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Local existence for systems of conservation laws with
partial diffusion.

Jean-Paul ADOGBO & Raphéel Danchin

Abstract

This paper is dedicated to the study of the local existence theory of the Cauchy problem
for symmetric hyperbolic partially diffusive systems (also known as hyperbolic-parabolic
system) in dimension d > 1. The system under consideration is a coupling between a
symmetric hyperbolic system and a parabolic system. We address the question of well-
posedness for large data having critical Besov regularity. This improves the analysis of
Serre [20] and Kawashima [15]. Our results allow for initial data whose components have
different regularities and we enlarge the class of the components experiencing the diffusion
to H®, with s > d/2 (instead of s > d/2+1 in Serre’s work and s > d/2+2 in Kawashima’s
one).

Our results rely on Garding’s inequality, composition estimates and product laws. As
an example, we consider the Navier-Stokes-Fourier equations.

1 Introduction

Many physical phenomena may be modelled by first order hyperbolic equations with degenerate
dissipative or diffusive terms. This is the case for example in gas dynamics, where the mass
is conserved during the evolution, but the momentum balance includes a diffusion (viscosity)
or damping (relaxation) term, or, in numerical simulations, of conservation laws by relaxation
schemes. In this paper we consider systems of the form

O+ Y 9oL (u) = Div (B(u)Vu) = " 0,(B°%(u)dsu), (1)
a=1 a,f=1

in which v : (0,7) x R — U is the unknown. The phase space U is an open convex subset of
R". The nonlinearities are encoded in the smooth functions

LU — M,xq, B*:U— M,,.

Among the systems having the form (1) are the Navier-Stokes-Fourier equations, magneto-
hydrodynamics equations and electromagnetism equations |15, chap. 6], supercritical fluid mod-
els with chemical reactions [12], Baer-Nunziato system [5], etc. In each case, diffusion (e.g.
thermal conduction or viscosity) acts on some components of the unknown, while other com-
ponents remain unaffected. The Navier-Stokes-Fourier equations will be addressed at the end
of the paper.

It is well known since the works of A. Majda in [18] and D. Serre in [19] (see also |3, chapter
10]) that general systems of conservation laws (that is (1) with B(u) = 0 for all u € U) which are
Friedrichs-symmetrizable supplemented with smooth decaying data admit local-in-time strong
solutions. These solutions may develop singularities (shock waves) in finite time even if the
initial data are small perturbations of a constant solution.



An important issue is to find as weak as possible conditions ensuring the existence of local
or global solutions, to describe their long time behavior and, where applicable, to study the
convergence to some limit system.

In his PhD thesis [15] (that is recognized to be the seminal work on symmetric hyperbolic
partially diffusive systems) Kawashima proved the local existence for general data belonging
to H*(R?) with s > d/2 + 2 and exhibited a sufficient condition for global well-posedness in
the case of small data belonging to H*(R?) with s > d/2 + 3. This condition is now known as
the Kawashima-Shizuta condition. It will be discussed in a companion paper, the present work
being dedicated to the local well-posedness theory for, possibly, large data.

A bit later, Serre in [21] justified the requirements made by Kawashima in his thesis, using
only natural assumptions: entropy-dissipative (see Definition 1.2 below) and the constancy of
the range of the symbol B(&;u), see assumption A below. Moreover, in [20], the same author
provided the normal form for (1) close to that used by S. Kawashima and Y. Shizuta [16] which
allowed him to enlarge the class of admissible initial data to H*(R?) with s > 1+ d/2 (instead
of 24+ d/2 in Kawashima’s PhD thesis [15]), a result which in turn will be improved in the
present paper.

The notion of entropy is not new. In fact Godunov [13], Friedrichs and Lax [11] introduced
the entropy for hyperbolic conservation laws, that is, (1) with B = 0. As regards the concept
of entropy dissipation, we refer to [22], [17], [/] and the references therein.

The normal form is the rewriting of (1) as a so-called symmetric hyperbolic (partially)
diffusive system in which one component of the solution may be regarded as solution of a
hyperbolic equation with source term, while the second component satisfies a parabolic equation
and is thus likely to be smoothed out instantaneously. As an example, we shall consider
the Navier-Stokes-Fourier system, where the density satisfies a transport equation while the
equations satisfied by the velocity and the temperature are parabolic (see section 4).

The question now is whether we can reduce the regularity of the component that experiences
the diffusion. In fact, since the work of R. Danchin |7, 9, 10] concerning the local and global
well-posedness for the Navier-Stokes-Fourier system, it is known that the degree of regularity
of the initial density is higher than that of the initial velocity, which, in turn, is higher than
that of the initial temperature.

The present paper aims at investigating this well-posedness issue for a class of general
hyperbolic-parabolic systems.

1.1 Reformulation of the system

In this section, we specify the structure of viscous systems of conservation laws that are entropy-
dissipative, in spirit of the work of D. Serre in [21].

First, we assume that the first-order system of conservation laws ((1) with B = 0) admits
a strong convex entropy 1 of flux q. More precisely, we assume that there exists a pair (7, q)
defined on U such that if u satisfies

then
Om(u) + divg(u) = 0.

Here, strong convexity means that D?n(u) is positive definite for every state u € U. In order
to pursue our reformulation, we need the following two definitions.



Definition 1.1. We say that (1) is strongly entropy-dissipative if it formally implies the fol-
lowing inequality for allu € U, Xq,---, Xz € R™:

S D) (X B0 ) 2 000 Y

a,f=1

where w(u) is strictly positive and continuous and D*n(u)(-,-) denotes the inner product related

to D*n(u).
Let us define the partial and total symbol as follows: for all £ € R? v € U

Ba( defZBaﬁ 56 and B def Z fagﬁBaﬁ ) (2)
B=1 a,f=1

Definition 1.2. We say that (1) is entropy-dissipative if for all ¢ € R?, u € U and X € R,

D*n(u) (X, B(§,u)X Z|Ba§u

where w(u) is strictly positive and continuous.

Obviously Definition 1.1 implies Definition 1.2.
The last ingredient that we need to introduce the normal form of the viscous systems of
conservation laws that are entropy-dissipative is the following.

Assumption A: The range of the total symbol B(£, u) depends on neither £ € R\ {0} nor
the state u € U. More precisely, the rank of the symbol B(§,u) is precisely n — ny, for some
0 < ny; <n. In other words, the range of B({,w) is isomorphic to {0} x R"~"™.

Without loss of generality we may always assume that the n; first rows of B(&, u) are null,
up to a linear change of coordinates, so that the system contains n; conservation laws. A typical
illustration is the conservation of mass in gas dynamics.

The following result helps us in our endeavour of constructing the normal form for (1) (see
[21] for the proof).

Theorem 1.1 ([20] Theorem 1.1). Assume that the system (1) is entropy dissipative in the
sense of Definition 1.2, that the total symbol satisfies Assumption A and that the ny first rows
are first-order conservation laws, i.e

Owu; +div (Li(u)) =0 forall i=1,--- ,ny.

Let the dual variables z,, 41, -+ , 2, be defined by
zj = 877
! au]

Then the map

()=o)

is a global diffeomorphism from U onto its image U, where v = (u -+ ,un,)*. The viscous
fluz b(u)V,u can be written as Z(U)Vyz. The tensor Z is uniquely defined and the operator
Z(U)V, is strongly elliptic:

Z D LN NZE(U) = al(U)IEPIAP, VEERY, AR, (3)

a,f=11,5>p+1



for some positive continuous function c1(U). Furthermore, if the system (1) is strongly entropy
dissipative, then the tensor Z satisfies:

(2 deefZ > FaFisZ(U) > ()| Z(U)F|%, ¥ F € Mgy ppa(R),  (4)
a,f=1j>p+1

for some positive continuous function co(U).

1.2 Normal form

We are in position to give the normal form of (1). With the new variables, the system (1)

becomes
@ o 0
e g A0 = (Diwn > s aa(Z(U)aﬁaﬁzQ (5)

where A%(U) = (dU)dL*(dU)~! and Z**(U) = B*(u)(dU) ™!
The system (5) can be symmetrized by the diagonal by block, symmetric, positive definite
matrix

D? D D2 n)~1D? 0
SO(U):< wll — vwné wwn) wv (DQ )_1)_ (6)

More precisely, setting S*(U) o SY(U)A>(U), the system (5) is equivalent to

SUNOU +) S (U)0U =Y 0a(YH(U)DsU). (7)

In the sequel, we shall consider the following general system

SY AU + Zsa U),U = Za Ye3(U)asU) + f(U,VU), (8)
where f and the coefficients of the system (8) satisfy

Assumptions B:
1. The matrix S°(U) is symmetric, positive definite for every U € U, and has the form
S9U) = Su(U) 00 with 57, (U) € M, (R) and S5%(U) € My, (R).
0 55(U)
2. The matrices S*(U) are symmetric, for every U € Y and a = 1,--- ,d.
3. For every U € U and o, 3 = 1,---d, the matrices Y*?(U) have the following form

YA(U) = (081 ZQBO(U)) with Z°%(U) € My,_p, (R). (9)

Moreover inequality (4) holds.

4. There exists some U € U such that f satisfies f(U,-) = 0 and may be written

det (fH(U,VU)Y e f1(U)
f(U VU) 4 (f2<U,VU)> _f (le(U) —l—f22<U,VU1) —l—f23<U,VU2)) (10)

where f', f*' and f** are some smooth functions satisfying fYU) =0, f24(U) = 0,
f2(U,0) = f3(U,0) = 0. The function f?* is quadratic in terms of VU (i.e. f? is a
finite combination of terms of type v(U)VU @ VU, where v is a smooth function).
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Remark 1.1. The assumptions that have to be made on f depend on the regularity framework.
For instance in [15], since the solution is more reqular, there no structural restriction on f.

Our result (Theorems 1.2 ) is still valid if we allow f* to satisfy: f* = f2(U,VU) is at most
quadratic in VV'?2, meaning that the third derivative with respect to VV'? is zero.

Let usset V = def U —U . Then V is solution of
SO(U atv+25a U)0,V = Za (YB(U)0sV) + f(U,VU) (11)

which can be rewritten as follows:

S0(U) atv1+2 S (U)0V 5510, V?) = fY(U, VU)
a 1

d (12)
S9.(U) atv2+z (S5, (U)0aV +85,(U)0aV?) = fAU,VU) + > 0a(2°7(U)05V?)
a=1 a,f=1
with
oy _ (StU) 0 oy _ (ST1(U) SHU)
0= (%7 giy) = 0= (0 o) 13)

The previous system can be regarded as a coupled system of a symmetric hyperbolic system
for V1 and a parabolic system for V2. Hence, for the initial value problem, the existence and
the uniqueness of solutions local in time will be proved, based on this observation. This implies
that, if the system (1) is entropy-dissipative and satisfies the assumption A, then it can be
written in the normal form, and thus, the initial value problem for (1) is well posed.

Remark 1.2. Contrary to the thesis [15] of S. Kawashima, we didn’t make the assumption that
the matrices S° and the dissipation tensor in (11) are block-diagonal. It comes naturally from
assumption A and the fact that the entropy n is dissipative.

Furthermore, in [10] Kawashima and Shizuta proved that the symmetrizability of the system
(1) can be characterized by the existence of an entropy function for (1). In addition, under a
technical assumption (condition N in [10]) the authors obtained a normal form for (1) which
is slightly different than what we obtained in (8). In fact, the difference lies on the fact that
the component U' remains unchanged when passing from (1) to (8). It is worth noting that D.
Serre in [21] proved that condition N in [10] is equivalent to the assumption A. Let us underline
that the notion of entropy for (1) (first introduced in [15] ) used in [10] is completely different
than what we defined in this paper.

As we will see below, unlike in [15] we don’t need that the symbol B(&,u) is symmetric.
Some local-in-time existence results will be achieved without this hypothesis.

1.3 Main results

The proofs of most of the results presented in this paper require a dyadic decomposition of
Fourier variables, the so-called Littlewood-Paley decomposition that we recall in Appendix B,
together with the definition of some functional spaces, such as Besov spaces. The reader is
referred to [2| for more details.

According to System (12), it turns out that V! verifies a hyperbolic system while V2 satisfies
a parabolic system. One of the goals of this paper is to prove local in time existence of (12),
based on the features of parabolic and hyperbolic systems. For that purpose, the hypothesis B
on the matrices S*(U), (for « = 1,--- ,d and U € U) can be weakened.

What we need is just the following:



Assumptions BB: Assume that for all ,f=1--- ,dand U € U,
1. The matrix S°(U) is symmetric, positive definite for every U € U, and is block diagonal,
2. The matrices S{y(U) are symmetric,
3. the matrices Y*#(U) have the form (9) and inequality (4) holds true.

4. f has the form (10) .

Note that Condition BB is weaker than B since only the submatrix S{} is required to be
symmetric, not the whole matrix S*.

Before stating our first local existence result, let us motivate our functional framework. Since
our general approach is based on energy estimates, we shall consider Besov spaces B, . built on
L?, that is p = 2. Furthermore, we shall restrict ourselves to the case r = 1 since spaces of type
B3, satisfy better properties than Sobolev spaces H 2= Bj; , regarding embedding and parabolic
maximal regularity. Typically, for the free heat equation, one can gain two full derivatives
with respect to the regularity of the initial data after performing L!'-in-time integration (see
Proposition 6), which is false for Sobolev spaces. Other good reasons for that choice will
be explained throughout. In order to get L°°(0,7;R?) control on the functions S° 5% Y8
appearing in (11), it is suitable to work in spaces which will allow us to get L>(0,T; R?) control
of the unknown V. In the nonhomogeneous Besov spaces setting, this leads us to assume that
the initial data Vj belongs to Bg,l with 6 > g. In order to guess what is the relevant solution
space, we just use the fact that V! is governed by a hyperbolic equation and that V? may be
seen as the solution to a parabolic equation with a source term. Then, starting from Vi € Bgl
(with 6 > £) we expect for small time 7', that V2 € C(0,T; BS,) N L'(0,T; By 1?), provided
one can control the source term in L'(0,T; BS ), in particular S (U)89,V*'. Hence, based on
product laws, we will need that VV'' € L'(0,T; B ;). Due to the fact that V" is solution of
a hyperbolic equation which ensures the conservation of the initial regularity but no gain of
regularity, we thus have to assume, in addition, that Vj € ngl.

This motivates our first result, that can be stated as follows:

Theorem 1.2. Letd > 1 and s > %l Suppose that the partially diffusive hyperbolic system
(11) (or equivalently (12)) satisfies assumption BB. If the initial data satisfies (Vy, Vi) € By x
B3, and Uy ==V + U takes values in a bounded open subset Oy of U such that Oy C U, then
there exists a time T} > 0 depending only on the data and such that the following results hold
true:

Existence: System (11) supplemented with the initial data Vo has a unique solution V =
(V1. V?) in the class Er, defined by

Ve C([0,Th); B5Y') and V? e C([0,T1]; Bsy) N Ly (B31?).
Moreover, U :=V + U belongs to a dy—neighborhood of O with d, < dist(Oq, OU).

