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Local existence for systems of conservation laws with
partial diffusion.

Jean-Paul ADOGBO & Raphäel Danchin

Abstract

This paper is dedicated to the study of the local existence theory of the Cauchy problem
for symmetric hyperbolic partially diffusive systems (also known as hyperbolic-parabolic
system) in dimension d ≥ 1. The system under consideration is a coupling between a
symmetric hyperbolic system and a parabolic system. We address the question of well-
posedness for large data having critical Besov regularity. This improves the analysis of
Serre [20] and Kawashima [15]. Our results allow for initial data whose components have
different regularities and we enlarge the class of the components experiencing the diffusion
to Hs, with s > d/2 (instead of s > d/2+1 in Serre’s work and s > d/2+2 in Kawashima’s
one).

Our results rely on Gårding’s inequality, composition estimates and product laws. As
an example, we consider the Navier-Stokes-Fourier equations.

1 Introduction
Many physical phenomena may be modelled by first order hyperbolic equations with degenerate
dissipative or diffusive terms. This is the case for example in gas dynamics, where the mass
is conserved during the evolution, but the momentum balance includes a diffusion (viscosity)
or damping (relaxation) term, or, in numerical simulations, of conservation laws by relaxation
schemes. In this paper we consider systems of the form

∂tu+
d∑

α=1

∂αL
α(u) = Div (B(u)∇u)

def
=

d∑
α,β=1

∂α(B
αβ(u)∂βu), (1)

in which u : (0, T )×Rd −→ U is the unknown. The phase space U is an open convex subset of
Rn. The nonlinearities are encoded in the smooth functions

Lα : U −→ Mn×d, Bαβ : U −→ Mn.

Among the systems having the form (1) are the Navier-Stokes-Fourier equations, magneto-
hydrodynamics equations and electromagnetism equations [15, chap. 6], supercritical fluid mod-
els with chemical reactions [12], Baer-Nunziato system [5], etc. In each case, diffusion (e.g.
thermal conduction or viscosity) acts on some components of the unknown, while other com-
ponents remain unaffected. The Navier-Stokes-Fourier equations will be addressed at the end
of the paper.

It is well known since the works of A. Majda in [18] and D. Serre in [19] (see also [3, chapter
10]) that general systems of conservation laws (that is (1) with B(u) = 0 for all u ∈ U) which are
Friedrichs-symmetrizable supplemented with smooth decaying data admit local-in-time strong
solutions. These solutions may develop singularities (shock waves) in finite time even if the
initial data are small perturbations of a constant solution.
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An important issue is to find as weak as possible conditions ensuring the existence of local
or global solutions, to describe their long time behavior and, where applicable, to study the
convergence to some limit system.

In his PhD thesis [15] (that is recognized to be the seminal work on symmetric hyperbolic
partially diffusive systems) Kawashima proved the local existence for general data belonging
to Hs(Rd) with s > d/2 + 2 and exhibited a sufficient condition for global well-posedness in
the case of small data belonging to Hs(Rd) with s > d/2 + 3. This condition is now known as
the Kawashima-Shizuta condition. It will be discussed in a companion paper, the present work
being dedicated to the local well-posedness theory for, possibly, large data.

A bit later, Serre in [21] justified the requirements made by Kawashima in his thesis, using
only natural assumptions : entropy-dissipative (see Definition 1.2 below) and the constancy of
the range of the symbol B(ξ;u), see assumption A below. Moreover, in [20], the same author
provided the normal form for (1) close to that used by S. Kawashima and Y. Shizuta [16] which
allowed him to enlarge the class of admissible initial data to Hs(Rd) with s > 1 + d/2 (instead
of 2 + d/2 in Kawashima’s PhD thesis [15]), a result which in turn will be improved in the
present paper.

The notion of entropy is not new. In fact Godunov [13], Friedrichs and Lax [11] introduced
the entropy for hyperbolic conservation laws, that is, (1) with B = 0. As regards the concept
of entropy dissipation, we refer to [22], [17], [4] and the references therein.

The normal form is the rewriting of (1) as a so-called symmetric hyperbolic (partially)
diffusive system in which one component of the solution may be regarded as solution of a
hyperbolic equation with source term, while the second component satisfies a parabolic equation
and is thus likely to be smoothed out instantaneously. As an example, we shall consider
the Navier-Stokes-Fourier system, where the density satisfies a transport equation while the
equations satisfied by the velocity and the temperature are parabolic (see section 4).

The question now is whether we can reduce the regularity of the component that experiences
the diffusion. In fact, since the work of R. Danchin [7, 9, 10] concerning the local and global
well-posedness for the Navier-Stokes-Fourier system, it is known that the degree of regularity
of the initial density is higher than that of the initial velocity, which, in turn, is higher than
that of the initial temperature.

The present paper aims at investigating this well-posedness issue for a class of general
hyperbolic-parabolic systems.

1.1 Reformulation of the system

In this section, we specify the structure of viscous systems of conservation laws that are entropy-
dissipative, in spirit of the work of D. Serre in [21].

First, we assume that the first-order system of conservation laws ((1) with B = 0) admits
a strong convex entropy η of flux q. More precisely, we assume that there exists a pair (η, q)
defined on U such that if u satisfies

∂tu+DivL(u) = 0

then

∂tη(u) + divq(u) = 0.

Here, strong convexity means that D2η(u) is positive definite for every state u ∈ U. In order
to pursue our reformulation, we need the following two definitions.
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Definition 1.1. We say that (1) is strongly entropy-dissipative if it formally implies the fol-
lowing inequality for all u ∈ U, X1, · · · , Xd ∈ Rn:

d∑
α,β=1

D2η(u)

(
Xα, B

αβ(u)Xβ

)
≥ ω(u)

d∑
α=1

∣∣∣∣∣
d∑

β=1

Bαβ(u)Xβ

∣∣∣∣∣
2

,

where ω(u) is strictly positive and continuous and D2η(u)(·, ·) denotes the inner product related
to D2η(u).

Let us define the partial and total symbol as follows: for all ξ ∈ Rd, u ∈ U

Bα(ξ, u)
def
=

d∑
β=1

Bαβ(u)ξβ and B(ξ, u)
def
=

d∑
α,β=1

ξαξβB
αβ(u). (2)

Definition 1.2. We say that (1) is entropy-dissipative if for all ξ ∈ Rd, u ∈ U and X ∈ Rn,

D2η(u) (X,B(ξ, u)X) ≥ ω(u)
d∑

α=1

|Bα(ξ, u)X|2

where ω(u) is strictly positive and continuous.

Obviously Definition 1.1 implies Definition 1.2.
The last ingredient that we need to introduce the normal form of the viscous systems of

conservation laws that are entropy-dissipative is the following.

Assumption A: The range of the total symbol B(ξ, u) depends on neither ξ ∈ Rd\{0} nor
the state u ∈ U. More precisely, the rank of the symbol B(ξ, u) is precisely n − n1, for some
0 ≤ n1 ≤ n. In other words, the range of B(ξ, u) is isomorphic to {0} × Rn−n1 .

Without loss of generality we may always assume that the n1 first rows of B(ξ, u) are null,
up to a linear change of coordinates, so that the system contains n1 conservation laws. A typical
illustration is the conservation of mass in gas dynamics.

The following result helps us in our endeavour of constructing the normal form for (1) (see
[21] for the proof).

Theorem 1.1 ([20] Theorem 1.1). Assume that the system (1) is entropy dissipative in the
sense of Definition 1.2, that the total symbol satisfies Assumption A and that the n1 first rows
are first-order conservation laws, i.e

∂tui + div (Li(u)) = 0 for all i = 1, · · · , n1.

Let the dual variables zn1+1, · · · , zn be defined by

zj =
∂η

∂uj

·

Then the map

u =

(
v
w

)
⇆ U :=

(
v
z

)
,

is a global diffeomorphism from U onto its image U , where v = (u, · · · , un1)
T . The viscous

flux b(u)∇xu can be written as Z(U)∇xz. The tensor Z is uniquely defined and the operator
Z(U)∇x is strongly elliptic:

d∑
α,β=1

∑
i,j≥p+1

ξαλiξβλjZ
αβ
ij (U) ≥ c1(U)|ξ|2|λ|2, ∀ξ ∈ Rd, λ ∈ Rn−p, (3)
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for some positive continuous function c1(U). Furthermore, if the system (1) is strongly entropy
dissipative, then the tensor Z satisfies:

⟨Z(U)F, F ⟩ def
=

d∑
α,β=1

∑
j≥p+1

FiαFjβZ
αβ
ij (U) ≥ c0(U)∥Z(U)F∥2, ∀ F ∈ M(n−p)×d(R), (4)

for some positive continuous function c0(U).

1.2 Normal form

We are in position to give the normal form of (1). With the new variables, the system (1)
becomes

∂tU +
∑
α

Aα(U)∂αU =

(
0

D2
wwη

∑
α,β ∂α(Z(U)αβ∂βz)

)
(5)

where Aα(U) = (dU)dLα(dU)−1 and Zαβ(U) = Bαβ(u)(dU)−1.
The system (5) can be symmetrized by the diagonal by block, symmetric, positive definite
matrix

S0(U) =

(
D2

vvη −D2
vwη(D

2
wwη)

−1D2
wv 0

0 (D2
ww)

−1

)
· (6)

More precisely, setting Sα(U)
def
= S0(U)Aα(U), the system (5) is equivalent to

S0(U)∂tU +
∑
α

Sα(U)∂αU =
∑
α,β

∂α(Y
αβ(U)∂βU). (7)

In the sequel, we shall consider the following general system

S0(U)∂tU +
∑
α

Sα(U)∂αU =
∑
α,β

∂α(Y
αβ(U)∂βU) + f(U,∇U), (8)

where f and the coefficients of the system (8) satisfy

Assumptions B:

1. The matrix S0(U) is symmetric, positive definite for every U ∈ U , and has the form

S0(U) =

(
S0
11(U) 0
0 S0

22(U)

)
with S0

11(U) ∈ Mn1(R) and S0
22(U) ∈ Mn−n1(R).

2. The matrices Sα(U) are symmetric, for every U ∈ U and α = 1, · · · , d.

3. For every U ∈ U and α, β = 1, · · · d, the matrices Y αβ(U) have the following form

Y αβ(U) =

(
0n1 0
0 Zαβ(U)

)
with Zαβ(U) ∈ Mn−n1(R). (9)

Moreover inequality (4) holds.

4. There exists some U ∈ U such that f satisfies f(U, ·) = 0 and may be written

f(U,∇U)
def
=

(
f 1(U,∇U)
f 2(U,∇U)

)
def
=

(
f 1(U)

f 21(U) + f 22(U,∇U1) + f 23(U,∇U2)

)
(10)

where f 1, f 21 and f 22 are some smooth functions satisfying f 1(U) = 0, f 21(U) = 0,
f 22(U, 0) = f 23(U, 0) = 0. The function f 23 is quadratic in terms of ∇U (i.e. f 23 is a
finite combination of terms of type υ(U)∇U

⊗
∇U , where υ is a smooth function).
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Remark 1.1. The assumptions that have to be made on f depend on the regularity framework.
For instance in [15], since the solution is more regular, there no structural restriction on f .
Our result (Theorems 1.2 ) is still valid if we allow f 2 to satisfy: f 2 = f 2(U,∇U) is at most
quadratic in ∇V 2, meaning that the third derivative with respect to ∇V 2 is zero.

Let us set V
def
= U − U . Then V is solution of

S0(U)∂tV +
∑
α

Sα(U)∂αV =
∑
α,β

∂α(Y
αβ(U)∂βV ) + f(U,∇U) (11)

which can be rewritten as follows:
S0
11(U)∂tV

1 +
d∑

α=1

(
Sα
11(U)∂αV

1+Sα
12(U)∂αV

2
)
= f 1(U,∇U)

S0
22(U)∂tV

2 +
d∑

α=1

(
Sα
21(U)∂αV

1+Sα
22(U)∂αV

2
)
= f 2(U,∇U) +

d∑
α,β=1

∂α(Z
αβ(U)∂βV

2)

(12)

with

S0(U) =

(
S0
11(U) 0
0 S0

22(U)

)
and Sα(U) =

(
Sα
11(U) Sα

12(U)
Sα
21(U) Sα

22(U)

)
· (13)

The previous system can be regarded as a coupled system of a symmetric hyperbolic system
for V 1 and a parabolic system for V 2. Hence, for the initial value problem, the existence and
the uniqueness of solutions local in time will be proved, based on this observation. This implies
that, if the system (1) is entropy-dissipative and satisfies the assumption A, then it can be
written in the normal form, and thus, the initial value problem for (1) is well posed.

