other side of the edge path p, and χj . This contradicts
the stability of S for 2-neighbour contamination. Consequently, χj+k−1

j+1 is
entirely in S and so {j ∈ Z, χj ∈ S} is an interval of Z.

We now prove the second chain-convexity condition. Let i < j such that
χi and χj are in Nv(S) (not in S). Denote vi (resp. vj) the vertex of χi

(resp. χj) the vertex touching S. As explained in Remark 5, if vi and vj

are not in the same half-space or not connected in S ∩ (T \ χ) then χj−1
i+1 is

included in S. We now assume that vi and vj are in the same half-space and
connected in S ∩ (T \ χ). Denote p the edge path from vi to vj along the
boundary of χj

i . Up to decomposing χj
i in smaller intervals whose endpoints

are not in S, we assume that χj−1
i+1 either is entirely in S or has no tile in

common with S, while χi, χj /∈ S.
In the first case we have χj−1

i+1 ⊂ χ ∩ S and χi, χj /∈ S. By the fact
we proved above that {j ∈ Z, χj ∈ S} is an interval of Z, we obtain that
S ∩ χ = χj−1

i+1 . Additionally, the only elements of χ in Nv(S) are χi and
χj . Indeed, if it weren’t the case, then there exists k (assume by symmetry
k > j) such that χk ∈ Nv(S), and then by applying Lemma 5 we obtain
that the edge path p from χj to χk is on the boundary of S. So χj has two
edge neighbours in S: its neighbour on the other side of the edge path p,
and χj−1. This would contradict the stability of S.

In the second case, χj−1
i+1 has no tile in common with S. By applying

Lemma 5, we obtain that the edge path p from vi to vj is on the boundary
of S and so χj−1

i+1 ⊂ N (S). In that case we also have that no tile of χ is in S.
Indeed, if there exist χk ∈ S (assume by symmetry that k > j) then taking
the smallest such k, we have χk−1 ∈ Nv(S), and the edge path p′ from vj

to vk (a common vertex to χk and χk−1) is in the boundary of S. And so
once again χk−1 has two neighbours in S (χk and some t ∈ S through p′),
contradicting stability.

Overall, we have proved that S is chain-convex.

We call fortress (or finite obstacle) a non-empty finite patch R that
resists outside contamination. That is, the configuration cR where tiles in
R are 0s and all other tiles are 1s is stable for 2-neighbour contamination.
See Fig. 7 for an example of fortress for 2-neighbour contamination with
quadrilater tiles.
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Figure 7: The central pattern of 4 trapezes and the small square forming
a big square is a fortress for two neighbour contamination. Indeed, each
trapeze has only one outside neighbour, so it cannot be contaminated by
the outside if the pattern itself is initially non-contaminated.

Straightforwardly, the existence of fortresses in a structure is incompat-
ible with a critical percolation threshold less than 1. Our first step to prove
the existence of a non-trivial critical percolation threshold is to use Lemma 5
to prove the absence of such fortresses.

Lemma 7 (Fortress). In an edge-to-edge rhombus tiling there is no fortress
(finite obstacle) for 2-neighbour contamination.

Proof. Let R be a fortress and S be its complement. By definition, S is
stable for 2-neigbour contamination.

Let χ be a chain that intersects R. As R is finite, χ enters and leaves
R. That is, there exist i < j such that χi, χj ∈ S, χi+1, χj−1 ∈ R. Up to
restricting to a sub-segment of chain, we assume that χj−1

i+1 ⊂ R.
Denoting vi and v′

i (resp. vj and v′
j) the vertices of χi ∩ χi+1 (resp.

χj−1 ∩ χj) such that vi and vj are in the same half-space delimited by χ.
Denoting p (resp. p′) the edge path from vi to vj along χ (resp. from v′

i to
v′

j) and applying Lemma 5 on both we obtain that the tiles of χj−1
i+1 are edge

adjacent to S through both p and p′, contradicting the stability of S.

In what follows, we define some nice notions of polygons and paths in
the rhombus tiling, then use Lemma 7 and the results above to prove that
any chain-convex patch has such a well-behaved boundary.

Definition 3 (Chain polygon and polypath). We say that ρ = (ρi)0≤i<m is
a chain polygon in T when :

• the ρi are distinct tiles,

• consecutive ρi are edge adjacent, that is : for any i, ρi+1 mod m ∈
N (ρi),

• the cycle has no cords, that is: for any i, j such that j ̸= i±1 mod m,
ρj /∈ N (ρi).
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Note that any chain polygon ρ = (ρi)0≤i<m can be partitoned into k chain
segments for some integer k, that is: there exists chains χ1, . . . χk and indices
i1, . . . ik−1 such that {ρ0, . . . ρi1} ⊂ χ1,
{ρi1 , . . . ρi2} ⊂ χ2, . . . {ρik−1 , . . . ρm−1, ρ0} ⊂ χk. Indeed, one can always
choose m chain segments made of only two tiles each.

A chain polygon is called a chain n-gon if it can be partitioned into at
most n chain segments.

We say that ρ = (ρi)i∈Z is a simple path in T when the ρi are distinct
tiles, consecutive ρi are edge-adjacent and there are no cords.