Continuation criterion: If there exists Ty > Ty such that V is defined on [0, To[xR¢ and
belongs to Er for all T < Ty, and satisfies

1. U belongs to an open bounded set ) , with Q € U,

Ty
o [7(Iev oA s 19V <
0

3. HVVIHLOO([O,TQ[de) < 00,



then, there exists some T* > Ty such that (V',V?) may be continued on [0,T*] x R? to a
solution of (11) which belongs to Erp-.

Moreover, if the source term f*(U,VV1) is quadratic in VV?, then Condition 3 is not
needed.

Remark 1.3. Compared to the result of D. Serre in [20] and of that of Kawashima in [10],
we here use different (and smaller) regularity indices for V' and V2. For instance, in the case

d d
d > 2, one may take data in BZQII X By, instead of H® for s > 4+ 1 in Serre’s work and

5> 2 —l—% in Kawashima’s work. Due to the embedding H® — Bifl — Bél, for s > g—i- 1, our
reqularity assumption is less than what D. Serre needed in [20]. In particular the component
Vi can be taken in any space H® with s > g. Finally, we recall that assumption BB does not
require the symmetry of matrices Z.

Remark 1.4. If s > 1+ %, we have 9,V' € C([0,T1]; B51') while if s > 2+ &, we get
V2 € C([0,T1]; By 1?). Moreover as soon as s > 1+ 4 the Theorem 1.2 is still valzd if we
consider data (Vi',Vy) in Bs,. We get then a unique solution (V',V?) in the class

Vvte (o, 1); B3,), Ve (o, Ty); B31)N LlTl(ngQ) and O,V € L;I(Bgyl) N L%l(ngll).

Remark 1.5. Thanks to the explosion criterion, the lifetime is independent of s. We mean
d d

that of (V1,V?) is solution of (11) in C([0,T], 32271+1 x B3,) with data (Vy\,V§) € B3}' x Bs |,

for some s > 4, then (V',V?) € C([O,T],B;:fl X BS:I), forall 4 <s <s.

One may wonder whether the above statements extend to the so-called critical regularity
setting as in the Navier-Stokes case. In fact, since the work of R. Danchin in [10], it is known
that the barotropic compressible Navier-Stokes equations have a unique solution in the critical
setting (whlch here, amounts to assuming that the initial density and velocity respectively

belong to B 5, and B21 , see |10, 9]).

Our second local existence result consists in solving (11) in the critical regularity framework.
For expository purpose, we here choose to work in the homogeneous framework. However, we
have the same result in the nonhomogeneous framework.

To achieve the critical regularity framework, the following more restrictive structure condi-
tions are needed:

Assumption C. Forall o, =1,---,d and U € U, we have
(i) S9, is real symmetric positive definite and depends only on U,
(ii) the functions 5%, SS, are at most linear with respect to' U?,

(iii) the functions (S};)~1S%, depend only on U! while (SY,)715% are symmetric depend only
on U? and are at most hnear (i.e. Dyi(SY)~1S¢ =0 and DUQUQ(S )LSY = 0),

(iv) the functions Z%® depend only on U*.
(v) f!and f? are functions of U only and satisfy f!(U) =0 and f?(U) = 0.

We say that a function k : (u,v) — k(u,v) is at most linear with respect to the variable v if D% k = 0. In
other words if k is a smooth function, there exist two functions k1, k2 such that

E(u,v) = ki (uw)v + ka(u). (14)



Of course, according to Theorem 1.2, system (11) under the assumption C, supplemented
with smooth initial data has a unique smooth solution. Our goal here is to obtain the same
local result but with less regularity on the initial data.

Before stating our result let us introduce the following notation.
Ut ={U' e R?/AU? c R* P, U = (U, U? e U}. (15)
Theorem 1.3. Let the structure assumptions C be in force and let O} be a boundeg’ open
subset such that Oy C U'. Let Uy € U be an initial data such that U' € Og, Vi € B3, and

nd_ —
Vi € B3, b with Vo = Uy —U. Then, there exists a positive time T such that System (11) has a

unique solution V with U =V + U and U' € O', where O' is a dy—neighbourhood of O} with
dy < dist(O}, 0UY). Moreover V' belongs to the class

. d . d_ . d .d_
Ve C(0,T]; Bsy), V2eC(0,T); B, )NLL(B: ") and 8,V € LL(B3, ).

The rest of this paper unfolds as follows. In Sect. 2, we establish the local existence and
continuation criterion for the system (11). Sect. 3 is devoted to the proof of our second local
well-posedness result (Theorem 1.3). In appendix A, we set out some key results that will be
of constant use in this article: maximal regularity of the linear parabolic equation, Garding
inequality, etc. In the last section (Sect. B), we briefly review some useful properties of Besov
spaces.

Throughout this paper, (c¢;);ez stands for a positive sequence that verifies ||(c;)||,. @ = 1
Also, C' designates a generic harmless constant, the value of which depends on the context.

2 Proof of Theorem 1.2

In this section, we prove the local existence of solutions to the symmetric partially diffusive
system (11) subject to the following initial data

Vieo = Vo < Uy = T, (16)
in the general case where assumption BB is satisfied.

The proof of the local existence result will be based on an iterative scheme which consists in
solving separately a (linear) hyperbolic equation and a (linear) fully parabolic equation. The
two equations are coupled through lower order terms that will be ‘appropriate right-hand sides’.
Taking advantage of product laws, composition properties (see Appendix) and the fact that
5> %l ifd=1and s > %l if d > 2, it is easy to bound the sequence in the expected solution space
on some fixed time interval [0, 7] with 7" > 0. However, because the whole system is not fully
parabolic, the strong convergence of the sequence is shown for a weaker norm corresponding to
a loss of one derivative. The same restriction occurs as regards the uniqueness issue.

2.1 Existence for a suitable hyperbolic-parabolic linear system

Here we prove the local existence of solutions for a suitable linear system related to (11). We
actually only keep the main order terms (the antisymmetric ones of order one for the first
equation, and the second order ones for the second equation), and assume that the variable

coefficients are ‘given’. More precisely, let Qr o [0,T] x R? (T is a positive constant). For U
inlUd and U = U +V with range in & and O, ©,, some given functions on ()7, we consider the
following system:

SHU)BV + 38 S (U)0.V! =6,

~ _ (17)
SLU)OV? =38 1 0a(Z°P(U)05V?) = ©,

8



supplemented with initial data 170.

For the existence of solutions with high Sobolev regularity for the above linear system, the

reader is referred to [15], [20] or [1].

We assume that for some s > —g and o > —%, we have

Ve L®(0,T;Bg,) and 9,V'e L'0,T;B37") N L*0,T; BST?), (18)
VZe L™(0,T; B3,)NLY0,T;Bs1?) and 9,V* € L'(0,T; B3;) N L*(0,T; Bs1Y,  (19)

©, € L'(0,T;B,) and ©, € L'(0,T;Bj,). (20)
Assume also that, there exists @ a bounded open set in R? satisfying @ C U such that:
Ut,z) € O forall te[0,T], € R (21)

So, from (21), we have on the one hand: for any continuous function S : R" — R, one can
find a constant C' = C(O, S), such that

1S(U)|| Lo 0.7me) < C, (22)
and on the other hand, as the matrix S°(U) is symmetric positive definite for all U € O,

Cc'1, <S°U) < CI,. (23)

For 6 > —<., we set

4 if #<1+4 4 ifp
g P and gr =47
o 0

<
(24)
-1 if §>1+44¢ if >

MI&. ol

We first concentrate on the first equation of (17);.

Lemma 1 (Energy estimates for linearized hyperbolic equations). Let us assume that SY, and
S (for a = 1,--- ,d) satisfy assumption BB. Suppose that V' satisfies (18) with o > —d/2
and that U wverifies (21). Assume also that ©1 verifies (20).

Then, there ezists a constant C = C(O) such that for allt € [0,T], the following inequality

holds
T
[Ty, ar ) )
2,1 0 !

where ®,(t) < C [1([(6V, VV)| e + HVVHBU**H)

171, < (|7

Proof. Applying the non-homogeneous dyadic block A; to the first equation of (17); yields,
S (U)o V] +Zs U)0.V}' = R}* + Oy,

where we define

d

7 def 7 def o

Vi =4V, RH S?l Z S?l Sll(U) A]}(aavl),
a=1

9



and
O, < 5% U ZA ((S%(U)71ey) .

Next, taking the scalar product in R™ of this equation with le, integrating over the physical
space along with integration by parts and using the symmetry properties of S§,(U) gives:

1d

~ — 1 N N )
331 L ST =5 [ st +ousn o T+ [ (R )T

2 Ra

Cauchy-Schwarz inequality, inequalities (22) and (23) lead for some C' = C'(O),to

3t LSOV T <OV IV~ [ ST,
ol [ st
Then, using Lemma 5 with X = S?I(U)IN/j1 : IN/jl and (23) again, one has

Rd

1V} e < ||V

T
o€ N0V [ 1 O )

whereafter we use the notations: ot

171 de 171

Vo, = AV
Let us now bound the terms R}' in L7.(L?). Using inequality (184) and Proposition 9, we
obtain if ¢ > 4 + 1,

[R5, < Ce2” ||V ((Sh ) S5(U) = (SO SHD))] . || 7

a
BZI

+ Ce2797 | WV [V ((SU(0)) 7 Si () — (S7(D) 31 (D) (27)

HB" L

Taking advantage of the embedding B3 7! < L, the previous inequality may be simplified as
follows for all o > £ + 1 for some C' = C(O):

IR} ],2 < Ces2 P (I9VIl e + IV ILag) | 7] - (28)
On the other side, combining (186), Proposition 10 and the embedding 32 — LN BQQOO ,
have for all —g <o < g—k 1,
11 —jo e
75,0 = O IV |72, (29)

where the constant C' depends on O. Putting (28) (or (29) ), into (26) gives us,
297 ||V} e (z2ay < 27 ||Voy | L +02j0/0 1V I z2ay 10V, VV)| oo

‘71

T T
+ Ck; / HVHBG**H +C27° / H@1JHL2(Rd)’
0 2,1 BF 4 0

with ¢** defined in (24). Then, summing over j > —1 and using Gronwall inequality gives us
Inequality (25) . O

10



Let us turn to the parabolic equation (17),.

Lemma 2 (Energy estimates for linearized parabolic equations). Let us assume that S9, and
7 (for a, 3 = 1,--- ,d) satisfy assumption BB and that ©y verifies (20). Suppose also that
V? satisfies (19) with s > —d/2 and that U verifies (21).

Then, there exist two constants ¢, C' = C(QO) such that for allt € [0,T], the following inequality

holds
~ C, ~ ~ t _ -
Hvznzgowgﬁ§||v2||L3<B;+g>s«ew((\v& e %<>||@2<T>\B;1), (30)
, , ‘. ,

where
t
def
0a(t) 2 0 [ (L4 10Vl + 04 1V (17 g g

{1V

2
e [V
B,

|

S* || s**
32,1 32,1

*k o .
B3, ))

Proof. Applying A; to the second equation of (17) gives

S%(U)8, V2 — Z 0a(Z°P(U)05V?) = s + R2,
a,f=1
where we denote:

055 = S%L(U)A;((S%)"HU)Os), VZ=A,V2,

R S9,(U) ( >[4 (S5%) 7 (U)Z2°7] (3a3ﬁ‘72))

a,f=1

03 &, (5% 002500,

a,b=1
Taking the L?*(R?) inner product of the above equation with 17].2, we easily get, for j > —1

1d N 1 ~ o~
337 LSBT = S | 200037V = 5 [ @sh@7} -7

a,B=1
+/ (R2+0y,) - V2. (31)
Rd

Note that, under the condition (3) we have by making use of Lemma 6, for any j > 0,

d
-y / Z°P(U)0,05VE - V2 > ¢
a,B=1 R4

where ¢ is positive constant depending on O and . > 0 may be chosen as small as we want.
Owing to Bernstein inequality and choosing ¢, small enough, we deduce on the one hand

72 2172
\a% %

2 ~
2 — & - 0(507 O)HVfH%Q(Rd)

L2 L2

_ Z /Rd 29 (U)0,05VE - V2 > 223—||V2||L2 — C|[V2|22ga), forall j>0. (32)
a,B=1
On the other hand, Bernstein inequality ensures that

Z /Rdzaﬁ U)0,05V2, - V2, <CHV2V2’ ?

a,f=1
with C' > 0 depending on Z.

J,<el®

L2

11



Then, from (22) (23) and using (32), (33), inequality (31) becomes for all j > —1:

d

G LSO T+ SO T < OO+ [0V ],) [ SHITE T

+C|(R}, 02 \/ / SHOVP V.

So taking X = [ SS2(U)‘7J-2 : ‘N/jz in Lemma 5 and using again (23), one has for all ¢ € [0, T
and j > —1,

t
172 (s+2)j 172
o], 2o [ 7],

978

= H‘Z)QJ

t
a7 O2js||VjQ||Lt°°(L2(Rd))/ (L +10:V ] o)
0

gy / (R, 05|, (34)

where we used the notation VOQJ 0 A, V2. Owing to (22), we have for some C' = C(O),
d
2 o af 172
||R ||L1 L2 Rd S ; H ]7 522 (U)Z :| (aaaﬁv )‘ L%(LQ(Rd))

Loy |28 W)ou(z2 )05V
a,f=1

LL(L2(RY))

According to Proposition 9 we know that for all 6 > —g (see (24) for the definition of 6*)
bl g, (35)

labllgg, < Cllall g,

Taking 6 = s > —%l and combining with Proposition 10, non homogeneous Besov embeddings
give us: for all o, 8

(S8 ou(z2 ()05

T
<O]_ V s* V s*
iy < COHIVI) | Wl

Next, with the aid of inequality (184) and Proposition 10 one obtains: for s > 521 +1

72|

s+1 :
32,1

d _ T N
>3 20 (55 )2 W)] 0,0, < € (HVVHLw [v7°].,

j>-1a,p=1 21

W, )+ (30)

The previous inequality may be simplified by using Besov embedding. We have

+ HV2X72

d _ T _
57 30 AN () 20 00 iy < € [ IVV I |97 67

j>—1a,p=1 21

On the other side, for —% < s < ¢ + 1, the inequality (186) combined with the embedding
d d
B3, — L™ N B3, provides, for some C' = C(0),

d T
Do D 2004 (S%)HU) 2P (U)] a0V 1y 1) SC/O VI g4 | VV7| (38)

j>—1a,8=1 2,1 2,1

12



Putting all this information into (34), summing the obtained inequality over j > —1 implies:

|7

+cHI72

<7

(Bs+2

T
+0/ 1+ 10V, - H\72
1O o |77

VT
G}
et 1l

Using interpolation inequality combined with Young’s inequality yields

LF(B51)

T
+C/ (1+V]| V2
0

(39)

T
ot C/ Vg
1 0 ’

B;fl)HVHBgfﬁl v B

172 1 172 2 172
A+ Vg ) IV g ||V §j1§(1+||V\BS*)(}|v \Bgflﬂ 1% B;HHV |B§§1+1 1% B;#)
1 1
1 T2 2 2 2|2 23 2|2
< (1 Vi, (va P, 172+ V20 1720, 172 P20 )
€ |ltr2 1 2 2 T2
5 \%4 +C<1+HV|B§; <HV ‘B;fl+1+“v ‘Bgfl ”V ‘B;f}“) HV B (40)
Similarly, we have
T2 € |ltr2 12 2 T2
IV lagon |72 s < 5172 pn+ € (Vo + 1V M W2l V2], a0
Plugging now, the inequality (40) into (39), we arrive at
72 |7 <[], C/ L 0Vl + Q4 Vg2 (VY24
17 s * 5172 ey < (98 + € (410 e o Vg, 7 (V1
T
12 2 2 2 2 172
IV g+ 1V v\B;;+2+Hv!B§; S ) L
and the desired estimate follows from Gronwall inequality. O

To bound ,V! and 8;V2, we need the following lemma.