Remark 1.2. Contrary to the thesis [15] of S. Kawashima, we didn’t make the assumption that
the matrices S0 and the dissipation tensor in (11) are block-diagonal. It comes naturally from
assumption A and the fact that the entropy η is dissipative.

Furthermore, in [16] Kawashima and Shizuta proved that the symmetrizability of the system
(1) can be characterized by the existence of an entropy function for (1). In addition, under a
technical assumption (condition N in [16]) the authors obtained a normal form for (1) which
is slightly different than what we obtained in (8). In fact, the difference lies on the fact that
the component U1 remains unchanged when passing from (1) to (8). It is worth noting that D.
Serre in [21] proved that condition N in [16] is equivalent to the assumption A. Let us underline
that the notion of entropy for (1) (first introduced in [15] ) used in [16] is completely different
than what we defined in this paper.

As we will see below, unlike in [15] we don’t need that the symbol B(ξ, u) is symmetric.
Some local-in-time existence results will be achieved without this hypothesis.

1.3 Main results

The proofs of most of the results presented in this paper require a dyadic decomposition of
Fourier variables, the so-called Littlewood-Paley decomposition that we recall in Appendix B,
together with the definition of some functional spaces, such as Besov spaces. The reader is
referred to [2] for more details.

According to System (12), it turns out that V 1 verifies a hyperbolic system while V 2 satisfies
a parabolic system. One of the goals of this paper is to prove local in time existence of (12),
based on the features of parabolic and hyperbolic systems. For that purpose, the hypothesis B
on the matrices Sα(U), (for α = 1, · · · , d and U ∈ U) can be weakened.

What we need is just the following:
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Assumptions BB: Assume that for all α, β = 1 · · · , d and U ∈ U ,

1. The matrix S0(U) is symmetric, positive definite for every U ∈ U , and is block diagonal,

2. The matrices Sα
11(U) are symmetric,

3. the matrices Y αβ(U) have the form (9) and inequality (4) holds true.

4. f has the form (10) .

Note that Condition BB is weaker than B since only the submatrix Sα
11 is required to be

symmetric, not the whole matrix Sα.

Before stating our first local existence result, let us motivate our functional framework. Since
our general approach is based on energy estimates, we shall consider Besov spaces Bs

p,r built on
L2, that is p = 2. Furthermore, we shall restrict ourselves to the case r = 1 since spaces of type
Bs

2,1 satisfy better properties than Sobolev spaces H2 = Bs
2,2 regarding embedding and parabolic

maximal regularity. Typically, for the free heat equation, one can gain two full derivatives
with respect to the regularity of the initial data after performing L1-in-time integration (see
Proposition 6), which is false for Sobolev spaces. Other good reasons for that choice will
be explained throughout. In order to get L∞(0, T ;Rd) control on the functions S0, Sα, Y αβ

appearing in (11), it is suitable to work in spaces which will allow us to get L∞(0, T ;Rd) control
of the unknown V . In the nonhomogeneous Besov spaces setting, this leads us to assume that
the initial data V0 belongs to Bθ

2,1 with θ ≥ d
2
. In order to guess what is the relevant solution

space, we just use the fact that V 1 is governed by a hyperbolic equation and that V 2 may be
seen as the solution to a parabolic equation with a source term. Then, starting from V 2

0 ∈ Bθ
2,1

(with θ ≥ d
2
) we expect for small time T , that V 2 ∈ C(0, T ;Bθ

2,1) ∩ L1(0, T ;Bθ+2
2,1 ), provided

one can control the source term in L1(0, T ;Bθ
2,1), in particular Sα

21(U)∂αV
1. Hence, based on

product laws, we will need that ∇V 1 ∈ L1(0, T ;Bθ
2,1). Due to the fact that V 1 is solution of

a hyperbolic equation which ensures the conservation of the initial regularity but no gain of
regularity, we thus have to assume, in addition, that V 1

0 ∈ Bθ+1
2,1 .

This motivates our first result, that can be stated as follows:

Theorem 1.2. Let d ≥ 1 and s ≥ d
2

Suppose that the partially diffusive hyperbolic system
(11)(or equivalently (12)) satisfies assumption BB. If the initial data satisfies (V 1

0 , V
2
0 ) ∈ Bs+1

2,1 ×
Bs

2,1 and U0 := V0 + U takes values in a bounded open subset O0 of U such that O0 ⊂ U , then
there exists a time T1 > 0 depending only on the data and such that the following results hold
true:

Existence: System (11) supplemented with the initial data V0 has a unique solution V =
(V 1, V 2) in the class ET1 defined by

V 1 ∈ C([0, T1];B
s+1
2,1 ) and V 2 ∈ C([0, T1];B

s
2,1) ∩ L1

T1
(Bs+2

2,1 ).

Moreover, U := V + U belongs to a d1−neighborhood of O0 with d1 < dist(O0, ∂U).

Continuation criterion: If there exists T2 > T1 such that V is defined on [0, T2[×Rd and
belongs to ET for all T < T2, and satisfies

1. U belongs to an open bounded set Ω , with Ω ∈ U ,

2.
∫ T2

0

(∥∥(∇V,∇2V 2)
∥∥
L∞ + ∥∇V ∥2L∞

)
< ∞,

3. ∥∇V 1∥L∞([0,T2[×Rd) < ∞,
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then, there exists some T ∗ > T2 such that (V 1, V 2) may be continued on [0, T ∗]×Rd to a
solution of (11) which belongs to ET ∗.

Moreover, if the source term f 22(U,∇V 1) is quadratic in ∇V 1, then Condition 3 is not
needed.

Remark 1.3. Compared to the result of D. Serre in [20] and of that of Kawashima in [16],
we here use different (and smaller) regularity indices for V 1 and V 2. For instance, in the case
d ≥ 2, one may take data in B

d
2
+1

2,1 × B
d
2
2,1 instead of Hs for s > d

2
+ 1 in Serre’s work and

s > 2+ d
2

in Kawashima’s work. Due to the embedding Hs ↪→ B
d
2
+1

2,1 ↪→ B
d
2
2,1, for s > d

2
+1, our

regularity assumption is less than what D. Serre needed in [20]. In particular the component
V 2
0 can be taken in any space Hs with s > d

2
. Finally, we recall that assumption BB does not

require the symmetry of matrices Zαβ.

Remark 1.4. If s > 1 + d
2
, we have ∂tV

1 ∈ C([0, T1];B
s−1
2,1 ) while if s > 2 + d

2
, we get

∂tV
2 ∈ C([0, T1];B

s−2
2,1 ). Moreover as soon as s ≥ 1 + d

2
the Theorem 1.2 is still valid if we

consider data (V 1
0 , V

2
0 ) in Bs

2,1. We get then a unique solution (V 1, V 2) in the class

V 1 ∈ C([0, T1];B
s
2,1), V 2 ∈ C([0, T1];B

s
2,1) ∩ L1

T1
(Bs+2

2,1 ) and ∂tV ∈ L1
T1
(Bs

2,1) ∩ L2
T1
(Bs−1

2,1 ).

Remark 1.5. Thanks to the explosion criterion, the lifetime is independent of s. We mean
that if (V 1, V 2) is solution of (11) in C([0, T ], B

d
2
+1

2,1 ×B
d
2
2,1) with data (V 1

0 , V
2
0 ) ∈ Bs+1

2,1 ×Bs
2,1,

for some s ≥ d
2
, then (V 1, V 2) ∈ C([0, T ], Bs′+1

2,1 ×Bs′
2,1), for all d

2
≤ s′ ≤ s.

One may wonder whether the above statements extend to the so-called critical regularity
setting as in the Navier-Stokes case. In fact, since the work of R. Danchin in [10], it is known
that the barotropic compressible Navier-Stokes equations have a unique solution in the critical
setting (which, here, amounts to assuming that the initial density and velocity respectively
belong to B

d
2
2,1 and B

d
2
−1

2,1 , see [10, 9]).
Our second local existence result consists in solving (11) in the critical regularity framework.

For expository purpose, we here choose to work in the homogeneous framework. However, we
have the same result in the nonhomogeneous framework.

To achieve the critical regularity framework, the following more restrictive structure condi-
tions are needed:

Assumption C. For all α, β = 1, · · · , d and U ∈ U , we have

(i) S0
22 is real symmetric positive definite and depends only on U1,

(ii) the functions Sα
21, Sα

22 are at most linear with respect to1 U2,

(iii) the functions (S0
11)

−1Sα
12 depend only on U1 while (S0

11)
−1Sα

11 are symmetric, depend only
on U2 and are at most linear (i.e. DU1(S0

11)
−1Sα

11 = 0 and D2
U2U2(S0

11)
−1Sα

11 = 0),

(iv) the functions Zαβ depend only on U1.

(v) f 1 and f 2 are functions of U only and satisfy f 1(U) = 0 and f 2(U) = 0.
1We say that a function k : (u, v) 7→ k(u, v) is at most linear with respect to the variable v if D2

vvk = 0. In
other words if k is a smooth function, there exist two functions k1, k2 such that

k(u, v) = k1(u)v + k2(u). (14)
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Of course, according to Theorem 1.2, system (11) under the assumption C, supplemented
with smooth initial data has a unique smooth solution. Our goal here is to obtain the same
local result but with less regularity on the initial data.

Before stating our result let us introduce the following notation.

U1 = {U1 ∈ Rp/∃U2 ∈ Rn−p; U = (U1, U2) ∈ U}. (15)

Theorem 1.3. Let the structure assumptions C be in force and let O1
0 be a bounded open

subset such that O1
0 ⊂ U1. Let U0 ∈ U be an initial data such that U1 ∈ O1

0, V 1
0 ∈ Ḃ

d
2
2,1 and

V 2
0 ∈ Ḃ

d
2
−1

2,1 with V0 = U0−U . Then, there exists a positive time T such that System (11) has a
unique solution V with U = V + U and U1 ∈ O1, where O1 is a d1−neighbourhood of O1

0 with
d1 < dist(O1

0, ∂U1). Moreover V belongs to the class

V 1 ∈ C([0, T ]; Ḃ
d
2
2,1), V 2 ∈ C([0, T ]; Ḃ

d
2
−1

2,1 ) ∩ L1
T (Ḃ

d
2
+1

2,1 ) and ∂tV ∈ L1
T (Ḃ

d
2
−1

2,1 ).

The rest of this paper unfolds as follows. In Sect. 2, we establish the local existence and
continuation criterion for the system (11). Sect. 3 is devoted to the proof of our second local
well-posedness result (Theorem 1.3). In appendix A, we set out some key results that will be
of constant use in this article: maximal regularity of the linear parabolic equation, Gårding
inequality, etc. In the last section (Sect. B), we briefly review some useful properties of Besov
spaces.

Throughout this paper, (cj)j∈Z stands for a positive sequence that verifies ∥(cj)∥l1(Z) = 1.
Also, C designates a generic harmless constant, the value of which depends on the context.

2 Proof of Theorem 1.2
In this section, we prove the local existence of solutions to the symmetric partially diffusive
system (11) subject to the following initial data

V|t=0 = V0
def
= U0 − U, (16)

in the general case where assumption BB is satisfied.
The proof of the local existence result will be based on an iterative scheme which consists in

solving separately a (linear) hyperbolic equation and a (linear) fully parabolic equation. The
two equations are coupled through lower order terms that will be ‘appropriate right-hand sides’.
Taking advantage of product laws, composition properties (see Appendix) and the fact that
s > d

2
if d = 1 and s ≥ d

2
if d ≥ 2, it is easy to bound the sequence in the expected solution space

on some fixed time interval [0, T ] with T > 0. However, because the whole system is not fully
parabolic, the strong convergence of the sequence is shown for a weaker norm corresponding to
a loss of one derivative. The same restriction occurs as regards the uniqueness issue.

2.1 Existence for a suitable hyperbolic-parabolic linear system

Here we prove the local existence of solutions for a suitable linear system related to (11). We
actually only keep the main order terms (the antisymmetric ones of order one for the first
equation, and the second order ones for the second equation), and assume that the variable
coefficients are ‘given’. More precisely, let QT

def
= [0, T ]× Rd (T is a positive constant). For U

in U and U = U + V with range in U and Θ1,Θ2, some given functions on QT , we consider the
following system:  S0

11(U)∂tṼ
1 +

∑d
α=1 S

α
11(U)∂αṼ

1 = Θ1

S0
22(U)∂tṼ

2 −
∑d

α,β=1 ∂α(Z
αβ(U)∂βṼ

2) = Θ2

(17)

8



supplemented with initial data Ṽ0.

For the existence of solutions with high Sobolev regularity for the above linear system, the
reader is referred to [15], [20] or [1].