We call chain polypath a simple path (ρi)i∈Z that can be partitioned into
k half-chains and chain segments for some integer k. A chain polypath is
called a n-polypath if it can be partitioned into at most 2 half-chains and at
most n − 2 chain segments.

Lemma 8 (Chain-convex patches and chain 2d-gons). Let S ⊊ T be a chain-
convex set of tiles, and d be the number of edge directions in the tiling.

If S is finite, then the exterior tile boundary of S is a chain 2d-gon.
If S is infinite, then the exterior tile boundary of S contains an infinite

chain 2d-polypath. More precisely, the exterior tile boundary of S is the
disjoint union of one or more chain polypaths of which the sum of the number
of chain segments is at most 2d.

Proof. Let S be a finite chain-convex set of tiles.
First note that we can partition Nv(S) (which is finite, as S is) as a

chain-polygon of chains that do not intersect S. Indeed, any two consecutive
tiles in Nv(S) (when going around S in a given rotationnal order) are edge-
adjacent and the chain connecting them does not intersect S (by definition of
chain-convexity). So grouping the tiles of Nv(S) by common edge direction,
we get finitely many segments of chain.

Actually, we have at most 2d chain segments in Nv(S) because for each
edge orientation e⃗ there are at most two chain segments of edge direction e⃗ in
Nv(S). This follows from the uniform monotonicity of chains, see Lemma 4,
and the fact that chains of same edge direction cannot cross. Indeed assume
that for some edge direction e⃗, there are three distinct chains χ, χ′ and χ′′

that do not intersect S but have tiles in the vertex-neighbourhood of S. Up
to renaming assume that χ′ is between χ and χ′′ as in Fig. 8. By uniform
monotonicity, χ′ either crosses S (which is a contradiction) or χ or χ′′ (which
is also a contradiction).

Let S be an infinite chain-convex set of tiles. Let P be a connected
component of Nv(S), we prove that P is an infinite chain 2d-polypath. This
proof is decomposed in two parts: first we prove that P is infinite, and
second we prove that it intersects non-trivially (meaning for at least two
consecutive tiles) at most two chains for each chain direction. As P is a
connected component of Nv(S) and S is infinite and chain-convex, each
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Figure 8: A chain convex set S (in dark grey and dark green) with two
adjacent chains of same edge direction (in light blue), any chain of the same
direction in between (in green) has to intersect S.

tile t ∈ P has two edge-neighbours in P , either two opposite edges (the
tiles are along a chain) if P shares an edge with S, or two adjacent edges
if P only shares a vertex with S. This implies that if P is finite, then
it is a chain polygon. This polygon induces a finite interior and an infinite
exterior. As S is infinite it cannot be the interior, and hence P together with
its interior forms a fortress (finite obstacle) for 2-neighbour contamination
which contradicts Lemma 7. So P is infinite.

As detailed in the first part of the proof, each chain that has two con-
secutive tiles in Nv(S) does not insersect S. This implies, using the same
proof as above, that for each chain directions there are at most two segments
(or half-chains) of chain of that direction in P . This implies that P is an
infinite chain 2d-polypath (recall that 2d-polypath means it has at most 2d
components).

Note that in the case of infinite S, S might be an infinite strip between
two non-intersecting chains of rhombuses. In that case, Nv(S) contains
exactly 2 connected components which are both an infinite chain.

Corollary 1 (Finite stable patches). Any finite patch of tiles P ⊂ T that
is stable for 2-neighbour contamination is delimited by a chain-polygon with
at most 2d sides with all 0s.

The exterior boundary of any infinite simply-connected set of tiles P ⊊ T
that is stable for 2-neighbour contamination contains an infinite half-chain
with all 0s.
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4.2 Probabilistic arguments

In this subsection, we fix a rhombus tiling T and a MNVPC measure µ.
Let C be the set of configurations that contain at least a half-chain of

zeros,i.e.,

C := {x ∈ X | ∃ a half-chain χ = (χi)i∈N, ∀i ≥ 0, xχi = 0}

.

Lemma 9. µ(C) = 0.

Proof. For a fixed half-chain χ = (χi)i∈N the set Cχ := {x ∈ X | ∀i ≥ 0, xχi = 0}
has measure 0 because

Cχ =
⋂
i∈N

[0χi ]

and µ
( ⋂

0≤i≤n

[0χi ]
)

≤ βn by Lemma 2 where 0 < β < 1.

Since there are only countably many half-chains (a half-chain is uniquely
identified by an initial tile, a direction and an orientation), the union bound
gives µ(C) = 0 because

C =
⋃

χ half-chain
Cχ.

Let B be the set of configurations that do not invade but do not contain
any half-chain of zeros, i.e.,

B := I∁ ∩ C∁

Recall that we call chain 2d-gon a chain polygon with at most 2d sides.

Lemma 10. In the finitely blocking configurations B, every 1 is enclosed in
a closed chain 2d-gon of 0, i.e.,

B ⊂ {x ∈ X | ∀v ∈ T , [xv = 1 ⇒ ∃closed chain 2d-gon c around v of 0]}

Proof. This derives from the definition of B together with Corollary 1. Con-
sider some configuration c ∈ B. As the 2-neighbour contamination F is
monotone and freezing, there exists a limit configuration c∞ = lim

n→∞
F n(c)

and since c ∈ B ⊂ I∁, c∞ is not the 1-uniform configuration, i.e., c∞ ̸= 1T .
Recall that because F is freezing, we have that for any tile t ∈ T , ct ≤ c∞

t .
So we also have c∞ ∈ B.