Lemma 3 (Estimates of 0;V for linearized equations). Assume that the functions ©; and ©y
are in L'(0; T, B3 ), fory > —%l- Then, the following inequality holds true

T
O,V 5,172 CO+ Vg 50 THV1
/0 H( WV, 0,V7) 5], (1+] HL (B} < Lo (BT

T T
172
o L e 7]t [ (0l + Ml ) )+ 02

Moreover, if ©1,04 € ZQ(O; T,By,) fory > —%l, then

Vg

H(aﬁl,aﬁ?)‘ .

COA NVl e s (wa

A LB
LT o N L4 O CHES P
Proof. We recall that :
oV = —(S%(U Zs )0,V + (S, (U))'6,. (44)

13



So, we have for all v > —d/2, using (35)

In the same spirit, we want to express 9,12 in Ll(Bil) that verifies the following equation:

A (45)

@?ﬂ
B

<+ IVl (7

v+1
2,1 By

OV = (SHU)) ™ Y 0u(Z7(U)0sV?) + (S5(U)) ' 0s. (46)

a,f=1

The only thing that changes is the diffusive term which can be treated using the product
inequality (35) of Proposition 9 and the decomposition

(S%(U)) 1 0u(Z2°9(U)05V?) = (S%(U)) 1 0a(Z°P (U)) 05V + (S5 (U)) 1 Z2°%(U)0,95V2. (47)

We have for all v > —g

| sz waa )|

72|

<O+ V) IV g

y+1
By

+ OO+ V) |72

2,1

42’
By

which, combined with (45), concludes the proof of (42).

Finally, to prove (43), we use again (35), Proposition 10 and inequalities (44), (46) and (47).
We then obtain, for all «, 3

o st tsnwiant|

< OO+ Wz VT |V s -

L7(B3 1) L (B3 1)
o[ sthwn oz e, S O IV ) Iz [ 7]
sty zr e, L 0 VI [ e
o SN Oz 57, < CO+ IVl yn) 10123 55,
o ||(Sg2(U))_1@2HE%(B;’1) <C(1l+ HVHZ;?(B;:)) ||@2||E%(B;71) .
Putting together these inequalities yields (43), which completes the proof of Lemma 3. O

2.2 Local Existence

First, for given smooth functions U with range in ¢ and V[, we shall consider the following
linear equations with variable coefficients from (11):

SUU)AV + 30 S (U)0. V! = 6,

N _ (48)
SLU)OV? =38 1 0a(Z2°°(U)05V?) = ©,

with initial data _ _
‘/|t:0 = %7 (49)

14



and (see Assumption BB for the definitions of f! and f?)
d

0, Y (U, vU) - ZS U)o, V2,

(50)
d
0, E AU, VU) = 3 (S5,(U)0.V" + S5(U)0aV?)
a=1
Let us set o
U=V +U. (51)
Let s > g and 0 = s + 1. We assume that
Us(z) = Vo +V(x) € Oy forany z € RY (52)
where Oy is a bounded open set in R” satisfying Oy C U.
Furthermore, we assume that V' satisfies
(H1): V'e L>(0,T;Bg,) and V'€ L'(0,T;B37") NL*(0,T; B3y,
(H2): VZe ZOO(O,T; B3N LY0,T; ngz) and 0,V? e LY(0,T; B5)N Z2(O, T; 3531),
(H3): there exists a bounded open set in R? satisfying U C O such that:
Ult,2) €O for te[0,T], x € R% (53)
We set:
def 1 2 def 2
”V HL;O(Bg’l) + HV HE%O(BSJ) and My = HV HLlT(B;;?)' (54)

From (53), one can deduce that for any continuous function S : R" ~ R, there exists a
constant C' = C'(O, S) such that:

1S(U)| Lo 0.7mey < C. (55)
We aim at proving local in time a priori estimates of (48) with (49) in the space E defined by
E7 = {V € 6’(0,T; BJ, x By,): conditions (H1) — (H3) are satisﬁed}- (56)

In other words, we are going to prove that the set EJ is invariant under the mapping defined
by V ~— V with V satisfying (48), (49). Lemmas 1, 2 and 3 will come into play. To state
it more precisely, we need to control ©; and ©,, defined in (50), in Ly(Bg,) N ZQT(B‘;_II) and
Lip(Bs;)N ZQT(Bj’ll), respectively.

Thanks to inequality (188) of Proposition 9 and Proposition 10, we have for all « = 1,--- ,d
and all 6 > g,

T
160920V iy g <€ [ (@4 Vg ) IV g0+ 0 IV 1V
< O+ M) V] -
We deduce that (remember the form of f1(U), see (10))
101357,y < C NV llgimg,) + O+ M) VA gy
+VT ||V?

< C(1+ My)(T + My) + /T M, M, (57)

<CT HVIHL%O(BQI) HL%(B;;J) +O(1+ M) ||V2HL1T<B§,+12>

where in the last inequality we used an interpolation inequality.

15



To control O in Z%(B;‘ll), we use inequality (197) for f! and (35) (with # = s—1) combined
with (192) for the others terms. One has

||@1|1Z2T(B§fll)gcﬁ(HHvHZ MV Iz oz + OO+ IV e e VT V2

21)

< OVT(1+ My)(My + /M Ms,). (58)

Next, the inequality (188) together with interpolation inequality ensures that

PR

”f21 HLI B3,) — < O”V”Ll (B3, < CTM,

12O .55, = C NV YV < CTM,,

||L1 Bs ) —
and foralla =1, -+ ,d
158, (1)@ V1||L1T(B§,1) S CT+[Viize s ) HVlHZWBS,*f) < OT{L+ MMy,
|S5(U)0 V2||L1T(Bs,1> < OVT(1+ IVlzs(s5,)) Hvzni%wiﬁ”
< CVT(1+ My)/ M, M,

so that
1©3lly (53,) < COU+ MOXT + VT M) + [/ 1 s - (59)
Finally, using (again) (197) and the fact that (s — 1)* < s yields
i “f21||z%(B§;1) < \/TO(l + HVHE%O(BS;U*)) ”VHE%O(B;EI) < ﬁc(l + M1>M1

. Hf22||z;<3531> <VTC(1L+ ||V, vvl)”Z%o(le_l)*)) (v, vV ||Loo (B3 < VTC(1+ M) M,

whereas inequalities (35) and (192) provide for all & = 1,--+ ,d

23
o||f HZ;(B;;U <1+ HVHZ%O(BQT”*)) “VVHZ%(BSTI”*)
< O(1+ M) (VT M, + /M, My) M,
1

‘VVHZ;O(B;,T)

o |55 (U)o Vl\\LQT(B; ||ZOTO(B;_11) < CVT(1+ M) M,

o 2 2
o ||S5(U)0.V \\L%(B;l) < CVT(1+ IV e o) 1A% ||Z%O(Bgll) < CVT(1+ M) M.
We thus obtain
1923 (551 < C(L+ My)Myy/M M, + CVT(1 + My)M (60)

Lemma 4 (Invariant set under iterations). Let d > 1, s > d/2 and o = s+ 1. Suppose that the
initial data satisfy (Vy', Vi) € BS, x Bs, and (52). Then, there exists a time Ty > 0 depending

only on d,Oq and on the data, such that if V € EF , the unique solution 1% of the Cauchy
problem (48)-(49) belongs to the same space B, .

Proof. Here, for U = (U',U?) a given smooth function on Qr, we assume that, setting V =
U-U,

(HD) [V Iz 55,y < 41V0'll g,

(H2) ||V2||Z%°(B§71) <2 ||V01|

S
B3’

16



(H3) [ [IV?|

B ST
(H4) [} 1@V,0V2) gy, + 1@V, V)2 ) < 1

(H5) [U(t,z) — Ug(z)| <di for any (I, ) € Qr,
where 7,1, > 0 are constants, and d; satisfies d; < dist(Oy, OU), Ve O witho¥
neighborhood of Q.

We are going to prove that under suitable assumptions on 7" and 7, 71 (to be specified below)
if conditions (H1) to (H5) are satisfied for V, then they are actually satisfied for V.

Let us define M, by

dy-

Mo = 4| Villl e + 2Vl

I, (61)
so that if (H1) to (H3) are satisfied for V, then (see (54) for the definition of M; and M)
M2 S n and M1 S M(). (62)

Let us assume that €,7; and T satisfy

Vel s In(2) Vollsg, (i (2))
‘ 1 —2,1 T . 2,1 .

According to inequalities (25) (with o > £ + 1) and (57), we have

||V1||Z%°(B‘2”1) < e‘I’l(T) <H‘/01HB§1 -+ C(]. + Ml)(T + Mg))

< MO (V! 5y, + CO1+ Mo)(T + 1)) (64)

where in the last inequality we used inequality (62). We recall (see (24) for the definition of
o**) that

T
810 = C [ (Wl + 1@V TV

As 0™ < 0 —1, then we deduce from interpolation inequality, Besov embedding, (H3) and (62)
that

T
®(T) < /o ||atv||Bgffl +T HVIHZ%O(BGU + \/_||V2HL2 2.(Bs7)
< C(m +TMy + /TM M) < C(my + TMy + /T Myn). (65)

Using Conditions (63) to (65), we deduce that (H1) is satisfied for V.

In order to prove that (H2) and (H3) are satisfied for V, we have to use (30). For that
purpose we need to introduce a new element. Indeed as we can see in the estimate (57) and
(64), to complete the proof of bounds of V' in L¥(Bg,) we have to get ||V2HL%F(B§+12) as small

as possible. In fact it is clear that H(VV2, VV?2) ¢ tends to 0 for T going to 0; but we

T\ P21

do not know how fast. It’s worth pointing out that we don’t face this problem if V! and V{
have the same regularity, that is, Vj}, Vi € B3, for o > g + 1. To overcome the difficulty, we

17



decompose V2 into the sum of the solution V7 to the following linear parabolic system with
constant coefficients:

S9.0,VE — 79,05Vt =0

(66)
VE(0) = V2(0),

where we recall that S = S(U) for all function S, and the discrepancy VS to VE (V5 & V2_y/L),
By definition, VS li=o = 0 and VS satisfies the parabolic system

SO,V — Z Oa(Z°P(U)05V5) = (8%, — S% (U)o, VY
a,f=1

+ ) 0a(r*P(U)9VE) + s, (67)

where r*?(U) = Z°5(U) — Vs

Since V5(0) = 0, we expect HVVS‘

to be small enough, for some time 7' depending
Ly(B51%)
only on initial data, through V*. More precisely, since, according to Proposition 6, we have
VEe Li(B5}?) for all T > 0, for all € > 0, there exists 7. > 0 such that

[ (v,

e (68)

Moreover, for all T' > 0

IV z 03, < V5

B3,
In the sequel, we assume that

T <T.. (70)

In order to establish (H2) and (H3) for V2, it suffices to prove that: if VS ©y2_yr
satisfies the following condition

(HS) ”VSHZ%O(B;J) + foT HVS(T>‘

n
B;"iQ dT S 57

then (HS) is also satisfied for VS, Indeed if (HS) is satisfied for V5, then, from the decompo-
sition V2 = VL 4+ V5 and inequalities (68), we have

7| SH vE v <Tomel. .
“ % (B3 ( )w@ﬂ 2 ”“%J
T N T _ 77
2 S L
(A‘W(ﬂbiﬂTSA WV,V)hw%¥MS€+§

from which, we deduce (H2) and (H3) for V2, provided that

n
B and ¢ < 3 (71)
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Applying inequality (30) with s > g to V5 we have

s
B21

oaﬁ L
R+Z/w )0

2,1

o IV

T
~ C ~
V3 zs (3 ) + 51V gy < €@ [ 1(©:(7)]
7 (B31) 2 ;
’ 0

T [E—
+ [ ]85 - sponavy
0

L) @)

where we recall that

T
w1 = [ (1 oVl + (11 V)
0

BS* mBS*l*

2 2 2 2
+ HV } B3 4 { By + HV | B3 4 ‘ B;‘*l*”))’
and s* and s** have been defined in (24). Remarking that s* < s and s** < s for s > %l, we
infer that
Py(T) < C(T +m + (1+ My)*(TM}E + MlMg))
< C’(T +m+ (1+ MO)QTMS + Mon)- (73)

Next, using the fact that the numerical product maps B3, x Bj, in B;, for all s > 4 and the
composition estimates in proposition 10, we deduce that: for all a, 3 =1,--- ,d

—0
3 - 532<U>)atvL‘ SOVl 1V gy < OMiE < O,

7( 2,1)

o 1ontr @1 D)y g < (1D 17 g

+ ﬁHVlHL;s(BgJ) IV g sy + 1Vl g0y HVLszT(B;ﬁ)

S CM1€ + C\/TMl S M0€ + CﬁMg
2
i Hf23||L%ﬂ(B§’1) S C(l + ||V||L°° B3 )) ||VV||Z2 (35’1)

(74)

< OO Vg VTV 2 s 5 + [VVE

2
HPT(B;I) + HVVSHPT(BQ ))

7(B3,1)
2

< C(1+ My)(T My + Moe + %).