We assume that for some s > −d
2

and σ > −d
2
, we have

V 1 ∈ L̃∞(0, T ;Bσ
2,1) and ∂tV

1 ∈ L1(0, T ;Bσ−1
2,1 ) ∩ L̃2(0, T ;Bσ−2

2,1 ), (18)

V 2 ∈ L̃∞(0, T ;Bs
2,1) ∩ L1(0, T ;Bs+2

2,1 ) and ∂tV
2 ∈ L1(0, T ;Bs

2,1) ∩ L̃2(0, T ;Bs−1
2,1 ), (19)

Θ1 ∈ L1(0, T ;Bσ
2,1) and Θ2 ∈ L1(0, T ;Bs

2,1). (20)

Assume also that, there exists O a bounded open set in Rd satisfying O ⊂ U such that:

U(t, x) ∈ O for all t ∈ [0, T ], x ∈ Rd. (21)

So, from (21), we have on the one hand: for any continuous function S : Rn 7→ R, one can
find a constant C = C(O, S), such that

∥S(U)∥L∞(0,T ;Rd) ≤ C, (22)

and on the other hand, as the matrix S0(U) is symmetric positive definite for all U ∈ O,

C−1In ≤ S0(U) ≤ CIn. (23)

For θ > −d
2
, we set

θ∗∗
def
=


d
2

if θ ≤ 1 + d
2

θ − 1 if θ > 1 + d
2

and θ∗ =

{
d
2

if θ < d
2

θ if θ ≥ d
2
.

(24)

We first concentrate on the first equation of (17)1.

Lemma 1 (Energy estimates for linearized hyperbolic equations). Let us assume that S0
11 and

Sα
11 (for α = 1, · · · , d) satisfy assumption BB. Suppose that V 1 satisfies (18) with σ > −d/2

and that U verifies (21). Assume also that Θ1 verifies (20).
Then, there exists a constant C = C(O) such that for all t ∈ [0, T ], the following inequality

holds

∥Ṽ 1∥L̃∞
t (Bσ

2,1)
≤ eΦ1(t)

(∥∥∥Ṽ 1
0

∥∥∥
Bσ

2,1

+

∫ T

0

e−Φ1(τ) ∥Θ1(τ)∥Bσ
2,1

dτ

)
, (25)

where Φ1(t)
def
= C

∫ t

0

(
∥(∂tV,∇V )∥L∞ + ∥∇V ∥Bσ∗∗+1

2,1

)
.

Proof. Applying the non-homogeneous dyadic block ∆j to the first equation of (17)1 yields,

S0
11(U)∂tṼ

1
j +

d∑
α=1

Sα
11(U)∂αṼ

1
j = R11

j +Θ1,j,

where we define

Ṽj
def
= ∆jṼ , R11

j
def
= S0

11(U)
d∑

α=1

[((S0
11(U))−1)Sα

11(U),∆j](∂αṼ
1),

9



and

Θ1,j
def
= S0

11(U)
d∑

α=1

∆j

(
(S0

11(U))−1Θ1

)
.

Next, taking the scalar product in Rn1 of this equation with V 1
j , integrating over the physical

space along with integration by parts and using the symmetry properties of Sα
11(U) gives:

1

2

d

dt

∫
Rd

S0
11(U)Ṽ 1

j · Ṽ 1
j =

1

2

∫
Rd

(
∂t(S

0
11(U)) + ∂α(S

α
11(U))

)
Ṽ 1
j · Ṽ 1

j +

∫
Rd

(R11
j +Θ1,j) · Ṽ 1

j .

Cauchy-Schwarz inequality, inequalities (22) and (23) lead for some C = C(O),to

1

2

d

dt

∫
Rd

S0
11(U)Ṽ 1

j · Ṽ 1
j ≤ C ∥(∂tV,∇V )∥L∞

∫
Rd

S0
11(U)Ṽ 1

j · Ṽ 1
j

+
∥∥(R11

j ,Θ1,j)
∥∥
L2

√∫
Rd

S0
11(U)Ṽ 1

j · Ṽ 1
j ·

Then, using Lemma 5 with X =

∫
Rd

S0
11(U)Ṽ 1

j · Ṽ 1
j and (23) again, one has

∥Ṽ 1
j ∥L∞

T (L2) ≤
∥∥∥Ṽ 1

0,j

∥∥∥
L2

+ C

∫ T

0

∥(∂tV,∇V )∥L∞

∥∥∥Ṽ 1
j

∥∥∥
L2

+ ∥(R11
j ,Θ1,j)∥L1

T (L2) (26)

whereafter we use the notations:
Ṽ 1
0,j

def
= ∆jṼ

1
0 .

Let us now bound the terms R11
j in L1

T (L
2). Using inequality (184) and Proposition 9, we

obtain if σ ≥ d
2
+ 1,∥∥R11

j

∥∥
L2 ≤ Ccj2

−jσ
∥∥∇ ((S0

11(U))−1Sα
11(U)− (S0

1(U))1Sα
11(U)

)∥∥
L∞

∥∥∥Ṽ 1
∥∥∥
Bσ

2,1

+ Ccj2
−jσ
∥∥∥∇Ṽ 1

∥∥∥
L∞

∥∥∇ ((S0
11(U))−1Sα

11(U)− (S0
1(U))1Sα

11(U)
)∥∥

Bσ−1
2,1

· (27)

Taking advantage of the embedding Bσ−1
2,1 ↪→ L∞, the previous inequality may be simplified as

follows for all σ ≥ d
2
+ 1 for some C = C(O):∥∥R11

j

∥∥
L2 ≤ Ccj2

−jσ(∥∇V ∥L∞ + ∥V ∥Bσ
2,1
)
∥∥∥Ṽ 1

∥∥∥
Bσ

2,1

. (28)

On the other side, combining (186), Proposition 10 and the embedding B
d
2
2,1 ↪→ L∞ ∩B

d
2
2,∞ , we

have for all −d
2
< σ ≤ d

2
+ 1,∥∥R11

j

∥∥
L2 ≤ Ccj2

−jσ ∥V ∥
B

d
2+1

2,1

∥∥∥Ṽ 1
∥∥∥
Bσ

2,1

, (29)

where the constant C depends on O. Putting (28) (or (29) ), into (26) gives us,

2jσ∥Ṽ 1
j ∥L∞

T (L2(Rd)) ≤ 2jσ
∥∥V 1

0,j

∥∥
L2 + C2jσ

∫ T

0

∥Ṽ 1
j ∥(L2(Rd) ∥(∂tV,∇V )∥L∞

+ Ccj

∫ T

0

∥V ∥Bσ∗∗+1
2,1

∥∥∥Ṽ 1
∥∥∥
Bσ

2,1

+ C2jσ
∫ T

0

∥Θ1,j∥L2(Rd),

with σ∗∗ defined in (24). Then, summing over j ≥ −1 and using Gronwall inequality gives us
Inequality (25) .
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Let us turn to the parabolic equation (17)2.
Lemma 2 (Energy estimates for linearized parabolic equations). Let us assume that S0

22 and
Zαβ (for α, β = 1, · · · , d) satisfy assumption BB and that Θ2 verifies (20). Suppose also that
V 2 satisfies (19) with s > −d/2 and that U verifies (21).
Then, there exist two constants c, C = C(O) such that for all t ∈ [0, T ], the following inequality
holds

∥Ṽ 2∥L̃∞
t (Bs

2,1)
+

c

2
∥Ṽ 2∥L1

t (B
s+2
2,1 ) ≤ eΦ2(t)

(∥∥∥Ṽ 2
0

∥∥∥
Bs

2,1

+

∫ t

0

e−Φ2(τ) ∥Θ2(τ)∥Bs
2,1

)
, (30)

where

Φ2(t)
def
= C

∫ t

0

(
1 + ∥∂tV ∥L∞ + (1 + ∥V ∥Bs∗

2,1
)2
(
∥V 1∥2

Bs∗
2,1∩Bs∗∗

2,1

+
∥∥V 2

∥∥
Bs∗

2,1

∥∥V 2
∥∥
Bs∗+2

2,1
+
∥∥V 2

∥∥
Bs∗∗

2,1

∥∥V 2
∥∥
Bs∗∗+2

2,1

))
·

Proof. Applying ∆j to the second equation of (17) gives

S0
22(U)∂tṼ

2
j −

d∑
α,β=1

∂α(Z
αβ(U)∂βṼ

2
j ) = Θ2,j +R2

j ,

where we denote:

Θ2,j
def
= S0

22(U)∆j((S
0
22)

−1(U)Θ2), Ṽ 2
j = ∆jṼ

2,

R2
j

def
= S0

22(U)

(
d∑

α,β=1

[
∆j, (S

0
22)

−1(U)Zαβ
]
(∂α∂βṼ

2)

)

+ S0
22(U)

d∑
α,β=1

∆j

(
(S0

22)
−1(U)∂α(Z

αβ(U))∂βṼ
2
)
·

Taking the L2(Rd) inner product of the above equation with Ṽ 2
j , we easily get, for j ≥ −1

1

2

d

dt

∫
Rd

S0
22(U)Ṽ 2

j · Ṽ 2
j −

d∑
α,β=1

∫
Rd

Zαβ(U)∂α∂βṼ
2
j · Ṽ 2

j =
1

2

∫
Rd

(∂t(S
0
22(U)))Ṽ 2

j · Ṽ 2
j

+

∫
Rd

(R2
j +Θ2,j) · Ṽ 2

j . (31)

Note that, under the condition (3) we have by making use of Lemma 6, for any j ≥ 0,

−
d∑

α,β=1

∫
Rd

Zαβ(U)∂α∂βṼ
2
j · Ṽ 2

j ≥ c
∥∥∥∇Ṽ 2

j

∥∥∥2
L2

− εc

∥∥∥∇2Ṽ 2
j

∥∥∥
L2

∥∥∥Ṽ 2
j

∥∥∥
L2

− C(εc,O)∥Ṽ 2
j ∥2L2(Rd)

where c is positive constant depending on O and εc > 0 may be chosen as small as we want.
Owing to Bernstein inequality and choosing εc small enough, we deduce on the one hand

−
d∑

α,β=1

∫
Rd

Zαβ(U)∂α∂βṼ
2
j · Ṽ 2

j ≥ 22j
c

2
∥Ṽ 2

j ∥2L2(R) − C∥Ṽ 2
j ∥2L2(Rd), for all j ≥ 0. (32)

On the other hand, Bernstein inequality ensures that
d∑

α,β=1

∫
Rd

Zαβ(U)∂α∂βṼ
2
−1 · Ṽ 2

−1 ≤ C
∥∥∥∇2Ṽ 2

−1

∥∥∥
L2

∥∥∥Ṽ 2
−1

∥∥∥
L2

≤ C
∥∥∥Ṽ 2

−1

∥∥∥2
L2

, (33)

with C > 0 depending on Z.
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Then, from (22) (23) and using (32), (33), inequality (31) becomes for all j ≥ −1:

d

dt

∫
Rd

S0
22(U)Ṽ 2

j · Ṽ 2
j + c22jS0

22(U)Ṽ 2
j · Ṽ 2

j ≤ C(1 + ∥∂tV ∥L∞)

∫
Rd

S0
22(U)Ṽ 2

j · Ṽ 2
j

+ C
∥∥(R2

j ,Θ2,j)
∥∥
L2

√∫
Rd

S0
22(U)Ṽ 2

j · Ṽ 2
j .

So taking X =
∫
S0
22(U)Ṽ 2

j · Ṽ 2
j in Lemma 5 and using again (23), one has for all t ∈ [0, T ]

and j ≥ −1,

2js
∥∥∥Ṽ 2

j (t)
∥∥∥
L2

+ 2(s+2)jc

∫ t

0

∥∥∥Ṽ 2
j

∥∥∥
L2

≤
∥∥∥Ṽ 2

0,j

∥∥∥
L2

+ C2js∥Ṽ 2
j ∥L∞

t (L2(Rd))

∫ t

0

(1 + ∥∂tV ∥L∞)

+ 2js
∫ t

0

∥∥(R2
j ,Θ2,j)

∥∥
L2 , (34)

where we used the notation Ṽ 2
0,j

def
= ∆jṼ

2
0 . Owing to (22), we have for some C = C(O),

∥∥R2
j

∥∥
L1
T (L2(Rd))

≤ C

d∑
α,β=1

∥∥∥[∆j, (S
0
22)

−1(U)Zαβ
]
(∂α∂βṼ

2)
∥∥∥
L1
T (L2(Rd))

+ C
d∑

α,β=1

∥∥∥∆j(S
0
22)

−1(U)∂α(Z
αβ(U))∂βṼ

2
∥∥∥
L1
T (L2(Rd))

.