As c∞ is stable for F and not the 1-uniform configuration, any 1 in
c∞ is in a stable contaminated cluster. Corollary 1 states that any stable
contaminated cluster is either infinite or enclosed in a chain 2d-gon of zeros.
The case of an infinite contaminated cluster P ⊊ T is impossible, as the
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exterior boundary of P would contain an infinite half-chain of zeros which
is a contradiction with c∞ ∈ B.

So any tile t is either in state 0 in c, in which case it is enclosed in the
trivial chain 2d-gon of zeros that is itself; or in state 1 in c in which case it
is also in state 1 in c∞ and therefore belongs to some finite stable cluster
and is enclosed in a non-trivial chain 2d-gon of zeros.

Definition 4 (Enclosed configurations). Let Et be the set of configurations
x such that tile t is enclosed in a closed chain 2d-gon of 0s, including the
configurations where xt = 0 as t is enclosed in a trivial 2d-gon.

Let Et,≤n be the set of configurations x such that t is enclosed in a closed
chain 2d-gon of 0s of length at most n, and Et,>n be Et \ Et,≤n.

By definition, for any t and any n, we have Et,n ⊆ Et and µ(Et,n) ≤
µ(Et). We will actually show that µ(Et) is uniformly bounded away from 1.
The first step is the following polynomial bound on the number of 2d-gons.

Lemma 11 (2d-gon counting). Given a rhombus tiling T with finitely many
edge directions. There exists a polynomial Q such that for any tile t, the
number of closed convex chain 2d-gons around t of length n is at most Q(n).

Proof. Let us first remark that a chain 2d-gon of length n is in particular a
2d-partition of [n].

Remark also that, when walking a convex chain 2d-gon with exactly 2d
sides in clockwise orientation, the order of the chain edge directions is fixed.
If the 2d-gon has less than 2d sides some directions are absent but the order
of chain edge directions respects the fixed order.

This implies that given a tile t, and a starting point p0 there are at most
as many convex chain 2d-gons of length n arount t and starting at p0 as
there are 2d partitions of [n]. In particular there are less than n2d such
chain 2d-gons.

Now remark that since p0 is the starting point of a chain 2d-gon of length
n that encloses t, the adjacency distance dT (p0, t) is less than n.

As the tiling T has finitely many tiles up to translation, there is a max-
imal diameter of tiles D and a minimal area of tiles A. So the euclidean
distance from p0 to t is at most D(n − 1), and there are at most πD2n2/A
such starting points p0 in T .

Overall there are at most Q(n) := πD2

A n2d+2 convex chain 2d-gons of
length n around t.

This polynomial depends only on the tileset, that is, the set of tiles in
T up to translation. In particular Q(n) is of degree 2d + 2 where d is the
number of edge directions in T , and the leading coefficient depends on the
shapes of the tiles (minimal area and maximal diameter).
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Lemma 12 (Uniform bound). There exists a λ < 1 such that for any tile
t ∈ T , µ(Et) ≤ λ < 1.

Proof. This lemma is a consequence of Lemma 11. The key element is that
there are polynomially many convex 2d-gons of length n, but having 0s on
the whole 2d-gon has exponential probabilistic cost.

Consider the series ∑
n≥0

Q(n)βn where 0 < β < 1 is the constant given

by Lemma 2 on measure µ. As β < 1, and Q is a polynomial the series
converges. This implies that there exists N ∈ N such that ∑

n≥N
Q(n)βn < 1.

Denote λ0 := ∑
n≥N

Q(n)βn.

Now consider a tile t ∈ T and the patch P = B(t, N) made of all tiles
around t up to distance N . Since µ is non-vanishing, there is some constant
α > 0 depending on N but not on t such that µ([1P ]) ≥ α.

Claim 1. µ([1P ] ∩ E∁
t ) ≥ α(1 − λ0)

Proof of the claim. Denote EP the set of configuration where P is
enclosed in a convex chain 2d-gon of zeros (not intersecting P ), and
EP,=n the subset where it is enclosed in a convex chain 2d-gon of
length exactly n.

Remark that [1P ] ∩ E∁
t = [1P ] ∩ E∁

P since any chain 2d-gon of zeros
around t in a configuration of [1P ] necessarily avoids and encloses P .

Remark also that if n < N , EP,=n = ∅ and for n ≥ N we have
µ(EP,=n) ≤ Q(n)βn, by the union bound, as there are at most Q(n)
convex 2d-gons of length n around P and EP,=n is the union on all
these 2d-gons ρ of the event [0ρ] which has measure less than βn by
Lemma 2. With EP = ⋃

n∈N
EP,=n we have µ(EP ) ≤ λ0 = ∑

n≥N
Q(n)βn.

Both [1P ] and E∁
P are upward-closed events so by hypothesis on

µ they are positively correlated. Therefore we have: µ([1P ] ∩ E∁
t ) ≥

α(1 − λ0) which proves the claim.