Plugging (74) (73) and (59) (remember (62)) into (72) leads to

c <T+m+(1+Mo)2(TM§+Mon)>
((JMOg + CVTM,

~ C ~
V2 g3, + §“VSHL1T<B;1> e

O+ M + VTG + O+ M) (T My + Mo+ ) )

We deduce that V¥ satisfies (HS) if (for instance)
> O (T (1 MPTME + M) ) < In(2),
» CMoe + CVT My + C(1 4+ Mo)*(T + /Tn) + CMye < g,

2

n n

L (14 M, L.
>C4< 0)<8
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We may choose 7; as in (63) and 7', 7, ¢ satisfying,
2
, n In(2) ‘ 1 In(2)
T < 1 ;< 1 ;
mln( 9 1602(1 +M0)47 80(1 + M0)4 ) TI min 72(1 _I_MO)Cv 80(1 +M0)3 )

7
== T6CMo(1 + My) (75)

In order to prove that (H4) is satisfied for V we have to use (42), (43) and interpolation
inequality in Besov Spaces. It holds

T ~ o~
/ H(atvl, 0,V?)
0 35,1

T, _ T
+/ & +/ v
0 B3 0

H(aﬁ, a,v?)

< +MO)<TH\71

L7 (B3,)

T
o (1020, 01, ).

<o) (VI[P

‘72

s+1
32,1

—1 T
L3 (B31") L7 (B3 1)

+ My ||V + ||(@17@2)||Z;(B;J1))'

+ HXN/2
L2(Bs3 ;)

L2.(B5

As V satisfies (H1)-(H3) (hence V also satisfies (62)), using the assumption that 5,7 < 1 (see
(75) ) and inserting (57), (58), (60) and (59) (combined with the last inequality of (74)) in the
previous two inequalities, we deduce that

H(aﬁfl, atx’??)‘

1
LT

+H oV, o,V
(B3 ) @V=.aV5) 12(B53")

2
< C(14+Mp)*(1 + /Mo)VT + C(Moe + %

< O +M): (VT + e + /),

V(14 M) + C(1+ M)/ Moy

from which which we deduce that V satisfies (H4) provided that

2 2
m m m

<———; T'< ;< . 76
: 8C(1 + My)? 8202(1 + My)3 " 8202(1 4+ M,)5 (76)

Finally combining (H4) and the embedding L> < BS, with a > ¢ leads to:

g AT < Cny for all (t,7) € Qr,
2,1

T
Ot.a) - Dt <€ [ @V o))
0
which yields (H5) with U instead of U, if

0771 < dl. (77)

We take Ty < T with T > 0 satisfying the above conditions. Let us notice that the parameters
n,n,€ and the time 7" depend only on d, d; and on the data. Moreover, we can find some
constant € = £(d, dy, My) and ¢y, Cy depending only on d, d; such that (see (68) for the definition
of T.)

. c
Ty < mm(l,C’o,Te,ﬁ)- (78)
]
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Based on Lemma 4, we further establish the local existence of (11) with (16).

Proposition 1. Letd > 1 and s > %l and 0 = s+ 1. Assume that the initial data Vg satisfies
(Vo Vi') € Bgy x B3, and (52).

Then, there exists a positive time T (< Ty) depending only on d, on Oy and on the initial
data such that the Cauchy problem (11) with (16) has a unique solution V € EY, .

Proof. The idea is to construct iteratively a sequence of smooth approximate local solutions.
We introduce the successive approximation sequence” {V},}°° , for the Cauchy problem (48)-
(49) as follows:

Vi =0gm and V& =VE (79)
where V¥ is solution of the parabolic system (66).

For n > 3, we set U, = V,, + U and V,,,; solution of:

St (Ua)DV,hy +ZS Vi1 = [ (Un, VU,) Zs Un)0aViZ,
S%H(U)0V2, — Z 0a(Z°P(U,)05V,211) = [2(Un, VU,) (80)
a,B=1
d
- Z ( gl(Un)aaan'f_ §2<Un)aavng) )
a=1

with the initial data *

Vit 1jt=0 def Snt1Vo,  where S, is the cut-off operator defined in (179) . (81)

Moreover, it holds that for all 6 € R and n > 3, the operator S,, maps Bgyl into itself and
1SVl pg, < [Vall g

According to |20, 1, 15] for all @ > 2, there exists a time Ty > 0 such that the Cauchy problem
(80)-(81) has an unique solution in C([0,T], H?). By Lemma 4, there exists 0 < Ty < T,
depending only on d, Oy and the initial data V{ such that the sequence {V},}2° 4 is well defined
on Qr, for all n > 0, and is uniformly bounded with respect to n, that is, V,, € Ef . Next, in
the case’ d >2or d=1 and s > 5, it will be shown that {V},}>° . is a Cauchy sequence in the
space

Fr={VE WLV :ved(oT];Bj' x ByyY), V2 e LLB;}!
for T' < Tj. The reason for lowering regularity is the usual loss of one derivative when proving
stability estimates for quasilinear hyperbolic (diffusive) systems.

Define Vn = Vi1 — V, for any n > 1. Take the difference between the equation (80) for the
n + 1-th step and the n-th step to get

SO(U, atv1+25 U,)0, V! = h,
a=1 (82)
S9.(U,)0,V? — Z 0a(Z°P(U,)05V?) =
a,f=1

2For better readability, n starts at 3.

3Note that we smoothed out the data V; in order to get a smooth solution of the Cauchy problem (80)-(81).

4The limitation to that case arises from technical difficulties in establishing product laws, as apparent in
(35) for instance. An alternative approach to deal with the one-dimensional case and s = % consist in replacing

- L
Fr by the space LF (B3 ) X (LOO(B 2)yNLk (B2 )) and adapt the proof in section 3.3
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with h=hy+hs , g =91+ g2+ 93+ g1 + g5 + g6 + g7 + gs and

d
ef « @
I =S (0,) Y (S (U) S5(Un) = (S (Un 1)) "S53 (Un 1) 8aV,E
a=1
d
ef « o
By & =80 (U) 7 ((S%(U) " S51(U) = (S5 (Un-1)) 85U 1) BaVi2
a=1

- Z 5?2(Un)aa‘7112—1 + fl(Una VUn) - S?l(Un)s?l(Un—l))_lfl(Un—l: VUn—l)v

d
g1 o —(S%(U,) = 8% (Un-1))0V,7, g2 < - Z (552(Un) = S (Un-1)) 0aVyi
a=1

o ((Z°%(Uney) = 2°7(Uy)) 05V37)
(Un) = 551 (Un-1)) 0aV,1)
L (Un)

0Viy g5 - Zsaz )0V,
a=1

d
> o
a,B=1
d
N (G
a;l
_ Z S
a=1

d
91 E fUn, VU = (U1, VUn), g8 =Y 0a(2°°(U,))05V2.

a,B=1

Let us notice that all estimates established in the proof of Lemma 4 are also valid for U,
for n > 3. In particular, the right-hand sides of (73) and (65) are smaller than In2. Apply thus
(25) (with ¢ — o — 1) to (82); and (30) (with s — s — 1) to (82), to get®

To
<2 ‘ W) e dr ), 83
N ( it [ 1l ) (83)
)

~ ~ TO
|7 o (7. T (34

It remains only to estimate the terms on the right-hand side of (83) and (84) by using the
same type of estimates as in the previous section and the property satisfied by Ty, n, e, n; in the
proof of Lemma 4.

On the one hand, using the fact that the space Bg’l (for 6 > g) is an algebra for numerical

product of functions and composition result (see Proposition 10), there exists a constant C' =
C(Oy, d) such that:

171

k

171
Vo

and

¥ -1
Ly (B57)

Il oz < OO0+ Walzg oo (T

1
—1Hz%%<3351> ¥z o,
T V05, )

SHere we need s — 1 and o — 1 to be larger than —d/2, whence the restriction on the regularity exponent if
d=1.

172
Vn—l

13 (B3.)

22



2
Hh2HL%0(B§’51) <C(+ HVHHZ%%(BET’II)) ( To % (Bg ) HVn ”Z?TO(Bgl)
T "72 ‘ ‘ N2 V2 T o Y
+1o L%%(Bé’,fl)+ n—1 LlTO(BS,l)+ n—1 i3 (B H nHLQTO(Bm)
2 2
sl T |Vt 1 oy I Nz g+ (Wt o 10 -

On the other hand, inequality (35) (with # = s — 1) combined with proposition 10 ensures the
existence of C' = C(O, d) such that

o1l oy < (VI [T o, \@VWm (57
102,903, 150 < € (T [Vt g 1l

2 L R Py
lgsll.y, (g7 < Co27707Y (TO + To [Vallzs (g 1)*)) ‘ V,},l

~ 7
L (Bs,))

n—1|[~ )
L, (B3 1)

‘72

n

9—i(s=1) v/ V2
lgsllzs, 57y < Cej2” (\/To+ Ty IIVn||z§.%(B§fl_1>*)))v ‘

< 9—3j(s—1) _ 1y _ 1y
lgslly, (z2eeyy < Ces2 (1+ ”V"”L%%(Bé,l b)) ”V"”L?Towé,l i) 13, (Bs4)

with (s—1)* = d%l —f<s—1<%and(s—1)*=s—1ifs—1> £ Similarly using (195)(when
—4<s-1<%) an (193) (When s —1 > %) and remembering the form of f2!, /22 f (see
Assumptlon BB) yields

Al el R el eI el il
with

21 21 17
an - n_IHL%“O(BS,_ll) S CTO(l + H(Vn—la Vn)”fi‘%(B;ffl)*)) ‘ Vn—l

)

Ly (B311)

172 = 1210l gy < CTo(L+ || (Vs Vi, DV YV ) e i) H(f/,vf/l)‘
Ty P21 2,1

)

| £ — ﬁluLgp(B;;l) = C‘ V.

n—1

Zz (S 1)* \/_HV HL2 (B3, ||VVTL||Z%<E)(B§1’1)*

)
+ (14 Mo) |97y

VV, 1, VVi)ll52 (ps y -
E%O(B;?;l)*) |( 1 )HL%O(B?J)

Remember that V;, € E7, , which implies that (see the proof of Lemma 4 for the definition
n, 771):

Han”ZOT%(BgJ) + HVnQ” ) < Mo; ||V112HZITO(B§,+11) <

||atv3|’Z§0(B;;1) + ”atVnHZITO(BgJ) < -

L (B3,
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Summing (83) and (84) over j > —1, using the following inequality coming from interpolation
inequality in Besov spaces

HVn2HZ2 (B5HH < C\/HVr?HZoo (B.) HV”ZHLITO(BiQ) < C\/Myn

\72 < C V2 ‘ < OV, 1|l pe
‘ n— 1 L2 (B L°° B§11) n—1 (BS'H) || 1||F
we end up with
70 gy = 2 e € (VT V/Ro0) Wil + o b [ 02
L7 (B5x) Ly (BS,)
and
)‘7;? _ 1 +C“7n2 1 S (“%n +C<T0+771+TOM0+\/T0\/M077
Ly (Bs1") Ly, (BsH)

—}-\/YTOMO + v/ Mon + (1 + M)/ M, ) ||V ||L°° .,.NLt

To( 21) To(B
+C (VIov/Mon + /Moy + 1 + Mov/To ) [Vl g

Next, the conditions satisfied by Ty, 7n,7m1,¢ in Step 5 of the proof of Lemma 6 allow us to
simplify the previous inequalities as follows,

O (VIoMo + /Mon) (Vo + (14 M)

s+1)

1

71,

L (B51Y)

<2 |7,

0(BS1)
(85)

=~
»q»—A

and

~, )
(% ‘|Z5°%(B§31)mL1TO(B§fEI) <2 HVO’" B

Lt C (\/ Mon +m + MO\/jTO) IVaeilleg (86)

2,1

Finally, putting together (85) and (86) (let us notice that we multiply (85) by 1/2(1 + M) so
that its last term is absorbed by the left-hand side of (86) ) we get, for large enough C,

1
2(1 + My) ‘

|7

+ |7

/1 172
} V2| oty rt ooty <
n L (g7 n LR (B3 )NLy (B3h) = 1 4 Mo BZT!

+C (VoMo + v/ Mo(y +2)) Vel

s—1
B34

It implies that

IVallrz < O,

+HVon

)+ C (VMo + VMo(n+9)) IVaalleg. (87)

Take 17 so small that

|
T, <T, and O<\/—M0+\/M0n+s> > (88)

Then it follows from (87) and the fact that [|(Sps1 — Sn)allge-1 =~ n~1 lallg , for all 0 € R,

that (V )Jos is a Cauchy sequence in F7 . There exists a distribution V' € FfZ such that
(Vi = V) — 0 strongly in F7 as n — 0. On the other hand, doing an argument totally
similar to what has been done in |2, Chap. 10|, one can prove that V satisfy (H1) — (#3). The
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property of strong convergence enables us to pass to the limit in the system (80)-(81) and to
conclude that V' is a solution to (11) and (16) satisfying (H1) — (H3).

What remains is to check that (V1 ,V?) € 5([0,T1];Bgl x Bj,) and then (V',V?) €
C([0,T1]; BS; x B;,). This can be achieved by following the ideas in [2, Chap. 10]. For the
sake of completeness, we provide the proof for V. Combining the fact that V! € L>(0, T Bg}l)
and V? € L*°(0,T;Bj,) with the information that V e C([0,7], L?), which comes from
8,V € Lk (Bs,) C Lk (L?), this ensures that V' € C([0,T]; Bg,) and V* € C([0,T]; Bs,)
. Indeed, for any J € N and (¢,ty) € Ry x R, one may write

Vi) = Vi), < D0 27 1AV = AV ()l +2 30 2718V i)

_1<j<J G>J
<277 N V) = Vo)l +2D 2NV i)
_1<j<J J>J

Now, for any given J the first term goes to 0 if £ — %, while the second term tends to 0 if
J — oo. The same argument implies that V> € C([0,T]; B3 ;). This completes the proof of
V € E7,. Hence, the local existence part of the solutions is complete eventually.

Concerning the uniqueness, we set y Vg Vi, where V; and V5 are two solutions to the
system (11) and are subject to the same initial data, respectlvely Then the error solution V
satisfies the equation (82) where instead of U, U,,— 1, Vo, Vn 1 we have Uy, Uy, V1, 1% respectively.
Then taking advantage on (87) (recall that here V,, = V,_; = V) and (88) we conclude that
V =0in F7,. This finishes the proof of Proposition 1. n

2.3 Proof of the continuation criterion

This section is devoted to the proof of the following continuation criterion.

Proposition 2. Let 0 < Ty > oo. Under the hypotheses of Theorem 1.2, assume that the system
(11) has a solution (V',V?) on [0, Ty[xR? which belongs to C([0,T]; B,) X <C’([O,T];B§71) N
LY0,T; B‘;J{Q)) , for all T < Ty and satisfies

1. U belongs to an open bounded set Q0 , with Q € U,

To
o [ (VT s V) <
0

3. sup  VV(t,r) < o0

(t,z)€[0,TH[xRd

There exists some T* > Ty such that (V',V?) may be continued on [0,T*] x R? to a solution
of (11) which belongs to C([0,T*]; BS;) x (C([0,T7]; Bs,) N L*(0,T%; B3}?)).