According to Proposition 9 we know that for all θ > −d
2

(see (24) for the definition of θ∗)

∥ab∥Bθ
2,1

≤ C ∥a∥Bθ∗
2,1

∥b∥Bθ
2,1

. (35)

Taking θ = s > −d
2

and combining with Proposition 10, non homogeneous Besov embeddings
give us: for all α, β∥∥∥(S0

22(U))−1∂α(Z
αβ(U))∂βṼ

2
∥∥∥
L1
T (Bs

2,1)
≤ C(1 + ∥V ∥Bs∗

2,1
)

∫ T

0

∥V ∥Bs∗+1
2,1

∥∥∥Ṽ 2
∥∥∥
Bs+1

2,1

.

Next, with the aid of inequality (184) and Proposition 10 one obtains: for s ≥ d
2
+ 1

∑
j≥−1

d∑
α,β=1

2js∥
[
∆j, (S

0
22)

−1(U)Zαβ(U)
]
∂α∂βṼ

2∥L1
T (L2) ≤ C

∫ T

0

(
∥∇V ∥L∞

∥∥∥∇Ṽ 2
∥∥∥
Bs

2,1

+
∥∥∥∇2Ṽ 2

∥∥∥
L∞

∥V ∥Bs
2,1

)
· (36)

The previous inequality may be simplified by using Besov embedding. We have∑
j≥−1

d∑
α,β=1

2js∥
[
∆j, (S

0
22)

−1(U)Zαβ(U)
]
∂α∂βṼ

2∥L1
T (L2) ≤ C

∫ T

0

∥∇V ∥Bs−1
2,1

∥∥∥∇Ṽ 2
∥∥∥
Bs

2,1

. (37)

On the other side, for −d
2
< s ≤ d

2
+ 1, the inequality (186) combined with the embedding

B
d
2
2,1 ↪→ L∞ ∩B

d
2
2,∞ provides, for some C = C(O),

∑
j≥−1

d∑
α,β=1

2js∥
[
∆j, (S

0
22)

−1(U)Zαβ(U)
]
∂α∂βṼ

2∥L1
T (L2) ≤ C

∫ T

0

∥V ∥
B

d
2+1

2,1

∥∥∥∇Ṽ 2
∥∥∥
Bs

2,1

. (38)
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Putting all this information into (34), summing the obtained inequality over j ≥ −1 implies:

∥∥∥Ṽ 2
∥∥∥
L̃∞
T (Bs

2,1)
+ c
∥∥∥Ṽ 2

∥∥∥
L1
T (Bs+2

2,1 )
≤
∥∥∥Ṽ 2

0

∥∥∥
Bs

2,1

+ C

∫ T

0

(1 + ∥∂tV ∥L∞)
∥∥∥Ṽ 2

∥∥∥
Bs

2,1

+ C

∫ T

0

(1 + ∥V ∥Bs∗
2,1
) ∥V ∥Bs∗+1

2,1

∥∥∥Ṽ 2
∥∥∥
Bs+1

2,1

+ C

∫ T

0

∥V ∥Bs∗∗+1
2,1

∥∥∥Ṽ 2
∥∥∥
Bs+1

2,1

+

∫ T

0

∥Θ2∥Bs
2,1

. (39)

Using interpolation inequality combined with Young’s inequality yields

(1+∥V ∥Bs∗
2,1
) ∥V ∥Bs∗+1

2,1

∥∥∥Ṽ 2
∥∥∥
Bs+1

2,1

≤ (1+∥V ∥Bs∗
2,1
)

(∥∥V 1
∥∥
Bs∗+1

2,1

∥∥∥Ṽ 2
∥∥∥
Bs+1

2,1

+
∥∥V 2

∥∥
Bs∗+1

2,1

∥∥∥Ṽ 2
∥∥∥
Bs+1

2,1

)
≤ (1 + ∥V ∥Bs∗

2,1
)

(∥∥V 1
∥∥
Bs∗+1

2,1

∥∥∥Ṽ 2
∥∥∥ 1

2

Bs
2,1

∥∥∥Ṽ 2
∥∥∥ 1

2

Bs+2
2,1

+
∥∥V 2

∥∥ 1
2

Bs∗
2,1

∥∥∥Ṽ 2
∥∥∥ 1

2

Bs
2,1

∥∥V 2
∥∥ 1

2

Bs∗+2
2,1

∥∥∥Ṽ 2
∥∥∥ 1

2

Bs+2
2,1

)
≤ c

2

∥∥∥Ṽ 2
∥∥∥
Bs+2

2,1

+ C(1 + ∥V ∥Bs∗
2,1
)2
(∥∥V 1

∥∥2
Bs∗+1

2,1
+
∥∥V 2

∥∥
Bs∗

2,1

∥∥V 2
∥∥
Bs∗+2

2,1

)∥∥∥Ṽ 2
∥∥∥
Bs

2,1

. (40)

Similarly, we have

∥V ∥Bs∗∗+1
2,1

∥∥∥Ṽ 2
∥∥∥
Bs+1

2,1

≤ c

2

∥∥∥Ṽ 2
∥∥∥
Bs+2

2,1

+C
(∥∥V 1

∥∥2
Bs∗∗+1

2,1
+
∥∥V 2

∥∥
Bs∗∗

2,1

∥∥V 2
∥∥
Bs∗∗+2

2,1

)∥∥∥Ṽ 2
∥∥∥
Bs

2,1

. (41)

Plugging now, the inequality (40) into (39), we arrive at∥∥∥Ṽ 2
∥∥∥
L̃∞
T (Bs

2,1)
+

c

2

∥∥∥Ṽ 2
∥∥∥
L1
T (Bs+2

2,1 )
≤
∥∥∥Ṽ 2

0

∥∥∥
Bs

2,1

+ C

∫ T

0

(
1 + ∥∂tV ∥L∞ + (1 + ∥V ∥Bs∗

2,1
)2
(
∥V 1∥2

Bs∗
2,1

+ ∥V 1∥2
Bs∗∗

2,1
+
∥∥V 2

∥∥
Bs∗

2,1

∥∥V 2
∥∥
Bs∗+2

2,1
+
∥∥V 2

∥∥
Bs∗∗

2,1

∥∥V 2
∥∥
Bs∗∗+2

2,1

))∥∥∥Ṽ 2
∥∥∥
Bs

2,1

+

∫ T

0

∥Θ2∥Bs
2,1

,

and the desired estimate follows from Gronwall inequality.

To bound ∂tṼ
1 and ∂tṼ

2, we need the following lemma.

Lemma 3 (Estimates of ∂tV for linearized equations). Assume that the functions Θ1 and Θ2

are in L1(0;T,Bγ
2,1), for γ > −d

2
· Then, the following inequality holds true∫ T

0

∥∥∥(∂tṼ 1, ∂tṼ
2)
∥∥∥
Bγ

2,1

≤ C(1 + ∥V ∥
L̃∞
T (Bγ∗

2,1)
)

(
T
∥∥∥Ṽ 1

∥∥∥
L̃∞
T (Bγ+1

2,1 )

+

∫ T

0

∥V ∥
Bγ∗+1

2,1

∥∥∥Ṽ 2
∥∥∥
Bs+1

2,1

+

∫ T

0

∥∥∥Ṽ 2
∥∥∥
Bγ+2

2,1

+

∫ T

0

(
∥Θ1∥Bγ

2,1
+ ∥Θ2∥Bγ

2,1

))
· (42)

Moreover, if Θ1,Θ2 ∈ L̃2(0;T,Bγ
2,1) for γ > −d

2
, then

∥∥∥(∂tṼ 1, ∂tṼ
2)
∥∥∥
L̃2
T (Bγ

2,1)
≤ C(1 + ∥V ∥

L̃∞
T (Bγ∗

2,1)
)

(√
T
∥∥∥Ṽ 1

∥∥∥
L̃∞
T (Bγ+1

2,1 )

+ ∥V ∥
L̃∞
T (Bγ∗+1

2,1 )

∥∥∥Ṽ 2
∥∥∥
L̃2
T (Bγ+1

2,1 )
+
∥∥∥Ṽ 2

∥∥∥
L̃2
T (Bγ+2

2,1 )
+ ∥(Θ1,Θ2)∥L̃2

T (Bγ
2,1)

)
· (43)

Proof. We recall that :

∂tṼ
1 = −(S0

11(U))−1

d∑
α=1

Sα
11(U)∂αṼ

1 + (S0
11(U))−1Θ1. (44)
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So, we have for all γ > −d/2, using (35)∥∥∥∂tṼ 1
∥∥∥
Bγ

2,1

≤ (1 + ∥V ∥
Bγ∗

2,1
)
(∥∥∥Ṽ 1

∥∥∥
Bγ+1

2,1

+ ∥Θ1∥Bγ
2,1

)
· (45)

In the same spirit, we want to express ∂tṼ
2 in L1(Bs

2,1) that verifies the following equation:

∂tṼ
2 = (S0

22(U))−1

d∑
α,β=1

∂α(Z
αβ(U)∂βṼ

2) + (S0
22(U))−1Θ2. (46)

The only thing that changes is the diffusive term which can be treated using the product
inequality (35) of Proposition 9 and the decomposition

(S0
22(U))−1∂α(Z

αβ(U)∂βṼ
2) = (S0

22(U))−1∂α(Z
αβ(U))∂βṼ

2 + (S0
22(U))−1Zαβ(U)∂α∂βṼ

2. (47)

We have for all γ > −d
2∥∥∥(S0

22(U))−1∂α(Z
αβ(U)∂βṼ

2)
∥∥∥
Bγ

2,1

≤ C(1 + ∥V ∥
Bγ∗

2,1
) ∥V ∥

Bγ∗+1
2,1

∥∥∥Ṽ 2
∥∥∥
Bγ+1

2,1

+ C(1 + ∥V ∥
Bγ∗

2,1
)
∥∥∥Ṽ 2

∥∥∥
Bγ+2

2,1

,

which, combined with (45), concludes the proof of (42).
Finally, to prove (43), we use again (35), Proposition 10 and inequalities (44), (46) and (47).

We then obtain, for all α, β

•
∥∥∥(S0

11(U))−1Sα
11(U)∂αṼ

1
∥∥∥
L̃2
T (Bγ

2,1)
≤ C(1 + ∥V ∥L̃∞

T (Bγ∗
2,1)

)
√
T
∥∥∥∇Ṽ 1

∥∥∥
L̃∞
T (Bγ

2,1)
,

•
∥∥∥(S0

22(U))−1∂α(Z
αβ(U))∂βṼ

2
∥∥∥
L̃2
T (Bγ

2,1)
≤ C(1 + ∥V ∥

L̃∞
T (Bγ∗

2,1)
) ∥V ∥

L̃∞
T (Bγ∗+1

2,1 )

∥∥∥Ṽ 2
∥∥∥
L̃2
T (Bγ+1

2,1 )
,

•
∥∥∥(S0

22(U))−1Zαβ(U)∂α∂βṼ
2
∥∥∥
L̃2
T (Bγ

2,1)
≤ C(1 + ∥V ∥

L̃∞
T (Bγ∗

2,1)
)
∥∥∥Ṽ 2

∥∥∥
L̃2
T (Bγ+2

2,1 )
,

•
∥∥(S0

11(U))−1Θ1

∥∥
L̃2
T (Bγ

2,1)
≤ C(1 + ∥V ∥

L̃∞
T (Bγ∗

2,1)
) ∥Θ1∥L̃2

T (Bγ
2,1)

,

•
∥∥(S0

22(U))−1Θ2

∥∥
L̃2
T (Bγ

2,1)
≤ C(1 + ∥V ∥

L̃∞
T (Bγ∗

2,1)
) ∥Θ2∥L̃2

T (Bγ
2,1)

.

Putting together these inequalities yields (43), which completes the proof of Lemma 3.