From the claim we deduce that µ(E∁
t ) ≥ α(1−λ0). Denote λ := 1−α(1−λ0).

We have µ(Et) ≤ λ < 1.

Lemma 13 (Uniform approximation). For any ε, there exists n such that
for any t ∈ T we have

µ(Et,>n) ≤ ε

Proof. The proof is similar to the proof of Lemma 12 and relies on the fact
that there are polynomially many convex chain 2d-gons of length n.
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Denote E′
t,>n the set of configurations where tile t is enclosed in a convex

chain 2d-gon of zeros of length more than n (but possibly also in one of length
less than n).

By definition we have Et,>n ⊂ E′
t,>n.

Additionally E′
t,>n is the disjunction over all convex chain 2d-gons of

length more than n of the event “being all 0” so, denoting β the constant
from Lemma 2, we have µ(E′

t,>n) ≤
∑

k>n
Q(k)βk.

As there the series converge, there exists n such that ∑
k>n

Q(k)βk < ε.

We then have µ(Et,>n) ≤ µ(E′
t,>n) ≤ ε as expected.

Lemma 14. µ(B) = 0

Proof. We prove that for any m ∈ N and any ε > 0, we have µ(B) ≤ λm+mε
with λ < 1 of Lemma 12.

Take ε > 0. Take m ∈ N. By Lemma 13, there exists n such that for
any tile t, µ(Et,>n) ≤ ε.

Take m tiles t0 . . . tm−1 sufficiently far away from each other, in such a
way that no two chain 2d-gons of length n enclosing two distinct tiles can be
at distance k or less, where k is such that µ is k-Markov. This means that

the events Eti,≤n are independent and therefore we have µ

( ⋂
0≤i<m

Eti,≤n

)
=∏

0≤i<m
µ(Eti,≤n).

We have
B ⊆

⋂
0≤i<m

Eti

due to the fact that for any configuration x in B, for any i ∈ {0, . . . , m − 1},
either xti = 1 and thus x belongs to Eti due to Lemma 10, or xti = 0 and ti

is enclosed in the trivial 2d-gon of 0s of itself.
Therefore, we have:

B ⊆
⋂

0≤i<m

Eti ⊆
⋂

0≤i<m

(Eti,≤n ∪ (Eti \ Eti,≤n)) ⊆
⋂

0≤i<m

Eti,≤n∪
⋃

0≤i<m

Eti,>n
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From this we get:

µ(B) ≤ µ(
⋂

0≤i<m

Eti,≤n) + µ

 ⋃
0≤i<m

Eti,>n


≤ µ(

⋂
0≤i<m

Eti,≤n) +
∑

0≤i<m

µ(Eti,>n)

≤ µ(
⋂

0≤i<m

Eti,≤n) + mε

≤
∏

0≤i<m

µ(Eti,≤n) + mε

≤
∏

0≤i<m

µ(Eti) + mε

≤ λm + mε

Since this holds for any m ∈ N and any ε > 0, we get µ(B) = 0.

We call the proof technique above the polka dot technique, since the
Eti,≤ns focus on the surroundings of tiles far away from each other and
therefore with independant behavior, just as polkka dots on our tiling.

Theorem 1 (2-neighbour percolation on rhombus tilings). Let T be a rhom-
bus tilings with finitely many edge directions. Let F be the 2-neighbour
contamination cellular automaton on configurations {0, 1}T . Let I be the
invasion set, that is I := {c ∈ {0, 1}T | F n(c) → 1T }. Let µ be a MNVPC
measure on {0, 1}T . We have

µ(I) = 1.

Recall in particular that non trivial Bernoulli measures are MNVPC so this
theorem holds for non trivial Bernoulli measures.

Proof. Since µ(C) = 0 by Lemma 9, we have µ(C∁) = 1. Therefore µ(I∁) =
µ(I∁ ∩C∁) = µ(B). By Lemma 14, µ(B) = 0 so µ(I∁) = 0 and µ(I) = 1.

5 Open questions
This work opens more questions than it closes. We classify these open
questions into three classes.

As mentioned in Section 2, the classical 0 − 1 laws do not apply for
dynamical or bootstrap percolation on rhombus tilings. In all generality, for
any rhombus tilings and any percolation process, the 0−1 law does not hold,
see for example Appendix B. However, we conjecture that if the rhombus
tiling is sufficiently regular then the 0 − 1 law holds for the invasion event
of percolation processes.
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Conjecture 1 (0 − 1 law for uniformly repetitive rhombus tilings). Let
G = (V, E) be the adjacency graph of an uniformly repetitive (or uniformly
recurrent) rhombus tiling. Let F be a percolation process (monotone and
freezing) on {0, 1}V . Let I ⊂ {0, 1}V be the set of invading configurations
for F . Let µ be a Bernoulli measure.

µ(I) ∈ {0, 1}.