Moreover, if the source term f22(U,VV) is quadratic in VV?, then the last assumption is
not needed.

Proof. Tt is not difficult to prove that

10V ][0 < CA+NVV o + IVV o IVV g + [[V2V2]] ) om0 [0, T . (89)

(PN
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Throughout this proof, we denote by C' a positive constant depending only on d, ||V'[| 1o (0,73 [xr4)
and the matrices involved in the system (11). Since V satisfies (17) with V' =V, and

d
01 = f1 = 5%(U)0aV?
a=1

d
Oy = f7 4 [+ 7 = (S5 (U)DV" + S55(U)0aV?)

a=1

(90)

then, for all ' < Tj, we have from (26) and (34)
T
> [V Iz g,y < V0I5, + C/O 1OV, IVl [V g, + 1102y 85,

T
<[ A,

jz-1 (91)

> HVZHZ%O(BSJ) +CHV2HE1T(B§jz) = HV(JQHB;l

T T
b [ QIO Vg, + [ 30 2+ 1Ol

Jj=-1

According to (27) and interpolation inequality, we have

T T !
| E 2 1R <0 [ 19V Vg, + € [ 19V 7V g,

j>—1
T T
<0 [TV Vg, + € [NV IV g+ 1V g
Next, the product estimate (188) combined with interpolation inequality ensures that
1 o T e 2
Oy, < CWligiogy SC [ IV ag, +€ [ 173l + 1V iy gy
T
° HSfQ(U)aaV2”L1T(Bg,1) =C HVVQHLlT(BgJ) T C/O ||VV2HLOO (1+ HVHBé’,l)
T T
<OV liyqagey +C [ IVm V! g, +C [ IOV 1V

Furthermore, combining (36), the product estimate (188), interpolation inequality on V2 along
with Young inequality yields for all ¢ > 0

T T T
* [ B <€ [ IV [0V s+ €[TRV IV,

Jj=-1

T T
<C [ IVl [Vl + €@ [ IV V2,

T
2 V3 g € [ IV IV,
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and

T
* [l <€ [ IV

S
B3,

T
bt | IV ) IOV

T
wyp +CE) [ IVVI VY

T
520y g,y <€ [ IV~ 19V

T
<c / 19V VY]
T
+/ (1+ V|
0

T
* (S5 )0V SHON0V) 3y g, <€ [ OVE TV

2 |[v/2
+e*[[V7]
B3, Ly (B3}?)

2
) IVVIE-

S
B3,

T
0 [0 WVl ) 9V V)

T
<c [ v
0

T
+0/ (1+ V]
0

T
B;1+(Xff/ HVH%J+f2HV”h;wi%

53 ) [(VVE VYV e
In the general case where f?? depends on U and VV!, Inequality (192) ensures that

T
* 20TV g, < CUV IV, [ 72 97)

s Y
B2,1

whereas, if f22(U, VV'!) is quadratic in terms of VV'!, that is, f22(U, VV'!) is a finite combination
of v3(U)VVI® VV!, where v3 is a smooth function, then one has

T T
* 20TV |y € [TV e 19V g, + € [ IV 05 VL)
Putting this information into (91) and setting
1
Xet) = V' iy ) + IV Doy, + 21V ooy
we end up with
T
XAT) < [Vl + %8y, + [ ) (100V 4 22
+ OV gy + V2l opey

with, for all ¢ > 0, Y. € L'(0,Ty) according to the assumption of Proposition 2. Choosing &
small enough the last two terms of the right-hand side may be absorbed by the left-hand side.
Applying then Gronwall inequality and taking advantage of (89), we conclude that (V! V?)

(0, Ty; Bg,) x (Z“(O,To;BS,l) n Ll(O,To;BSIQ)) and thus (V1,V?) € L>(0,Ty; Bf,) x

<L°°(O,TO;B§71) N Ll(O,TO;BSjQ)) By replacing Mj in the lower bound (78) that we have

obtained for the existence time, we obtain an & > 0 such that (11) with data (V! (Ty—e¢), V*(Ty—
¢)) has a solution on [0,2¢]. Since the solution (V! V?) is unique on [0,7}) this provides a
continuation of (V! V?) beyond Tj. O
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3 Local existence in critical spaces

We seek to establish as in the previous section the local well-posedness but, with lower regularity
assumptions on the initial data. In other words, we want to prove Theorem 1.3. In fact it’s well
known since the works of R. Danchin in [10], that the barotropic compressible Navier-Stokes
equation has a unique solution in the critical setting (here critical spaces means that the initial

density and velocity belong to BQ% ; and BQ% N 1, respectively). This motivates us to prove the
local existence in spaces less regular than in the previous section for a class of systems of type
(1). The price to pay is that some restrictions on the structure of matrices (assumption C) are
needed.

We recall that the initial data (Ug, UZ) belongs to O} x R™ with O} a bounded open set
such that Of C U (see (15)). Let us point out that the component UZ of the initial data isn’t
necessary bounded. Hence we aim at proving local in time existence with initial large data and
unbounded second component. This is one of the motivation of this section.

Let us first state some a priori estimates for the system (11) under the assumptions C. Here
we omit the lower order source term f in (11) for simplicity, since it is only responsible for the
large-time behavior of solutions.

3.1 A priori estimates.

Let U be a smooth solution of the Cauchy problem (11) and (16) on Q7 = [0,T] x R? satlsfylng
Ve I(0,T; B2,) and V2 € L=(0,T; B3, )N L0, T3 B2Y) with 9,V? € L0, T3 B2, )-
We set:

VIV g, VPN (92)

"’ M\@

and
def r def T
M, / V2O godt Aty & / || g di. (93)
0 2,1 0 2,1

We assume also that there exists a bounded open subset O! of U! satisfying O; C U such that:
Ul(t,z) € O' for te[0,T],z € R (94)

Due to (94) and the continuity of the function U — S9,(U') we have the following inequal-
ities that are similar to (23):

c I, <8%(U"Y<CI,, (95)
where the positive constant C' depends only on O'. We have the following results.
Proposition 3. There exists a constant C depending only on d, O and data such that

L PR

<Al Wllys o [V e <20 e

21) 21 )

T
/ HVQ(T)H 4 dT +/ H(@tvl(T),@tVZ(T))H 4 dr < C,
0 B2,1 0 B2,1

Vit,z) € OF for (t,z) € Qr.

We divide the proof of the proposition into several steps.
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Step 1: Estimates for V.

Proposition 4. Let the structure assumptions C be in force and d > 2. Then there exists a
constant C' = C(O', My) such that for all m € Z, the following inequalities hold true.

ZQJaHleLw 2y < sza IVoll,2 + C My <HV1HZN 4+ 1> : (96)
T(B2,1)

j>m j>m

1 def

where we define V;-l aef Ajvl Vo, = i (Vo).

Proof. Throughout the proof, C' stands for a positive constant that depends only on O! and
on other parameters which are independent of our system. From (11) and assumption C, V*
is solution of the following equation

d
OV +> (AL(U)0V! + A%(UMD.V?) =0,

a=1

def def

Applying the non-homogeneous dyadic block to the above equation yields,

d
OV + AL (UOV] = ZA (A% (U3, V?) + R, with R & [A3(U?), A)(0.V1).
a=1
Next, following the classical procedure for hyperbolic system (see the Step 1 of the proof of
Lemma 4) we arrive at

d t
2V iy < 27 O+ 0273 [V Vi

d t
+ 027y / (
a=1 0

It is clear that for closing our estimate, we need that for all t € [0,T], VA (U(t)) € L=(R?).
However, our critical functional framework does not ensure that VV!(¢) belongs to L>(R?).
Hence, to be under control, the terms A{,, for « = 1,---,d have to depend only on U?.
Moreover, as U? does not need to be bounded on Qr, one has to assume that A%, is at most
linear with respect to U?2.

The terms H(AJ(A%Q(Ul)ﬁaVQ)HL;(Lz) for a = 1,--- ,d may be bounded according to the

‘Aj(A‘fQ(U)aaVQ)HLz + HR;.1||L2). (97)

. d
stability of the space By, by numerical product and Proposition 10. One has

1A (A5 (U0 V)| 12y < €27 205 || A(U) 0.V, o
(98)

1 2

< CesUH VI g VIV,

As we can see, in the above estimate, to bound the term HAJ-(A%Q(UI)C%VQ)||L1T(L2), we need

— - d
that A%, (U) — A%(U) is in L>(0,T; By ;). Hence we are stuck to the framework where all the
matrices A%, (U) depend only on U*.

Thanks to Proposition 8, we have the following bound for le-lz

—jd o
1R sy S 2 IVAR@,, IV s
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Using the fact that A$,(U?) is at most linear, we finally get

IR 12y < C277%¢; ||V (99)

1

LLBE | “Z%’(Bi)'
. d

Plugging (99) and (98) into (97), using B3| < L* and summing over j > m yields (96). O

The second step is devoted to bounding V2 and 9,V

Step 2: Estimates for V2 and 9;,V. We turn to the second equation of (11), under assump-
tions C, namely

d d
SHUNAV?+ (S8 (U)V + S5o(U)0aV?) = Y 0.(2°P(U")9sV?) =0,
a=1 a,f=1

which can be rewritten as follows:

d
SO(UL)O, Vs — Z 0a(Z°P(UL)05V?) = =) (S5, (U)0aV" + S5,(U)0aV?)
a=1

a,B=1

+ (55,(Uy,) — S(U))0:V? + Z 0a((Z°P(U") — Z°P(U,,))05V?), (100)
a,f=1
where we denote

CL

Un CTU+V ST+ 8.V =T+ Y AV (101)

j<m—1

Note that the localisation of Z*# and S9, in (100) allows us to consider a parabolic equation
with smooth (and decaying) coefficients. The perturbation terms induced by these localizations
(that is the last two terms of r.h.s of (100) ) may be treated as harmless source terms, since
the prefactors S9,(UL) — S%(U') and Z*#(U') — Z*?(U}) are sufficiently small, provided that
we choose m large enough.

~ . d

If V' belongs to LF(Bj,), then U}, tends to U' uniformly on [0,7] x R?. Hence we have
Ul € O! for m large enough. Furthermore, taking advantage of Bernstein’s inequality, there
exists a constant C' > 0 independent of m so that for all real numbers v > %:

[Vl s, < C2mom2 [V (102)

d .
2
2

We aim at getting uniform estimates on V2 in suitable Besov spaces. For that, as in the previous

section, we consider the unknown V5 = © Y2 _ VL where VE stands for the solution of (66).
This function satisfies the following parabolic system:

SH(UR)OVS =370 4y 0a(Z°F(U},)05V )
= Zi,gzl 0o ((Z°P(UY) — ZoB(UL))05V5) + R + R*' + R + RE, (103)
V5(0) =0,

where r*?(U') = Z*8(U') — Z* and

RS (S,(Uy) — Sp,(U)aV?, R*E Zssa U)0aV?,
ot (104)
RE (S, — S%(UL)aVE + Z 0a(rP(UM)9sV"), R™E ngg U)d.V".
a,B=1

We have the following result.
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Proposition 5. Under the hypotheses of proposition J there exists a constant C' depending on
O and ||V} H HVgHB%_l such that setting
2 2.1

1

WD) = VI sion TV, g 2 )< Javt] csgony TV, g
S def S 1)j 2 1)j (105)
A7) S (2 VYAV pra + 25 A2y )
j=—00
and assuming in addition T < 1, we have, for allm € 7Z
(1 —CT=2"C||oV*| . 4., ) A5 (T)
LlT(Bz2,1 )
<C <2mﬁM1 + ||V - v;HEOO(Bj o+ (14 Ml>zﬁ> A5 (T) + C(1 4+ M,)(A5(T))?
2,1
’ (106)
+(J(1+M1)2(\/T||V2|| y AH(T) + AL(T)) + O+ M) VR g 2H(T)
21 2,1
(I =l g 2 IV e )0
LOO(B2 ) L%O(BQQ,I)
Moreover,

l@viov3)| | g <O+ M) (VIM, + VT VLM, + M) - (107)

.d_
LlT(B22,1 )

Proof. Let us stress that V,} is bounded since, ||V;}]|; < C||[V!||~ and V! is bounded.
Apply A, to (103) to get :

SHULVE — 227 (UL)0.05VF = RY + R* + R® + RY + R + EY + EL,
where we denote:

RS AjRY; RUE AJRY R® S AR RZ = AR,
d
def @ -
RS Y [AJ,Z BUL )] 0,05V + Z A; (0.(2°°(UL))95V%)
a,B=1 a,f=1

d
m def A (e} @ def A
EP S Y N0, (270U = 2°°(Un)05VE) B S —[A;, Sp(Up))(0VF).
a,f=1
Perform the energy method for parabolic system (see the Step 2 of the proof of Lemma 4)
to get:

t T
IV g+ 2% [V <€ [ 1V (0 oS0 )

T
o IR R R RS B R (109
0

[

where ¢ > 0 and C' > 0 dependmg on O

Note that the embedding 82 . = L* and the fact that U" is bounded combined with (102)
lead to :

192U e < C N0Vl = C OV,

Lo <Co2m \}6tvl||32%;1 : (109)

d
B2
2
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Owing to Proposition 9 and 10, we have for all a, 3 =1--- ,d

0 (771 L L
||(S — 555(Up)) 0V || 2%;1) <C H mHLOO(B2 ) Hatv H 1(32%;1),
0a (2 (U >ang>||L1T(B§1_1 <OVl s, IV, g
which combined with (102) yields the following bound on R},
”R ||L1 LQ) < 02 j(d 1 C HVIHLOO(BQ ) (H HL%“(Bz%l_l + HVLHLl B§+1)) ’ (110)

The next step is to bound R3* and R?' in L7,(L?). The term R} can be decomposed as

RY = ZS% T)9 V! + Z(Sgl T) - Sg‘l(U)>8aV1.