2.2 Local Existence

First, for given smooth functions U with range in U and V0, we shall consider the following
linear equations with variable coefficients from (11): S0

11(U)∂tṼ
1 +

∑d
α=1 S

α
11(U)∂αṼ

1 = Θ1

S0
22(U)∂tṼ

2 −
∑d

α,β=1 ∂α(Z
αβ(U)∂βṼ

2) = Θ2

(48)

with initial data
Ṽ|t=0 = Ṽ0, (49)
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and (see Assumption BB for the definitions of f 1 and f 2)

Θ1
def
= f 1(U,∇U)−

d∑
α=1

Sα
12(U)∂αV

2,

Θ2
def
= f 2(U,∇U)−

d∑
α=1

(
Sα
21(U)∂αV

1 + Sα
22(U)∂αV

2
)
·

(50)

Let us set
Ũ = Ṽ + U. (51)

Let s ≥ d
2

and σ = s+ 1. We assume that

U0(x) = V0 + V (x) ∈ O0 for any x ∈ Rd, (52)

where O0 is a bounded open set in Rn satisfying O0 ⊂ U .
Furthermore, we assume that V satisfies

(H1): V 1 ∈ L̃∞(0, T ;Bσ
2,1) and ∂tV

1 ∈ L1(0, T ;Bσ−1
2,1 ) ∩ L̃2(0, T ;Bσ−2

2,1 ),

(H2): V 2 ∈ L̃∞(0, T ;Bs
2,1) ∩ L1(0, T ;Bs+2

2,1 ) and ∂tV
2 ∈ L1(0, T ;Bs

2,1) ∩ L̃2(0, T ;Bs−1
2,1 ),

(H3): there exists a bounded open set in Rd satisfying U ⊂ O such that:

U(t, x) ∈ O for t ∈ [0, T ], x ∈ Rd. (53)

We set:

M1
def
=
∥∥V 1

∥∥
L̃∞
T (Bσ

2,1)
+
∥∥V 2

∥∥
L̃∞
T (Bs

2,1)
and M2

def
=
∥∥V 2

∥∥
L1
T (Bs+2

2,1 )
. (54)

From (53), one can deduce that for any continuous function S : Rn 7→ R, there exists a
constant C = C(O, S) such that:

∥S(U)∥L∞(0,T ;Rd) ≤ C. (55)

We aim at proving local in time a priori estimates of (48) with (49) in the space Eσ
T defined by

Eσ
T =

{
V ∈ C̃(0, T ;Bσ

2,1 ×Bs
2,1) : conditions (H1)− (H3) are satisfied

}
· (56)

In other words, we are going to prove that the set Eσ
T is invariant under the mapping defined

by V 7→ Ṽ with Ṽ satisfying (48), (49). Lemmas 1, 2 and 3 will come into play. To state
it more precisely, we need to control Θ1 and Θ2, defined in (50), in L1

T (B
σ
2,1) ∩ L̃2

T (B
s−1
2,1 ) and

L1
T (B

s
2,1) ∩ L̃2

T (B
s−1
2,1 ), respectively.

Thanks to inequality (188) of Proposition 9 and Proposition 10, we have for all α = 1, · · · , d
and all θ ≥ d

2
,∥∥Sα

12(U)∂αV
2
∥∥
L1
T (Bσ

2,1)
≤ C

∫ T

0

(
(1 + ∥V ∥Bθ

2,1
)
∥∥V 2

∥∥
B

d
2+1

2,1

+ (1 + ∥V ∥
B

d
2
2,1

)
∥∥V 2

∥∥
Bθ+1

2,1

)
≤ C(1 +M1)

∥∥V 2
∥∥
L1
T (Bθ+1

2,1 )
.

We deduce that (remember the form of f 1(U), see (10))

∥Θ1∥L1
T (Bσ

2,1)
≤ C ∥V ∥L1

T (Bσ
2,1)

+ C(1 +M1)
∥∥V 2

∥∥
L1
T (Bs+2

2,1 )

≤ CT
∥∥V 1

∥∥
L∞
T (Bσ

2,1)
+
√
T
∥∥V 2

∥∥
L2
T (Bσ

2,1)
+ C(1 +M1)

∥∥V 2
∥∥
L1
T (Bs+2

2,1 )

≤ C(1 +M1)(T +M2) +
√
TM1M2, (57)

where in the last inequality we used an interpolation inequality.
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To control Θ1 in L̃2
T (B

s−1
2,1 ), we use inequality (197) for f 1 and (35) (with θ = s−1) combined

with (192) for the others terms. One has

∥Θ1∥L̃2
T (Bs−1

2,1 ) ≤ C
√
T (1 + ∥V ∥

L̃∞
T (B

d
2
2,1)

) ∥V ∥L̃∞
T (Bs−1

2,1 ) + C(1 + ∥V ∥
L̃∞
T (B

(s−1)∗
2,1 )

)
√
T
∥∥V 2

∥∥
L2
T (Bs

2,1)

≤ C
√
T (1 +M1)(M1 +

√
M1M2). (58)

Next, the inequality (188) together with interpolation inequality ensures that∥∥f 21(U)
∥∥
L1
T (Bs

2,1)
≤ C ∥V ∥L1

T (Bs
2,1)

≤ CTM1∥∥f 22(U)
∥∥
L1
T (Bs

2,1)
≤ C

∥∥(V,∇V 1)
∥∥
L1
T (Bs

2,1)
≤ CTM1,

and for all α = 1, · · · , d∥∥Sα
21(U)∂αV

1
∥∥
L1
T (Bs

2,1)
≤ CT (1 + ∥V ∥L̃∞

T (Bs
2,1)

)
∥∥V 1

∥∥
L̃∞
T (Bs+1

2,1 )
≤ CT (1 +M1)M1,∥∥Sα

22(U)∂αV
2
∥∥
L1
T (Bs

2,1)
≤ C

√
T (1 + ∥V ∥L̃∞

T (Bs
2,1)

)
∥∥V 2

∥∥
L̃2
T (Bs+1

2,1 )

≤ C
√
T (1 +M1)

√
M1M2

so that

∥Θ2∥L1
T (Bs

2,1)
≤ C(1 +M1)

2(T +
√
TM2) +

∥∥f 23
∥∥
L1
T (Bs

2,1)
. (59)

Finally, using (again) (197) and the fact that (s− 1)∗ ≤ s yields

•
∥∥f 21

∥∥
L̃2
T (Bs−1

2,1 )
≤

√
TC(1 + ∥V ∥

L̃∞
T (B

(s−1)∗
2,1 )

) ∥V ∥L̃∞
T (Bs−1

2,1 ) ≤
√
TC(1 +M1)M1

•
∥∥f 22

∥∥
L̃2
T (Bs−1

2,1 )
≤

√
TC(1 +

∥∥(V,∇V 1)
∥∥
L̃∞
T (B

(s−1)∗
2,1 )

)
∥∥(V,∇V 1)

∥∥
L̃∞
T (Bs−1

2,1 )
≤

√
TC(1 +M1)M1,

whereas inequalities (35) and (192) provide for all α = 1, · · · , d

•
∥∥f 23

∥∥
L̃2
T (Bs−1

2,1 )
≤ (1 + ∥V ∥

L̃∞
T (B

(s−1)∗
2,1 )

) ∥∇V ∥
L̃2
T (B

(s−1)∗
2,1 )

∥∇V ∥L̃∞
T (Bs−1

2,1 )

≤ C(1 +M1)(
√
TM1 +

√
M1M2)M1,

•
∥∥Sα

21(U)∂αV
1
∥∥
L̃2
T (Bs−1

2,1 )
≤ C

√
T (1 + ∥V ∥

L̃∞
T (B

(s−1)∗
2,1 )

)
∥∥∇V 1

∥∥
L̃∞
T (Bs−1

2,1 )
≤ C

√
T (1 +M1)M1

•
∥∥Sα

22(U)∂αV
2
∥∥
L̃2
T (Bs−1

2,1 )
≤ C

√
T (1 + ∥V ∥

L̃∞
T (B

(s−1)∗
2,1 )

)
∥∥∇V 2

∥∥
L̃∞
T (Bs−1

2,1 )
≤ C

√
T (1 +M1)M1.

We thus obtain

∥Θ2∥L2
T (Bs−1

2,1 ) ≤ C(1 +M1)M1

√
M1M2 + C

√
T (1 +M1)M1. (60)

Lemma 4 (Invariant set under iterations). Let d ≥ 1, s ≥ d/2 and σ = s+1. Suppose that the
initial data satisfy (V 1

0 , V
2
0 ) ∈ Bσ

2,1 ×Bs
2,1 and (52). Then, there exists a time T0 > 0 depending

only on d,O0 and on the data, such that if V ∈ Eσ
T0

, the unique solution Ṽ of the Cauchy
problem (48)-(49) belongs to the same space Eσ

T0
.

Proof. Here, for U = (U1, U2) a given smooth function on QT , we assume that, setting V =
U − U ,

(H1) ∥V 1∥L̃∞
T (Bσ

2,1)
≤ 4 ∥V 1

0 ∥Bσ
2,1

,

(H2) ∥V 2∥L̃∞
T (Bs

2,1)
≤ 2 ∥V 1

0 ∥Bs
2,1

,
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(H3)
∫ T

0
∥V 2∥Bs+2

2,1
≤ η,

(H4)
∫ T

0
∥(∂tV 1, ∂tV

2)∥Bs
2,1

+ ∥(∂tV 1, ∂tV
2)∥L̃2

T (Bs−1
2,1 ) ≤ η1

(H5) |U(t, x)− U0(x)| ≤ d1 for any (t, x) ∈ QT ,

where η, η1 > 0 are constants, and d1 satisfies d1 < dist(O0, ∂U), Ṽ ∈ O with O def
= d1-

neighborhood of O0.
We are going to prove that under suitable assumptions on T and η, η1 (to be specified below)

if conditions (H1) to (H5) are satisfied for V , then they are actually satisfied for Ṽ .
Let us define M0 by

M0
def
= 4

∥∥V 1
0

∥∥
Bσ

2,1
+ 2

∥∥V 2
0

∥∥
Bs

2,1
(61)

so that if (H1) to (H3) are satisfied for V , then (see (54) for the definition of M1 and M2)

M2 ≤ η and M1 ≤ M0. (62)

Let us assume that ε, η1 and T satisfy

η < min

(
1,

∥V 1
0 ∥Bσ

2,1

2(1 +M0)

)
, η1 <

ln(2)

8C
and T < min

(
∥V 1

0 ∥Bσ
2,1

2(1 +M0)
,
(ln (2))2

64C2M0

)
· (63)

According to inequalities (25) (with σ ≥ d
2
+ 1) and (57), we have

∥Ṽ 1∥L̃∞
T (Bσ

2,1)
≤ eΦ1(T )

(∥∥V 1
0

∥∥
Bσ

2,1
+ C(1 +M1)(T +M2)

)
≤ eΦ1(T )

(∥∥V 1
0

∥∥
Bσ

2,1
+ C(1 +M0)(T + η)

)
(64)

where in the last inequality we used inequality (62). We recall (see (24) for the definition of
σ∗∗) that

Φ1(t) = C

∫ T

0

(∥V ∥Bσ∗∗+1
2,1

+ ∥(∂tV,∇V )∥L∞).

As σ∗∗ ≤ σ−1, then we deduce from interpolation inequality, Besov embedding, (H3) and (62)
that

Φ1(T ) ≤
∫ T

0

∥∂tV ∥
Bσσ−1

2,1
+ T

∥∥V 1
∥∥
L̃∞
T (Bσσ

2,1)
+
√
T
∥∥V 2

∥∥
L̃2
T (Bσσ

2,1)

≤ C(η1 + TM1 +
√
TM1M2) ≤ C(η1 + TM0 +

√
TM0η). (65)

Using Conditions (63) to (65), we deduce that (H1) is satisfied for Ṽ .
In order to prove that (H2) and (H3) are satisfied for Ṽ , we have to use (30). For that

purpose we need to introduce a new element. Indeed as we can see in the estimate (57) and
(64), to complete the proof of bounds of Ṽ 1 in L̃∞

T (Bσ
2,1) we have to get ∥V 2∥L1

T (Bs+2
2,1 ) as small

as possible. In fact it is clear that
∥∥∥(∇V 2,∇Ṽ 2)

∥∥∥
L1
T (B

d
2
2,1)

tends to 0 for T going to 0; but we

do not know how fast. It’s worth pointing out that we don’t face this problem if V 1
0 and V 2

0

have the same regularity, that is, V 1
0 , V

2
0 ∈ Bσ

2,1, for σ ≥ d
2
+ 1. To overcome the difficulty, we
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decompose Ṽ 2 into the sum of the solution V L to the following linear parabolic system with
constant coefficients: S0

22∂tV
L − Z

αβ
∂α∂βV

L = 0

V L(0) = V 2(0),
(66)

where we recall that S = S(U) for all function S, and the discrepancy Ṽ S to V L (Ṽ S def
= Ṽ 2−V L).

By definition, Ṽ S|t=0 ≡ 0 and Ṽ S satisfies the parabolic system

S0
22(U)∂tṼ

S −
d∑

α,β=1

∂α(Z
αβ(U)∂βṼ

S) = (S0
22 − S0

22(U))∂tV
L

+
d∑

α,β=1

∂α(r
αβ(U)∂βV

L) + Θ2, (67)

where rαβ(U) = Zαβ(U)− Z
αβ.