On Z2, percolation processes have been studied in great generality, and
though the exact critical threshold can often not be determined exactly, a tri-
chotomy between trivial percolation threshold (pc ∈ {0, 1}) and non-trivial
percolation threshold (pc > 0) can be determined from the stable directions
of the percolation process [BSU15; Bal+16; Bol+23]. We similarly conjec-
ture that the non-triviality of the critical threshold on sufficiently regular
rhombus tilings is determined by the stable directions. We consider here the
class of multigrid dual tilings [dBru81; dBru86], which are the canonical case
of cut-and-project rhombus tilings: those are very regular, and in particular
chains of rhombuses are almost straight (each chain of rhombuses is included
in a tube of direction e⃗⊥ where e⃗ is the edge direction of the chain). In par-
ticular the classical Penrose rhombus tilings and Ammann-Beenker rhombus
tilings are multigrid dual tilings.

Question 1 (Stable directions and critical probability on rhombus tilings).
Let T be a multigrid dual tiling and F a percolation process on {0, 1}T . Do
the stable directions of F on T determine the trichotomy between trivial
percolations thresholds and non-trivial percolation threshold?

The main result of the present article is that 2-neighbour percolation
invades almost surely for any MNVPC or non-trivial Bernoulli measure on any
rhombus tilings, or equivalently on the adjacency graph of any rhombus
tiling. The first key element of the proof is the absence of fortress, the sec-
ond is a counting argument on the possible finite walls of 0s by bounding the
number of wall directions. It can easily be seen that for arbitrary 4-regular
graphs, even planar graph, if the graph has exponential growth (for exam-
ple the Cayley graph of the free group on 2 generators) then the counting
argument fails. However, if the graph is quasi-isometric to Z2, the counting
argument may hold without the strong structure of rhombus tilings.

Question 2 (Almost sure percolation for 2-neighbour percolation on 4-reg-
ular graphs QI to Z2 without fortress). Let G = (V, E) be a 4-regular graph
that is quasi-isometric to Z2. Let I ⊂ {0, 1}V be the set of invading config-
urations for 2-neighbour percolation on G. Let µ be a non trivial Bernoulli
measure on {0, 1}V .

If G contains no fortress (finite obstacle) for 2-neighbour contamination,
is it the case that µ(I) = 1?
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2-neighbour percolation is very classicaly studied on Z2 and has been
studied on trees and non-amenable groups [BPP06]. We aim to generalise
this approach to other 2-generator groups such as Baumslagg Solitar groups.

Question 3 (Cayley graph). Can we classify 2-generators finitely presented
groups with regards to the critical probability of 2-neighbour percolation?

An auxiliary question that arose from our first exploration of percolation
on Cayley graph is related to mixed degree graphs. Consider for example
G a single sheet of the Cayley graph of BS(1, 2). G is planar and contains
vertices of degree 4 and 3, each vertex of degree 3 being adjacent to only
vertices of degree 4. In a 2-neighbour percolation on G, vertices of degree
3 are “hard” to contaminate as they require 2 out of 3 neighbours to be
contaminated. It appears that G has a critical probability of percolation of
1, that is for any non-trivial Bernoulli measure µ, µ(I) = 0. This is due to
the uncountable number of vertical chains (each chain branching in two at
each tile), linked to the fact that G is not quasi-isometric to Z2.

However we may ask a similar question as above for mixed degree graphs
that are quasi-isometric to Z2.

Question 4 (Mixed degree). Let G = (V, E) a mixed 3-4 degree graph
quasi isometric to Z2 and such that degree 3 vertices are only adjacent to
degree 4 vertices. Let I ⊂ {0, 1}V be the set of invading configurations for
2-neighbour percolation on G. Let µ be a non trivial Bernoulli measure on
{0, 1}V .

If G contains no fortress (finite obstacle) for 2-neighbour contamination,
is it the case that µ(I) = 1?

Note also that for the example of G being a single sheet of the Cayley
graph of BS(1, 2), there exists a second approach which consists in studying
percolation not on vertices but on elementary cycles, or equivalently on the
dual graph G∗. In other words, we can consider G either as a graph on
which we study percolation, or as a tiling by elementary cycles for which we
study the percolation on the adjacency or dual graph.

A The non 0−1 percolation on a quadrilater tiling
Let Pf be the fortress consisting of 4 trapezes and a small square forming a
big square presented in Fig. 7. Let Tf be the square grid where the origin
square has been replaced by Pf .

For a configuration c ∈ {0, 1}Tf , we write c|Pf
= 0 (resp. c|Pf

= 1) when
all the tiles of the fortress Pf are in state 0 (resp. 1), c|Pf

/∈ {0, 1} when
at least a fortress tile is in state 0 and at least one is in state 1. For other
tiles we denote c(i, j) with (i, j) ̸= (0, 0) for the state of the (i, j) tile in the
induced grid.
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We write F the cellular automaton of 2-neighbour contamination on both
Tf and Z2.

Proposition 1. Let F be the set of configurations in {0, 1}Tf where at least
one tile of the fortress Pf is in state 1. Let I be the set of invading configu-
rations. Let µ be the Bernoulli measure of parameter p.

µ(I) = µ(F) = 1 − (1 − p)5

We give here an outline of the proof which is adapted from the strategy
on rhombus tilings detailed in Section 4.

Denote G◦ the square grid with a single hole on the origin, that is G◦ :=
Z2 \ {(0, 0)}. Denote F the 2-neighbour contamination also on G◦, and I◦
the set of invading configurations on {0, 1}G◦ .