Now bearing in mind the structure of the matrices S9, (that is, the second derivative of S$
w.r.t. V2 vanishes ) and using directly Propositions 11 (especially (196) with s = £) and 9 to
the second term in the previous identity yields

1R |y 12y < C279G e, ((T +T v Hzoo@il)
1 2 1
VTP  5) 17  COD
Since, for all @ = 1,--- ,d, S§, has the same structure as Sg;, the term R3* may be bounded

by employing the same techniques allowing to get (111). There holds

1R g 2y < C279G1 (f T+VT HVlH

Q
B2
2

+0 llleW D17y, ) 70 - 12

To bound the term R; we take advantage of Propositions 9 and 10 that give

1B lisny < C29E D VI VAL g [0V g (113)
T

oo B221)

Bounding the last term R} and E? involves Propositions 8 (with o = 4 1), 10 (with s = %)

and 9 combined with the fact that U! is bounded (let us notice that Propositions 8, 9 require
that d > 2 ). We have for all o, 5 =1,--+ ,d,

> [[[a5 2] @asvH, < CTEPNVT VL L 9V e
>4 @z o), < CEVNVTITAL g 19V

>[40, ((Zo0 - 200 |, L < e v - vluw)uv oyt
> (& sh@in@v), L, < 2 ENG TV e 10V, e

(114)
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Then, owing to (102), we deduce then

By < C2 s IV = VAl IV, g
_ 1 S
<27 eV -, HL (Bdl)m (T), (115)
and
1Rl < €275 2 VT VA g st V2l 58
which, combined with interpolation inequality yields
1B gy < C2PE D2 eNT VI g (). (116)

Ld_ d_
Using Bernstein inequality and the injection Bj; b B3, ® in the last inequality of (114)
insures that

(117)

oV

125

ey < 2702 V2| gl

| -
°°(Bg) Ly(B3, )

Inserting (117), (116), (115), (113), (112), (111), (110) and (109) into (108), then summing
over j < m, and using the definition of M, My, M3 (we use also T' < 1), we end up with

(L=cT=2"C o], a0 )A(T)

)
< c(zmﬁuvln v, )QlS(T)JrCMlQlL(T)
L (B31)

- . d
LF(BF)

+ cJ-C(HV1 ~Vlliesg, + 2 IV > 1971, st

—%M+M%JW+W% M+¢WWH

2
4 IV e )
221 LT(BQ,I)

%
By1)

Finally, using again interpolation inequality to V2 gives

V215, g, < NO5VA, 48
L2.(B LZ(B3,)
<A + L VL
2! wwm i IV, o
<o+ fivall g o, (118)
2 1
and simplifying redundant terms yields (106).
To prove (107) we recall that
d
OV 4+ (A (U)0V! + Af(U)0.V?) =0,
a=1
d d
OV +(S5H(UM) ™Y (S5(1)0V! + S5,(U)0aV?) — (S5,(U) ™ D 0a(Z2°(U")95V?) = 0.
a=1 a,f=1
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Then, thanks to Propositions 9 and 11 and remembering the structure assumption C, we have
forall a, 6 =1,--- ,d,

et IV e
F(B31) LF (Bs,)

¢ || A5 ()Y b _%_1)<C(T+\/_HV2H

AL, g < OVTa IV e IV, e
0 1 Qo 1 1
‘H<522 ) 821( a‘lv HLlT('%l—l SC(l—i—HV H~oo(37)>(T
STV YT I i 17 s IV
T 2,1 B3, B3
ISR SHOIV], pan) < COH Vs )WT
VTV ot IV V2 s DIV2H,
0 aﬁ 2 1 2 V2
J[CACDREREAC >aﬁv>\\%(3§f)<c VL g IV HLHBﬁ;I,

We deduce by means of interpolation inequality (118) and of the fact T' < 1, that

[@V%0VA)|,, 4 < CO+ M) (VIM; + VT /MM, + My )

T
This completes the proof of the Proposition. ]
Let us now state the last ingredient needed to prove Proposition 3.

Step 3: Closing the estimates In this part we are going to prove the priori estimate of the
solution V' in the set determined by the following constraints:

(C1) ||V1||~ <4Vl

d d,
2) 2
2,1 2

2 2
(©2) V2 s, < 204000

21

C3) ||V =V, s
(©3) V! =Vl gt <

||VSH 471 +f0 HVS” 2+1 <n,
(©3) fy Hatvngi_l < nr,

(C6) U (t,x) —Uj(x)| <dy forany (t,z) € Qr,

2 2
() IVE= VI i <

where 17,1, > 0 and 0 < n < 1 are constants, that will be determined in the sequel; d; <
dist(Og, OU'). Let O' be a bounded open convex set in R™ satisfying

O' = d; — neighborhood of O}. (119)

Then, from (C6), we have Ul(t,z) € O for any (t,z) € Qr .
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We are going to prove that under suitable assumption on 7'(< 1) and 7 (to be specified
below) if Conditions (C1) to (C7) are satisfied, then they are actually satisfied with strict
inequalities. Since all those conditions depend continuously on the time and are strictly satisfied
initially, a basic bootstrap argument insures that (C1) to (C7) are indeed satisfied for T.

Let n* > 0. According to Proposition 6, there exists 7% > 0 such that VI verifies (see
Proposition 5 for the definition of (7))

AL(TH) < nt. (120)

From (C1) to (C5) and the definition of My, My, M3 in (92),(93) we have on the one hand

My < 4|[Vil| g +2[[V5 and Mz < ny. (121)
2,1

Bearing in mind that V2 = VI +V* and taking advantage of (163), we have on the other hand

Vol gy S IVl g0 amd M < IVEVE L g <t (122)

So, up to changing M; (resp. M>) in the right-hand side of the first inequality of (121) (resp.
second inequality of (122)), we can suppose that M; (resp. M;) depends only on initial data

(resp. 1,7").
We shall assume that M, (so n,n*) satisfies

CM, < % (123)

Recall that, from Proposition 4, V! satisfies or all m € Z,
d d
D2V s < D2 VO] + CMy <HV1|| of 1) : (124)
j=m j>m Bia

Taking the limit when m goes to —oo in the last inequality and using (123) we deduce that
(C1) is satisfied with strict inequality. Then, the inequality (124) becomes

S 2 s < 3 2HVIO+ Ot (4], +1)-

jzm jzm

Hence, (C3) is satisfied with strict inequality provided that M, and m satisfy

m nm

> 295 |[VH0)] . < 2 and M < eI (125)
B2
2

j>m

Next, as T" < 1, Proposition 5 can be applied. Under assumptions (C4), (C3), (C4) the
inequality (106) can be reduced to:

(1 — CT — 2"VTCM, — Cipy — 2™np(1 + My)*VT — C(1 + Ml)n) 2AS(T)

< O + 2" Mo)nr + O(1 + Ml)z(\/T HVOQHB%_I nt +n") + C(1 + M) HVc?HBg—I n*. (126)
2,1 2,1

Assuming that

| 1 1 1 1
T<—: VT < My < M < — ) <
oo VT < 16C2m(1+ M2 ™ =160 T T 3207 T 320(1 + M)

(127)
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so that the prefactor of the left-hand side of (126) is less than 1/2, and remembering Inequality
(120) and the fact My < n,, (according to (125)), we can simplify (126) as follows:

9(T) < O+ 2t + O+ D (Vg + 172+ 180 g ) 0+ /)

from which we deduce that (C4) is satisfied with strict inequality if (for instance) n,n%, T and
My verify

n n
(V') < 7 - < e oy (129)
16013 (Vg 1 41)" + IV )

d_
2
2,1 2,1

Let us notice that under conditions (128) and (127), the inequality (106) of Proposition 5
becomes
1
AT (T) < 5QLS(T) +n < 2.
Then combining this inequality and inequality (164) which provides
. 47 . . 47 .
Z 93 (5 UHAJ'VLHLOO(L?) < Z 23 (3 1)HAJ'V()2||L2
jzm jzm
we deduce that assumption (C7) holds with strict inequality if
Nlm i(d_ A Nim
2 <=+ and ;zﬂz IA V22 < ER (129)

Under assumption (C3) and from (122), we deduce that (C2) is satisfied with strict inequal-
ity provided that
0< Vel (130

Let us apply (107). We get, under M, < 1

J@v .oV, e <O+ A0Y (VTM; + VT VM + M) -

LT(32,1

Hence (C5) is satisfied with a strict inequality provided that T, M (so n,n*) satisfy

VT < I d My<-— """ . 131
20(1+ M )2(My + L) 0 RS20+ M) (131)

In order to check whether (C6) is satisfied, we use the fact that:

V=V = S (V= V) + (Id = Spr) (VP = V).

. d . .
Then, the embedding B;, < L and the fact that A;(Id — S,,41) = 0if j < m ensure that for
all (t, SL‘) € Qr
.)

Vita) — Vi) < c( / AV - V)

Sm—l—latvl (T) ‘

4
d
32%1 dr + Z 272
' j=zm—1
Hence using (C3), (C5) and Bernstein inequality lead to:

(UM (t,2) — Uy (t,2)| < C2™ ' nr + 1)
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which yields (C6) with a strict inequality if

@ and Cn, < 4, (132)

Cr < om+2 92

The continuity of the operator S,, and (C6) guarantee that: for all (t,z) € Qr,

UL (L) — U @) < sup U (") = Up(@)]| e < . (133)

0<t<T
Then, (C6) and (132) imply that Ul (¢,z) € O, for all, (t,z) € Qr.

Remark 3.1. The existence time T may be bounded from below by
T > min {P;TL}- (134)

where P is a non-increasing positive function of [[Vi'|| .4 and V|| .4, which depends also on
B B

d
2
2,1 2,1

the matrices involved in system (11) and d-

3.2 The Proof of Existence

We use a standard scheme:

1. We smooth out the data and get a sequence of smooth solutions (V.!, V%) to (11) under

the assumption C on a bounded interval [0, 7"] which may depend on n.

2. We exhibit a positive lower bound 7" < 1 for 7™ and prove uniform estimates in the space
~ - d ~ 241 L i
&r = C(0.T); B3,) x (C(0,7): B3y )y n Lh(B3))
for the smooth solution (V;!, V?).

3. We use compactness to prove that the sequence converges, up to extraction, to a solution
of (11).

First step: We smooth out the data as follows:
Note that V4, belongs to all nonhomogeneous Besov spaces B3, and that

Ve [Vilg £ Ol g 5 108y < Ol

Vo (vesp. Vi, ) tends to Vi (resp. V) in BQ%1 (resp. Bzgl_l)

Now, according to Theorem 1.2 (note that assumption (C) implies assumption (BB) ), one
can solve (11) under assumption (C) with the smooth data (Vy,,, V). For all s > £, we get a
solution (V;!, V.?) on a non trivial time interval [0, T| such that

n - 'n

(VL V2) € (10, T); By (G0, T); Bsa) N LhB3EY)) (135)

n»'n
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Second step : Let T™° be the lifespan of V,,, that is, the supremum of all 7" such that the
system (11) under assumption (C) with data Vj, has a solution which satisfies (135). Let
T € [0, min(1,7™%)], m,n, n,m and nr be chosen such that conditions (123), (125), (127), (128),
(129), (130), (131) and (132) are satisfied (this can be ensured independently of n). Then V,,
satisfies (C1)- (C7) thus is bounded independently of n on [0, T.

We still have to showcase that 7™° may be bounded by below by the supremum 7" of all
times T such that the conditions obtained in the stability step of Subsection 3.1. This is actually
a consequence of the uniform bounds we have just obtained, and of Remark 3.1. We thus have
T > T,

Last step: We now have to prove that (V},), tends (up to a subsequence) to some function
V' which belongs to & and satisfies (11) with assumption (C). The proof is based on Ascoli’s
theorem, Fatou’s Lemma and compact embeddings in Besov spaces. As similar arguments have
been employed in |2, chapter 10|, or [3], the details are left to the reader.

3.3 Uniqueness

Assume that we are given (V{}, V) and (V,!, V%), two solutions of (11) under assumption
C (with the same data), satisfying the regularity assumptions of Theorem 1.3. Let us put
U, = V. + U. In order to show that these two solutions coincide, we shall give estimates for
(V1,V2) € (v — Vi, V2 — V). The proof will consist in obtaining suitable a priori estimates
for the following system:

OV + Zizl A?l(Ug)Vl =h

N _ (136)
332(U21,m)atv2 - Ziﬁ:l Zaﬁ(UQ{m)aaaﬁvz =9
with h = hy 4 hy + hg and g = 3, _, gk, where
d
=3 (A3 (U2) = A3y (U2) aViE, by = ZA (U072,
a=1

d

hy == (A% (U3) — A% (U)) aV2,
a=1

91 = 11+ g1 = —(55(U3,,) = S%(U3)0V> = ((S(U}) — S5(U3))) &V,

d d
g2=— Y (S5(Us) = S%(11)) 0V, gz =—_ S5(U)0.V

a=1 a=1
d _ d
94 = Ga1+ Ga2 = — Z S5 (Uz)0, V! — Z (SS(Us) — S$(UL)) 0,V
a=1 a=1

d ~

g == 0. (2°°(U3,,)) 05V,
a,f=1
d ~
9o = 3 0 ((2°9(03) = 2°%(UL,)05V2) . g1 Z Do ((2°°(UL) — 229 (UL)95V7)
a,f=1 a,f=1

Like in the previous section, one cannot avoid a loss of one derivative in the stability estimates,
which leads us to proving the uniqueness in the function space

s 21 (Foo 2 1t
St = L7 (32,1 ) x | LT (32,1 )ﬂLT(Bz,l )]
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In the two-dimensional case, the regularity index of the second component V2 is only 0, so that
some product laws fail when estimating some terms on the right-hand side of the equation for
V2 (e.g. g» and g4). The reason why is that the product of functions only maps Bgl X BS’1 in the

—1

. . ~ Ld_
larger space B, ., rather than in By I. Consequently, we look for estimates of V! in L%O(Biool)

and V2 in L%O(BQ%O_:). Yet, another problem arises due to 321700 < L, the term f; in the
right-hand side of the first equation of (136) cannot be estimated properly. This difficulty may
be bypassed by making use of the following logarithmic interpolation (see [3] or Lemma 7 for
nonhomogeneous case)

lallzg s ) lallzs sy + Nallze 55
lallzg s, ,) < C—— —log | e

”CLHE%BIS,’OO)

> , for all s € R. (137)

This being said, we are going to estimate (171, ‘72) in®

cof a1 cof 252 10
Ly (Bz,oo ) X Ly (Bz,oo )N LT<BQ,00)'
Apply operator Aj to (136); to get
~ d o~ ~ . ~ d . ~
OV} + ZA?l(Uz?)le = hj+ R; with h; = Ajh, Rj = — Z[Am AT (UD](0aV).
a=1 a=1

As V1(0) = 0, following the energy method and remembering that A%, (U2) is at most linear
yields

Vit lzse 22y < Vi llose o) IV Vi Nl ot ooy + (R, )l Ly r2)-

Next bounding ||(2;, ;)| zs(22) may be achieved by combining Propositions 8 and 9. We have

29D Rl o <CHX71) V2
2 || ]”LT (L2) >~ Z%O(Bﬁo—ol) ||V 2 ||Z%~(B2%’OO)QL,;(L°°)7
.(d 1) r 72 1 g 1 /2
Py <€ [ [P 199+ [ V20 972
V! AT .
* H TeBi) [vvi HE%(Bi)

L d ~ .
Finally using the embedding Li.(B3,) < Ly (Bj ) N Lp(L*>), we arrive at

H‘NleL%O(Bd L <OV W)

4-
2,00 )

7

4
LF (B3 o)

T
1 1 72
o [ (1 IVl IV ) 7

We note that by virtue of the Lebesgue dominated convergence theorem, ||(V?, V}?)

d
L2y
LlT(B22,1 )

L4
B3y

HLHB?,T

tends to 0 when 7" goes to 0, and hence there exists a positive time (which we still denote by T')

5Obviously, this problem does not occur in dimension d > 3, and one can provide a simpler proof of uniqueness
in the space §1, with no need of logarithmic estimates.
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such that the first term on the right-hand side may be absorbed by the left-hand side. Then,
making use of inequality (137), and setting

My(T) = [|(V, 1) || 54 H(Vqu)HLw(ng and
o o (138)
_ 2
My(T >—H<atv1,atvz>HLlT(B§1_1 N2V, ot
we end up with the following inequality:
N _ ||(V12’V22)”zoo<3%-1) IOV VAL i
HVl L, <C(1+M) ‘VQ a4 log|e+ T2l L1(By,
L%O(BQQ,OO ) L%“(BQZ,OO) HV2 a
Ly (B3.o0)
~ TM, + M.
< C(1+My) ‘W o og | e AR (139)
L%“(BQ%OO) ‘ V2 4
Li(B3 )
We now bound V2. Apply the operator Aj to (136)y to get
d
S92 (Usn)OiVi = Y Z2°7(U3,,)0205V} = g; + ©;,
a,f=1
with
d
. NI ~
&, =SB0 3 (A, (S0(U2,)) " 22(U,)] (0.0577)
a,f=1

A -1
9; = S5(U3,)A ((S5(U3,)) " 9) -
Following the energy method for parabolic system we get
||V2||L°° (L2) +22]||V2||L1 (L2) < ||V2||L°°(L2 10Vl 2oy + (955 65) || Lze (122)-

Since d > 2, taking advantage of commutator estimates (see Proposition 8), one may write

i
16| L1 (L2 < C2 gt 2)/ ||VU21

.%72
Faeo (140)
<C2 r—2>f||w2m|| st ]
from which and the fact that
172 1 172 1 m
IV e @2y 106Vl L1 Loy < CIV; ||L%°(L2)||(9tVz,m||LlT(B§1) < C2" M,

we deduce that
V2l 12 + 291V 1 22y < C2"Ma(T)[V2 e 22
+C27IGE (2T M (T)W(T) + [l ggllrzpey. (141)

where hereafter we define

w\a.