Since Ṽ S(0) = 0, we expect
∥∥∥∇Ṽ S

∥∥∥
L1
T (Bs+2

2,1 )
to be small enough, for some time T depending

only on initial data, through V L. More precisely, since, according to Proposition 6, we have
V L ∈ L1

T (B
s+2
2,1 ) for all T > 0, for all ε > 0, there exists Tε > 0 such that∫ Tε

0

(∥∥∂tV L
∥∥
Bs

2,1
+
∥∥V L

∥∥
Bs+2

2,1

)
< ε. (68)

Moreover, for all T > 0 ∥∥V L
∥∥
L̃∞
T (Bs

2,1)
≤
∥∥V 2

0

∥∥
Bs

2,1
. (69)

In the sequel, we assume that

T < Tε. (70)

In order to establish (H2) and (H3) for Ṽ 2, it suffices to prove that: if V S def
= V 2 − V L

satisfies the following condition

(HS)
∥∥V S

∥∥
L̃∞
T (Bs

2,1)
+
∫ T

0

∥∥V S(τ)
∥∥
Bs+2

2,1
dτ ≤ η

2
,

then (HS) is also satisfied for Ṽ S. Indeed if (HS) is satisfied for Ṽ S, then, from the decompo-
sition Ṽ 2 = V L + Ṽ S and inequalities (68), we have∥∥∥Ṽ 2

∥∥∥
L̃∞
T (Bs

2,1)
≤
∥∥∥(Ṽ S, V L)

∥∥∥
L̃∞
T (Bs

2,1)
≤ η

2
+
∥∥V 2

0

∥∥
Bs

2,1
,∫ T

0

∥∥∥Ṽ 2(τ)
∥∥∥
Bs+2

2,1

dτ ≤
∫ T

0

∥∥∥(Ṽ S, V L)(τ)
∥∥∥
Bs+2

2,1

dτ ≤ ε+
η

2

from which, we deduce (H2) and (H3) for Ṽ 2, provided that

η < 2
∥∥V 2

0

∥∥
Bs

2,1
and ε <

η

2
· (71)
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Applying inequality (30) with s ≥ d
2

to Ṽ S we have

∥Ṽ S∥L̃∞
T (Bs

2,1)
+

c

2
∥Ṽ S∥L1

T (Bσ
2,1)

≤ eΦ2(T )

(∫ T

0

∥(Θ2(τ)∥Bs
2,1

+

∫ T

0

∥∥∥(S0
22 − S0

22(U))∂tV
L
∥∥∥
Bs

2,1

+
d∑

α,β=1

∫ T

0

∥∥∂α(rαβ(U)∂βV
L)
∥∥
Bs

2,1

)
, (72)

where we recall that

Φ2(T ) = C

∫ T

0

(
1 + ∥∂tV ∥L∞ + (1 + ∥V ∥Bs∗

2,1
)2
(
∥V 1∥2

Bs∗
2,1∩Bs∗∗

2,1

+
∥∥V 2

∥∥
Bs∗

2,1

∥∥V 2
∥∥
Bs∗+2

2,1
+
∥∥V 2

∥∥
Bs∗∗

2,1

∥∥V 2
∥∥
Bs∗∗+2

2,1

))
,

and s∗ and s∗∗ have been defined in (24). Remarking that s∗ ≤ s and s∗∗ ≤ s for s ≥ d
2
, we

infer that

Φ2(T ) ≤ C

(
T + η1 + (1 +M1)

2(TM2
1 +M1M2)

)
≤ C

(
T + η1 + (1 +M0)

2TM2
0 +M0η

)
· (73)

Next, using the fact that the numerical product maps Bs
2,1 ×Bs

2,1 in Bs
2,1 for all s ≥ d

2
, and the

composition estimates in proposition 10, we deduce that: for all α, β = 1, · · · , d

•
∥∥∥(S0 − S0

22(U))∂tV
L
∥∥∥
L1
T (Ḃs

2,1)
≤ C ∥V ∥L̃∞

T (Bs
2,1)

∥∥∂tV L
∥∥
L1
T (Bs

2,1)
≤ CM1ε ≤ CM0ε,

•
∥∥∂α(rαβ(U)∂βV

L)
∥∥
L1
T (Bs

2,1)
≤ C

(
∥V ∥L∞

T (Bs
2,1)

∥∥V L
∥∥
L1
T (Bs+2

2,1 )

+
√
T
∥∥V 1

∥∥
L∞
T (Bσ

2,1)

∥∥V L
∥∥
L2
T (Bs+1

2,1 )
+
∥∥V 2

∥∥
L2
T (Bs+1

2,1 )

∥∥V L
∥∥
L̃2
T (Bs+1

2,1 )

)
≤ CM1ε+ C

√
TM1 ≤ M0ε+ C

√
TM0

•
∥∥f 23

∥∥
L1
T (Bs

2,1)
≤ C(1 + ∥V ∥L∞

T (Bs
2,1)

) ∥∇V ∥2L̃2
T (Bs

2,1)

≤ C(1 + ∥V ∥L∞
T (Bs

2,1)
)(
∥∥∇V 1

∥∥2
L̃2
T (Bs

2,1)
+
∥∥∇V L

∥∥2
L̃2
T (Bs

2,1)
+
∥∥∇V S

∥∥2
L̃2
T (Bs

2,1)
)

≤ C(1 +M0)(TM0 +M0ε+
η2

4
).

(74)

Plugging (74) (73) and (59) (remember (62)) into (72) leads to

∥Ṽ S∥L̃∞
T (Bs

2,1)
+

c

2
∥Ṽ S∥L1

T (Bσ
2,1)

≤ e
C

(
T+η1+(1+M0)2(TM2

0+M0η)

)(
CM0ε+ C

√
TM0

+ C(1 +M0)
2(T +

√
Tη) + C(1 +M0)(TM0 +M0ε+

η2

4
)

)
·

We deduce that Ṽ S satisfies (HS) if (for instance)

▶ C

(
T + η1 + (1 +M0)

2(TM2
0 +M0η)

)
< ln(2),

▶ CM0ε+ C
√
TM0 + C(1 +M0)

2(T +
√
Tη) + CM0ε <

η

8
,

▶ C
η2

4
(1 +M0) <

η

8
·
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We may choose η1 as in (63) and T, η, ε satisfying,

T < min

(
1,

η2

16C2(1 +M0)4
,

ln(2)

8C(1 +M0)4

)
; η < min

(
1,

1

2(1 +M0)C
,

ln(2)

8C(1 +M0)3

)
;

ε <
η

16CM0(1 +M0)
· (75)

In order to prove that (H4) is satisfied for Ṽ we have to use (42), (43) and interpolation
inequality in Besov Spaces. It holds∫ T

0

∥∥∥(∂tṼ 1, ∂tṼ
2)
∥∥∥
Bs

2,1

≤ C(1 +M0)

(
T
∥∥∥Ṽ 1

∥∥∥
L̃∞
T (Bσ

2,1)

+

∫ T

0

∥∥∥Ṽ 2
∥∥∥
Bs+2

2,1

+

∫ T

0

∥V ∥Bs+1
2,1

∥∥∥Ṽ 2
∥∥∥
Bs+1

2,1

+

∫ T

0

(
∥Θ2∥Bs

2,1
+ ∥Θ1∥Bσ

2,1

)
,∥∥∥(∂tṼ 1, ∂tṼ

2)
∥∥∥
L̃2
T (Bs−1

2,1 )
≤ C(1 +M1)

(√
T
∥∥∥Ṽ 1

∥∥∥
L̃∞
T (Bs

2,1)

+M1

∥∥∥Ṽ 2
∥∥∥
L̃2
T (Bs

2,1)
+
∥∥∥Ṽ 2

∥∥∥
L̃2
T (Bs+1

2,1 )
+ ∥(Θ1,Θ2)∥L̃2

T (Bs−1
2,1 )

)
·

As Ṽ satisfies (H1)-(H3) (hence Ṽ also satisfies (62)), using the assumption that η, T < 1 (see
(75) ) and inserting (57), (58), (60) and (59) (combined with the last inequality of (74)) in the
previous two inequalities, we deduce that∥∥∥(∂tṼ 1, ∂tṼ

2)
∥∥∥
L1
T (Bs

2,1)
+
∥∥∥(∂tṼ 1, ∂tṼ

2)
∥∥∥
L̃2
T (Bs−1

2,1 )

≤ C(1+M0)
2(1 +

√
M0)

√
T + C(M0ε+

η2

4
)(1+M0) + C(1+M0)

√
M0η

≤ C(1 +M0)
5
2 (
√
T + ε+

√
η),

from which which we deduce that Ṽ satisfies (H4) provided that

ε <
η1

8C(1 +M0)
5
2

; T <
η21

82C2(1 +M0)5
; η <

η21
82C2(1 +M0)5

· (76)

Finally combining (H4) and the embedding L∞ ↪→ Ba
2,1 with a ≥ d

2
leads to:

|Ũ(t, x)− Ũ0(t, x)| ≤ C

∫ T

0

∥∥(∂tV 1, ∂tV
2)(τ)

∥∥
Bs

2,1
dτ ≤ Cη1 for all (t, x) ∈ QT ,

which yields (H5) with Ũ instead of U , if

Cη1 < d1. (77)

We take T0 ≤ T with T > 0 satisfying the above conditions. Let us notice that the parameters
η, η1, ε and the time T depend only on d, d1 and on the data. Moreover, we can find some
constant ε = ε(d, d1,M0) and c0, C0 depending only on d, d1 such that (see (68) for the definition
of Tε)

T0 < min

(
1, C0, Tε,

c0
(1 +M0)10

)
· (78)
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Based on Lemma 4, we further establish the local existence of (11) with (16).

Proposition 1. Let d ≥ 1 and s ≥ d
2

and σ = s + 1. Assume that the initial data V0 satisfies
(V 1

0 , V
2
0 ) ∈ Bσ

2,1 ×Bs
2,1 and (52).

Then, there exists a positive time T1(≤ T0) depending only on d, on O0 and on the initial
data such that the Cauchy problem (11) with (16) has a unique solution V ∈ Eσ

T1
.

Proof. The idea is to construct iteratively a sequence of smooth approximate local solutions.
We introduce the successive approximation sequence2 {Vn}∞n=3 for the Cauchy problem (48)-

(49) as follows:

V 1
3 = 0Rn1 and V 2

3 = V L, (79)

where V L is solution of the parabolic system (66).

For n ≥ 3, we set Un = Vn + U and Vn+1 solution of:

S0
11(Un)∂tV

1
n+1 +

d∑
α=1

Sα
11(Un)∂αV

1
n+1 = f 1(Un,∇Un)−

d∑
α=1

Sα
12(Un)∂αV

2
n ,

S0
22(Un)∂tV

2
n+1 −

d∑
α,β=1

∂α(Z
αβ(Un)∂βV

2
n+1) = f 2(Un,∇Un)

−
d∑

α=1

(
Sα
21(Un)∂αV

1
n +Sα

22(Un)∂αV
2
n

)
,

(80)

with the initial data 3

Vn+1|t=0
def
= Sn+1V0, where Sn is the cut-off operator defined in (179) . (81)

Moreover, it holds that for all θ ∈ R and n ≥ 3, the operator Sn maps Bθ
2,1 into itself and

∥SnV0∥Bθ
2,1

≤ ∥V0∥Bθ
2,1

.

According to [20, 1, 15] for all θ ≥ 2, there exists a time T̃θ > 0 such that the Cauchy problem
(80)-(81) has an unique solution in C([0, T̃θ], H

θ). By Lemma 4, there exists 0 < T0 ≤ T̃σ

depending only on d, O0 and the initial data V0 such that the sequence {Vn}∞n=3 is well defined
on QT0 for all n ≥ 0, and is uniformly bounded with respect to n, that is, Vn ∈ Eσ

T0
. Next, in

the case4 d ≥ 2 or d = 1 and s > 1
2
, it will be shown that {Vn}∞n=3 is a Cauchy sequence in the

space
FT = {V def

= (V 1, V 2) : V ∈ C̃([0, T ];Bσ−1
2,1 ×Bs−1

2,1 ), V 2 ∈ L1
TB

s+1
2,1 }

for T ≤ T0. The reason for lowering regularity is the usual loss of one derivative when proving
stability estimates for quasilinear hyperbolic (diffusive) systems.