Proposition 2 (Bootstrap percolation on the square grid with a hole). For
any non-trivial Bernoulli measure µ on {0, 1}G◦, µ(I◦) = 1.

In what follows, we sketch the proof that the behavior of the square grid
with a hole can be assimilated to the one of the full square grid Z2, and
reuse our results on rhombus tilings to prove the almost-sure invasion.

Given a stable connected subset P of G◦, we denote P̃ its induced Z2 sub-
set by P̃ := P∪{(0, 0)} if P contains at least three of {(1, 0), (−1, 0), (0, 1), (0, −1)},
and P̃ := P otherwise.

We say that P is regular if |P ∩ {(1, 0), (−1, 0), (0, 1), (0, −1)}| ≠ 2 and
singular otherwise.

If P is singular, then exactly two of {(1, 0), (−1, 0), (0, 1), (0, −1)} are in
P . Denote H1 and H2 the two half-planes among {(i, j)|i > 0}, {(i, j)|i <
0}, {(i, j)|j > 0}, {(i, j)|j < 0} containing this two points. Then denote
P̃1 := P ∩ H1 and P̃2 := P ∩ H2. Remark that because outside of position
(0, 0), P̃ is stable for 2-neighbour contamination in Z2, we obtain that P̃ =
P̃1 ∪ P̃2.

Lemma 15 (Geometry and combinatorics of stable contaminated clusters
on G◦). Let P be a connected subset of G◦ that is stable for 2-neighbour
contamination.

If P is regular, then P̃ is stable for 2-neighbour contamination in Z2.
If P is singular, then both P̃1 and P̃2 are stable for 2-neighbour contam-

ination in Z2.

Sketch of proof. Remark that Lemma 5 holds in G◦, though in G◦ the hor-
izontal line (resp. vertical line) going through 0 is actually two disjoint
half-chains. The conclusion follows.

From this remark on P̃ , we obtain immediatly the following corollary on
the shape of stable clusters.
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Corollary 2. Let P be a subset of G◦ that is stable for 2-neighbour contam-
ination. If P is finite, then P̃ is enclosed in either a rectangle or a L-shaped
hexagon. If P is infinite, then P̃ ’s boundary contains an infinite half-chain.

Here we call L-shaped hexagon the union of two rectangles of the form
([0, n1] × [0, m1]) ∪ ([0, n2] × [0, m2]), see Fig. 9.

Figure 9: Possible stable clusters in the G◦, the crossed out cell is at position
(0, 0).
The middle one is the only singular stable cluster, it has a L-shaped hexagon
shape.

As the number of “sides” of a “wall” around a finite contaminated cluster
is bounded, then we obtain a polynomial upper bound on the number of
possible walls of a given length as stated below.

Corollary 3 (Counting possible finite clusters of a given perimeter). There
is a polynomial Q such that the number of possible walls of length n around
any given cell t is at most Q(n).

With these intermediate statements, we can now apply the proof strategy
from Section 4.2 as outlined below

Outline of proof of Proposition 2 of almost sure invasion on G◦. We can now
apply the same techniques as for the rhombus case. The set C of configura-
tions containing at least an infinite half-line or half-column in state 0 is of
measure 0.

Define Et as the set of configurations where the tile t is enclosed in a
finite wall.

Denote B := I∁ ∩ C∁.
We have B ⊂

⋂
t∈G◦

Et.

Now we have a uniform bound λ < 1 on the measure of Et, and a uniform
approximation on Et,>n.

We apply the polka dot technique of Lemma 14 to obtain µ(B) = 0,
which implies µ(I∁◦) = 0 and µ(I◦) = 1.

This result implies that, on Tf , almost surely all non-fortress cells even-
tually get contaminated. As a consequence, full contamination happens
almost surely as long as the fortress is initially disarmed (meaning it ini-
tially contains at least one contaminated cell), indeed a disarmed fortress
gets contaminated if it is surronded.
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Note that for a MNVPC measure, we similarly have µ(I) = µ(F) by a very
similar proof.

Note that the proof outlined here also works for any single finite rectan-
gular (or sufficiently well behaved) hole (or fortress) in a square grid.

B A percolation process on rhombus tilings with-
out 0 − 1-law

In this appendix we quickly show an example of non uniformly repetitive
rhombus tiling T and a specific percolation process F such that T contains
a single fortress for F leading to a non 0 − 1 probability of percolation for
any parameter 0 < p < 1.

Here we consider rhombus tilings with 5 edge directions ζi for i = 0...4
(as for Penrose tilings). In this setting we consider the specific tiling T of
Fig. 10.

On this tiling, we have ten possible adjacency directions for tiles which
are ±ζ⊥

i for i = 0...4. We say that t′ is adjacent to t in direction a if
t ∩ t′ ≡ a⊥ and the vector t⃗t′ from the barycenter of t to that of t′ has
positive scalar product with a.