(T) = Hf??

+Hv2

L°°(B LB2.)

d_
In order to bound all the gj’s we may exploit that the product of two functions maps Biool X

le or 82 ® 82 1 to B (recall that d > 2), and Propositions 8, 9 and 10, adapted to the
spaces L%(Bir).
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From the definition of g; and the fact that U},, is bounded, one may write

(142)

(BI7
B3 oo )

—1
Ngs iy < O (SR80 " 9]

g2 S CO+AQWML

To bound g9 and g4 2 we use the inequality (198) of Proposition 11 and that the product of two
functions maps B ' x 8221 in B2 . It holds

o2l g, < OVT [P, g G+ IV DIPVR e
+/ (171 9215+ 7)) 19920,
||942||~ 5;2) SCﬁHvZHZg(B‘ﬁ: 1+HV2 H 003221 val HLOO( 2%;)

+/0 (Hvl

d_ d Ld_
Besides, using (196) and the product law Bﬁoo2 x B3, in B22,002 yields

g V2l 7 ) I

T
ety SC [ @2y @ IV ) + 120,00 97,

d
5o —2
2

|mmd4<0f4Wﬂ duﬂww.w+ﬁWﬂ~e |vv?
1) T L%O(Bz,ﬂ

I(Bf ) LOO(BQQJ)

~q .%72 .
LT(B2,0<>)

Ld . d .
Next, thanks to (193) and to the fact that the numerical product maps 3227002 X B3, to 32 o
we get

1 1 1 2
Hmﬂﬁwi5§CW6—%mWwéﬂﬂ+W%, )Mﬂ%ﬂHav ﬂﬁjﬁ
951, e, < CVT IVl o 1972 e (143)

-2

Ld_ . d
g = B3 . we have the following

Ll
Combining inequality (194) and the product law Biool x By,
bound for g; o:

T ~
o SOOIV o) [P ol

Lip(B3 o)

nd_
Finally, thanks to the product law Biool 822 B2

5 0 > ', Proposition 10 (especially (193)) and
Bernstein inequality, we get

145

1 1 1 1/1 Y72
ool g < €IV = Vidall ) A 102 Vil ) |97

o g < OO+ IR, 0 [ 7,

Vv .
By

. d
32
2

Multiplying (141) by 2/(2-2) taking into account the above estimates, using many times Bern-
stein inequality and interpolation inequality, one concludes that (for simplicity we assume that

41



T <1and My(T) <1):

SUT) < Chyy (2mMz( Y1+ VT) + Mo(T) + /ML (T) + || V5 = w’”“zww

1

T
vow [ (1o, IOV )7,
0

+ O, || V2 — VzmH

.4d_
32
200

Ha 72

d_9 >

L"°(B2 ) Li(Bi o)

where C), depends on M. In order to pursue our proof for uniqueness, we need to estimate

‘ at\72‘ 4_,- More precisely we are going to bound ‘ 8t\72‘ r i in terms of Q(T) Starting
BQ oo T 2,00
from (136),, we have
OVE = (S5(U3) " D Z°(U3,)0a05V° + (S5(U3,0)) " 9. (146)
a,B=1

~ Ld
Then, bounding 9;V? in Ll(B2 2) is similar to what we did to bound ||g;|[11 (12). In fact, com-

bining the product law B ><322 | = B (takmg into account the structure of (S3,(U3,,)) - S (Uam)),
and Propositions 10 and 11 we have

As || g|| L5 has already been bounded above we deduce that

2,00

A%

42 <Ciy (HVQVQ‘
2

u(T)soMl(2m<M2<>+f )+ M)+ /IR + |V = Vi,

. d
(B31)
T
wCun [ (11082 + 0071 1)\
0

Now, the first term on the right-hand side may be absorbed by the left-hand side, provided
that, first, m is taken large enough, and then T is sufficiently small. In fact, the term

vz -2

) U(T)

. (147)

o0

),

d
2
2

~ . d
P tends to zero when m goes to co (recall that V;' € L¥(Bj3,)). Next,
2,1

we note that by virtue of the Lebesgue dominated convergence theorem, My(T") tends to 0
when 7" goes to 0. Note that M; can seen as independent on time since, it is bounded by the
initial data. Hence, so does C;,. We end up with the following inequality:

dl‘

_ T
i) < oy, [ (1+|| VAV g + 077 ) 71,
0

We plug (139) into this inequality and we use the fact that the function r — rlog(e + %) is
increasing, to eventually get

UT) < Ch, /0 (1 +[VE VO g0 + HatVEWHB;l_l) U(r) log (e + Ag&f)) ) dr.
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As

1

T
L (O V2 g+ 007 g0 € Ll and / ST

dr = 00,
e+ 1) g

Osgood’s lemma entails that £((t) = 0 for all 0 < ¢ < T. This means that (V{!, V2) and (V3, V;2)
coincide on [0, T for small T > 0. Appealing to a connectivity argument yields uniqueness on
the whole interval existence, which completes the proof.

4 Application to the compressible Navier-Stokes system

In the Eulerian description, a general compressible fluid evolving in some open set 2 of R? is
characterized at every material point z in Q and time t € R by its velocity field u = u(t, z) € R?,
density p € Ry, pressure p = p(t,z) € R, internal energy by unit mass e = e(t,z) € R, entropy
by unit mass s = s(t,z) € R and absolute temperature § = 0(¢,z) € R,. In the absence of
external forces, those quantities are governed by:

Op + div(pu) =0,
pOyu + pu - Vu — div(2uDu + Mg div(u)) + Vp = 0, (148)
pea(00 + u - VO) + Opg div(u) — div(kVe) = U,

with

def
y =

N =

d
D (O, + Op?)? + A(div(w))?, (149)
i,j=1

In order to get a closed system of d + 2 equations for the d 4+ 2 unknowns (p, u, 8), we have to
supplement System (148) with closure relations interrelating p, p, e and 0. Here we assume:

Assumption D

1. The thermodynamic quantities p and e are smooth functions of p,6 > 0 such that the
first law of thermodynamics

1
Ods = de + pd(-), (150)
p
holds, and we assume that for all p > 0 and 6 > 0,

0 Oe
Pp(p,0) = 8_]; >0 and eg(p,0):= ETRe 0. (151)

2. The viscosity coefficients A, 4 and the heat conductivity k are smooth functions of p, 6§ > 0
and satisfy the following condition

p>0, vE24+A>0 and k> 0. (152)

Let us next write (148) as a symmetric hyperbolic partially diffusive system. Set

U {(p,u,0) e R™2/p >0, 0> 0}

43



For some positive constants 7 > 0 and 6 > 0, define

U (p,u,0), T (P, Opa,0) and vy _T.

Then, (148) is reduced to

d d
SO(U)%UJF D SUU)IU = Y 9a (YP0sV) = H(U) (153)
a=1 a,f=1
where
() 0
SO (o pa 0], HO)E 0 , (154)
0 0 & U —kV6-V(35)
d Pog - € Py 0
« dﬁf r T T
Y S U = | pIE plu-OId pie |, (155)
a=1 0 Pos Bru-§
and
d
0 0
yole es ( g . ) (156)
aﬁzzl 0 >05m1 Z2°76Es
with
o o 2+ (p+N)E@dd 0
Z 'Bgagﬂ d:f (Mgl (MO )5 5 E|§|2) ) (157)
0

We note that S°(U) is a diagonal positive definite matrix for all U € U, and that the matrices

S*(U), for a = 1,--- ,d, are real symmetric. Furthermore a simple calculation shows that: for
all X, £ € R% Y € R,

d
> (2906054, A) > min(u, )| X + v (158)
a,f=1

where 4 & (X,Y) and {-,-) denotes the standard inner product in R¢*!. As for the right-hand
side H, it is regarded as a lower order (quadratic) term, that satisfies the 4th condition of BB.

These considerations lead to the following result which is a direct application of Theorem 1.2:

Theorem 4.1 (Local existence). Let Assumption D be in force and let s > & if d = 1 and

s > g ifd>2. Letp >0, 8 >0 be arbitrary fived real numbers. Suppose that the initial data
(po, uo,00) € U satisfies po — p € B, ug € By and 6y — 6 € Bj .

Then, there exists some T > 0 such that the problem (148) supplemented with the initial data

(po, ug, 0o) has a unique solution (p,u,0) € U on Qr dof [0, T]xR? such that p and 6 are bounded

away from zero on Qr. More precisely, info, {p(t,x)} > 0 and infg, {0(t,x)} > 0. Moreover
we have

p—peC(0, T B3Y") and (u,0—0) € C((0,T]; Byy) N Ly, (B31?).
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The system constituted by the first two equations in (148) is the so-called barotropic com-
pressible Navier-Stokes system (this corresponds to the case where the temperature is constant).
It reads:

Op+u-Vp+ pdiv(iu) =0 (159)
poyu + pu - Vu — div(2u(p) Du + A(p) div(u)1y) + Vp(p) = 0.
Without difficulties, we can see that, if
u(p) >0 and v(p) >0, forall p>0, (160)

then the system (159) satisfies the assumption C. Then, Theorem 1.3 can be applied and we
recover the following result of Danchin in [10]:

Theorem 4.2 (Local existence). Let Condition (160) be satisfied. Let p>0 be an arbitrary

fized constant. Suppose that the initial data (po, uo) satisfy po—p € 32 1, U € 32 1 " and po > 0.
Then, System (159) supplemented with the initial data (po,uo) has a unique solution (p,u) on
Qr with T' > 0 which satisfies infg, {p(t,x)} > 0. Moreover we have

— -4 41 2441
p—peC(0,T];B3;) and weC(0,T];Bz; )N L1T<Bz,1 ).
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Appendix

A Some inequalities

Here we gather a few technical results that have been used repeatedly in the paper. The first one
is the following well known result which consists in integrating suitably a differential inequality.

Lemma 5. Let X : [0,7] — R, be a continuous function such that X is differentiable.
Assume that there exists a constant B > 0 and a measurable function A : Ry — [0,7]

such that 1d
§d_X+BX<AX2 a.e on [0,T].

Then, for allt € [0,T], we have

X2 ( +B/X%g2 /A.

Proof. For all € > 0, the following inequality is verified by X:

to
=

1 d 1 1
Eﬁ(X + e+ B(X +&%) < AX +e*)'72 + Be(X + &)z,

As X(t) +&* >0 for all t € [0,T], we have

o (X+e%)? L B(X+e%)? <A+ Be
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Then, integrating the previous inequality over [0, 7] yields

(X(t) —1—52)% —|—B/t (X(T)—I—EQ)%dT < /tA(T)dT—l—tEB.

To obtain the desired inequality, it suffices to let € go to zero. O]

Let V' be a solution of the following linear parabolic equation:

(161)

SOV —Z(D)V =0
L Vo

where S is a symmetric positive definite matrix and Z € C*(R%; M,,(C)) is homogeneous of
degree v € R and such that the matrix Z () satisfies for some constant ¢ > 0

(Z(§)z - 2) = clg||2, € e RN\{0}, z € C™. (162)

We have the following statement that turns out to be the key to proving our local existence
result.

Proposition 6. There exist universal positive constants ¢, C' such that for all s € R, T € R*
and m € N, the following estimates hold:

IVllzzess,) < C1Valls; (163)
> VAV sy < C Y20 AV | e, (164)
jzm jzm
> (D) A0 sy < C Y (1= e ) 2 A o2, (165)
j>m j>m

IALV.BA (V)]s < OT [V2(0)]

(166)

s -
B3,

Furthermore, in the case Z € C®(R\{0}; M,,(C)), the inequalities (163) and (165) are also

valid in the homogeneous framework (i.e., with A;, m € Z and homogeneous Besov norms
instead of A;, m € N and nonhomogeneous Besov norms respectively).

Proof. We provide only the proof in the nonhomogeneous case, which is an easy adaptation of

the similar result for the "ordinary" heat equation stated in [0]. First apply A, to (66), take

the L? inner product with V; aef A,;V, then use Plancherel’s theorem. One gets

d = ~ ~ ) def
STy + [ ZQTE T =0, with VI ™ [ sV-.
R4 R

Next using the strong ellipticity condition (162), we get for all j > —1,

d & 2 > 2
Gy ¢ [P OPdE <0, (167
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with ¢ being a universal constant. Since [¢[Y[V;(€)[2 > k207|V;(€)|? for j > 0 where & > 0
is a universal constant, combining with the fact S is a constant, symmetric, positive definite
matrix, we get

d = o _
%HW”%@(W) + C"‘Qﬂ”vjuig(md) <0, forall j > 0.
This leads to (up to a slight modification of c):

Vi)l zz ey < e Vosllrz e, forall >0, ¢ € [0,T] (168)

which provides (164). Another consequence of the previous inequality is

Vil g (z2rayy < (%) Vol 2, for all j >0, g € [1,00) (169)
which combined with the fact that

oV =S1tZ(D)V (170)
and Bernstein inequality provides for all j > 0, ¢ € [1,00)

1 — e*CZj“/Tq

||Aj(atVL)||L£}(L2(Rd)) <C (W) 277 ||V0,j||L2 ) (171)

from which we deduce inequality (165).
It remains to deal with the case j = —1. From (167), we deduce that:
d ~
EHV—I”%g(Rd) <0.
This implies that
IVoillzes (e @ay) < Vo1l 2 (172)

which combined with (170) and Bernstein inequality yields (166). At the same time we get
(163) from (168) and (172).
]

So far, the operators considered were independent of z. In the following result, we explain
how to handle a second order operator with variable coefficients.