Define Ṽn = Vn+1 − Vn for any n ≥ 1. Take the difference between the equation (80) for the
n+ 1-th step and the n-th step to get

S0
11(Un)∂tṼ

1
n +

d∑
α=1

Sα
11(Un)∂αṼ

1
n = h,

S0
22(Un)∂tṼ

2
n −

d∑
α,β=1

∂α(Z
αβ(Un)∂βṼ

2
n ) = g,

(82)

2For better readability, n starts at 3.
3Note that we smoothed out the data V0 in order to get a smooth solution of the Cauchy problem (80)-(81).
4The limitation to that case arises from technical difficulties in establishing product laws, as apparent in

(35) for instance. An alternative approach to deal with the one-dimensional case and s = 1
2 consist in replacing

FT by the space L∞
T (Ḃ

1
2
2,∞)×

(
L∞
T (Ḃ

− 1
2

2,∞) ∩ L̃1
T (Ḃ

3
2
2,∞)

)
and adapt the proof in section 3.3
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with h = h1 + h2 , g = g1 + g2 + g3 + g4 + g5 + g6 + g7 + g8 and

h1
def
= −S0

11(Un)
d∑

α=1

(
(S0

11(Un))
−1Sα

11(Un)− (S0
11(Un−1))

−1Sα
11(Un−1)

)
∂αV

1
n ,

h2
def
= −S0

11(Un)
d∑

α=1

(
(S0

11(Un))
−1Sα

11(Un)− (S0
11(Un−1))

−1Sα
12(Un−1)

)
∂αV

2
n−1

−
d∑

α=1

Sα
12(Un)∂αṼ

2
n−1 + f 1(Un,∇Un)− S0

11(Un)S
0
11(Un−1))

−1f 1(Un−1,∇Un−1),

g1
def
= −(S0

22(Un)− S0
22(Un−1))∂tV

2
n , g2

def
= −

d∑
α=1

(Sα
22(Un)− Sα

22(Un−1)) ∂αV
2
n−1,

g3
def
=

d∑
α,β=1

∂α
((
Zαβ(Un−1)− Zαβ(Un)

)
∂βV

2
n

)
,

g4
def
= −

d∑
α=1

(
(Sα

21(Un)− Sα
21(Un−1)) ∂αV

1
n−1

)
,

g5
def
= −

d∑
α=1

Sα
21(Un)∂αṼ

1
n−1, g6

def
= −

d∑
α=1

Sα
22(Un)∂αṼ

2
n−1,

g7
def
= f 2(Un,∇Un)− f 2(Un−1,∇Un−1), g8

def
=

d∑
α,β=1

∂α(Z
αβ(Un))∂βṼ

2
n .

Let us notice that all estimates established in the proof of Lemma 4 are also valid for Un,
for n ≥ 3. In particular, the right-hand sides of (73) and (65) are smaller than ln 2. Apply thus
(25) (with σ → σ − 1) to (82)1 and (30) (with s → s− 1) to (82)2 to get5∥∥∥Ṽ 1

n

∥∥∥
L̃∞
T0

(Bσ−1
2,1 )

≤ 2

(∥∥∥Ṽ 1
0,n

∥∥∥
Bσ−1

2,1

+

∫ T0

0

∥h(τ)∥Bσ
2,1

dτ

)
, (83)

and ∥∥∥Ṽ 2
n

∥∥∥
L̃∞
T0

(Bs−1
2,1 )

+
c

2

∥∥∥Ṽ 2
n

∥∥∥
L1
T0

(Bs+1
2,1 )

≤ 2

(∥∥∥Ṽ 2
0,n

∥∥∥
Bs−1

2,1

∫ T0

0

∥g(τ)∥Bs
2,1

)
· (84)

It remains only to estimate the terms on the right-hand side of (83) and (84) by using the
same type of estimates as in the previous section and the property satisfied by T0, η, ε, η1 in the
proof of Lemma 4.
On the one hand, using the fact that the space Bθ

2,1 (for θ ≥ d
2
) is an algebra for numerical

product of functions and composition result (see Proposition 10), there exists a constant C =
C(O0, d) such that:

∥h1∥L1
T0

(Bσ−1
2,1 ) ≤ C(1 + ∥Vn∥L̃∞

T0
(Bσ−1

2,1 ))

(
T0

∥∥∥Ṽ 1
n−1

∥∥∥
L̃∞
T0

(Bσ−1
2,1 )

∥∥V 1
n

∥∥
L̃∞
T0

(Bσ
2,1)

+
√
T0

∥∥∥Ṽ 2
n−1

∥∥∥
L̃2
T0

(Bs
2,1)

∥∥V 1
n

∥∥
L̃∞
T0

(Bσ
2,1)

)
,

5Here we need s− 1 and σ − 1 to be larger than −d/2, whence the restriction on the regularity exponent if
d = 1.
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∥h2∥L1
T0

(Bσ−1
2,1 ) ≤ C(1 + ∥Vn∥L̃∞

T0
(Bσ−1

2,1 ))

(√
T0

∥∥∥Ṽ 1
n−1

∥∥∥
L̃∞
T0

(Bσ
2,1)

∥∥V 2
n

∥∥
L̃2
T0

(Bσ
2,1)

+T0

∥∥∥Ṽn−1

∥∥∥
L∞
T0

(Bσ−1
2,1 )

+
∥∥∥Ṽ 2

n−1

∥∥∥
L1
T0

(Bσ
2,1)

+
∥∥∥Ṽ 2

n−1

∥∥∥
L̃2
T0

(Bσ−1
2,1 )

∥∥V 2
n

∥∥
L̃2
T0

(Bσ
2,1)

)
,

∥g3∥L1
T0

(Bs−1
2,1 ) ≤ C

√
T0

∥∥∥Ṽ 1
n−1

∥∥∥
L̃∞
T0

(Bs
2,1)

∥∥V 2
n

∥∥
L̃2
T0

(Bs+1
2,1 )

+
∥∥∥Ṽ 2

n−1

∥∥∥
L̃2
T0

(Bs
2,1)

∥∥V 2
n

∥∥
L̃2
T0

(Bs+1
2,1 )

.

On the other hand, inequality (35) (with θ = s− 1) combined with proposition 10 ensures the
existence of C = C(O, d) such that

∥g1∥L1
T0

(Bs−1
2,1 ) ≤ C

(√
T0

∥∥∥Ṽ 1
n−1

∥∥∥
L̃∞
T0

(B
(s−1)∗
2,1 )

∥∥∂tV 2
n

∥∥
L̃2
T0

(Bs−1
2,1 )

+
∥∥∥Ṽ 2

n−1

∥∥∥
L̃2
T0

(B
(s−1)∗
2,1 )

∥∥∂tV 2
n

∥∥
L̃2
T0

(Bs−1
2,1 )

)
,

∥(g2, g4)∥L1
T0

(Bs−1
2,1 ) ≤ C

(
T0

∥∥∥Ṽ 1
n−1

∥∥∥
L̃∞
T0

(B
(s−1)∗
2,1 )

∥Vn∥L̃∞
T0

(Bs−1
2,1 )

+
√
T0

∥∥∥Ṽ 2
n−1

∥∥∥
L̃2
T0

(B
(s−1)∗
2,1 )

∥Vn∥L̃∞
T0

(Bs−1
2,1 )

)
,

∥g5∥L1
T0

(Bs−1
2,1 ) ≤ Ccj2

−j(s−1)

(
T0 + T0 ∥Vn∥L̃∞

T0
(B

(s−1)∗
2,1 )

)∥∥∥Ṽ 1
n−1

∥∥∥
L̃∞
T0

(Bs
2,1)

,

∥g6∥L1
T0

(Bs−1
2,1 ) ≤ Ccj2

−j(s−1)

(√
T0 +

√
T0 ∥Vn∥L̃∞

T0
(B

(s−1)∗
2,1 )

)∥∥∥Ṽ 2
n−1

∥∥∥
L̃2
T0

(Bs
2,1)

,

∥g8∥L1
T0

(L2(Rd)) ≤ Ccj2
−j(s−1)(1 + ∥Vn∥L̃∞

T0
(B

(s−1)∗
2,1 )

) ∥Vn∥L̃2
T0

(B
(s−1)∗+1
2,1 )

∥∥∥Ṽ 2
n

∥∥∥
L̃2
T0

(Bs
2,1)

with (s−1)∗ = d
2

if −d
2
< s−1 < d

2
and (s−1)∗ = s−1 if s−1 ≥ d

2
. Similarly using (195)(when

−d
2
< s − 1 < d

2
) and (193) (when s − 1 ≥ d

2
) and remembering the form of f 21, f 22, f 23 (see

Assumption BB) yields

g7 = f 21
n − f 21

n−1 + f 22
n − f 22

n−1 + f 23
n − f 23

n−1

with∥∥f 21
n − f 21

n−1

∥∥
L1
T0

(Bs−1
2,1 )

≤ CT0(1 + ∥(Vn−1, Vn)∥L̃∞
T0

(B
(s−1)∗
2,1 )

)
∥∥∥Ṽn−1

∥∥∥
L̃∞
T0

(Bs−1
2,1 )

)∥∥f 22
n − f 22

n−1

∥∥
L1
T0

(Bs−1
2,1 )

≤ CT0(1 +
∥∥(Vn−1, Vn,∇V 1

n ,∇V 1
n−1)

∥∥
L̃∞
T0

(B
(s−1)∗
2,1 )

)
∥∥∥(Ṽ ,∇Ṽ 1)

∥∥∥
L̃∞
T0

(Bs−1
2,1 )

)∥∥f 23
n − f 23

n−1

∥∥
L1
T (Bs−1

2,1 )
≤ C

∥∥∥Ṽn−1

∥∥∥
L̃2
T0

(B
(s−1)∗
2,1 )

√
T ∥Vn∥L̃2

T0
(Bs

2,1)
∥∇Vn∥L̃∞

T0
(B

(s−1)∗
2,1 )

+ (1 +M0)
∥∥∥∇Ṽn−1

∥∥∥
L̃2
T0

(B
(s−1)∗
2,1 )

∥(∇Vn−1,∇Vn)∥L̃2
T0

(Bs
2,1)

.

Remember that Vn ∈ Eσ
T0
, which implies that (see the proof of Lemma 4 for the definition

η, η1): ∥∥V 1
n

∥∥
L̃∞
T0

(Bσ
2,1)

+
∥∥V 2

n

∥∥
L̃∞
T0

(Bs
2,1)

≤ M0;
∥∥V 2

n

∥∥
L̃1
T0

(Bs+1
2,1 )

≤ η;∥∥∂tV 2
n

∥∥
L̃2
T0

(Bs−1
2,1 )

+ ∥∂tVn∥L̃1
T0

(Bs
2,1)

≤ η1.
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Summing (83) and (84) over j ≥ −1, using the following inequality coming from interpolation
inequality in Besov spaces∥∥V 2

n

∥∥
L̃2
T0

(Bs+1
2,1 )

≤ C
√
∥V 2

n ∥L̃∞
T0

(Bs
2,1)

∥V 2
n ∥L1

T0
(Bs+2

2,1 ) ≤ C
√

M0η∥∥∥Ṽ 2
n−1

∥∥∥
L̃2
T0

(Bs
2,1)

≤ C

√∥∥∥Ṽ 2
n−1

∥∥∥
L̃∞
T0

(Bs−1
2,1 )

∥∥∥Ṽ 2
n−1

∥∥∥
L1
T0

(Bs+1
2,1 )

≤ C∥Ṽn−1∥Fσ
T

we end up with∥∥∥Ṽ 1
n

∥∥∥
L̃∞
T0

(Bσ−1
2,1 )

≤ 2
∥∥∥Ṽ 1

0,n

∥∥∥
Bσ−1

2,1

+ C
(√

T0M0 +
√

M0η
)
∥Ṽn−1∥Fσ

T
+ (1 +M0)

∥∥∥Ṽ 2
n

∥∥∥
L1
T0

(Bσ
2,1)

,

and∥∥∥Ṽ 2
n

∥∥∥
L̃∞
T0

(Bs−1
2,1 )

+ c
∥∥∥Ṽ 2

n

∥∥∥
L1
T0

(Bs+1
2,1 )

≤ 2

(∥∥∥Ṽ 2
0,n

∥∥∥
Bs−1

2,1

+ C
(
T0 + η1 + T0M0 +

√
T0

√
M0η

+
√
T0M0 +

√
M0η + (1 +M0)

√
M0η

)
∥Ṽ 2

n ∥L̃∞
T0(B

s−1
2,1 )

∩L1

T0(B
s+1
2,1 )

+ C
(√

T0

√
M0η +

√
M0η + η1 +M0

√
T0

)
∥Ṽn−1∥Fσ

T
.