We call partially directed boostrap percolation FA the percolation pro-
cess F where a tile gets contaminated if it has at least two contaminated
neighbours in directions A ⊂ {±ζ⊥

i | 0 ≤ i < 5}. We consider the spe-
cific case where A3 = {ζ⊥

0 , ζ⊥
1 , ζ⊥

2 , ±ζ⊥
3 , ±ζ⊥

4 } and the percolation process
F3 associated with A3, that is:

F3(c)t =


1 if ct = 1 or t has at least two neighbours t′ and t′′ in

directions from A with ct′ = 1 ∧ ct′′ = 1
0 else,

This means a given tiles gets contaminated if two of its neighbours are
contaminated in the previous step, but not counting neighbours in directions
{−ζ⊥

0 , −ζ⊥
1 , −ζ⊥

2 }.
One can check that the only fortress for F3 in T is the “cube” at the

center of Figure 10 which is at the crossing of the ζ0, ζ1 and ζ2 lines (any
other finite set of tiles S contains a tile with two neighbours outside S in
directions from A).

Note that outside this singular band of tiles, in the white zones F3 be-
haves as two neighbour percolations on Z × N as only directions ζ3 and ζ4
are present; and so almost surely the two half planes outside the band get
invaded. This means that the right part of the band almost surely gets
contaminated. Indeed, if the outside half planes are fully 1s and the grey
chains on the right each contain a contaminated cell (say at positions n1
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Figure 10: A rhombus tiling. Lines above and below the ones shown are
made of the same rhombus tiles as the ones in white.
The adjacency direction of partially directed bootstrap percolation are rep-
resented with the red and green arrows: green arrows are bidirectionnal
contamination directions, red are directed contamination directions.
The “cube” pattern with bold boundaries is a fortress as each tile only has
one neighbour outside the pattern in a direction of contamination.

and n2, with position 0 being the closest to the central “cube”) then both
grey chains get contaminated from 0 to that contaminated position. Conse-
quently the band gets fully contaminated from the fortress to the position
min(n1, n2). Since for every N , there almost surely exist n1, n2 ≥ N such
that the grey cell of the top chain at position n1 and of the top chain at
position n2 are contaminated, it follows that the whole right band almost
surely gets contaminated.

So if the fortress has been disabled the entirety of the left part of the
band gets contaminated, but if the fortress has not been disabled then the
full invasion does not occur.

Overall the probability of invasion is exactly the probability that the
fortress initally contains a contaminated tile; this probability is not in {0, 1}
for non trivial Bernoulli distributions.

References
[AL88] M Aizenman and J L Lebowitz. “Metastability effects in boot-

strap percolation”. In: Journal of Physics A: Mathematical and
General 21.19 (Oct. 1988), pp. 3801–3813. issn: 1361-6447. doi:
10.1088/0305-4470/21/19/017.

[Bal+16] P. Balister, B. Bollobás, M. Przykucki, and P. Smith. “Subcrit-
ical U-Bootstrap Percolation Models Have Non-Trivial Phase
Transitions”. In: Transactions of the American Mathematical So-

29

https://doi.org/10.1088/0305-4470/21/19/017


ciety (Jan. 27, 2016). issn: 0002-9947, 1088-6850. doi: 10.1090/
tran/6586.

[Bal+23] Paul Balister, Bela Bollobás, Robert Morris, and Paul Smith.
“Subcritical monotone cellular automata”. In: Random Struc-
tures and Algorithms 64.1 (July 2023), pp. 38–61. issn: 1098-
2418. doi: 10.1002/rsa.21174.

[BPP06] J. Balogh, Y. Peres, and G. Pete. “Bootstrap Percolation on
Infinite Trees and Non-Amenable Groups”. In: Combinatorics,
Probability and Computing (Sept. 2006). issn: 1469-2163, 0963-
5483. doi: 10.1017/S0963548306007619.

[BS09] Marek Biskup and Roberto H. Schonmann. “Metastable Behav-
ior for Bootstrap Percolation on Regular Trees”. In: Journal of
Statistical Physics 136.4 (Aug. 2009), pp. 667–676. issn: 1572-
9613. doi: 10.1007/s10955-009-9798-x.

[Bol+23] B. Bollobás, H. Duminil-Copin, R. Morris, and P. Smith. “Uni-
versality for Two-Dimensional Critical Cellular Automata”. In:
Proceedings of the London Mathematical Society (2023). issn:
1460-244X. doi: 10.1112/plms.12497.

[BSU15] B. Bollobás, P. Smith, and A. Uzzell. “Monotone Cellular Au-
tomata in a Random Environment”. In: Combinatorics, Probabil-
ity and Computing (2015). doi: 10.1017/S0963548315000012.

[BR06] Bela Bollobás and Oliver Riordan. Percolation. Cambridge Uni-
versity Press, 2006. isbn: 9781139167383. doi: 10.1017/cbo9781139167383.

[BC18] Neal Bushaw and Daniel W. Cranston. “A note on bootstrap
percolation thresholds in plane tilings using regular polygons”.
In: Australas. J Comb. 74 (2018), pp. 486–497.

[CLR79] J Chalupa, P L Leath, and G R Reich. “Bootstrap percolation
on a Bethe lattice”. In: Journal of Physics C: Solid State Physics
12.1 (Jan. 1979). issn: 0022-3719. doi: 10.1088/0022-3719/12/
1/008.