Lemma 6 (Garding inequality). Let U : R? — R™ be a bounded function. Assume that the
operator Z(U)V, is strongly elliptic in the sense of (3). Then, there exists a positive constant
¢ (depending on the ellipticity constant) and a constant € = €(c,U) > 0, chosen as small as we
want, such that the following inequality holds true for all smooth function f : R% — R"™™

- Y [ 2 0005 @) P e
@,f,0.7
> el 1200 = eV ez | e = Cll ey (173

where C'= C(c,e,U) > 0 depends only on €, the range of U and the ellipticity constant.
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Remark A.1. The ‘standard’ Garding inequality has a better form than what we stated in
inequality (173), but, provided that we keep the divergence form of the operator Z(U)V,. In
fact, under the assumptions of Lemma 6, there exist positive constants ¢, C' such that for any
function f:R? — R"P, the following inequality holds true:

=3 [ 025 00ur) (@) 05 @) 2 A gy = Cll sy (170

a,B,i,7

Although Inequality (173) seems not so good because of the second order derivatives in the
right-hand side, it will be useful for us once combined with Bernstein inequality, since it will be
applied to spectrally localized functions f.

Proof of Lemma 6. As a first, suppose that the functions Ziajﬂ are constant. Then, in light of
Fourier-Plancherel theorem and of (3), we have

_Z/ 30,05 f () [ (x dx—ReZ/ 706us f Fide

a,B,i,j a,B,i,]

= 3 [ 76 (Re(FOReP) + Ton( PoTm( )
a,f3,4,5
2 ClHVfHLZ(Rd)

where ¢; in the constant appearing in (3). Hence, (173) is true in this special case.

We next consider the case of variable coefficients. Suppose first that the function U has
range in a small ball about U. Taking U = 0 for notational simplicity and using the preceding
case, we have

. Z/ 22 (00,0 () f () = — Z/ 228 (00005 f'(x) f () da

a,B,i,] a,B,i,j
=Y [ 2w - 2 00,00 @) (0)da
a,f,i,j R4
> VS Py — S / (228 (U) — Z20(0))0ads fi(x) £ (2)di
a,B,1,

If the image of U is so small that ij‘ﬂ have a very small oscillation then we see that the second
term of the last inequality may be bounded by ¢||V?f|| L2 f| 12(), for € small.

Finally, we consider the general case. Construct a partition of unit in R? as follows: We
can write the range G of U which is bounded, as

N
G C UBk
k=1

where B;, et B(ag, ) is a ball of center a; € G and radius € > 0, which can be taken as small

as we want. We denote

O L UY(By),

and consider a partition of unity such that

N
1= Zwi(m) Ve € R?  w; >0, Suppwr C Q. (175)
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Then, by the Leibniz’ rule of differentiation of the product of functions, Cauchy-Schwarz in-
equality and the estimate of the case obtained above, we have,

—Z/ U)0.0sf'(x) 7 (2)dx = — ZZ/ (2)0a0sf" (x) f () dx

,B,i,j a,B,i,5 k=1
== Z Z/ Z2P(U)0a0s (winf ) (z)wp () dx
a,fB,i,5 k=1
+2 Z Z/ ZO‘/B (2)Ouwi, () s f7 (z) i (z)d
a,fB,4,5 k=1
N . .
= 23 [ 2 W@ P s
aBij k=1 R
N
> > (el V@) aqgey = CE IV 2ol lcacesy

k
—Cw) IV fll 2@y [ £ | L2may — C(wk)HfH%?(]Rd)> - (176)

Relation (175) will be used for the first term of (176). In fact using Leibniz formula we can
observe that

2(V (@ f)llze = oV FlIze = 21 Veorllzz 2 WV flI72 = 2C () /17 -

Using Young’s inequality for the term C'(wi)||V f|| r2ray || f]| L2 (ra), that is,

1

&1
C(wi) |V fll L2y | f1l 2 ey < ZIIVfH%z(Rd) + C(wp) | f11 22 gy

we deduce the following inequality for C' = C(wy):

«@ 7 i C
-2 /R 2 U060 f'(2)F (w)dr = IV 72 = eClIV2 f a1 1l 2ceey — C L 72y

a,B,i,]
This gives the desired result. O]
The following logarithmic interpolation inequality in nonhomogeneous Besov spaces is very
useful to prove the uniqueness of the solution of system (11) under the assumption C in non-
homogeneous Besov space. We haven’t used this inequality in this paper, but instead we have

used its original (inequality (137)) that has been proved by R. Danchin in [, p. 1319] for a
class of homogeneous Besov spaces. We adapt the result to the nonhomogeneous case.

Lemma 7. For any (p,p) € [1,00]?, T >0, s € R and n € (0,1] we have
lallz lallze sy
lallz 5e 5 < Cwlog et L Ep(Bpe) ) (177)
et n ||aHLP(Bs o)
Proof. We split the norm HGHE; (Bs.) into low and high frequencies. We have
p,T

lallzs s ) = > 22IAallgwny + Y 27" Agall g rm 2
g=-1 g=m-+1
2—7}(m+1)

< (m+2) sup 27| Agall g 1oy + 5 sup 27TV Agal| e (1)
o1 1—277 oy
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As 1 > 0 we deduce that
lallzg sy S (m+ 2 lallzg s, + 1727 lallzp gy

Choosing m to be the integer part of

1 log, ||a||z;(B;,tg)
n HGHZ;(B;,OO)
yields the desired inequality. O

B Littlewood-Paley decomposition and Besov spaces

In this section we present some results on the Littlewood-Paley decomposition and Besov spaces,
the source of which can be found in [2, Chap. 2].

To define the Littlewood- Paley decomposition, we fix some smooth radial non increasing

function y with Suppy C B(0, ) and y = 1 on B(0, ) , then set p(§) = X(%) — x(&) so that

X+ ng(Q_j-) =1lonR? and Z@(Q_j-) =1 on RN\ {0}.

>0 jez

In order to pursue our definition, we agree that for S a function, z a distribution and a a real
constant, the operator S(aD) is defined by

def

S(aD)z = F'S(a")Fz, (178)

when the right-hand side makes sense. Let us now state
S;=x(277D) forallj€Z and S;% S forallj >0, S;=0 forallj<—1. (179
We define the homogeneous dyadic block A]- and nonhomogeneous dyadic block A; as

A; € p(279D) forall j € Z

. (180)
Aj:Aj forall7 >0, A.; =5 and A; =0 forallj< -1

and we define S;, to be the set of tempered distributions z such that

lim S;z = 0. (181)
j——o0
Following [2], we introduce the homogeneous Besov semi-norms (resp. nonhomogeneous Besov
norms):
def s def s

I = 127°1A2llzoll - (resp. | 127 122 o llir). (182)

Then, for any s € R and (p,r) € [1,00] we define the homogeneous Besov spaces B;}r (resp.
nonhomogeneous Besov spaces By ) to be the subset of those z in S, (resp. the subset of those
z in the tempered distribution space S’) such that || (resp. ||z | B;, ) is finite.

The study of non-stationary PDEs requires spaces of type L*(0, T X ) (endowed with the
norm |[[zf|gexy = [[l|2(¢,-)|Ix|[zs) for appropriate Banach spaces X. Here we expect X to
be a Besov space. However, for technical reasons, it is sometimes more suitable to use the
Chemin-Lerner spaces that are defined below:
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Definition B.1. Let p in [1,00] and time T € [0, 00]. We set

def

def ; .
= 1271182 o omllr - with (|2l oy = 1120 eqo.Lr)-

2z )

We then define the space Z%(B;’T) to be the set of tempered distributions z over [0, T] x R? such
We have a similar definition in the homogeneous framework.

We set C([0,T7; B;.) = f[:pT(B;r) NC([0,T]; By ,). Let us emphasize that, according to the
Minkowski inequality, we have:

25,0 < Woll g,y 37 2 0 and zlligny ) < Ielipyqsy,) ifr <p (183)

Even though most of the functions we shall consider here will have range in the set of vectors
or matrices, we shall keep the same notation for Besov spaces pertaining to this case.

One of the main motivations for using Littlewood-Paley decomposition when dealing with
PDEs is that the derivatives act almost as dilations on distributions with Fourier transform
supported in a ball or an annulus, as regards L? norms. This is exactly what is stated in the
following proposition:

Proposition 7 (Bernstein inequality). Let 0 < r < R.

e There exists a constant C' so that, for any k € N, pair (q1,q2) in [1,00]* with go > ¢ > 1
and function u of L% with U supported in the ball B(0,AR) of R? for some A > 0, we
have D¥u € L% and

< Ok+1 )\k+d(i

[D* ]| gy < ) [l oy gy -

e For any smooth function M on R4\{0} with homogeneity v, there exists a constant C such
that for any A > 0 and any function u with Fourier transform u supported in annulus

{£ e RI\ r\ < €] < RA\} of R, we have

(-1
1M (D)t o oy < CEFNTN07 3 ] oy gy -

e There exists a constant C so that for any k € N, ¢ € [1,00] and function uw of L9 with
Supp @ C {£ € R4\ rX\ < |€] < RA} for some A > 0, W we have

AF [ull pagray < crtt HDkuHLQ(Rd) :

In order to bound the commutator terms, we use the following results:

Proposition 8. We designate by B3, both B3, and Bir. The following inequalities hold true:
If c >0

o, Abll e < 2 Ces(Vall o Wllagsr + Il [ Vallagr) with Ser=1. (184)
J
In particular, if o > g + 1, then it holds

la, Al2 < 279°Ce; | Val poos [bll gy with 3 ¢ =1 (185)

j=-1
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Moreover if—g <o < % + 1, then

Jlo. AyJbl < 277Ces|Vall g [bllsgze with 3 e =1 (186)
] J

We have also

|[a, Aj]b]] 2 < 2_qUCHVCLHB% 5 [bllgg—1 for all —d/2<0<d/2+1. (187)
2,00ﬁ ° o0

Similar results hold true if we replace L* by Li.(L?) in the Lh.s and the spaces Li.(B3,) (or
Z%(Bg}r)) in the r.h.s.

The following product laws in Besov spaces have been used repeatedly.
Proposition 9. Let (s,7) €]0,00[x[1,00]. Then B, N L*® is an algebra and we have

5 (188)

Moreover, if —d/2 < s < d/2, then the following inequality holds:

lab]

55, < Cllall e W55, + bl Nl

|ab| B, <C ||a||32g1 0] Bs, (189)
and if —d/2 < s < d/2,
labls; _ < Clall g bl (190)
Finally, if s >d/2 (ors=d/2 andr =1),
|ab| Bj, < Cllal Bs, 0] By, " (191)

The above estimates hold if we replace the nonhomogeneous Besov spaces with the corresponding
homogeneous Besov spaces. We have similar results for the spaces Li.(Bs ), Lip(Bs,), Lp(Bs,)

and zg(B‘;T) see [7, 1/].
Among the results necessary to prove our Theorems, 1.3 and 1.2, we have the following one.

Proposition 10. Let f be a function in C*°(R). Let r € [1,00] and s €]0,00[. Then, if
f(0) = 0, for every real-valued function u in B, the function f ou belongs to B3, and we
have

1] o ul

sy, < OO lull ) T

(192)
More generally,

Ifou—fou|

5, < O ol o) (Ut ]

+ vl g4 ) [lu—v]
1 322,1

B - (193)

d
2
2,
Furthermore, if —%l <s< %l then the last inequality remains valid for r = oo, that is,

1fou=fouvlg <CU, luvllp)X+lull g +loll g )llu—vllg - (194)
’ 2,1 2, ’

1
Finally if —g <s< g, then we still an inequality similar to (193)

Ifou—fovlgy <CU lluvll L)1+ HUHB§ Holl g ) llu—vllg, - (195)

1 2,1

Similar results holds for homogeneous Besov spaces and Chemin-Lerner spaces.
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Proof. The proof of (192) can be found in |2, pages 94 and 104| while (193), (194) and (195)
can obtained by adapting the proof of first inequality of |2, page 449]. m

Finally, the following composition estimates enable us to handle the 0-th order terms in
System (11):

Proposition 11. Let 0 < ny < n and m be three integers. Let f : (X,Y) € R™ x R"™™
f(X,Y) € R™ be a smooth function on R". Assume that f is at most linear with respect to'Y
(that is, the second derivative D% f of f with respect to the component Y wvanishes).

If f vanishes at Ogn, then for any 0 < s < g the following inequality holds true

1 (s 0)ll g, < O Mlll o) 0l g, (U ull g )+ llullgg,)- (196)
’ ’ 2,1 ’
Furthermore if —% < s < 4, then we have for some C = C(f", ||u1, u2|| ;0 ):

[f (1, v1) — flug, va)|

B, < Clve — vy

5g, (L hall g )

2,1

# OO+ allg + Dl ) (e =l g o b, ) (197

By, T [ty — ]
2.1

Finally iof —%l <s< g then we have

[f (1, v1) = flug, v2)|

sy < Cllos—villgy (14wl 4)

2,1

+ OO+ il + el ) (T =

2,1

BSVOO) ) (198)

BS.. ||1)1||Bzg1 + [ur — o]

where C' = C(f', ||u1, u2|| ;o )-

Proof. The Taylor formula and the fact DZf = 0 guarantee the existence of two smooth
functions A and I' defined on R™ such that

flu,v) = A(u)v +T'(u) (with I'(Ogni) = Ogm if f(Ogni, Ogn—n; ) = Ogm.

If 0 < s < ¢ then, applying the inequalities (189) and (192) to the term A(u)v yields the
first term of the right-hand side of inequality (196). Next, using Proposition 10 (recall that
s > 0) for the term A(u) gives the second term of (196).

To prove (197) (resp.(198)), we use the above decomposition to get

f(ug, va) — fluy,v1) = Auz)(v2 — v1) + (Aluz) — Alur))vr + (I'ug) — T'(wr)).

Having this decomposition in hand, the first two terms of the last equality may be handled by
the inequalities (189) (resp. (190)) and (192) (resp. (194)). Concerning the last one, we use
Inequality (195) (resp. (194)) . O
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