[dBru81] N. G. de Bruijn. “Algebraic Theory of Penrose’s Non-Periodic
Tilings of the Plane. I”. In: Indagationes Mathematicae (Pro-
ceedings) (Jan. 1, 1981). issn: 1385-7258. doi: 10.1016/1385-
7258(81)90016-0.

[dBru86] N. G. de Bruijn. “Dualization of Multigrids”. In: Le Journal de
Physique Colloques (July 1986). issn: 0449-1947. doi: 10.1051/
jphyscol:1986302.

[Gra+15] Janko Gravner, Christopher Hoffman, James Pfeiffer, and David
Sivakoff. “Bootstrap percolation on the Hamming torus”. In: The
Annals of Applied Probability 25.1 (Feb. 2015). issn: 1050-5164.
doi: 10.1214/13-aap996.

30

https://doi.org/10.1090/tran/6586
https://doi.org/10.1090/tran/6586
https://doi.org/10.1002/rsa.21174
https://doi.org/10.1017/S0963548306007619
https://doi.org/10.1007/s10955-009-9798-x
https://doi.org/10.1112/plms.12497
https://doi.org/10.1017/S0963548315000012
https://doi.org/10.1017/cbo9781139167383
https://doi.org/10.1088/0022-3719/12/1/008
https://doi.org/10.1088/0022-3719/12/1/008
https://doi.org/10.1016/1385-7258(81)90016-0
https://doi.org/10.1016/1385-7258(81)90016-0
https://doi.org/10.1051/jphyscol:1986302
https://doi.org/10.1051/jphyscol:1986302
https://doi.org/10.1214/13-aap996


[GS17] Janko Gravner and David Sivakoff. “Bootstrap percolation on
products of cycles and complete graphs”. In: Electronic Journal
of Probability 22.none (Jan. 2017). issn: 1083-6489. doi: 10 .
1214/17-ejp43.

[Hof98] A. Hof. “Percolation on Penrose Tilings”. In: Canadian Mathe-
matical Bulletin 41.2 (June 1998), pp. 166–177. issn: 1496-4287.
doi: 10.4153/cmb-1998-026-0.

[Hol03] Alexander E. Holroyd. “Sharp metastability threshold for two-
dimensional bootstrap percolation”. English. In: Probability The-
ory and Related Fields 125.2 (2003), pp. 195–224. issn: 0178-
8051.

[Ken92] R. Kenyon. “Rigidity of Planar Tilings”. In: Inventiones mathe-
maticae (Dec. 1, 1992). issn: 1432-1297. doi: 10.1007/BF01231905.

[Ken93] R. Kenyon. “Tiling a Polygon with Parallelograms”. In: Algorith-
mica (Apr. 1, 1993). issn: 1432-0541. doi: 10.1007/BF01228510.

[Mor17] Robert Morris. “Monotone cellular automata”. In: Surveys in
Combinatorics 2017. Ed. by Anders Claesson, Mark Dukes, Sergey
Kitaev, David Manlove, and KittyEditors Meeks. London Mathe-
matical Society Lecture Note Series. Cambridge University Press,
2017, pp. 312–371.

[Pen79] R. Penrose. “Pentaplexity A Class of Non-Periodic Tilings of the
Plane”. In: The Mathematical Intelligencer (Mar. 1979). issn:
0343-6993. doi: 10.1007/BF03024384.

[STT22] Ville Salo, Guillaume Theyssier, and Ilkka T"orm"a. “Cellular
automata and bootstrap percolation”. In: Theoretical Computer
Science (May 2022). doi: 10.1016/j.tcs.2022.04.015.

[Sau+09] François Sausset, Cristina Toninelli, Giulio Biroli, and Gilles Tar-
jus. “Bootstrap Percolation and Kinetically Constrained Mod-
els on Hyperbolic Lattices”. In: Journal of Statistical Physics
138 (Dec. 2009), pp. 411–430. issn: 1572-9613. doi: 10.1007/
s10955-009-9903-1.

[vEnt87] A. C. D. van Enter. “Proof of Straley’s Argument for Bootstrap
Percolation”. In: Journal of Statistical Physics (Aug. 1, 1987).
issn: 1572-9613. doi: 10.1007/BF01019705.

[Wal81] P. Walters. An Introduction to Ergodic Theory. Graduate Texts
in Mathematics. Springer New York, 1981. isbn: 9780387905990.

31

https://doi.org/10.1214/17-ejp43
https://doi.org/10.1214/17-ejp43
https://doi.org/10.4153/cmb-1998-026-0
https://doi.org/10.1007/BF01231905
https://doi.org/10.1007/BF01228510
https://doi.org/10.1007/BF03024384
https://doi.org/10.1016/j.tcs.2022.04.015
https://doi.org/10.1007/s10955-009-9903-1
https://doi.org/10.1007/s10955-009-9903-1
https://doi.org/10.1007/BF01019705

	Introduction
	Bootstrap cellular automaton and probability measures
	Rhombus tilings
	Critical probability for 2-bootstrap percolation on rhombus tilings
	Geometrical and combinatorial elements
	Probabilistic arguments

	Open questions
	The non 0-1 percolation on a quadrilater tiling
	A percolation process on rhombus tilings without 0-1-law