Next, the conditions satisfied by T0, η, η1, ε in Step 5 of the proof of Lemma 6 allow us to
simplify the previous inequalities as follows,∥∥∥Ṽ 1

n

∥∥∥
L̃∞
T0

(Bσ−1
2,1 )

≤ 2
∥∥∥Ṽ 1

0,n

∥∥∥
Bσ−1

2,1

+ C
(√

T0M0 +
√
M0η

)
∥Ṽn−1∥Fσ

T
+ (1 +M0)

∥∥∥Ṽ 2
n

∥∥∥
L̃1
T0

(Bσ
2,1)

(85)

and

∥Ṽ 2
n ∥L̃∞

T0
(Bs−1

2,1 )∩L1
T0

(Bs+1
2,1 ) ≤ 2

∥∥∥Ṽ 2
0,n

∥∥∥
Bs−1

2,1

+ C
(√

M0η + η1 +M0

√
T0

)
∥Ṽn−1∥Fσ

T
. (86)

Finally, putting together (85) and (86) (let us notice that we multiply (85) by 1/2(1 +M0) so
that its last term is absorbed by the left-hand side of (86) ) we get, for large enough C,

1

2(1 +M0)

∥∥∥Ṽ 1
n

∥∥∥
L̃∞
T0

(Bσ−1
2,1 )

+ ∥Ṽ 2
n ∥L̃∞

T0
(Bs−1

2,1 )∩L1
T0

(Bs+1
2,1 ) ≤

1

1 +M0

∥∥∥Ṽ 1
0,n

∥∥∥
Bσ−1

2,1

+
∥∥∥Ṽ 2

0,n

∥∥∥
Bs−1

2,1

+ C
(√

T0M0 +
√

M0(η + ε)
)
∥Ṽn−1∥Fσ

T
.

It implies that

∥Ṽn∥Fσ
T
≤ C(

∥∥∥Ṽ 1
0,n

∥∥∥
Bσ−1

2,1

+
∥∥∥Ṽ 2

0,n

∥∥∥
Bs−1

2,1

) + C
(√

T0M0 +
√

M0(η + ε)
)
∥Ṽn−1∥Fσ

T
. (87)

Take T1 so small that

T1 ≤ T0 and C
(√

T1M0 +
√
M0(η + ε)

)
≤ 1

2
· (88)

Then it follows from (87) and the fact that ∥(Sn+1 − Sn)a∥Bθ−1
2,1

≃ n−1 ∥a∥Bθ
2,1

, for all θ ∈ R,

that (Ṽn)
∞
n=3 is a Cauchy sequence in F σ

T1
. There exists a distribution V ∈ F σ

T1
such that

(Vn − V ) −→ 0 strongly in F σ
T1

as n −→ ∞. On the other hand, doing an argument totally
similar to what has been done in [2, Chap. 10], one can prove that V satisfy (H1)− (H3). The
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property of strong convergence enables us to pass to the limit in the system (80)-(81) and to
conclude that V is a solution to (11) and (16) satisfying (H1)− (H3).

What remains is to check that (V 1, V 2) ∈ C̃([0, T1];B
σ
2,1 × Bs

2,1) and then (V 1, V 2) ∈
C([0, T1];B

σ
2,1 × Bs

2,1). This can be achieved by following the ideas in [2, Chap. 10]. For the
sake of completeness, we provide the proof for V 1. Combining the fact that V 1 ∈ L∞(0, T ;Bσ

2,1)
and V 2 ∈ L∞(0, T ;Bs

2,1) with the information that V ∈ C([0, T ], L2), which comes from
∂tV ∈ L1

T1
(Bs

2,1) ⊂ L1
T1
(L2), this ensures that V 1 ∈ C̃([0, T ];Bσ

2,1) and V 2 ∈ C̃([0, T ];Bs
2,1)

. Indeed, for any J ∈ N and (t, t0) ∈ R+ × R+, one may write∥∥V 1(t)− V 1(t0)
∥∥
Bσ

2,1
≤

∑
−1≤j≤J

2jσ ∥∆jV (t)−∆jV (t0)∥L2 + 2
∑
j>J

2jσ∥∆jV
1∥L∞

T (L2)

≤ 2Jσ
∑

−1≤j≤J

∥V (t)− V (t0)∥L2 + 2
∑
j>J

2jσ∥∆jV
1∥L∞

T (L2).

Now, for any given J the first term goes to 0 if t −→ t0 while the second term tends to 0 if
J −→ ∞. The same argument implies that Ṽ 2 ∈ C̃([0, T ];Bs

2,1). This completes the proof of
V ∈ Eσ

T1
. Hence, the local existence part of the solutions is complete eventually.

Concerning the uniqueness, we set Ṽ
def
= V2 − V1, where V1 and V2 are two solutions to the

system (11) and are subject to the same initial data, respectively. Then the error solution Ṽ

satisfies the equation (82) where instead of Un, Un−1, Vn, Ṽn−1 we have U2, U1, V1, Ṽ respectively.
Then taking advantage on (87) (recall that here Ṽn = Ṽn−1 = Ṽ ) and (88) we conclude that
Ṽ = 0 in F σ

T1
. This finishes the proof of Proposition 1.

2.3 Proof of the continuation criterion

This section is devoted to the proof of the following continuation criterion.

Proposition 2. Let 0 < T0 > ∞. Under the hypotheses of Theorem 1.2, assume that the system

(11) has a solution (V 1, V 2) on [0, T0[×Rd which belongs to C([0, T ];Bσ
2,1)×

(
C([0, T ];Bs

2,1) ∩

L1(0, T ;Bs+2
2,1 )

)
, for all T < T0 and satisfies

1. U belongs to an open bounded set Ω , with Ω ∈ U ,

2.
∫ T0

0

(∥∥(∇V,∇2V 2)
∥∥
L∞ + ∥∇V ∥2L∞

)
< ∞,

3. sup
(t,x)∈[0,T0[×Rd

∇V 1(t, x) < ∞.

There exists some T ∗ > T0 such that (V 1, V 2) may be continued on [0, T ∗] × Rd to a solution
of (11) which belongs to C([0, T ∗];Bσ

2,1)×
(
C([0, T ∗];Bs

2,1) ∩ L1(0, T ∗;Bs+2
2,1 )

)
.

Moreover, if the source term f 22(U,∇V 1) is quadratic in ∇V 2, then the last assumption is
not needed.

Proof. It is not difficult to prove that

∥∂tV ∥L∞ ≤ C(1 + ∥∇V ∥L∞ + ∥∇V ∥L∞ ∥∇V ∥L∞ +
∥∥∇2V 2

∥∥
L∞) on [0, T0[. (89)
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Throughout this proof, we denote by C a positive constant depending only on d, ∥V ∥L∞([0,T0[×Rd)

and the matrices involved in the system (11). Since V satisfies (17) with V = Ṽ , and

Θ1 = f 1 −
d∑

α=1

Sα
12(U)∂αV

2

Θ2 = f 21 + f 22 + f 23 −
d∑

α=1

(Sα
21(U)∂αV

1 + Sα
22(U)∂αV

2)

(90)

then, for all T < T0, we have from (26) and (34)

▶
∥∥V 1

∥∥
L̃∞
T (Bσ

2,1)
≤
∥∥V 1

0

∥∥
Bσ

2,1
+ C

∫ T

0

∥(∂tV,∇V )∥L∞

∥∥V 1
∥∥
Bσ

2,1
+ ∥Θ1∥L1

T (Bσ
2,1)

+

∫ T

0

∑
j≥−1

2jσ
∥∥R11

j

∥∥
L2 ,

▶
∥∥V 2

∥∥
L̃∞
T (Bs

2,1)
+ c
∥∥V 2

∥∥
L̃1
T (Bs+2

2,1 )
≤
∥∥V 2

0

∥∥
Bs

2,1

+

∫ T

0

(1 + ∥∂tV ∥L∞)
∥∥V 2

∥∥
Bs

2,1
+

∫ T

0

∑
j≥−1

2js
∥∥R2

j

∥∥
L2 + ∥Θ2∥L1

T (Bσ
2,1)

.

(91)

According to (27) and interpolation inequality, we have∫ T

0

∑
j≥−1

2jσ
∥∥R11

j

∥∥
L2 ≤ C

∫ T

0

∥∇V ∥L∞

∥∥V 1
∥∥
Bσ

2,1
+ C

∫ T

0

∥∥∇V 1
∥∥
L∞

∥∥(V 1, V 2)
∥∥
Bσ

2,1

≤ C

∫ T

0

∥∇V ∥L∞

∥∥V 1
∥∥
Bσ

2,1
+ C

∫ T

0

∥∥∇V 1
∥∥2
L∞

∥∥V 2
∥∥
Bσ−1

2,1
+
∥∥V 2

∥∥
L1
T (Bσ+1

2,1 )
.

Next, the product estimate (188) combined with interpolation inequality ensures that

•
∥∥f 1(U)

∥∥
L1
T (Bσ

2,1)
≤ C ∥V ∥L1

T (Bσ
2,1)

≤ C

∫ T

0

∥∥V 1
∥∥
Bσ

2,1
+ C

∫ T

0

∥∥V 2
∥∥
Bσ−1

2,1
+
∥∥V 2

∥∥
L1
T (Bσ+1

2,1 )

•
∥∥Sα

12(U)∂αV
2
∥∥
L1
T (Bσ

2,1)
≤ C

∥∥∇V 2
∥∥
L1
T (Bσ

2,1)
+ C

∫ T

0

∥∥∇V 2
∥∥
L∞ (1 + ∥V ∥Bσ

2,1
)

≤ C
∥∥V 2

∥∥
L1
T (Bσ+1

2,1 )
+ C

∫ T

0

∥∥∇V 2
∥∥
L∞

∥∥V 1
∥∥
Bσ

2,1
+ C

∫ T

0

∥∥∇V 2
∥∥2
L∞

∥∥V 2
∥∥
Bσ−1

2,1
.

Furthermore, combining (36), the product estimate (188), interpolation inequality on V 2 along
with Young inequality yields for all ε > 0

⋆
∫ T

0

∑
j≥−1

2js
∥∥R2

j

∥∥
L2 ≤ C

∫ T

0

∥∇V ∥L∞

∥∥(V 1, V 2)
∥∥
Bs+1

2,1
+ C

∫ T

0

∥∥∇2V 2
∥∥
L∞ ∥V ∥Bs

2,1

≤ C

∫ T

0

∥∇V ∥L∞

∥∥V 1
∥∥
Bs+1

2,1
+ C(ε)

∫ T

0

∥∇V ∥2L∞

∥∥V 2
∥∥
Bs

2,1

+ ε2
∥∥V 2

∥∥
L1
T (Bs+2

2,1 )
+ C

∫ T

0

∥∥∇2V 2
∥∥
L∞ ∥V ∥Bs

2,1
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and

⋆
∥∥f 21(U)

∥∥
L1
T (Bs

2,1)
≤ C

∫ T

0

∥V ∥Bs
2,1

,

⋆
∥∥f 23(U)

∥∥
L1
T (Bs

2,1)
≤ C

∫ T

0

∥∇V ∥L∞ ∥∇V ∥Bs
2,1

+

∫ T

0

(1 + ∥V ∥Bs
2,1
) ∥∇V ∥2L∞

≤ C

∫ T

0

∥∇V ∥L∞

∥∥V 1
∥∥
Bs+1

2,1
+ C(ε)

∫ T

0

∥∇V ∥2L∞

∥∥V 2
∥∥
Bs

2,1
+ ε2

∥∥V 2
∥∥
L1
T (Bs+2

2,1 )

+

∫ T

0

(1 + ∥V ∥Bs
2,1
) ∥∇V ∥2L∞ ,

⋆
∥∥(Sα

21(U)∂αV
1, Sα

22(U)∂αV
2)
∥∥
L1
T (Bs

2,1)
≤ C

∫ T

0

∥∥(∇V 1,∇V 2)
∥∥
Bs

2,1

+ C

∫ T

0

(1 + ∥V ∥Bs
2,1
)
∥∥(∇V 1,∇V 2)

∥∥
L∞

≤ C

∫ T

0

∥∥V 1
∥∥
Bs+1

2,1
+ C(ε)

∫ T

∥V ∥Bs
2,1

+ ε2
∥∥V 2

∥∥
L1
T (Bs+2

2,1 )

+ C

∫ T

0

(1 + ∥V ∥Bs
2,1
)
∥∥(∇V 1,∇V 2)

∥∥
L∞ .

In the general case where f 22 depends on U and ∇V 1, Inequality (192) ensures that

⋆
∥∥f 22(U,∇V 1)

∥∥
L1
T (Bs

2,1)
≤ C(

∥∥(V,∇V 1)
∥∥
L∞)

∫ T

0

∥∥(V,∇V 1)
∥∥
Bs

2,1
,

whereas, if f 22(U,∇V 1) is quadratic in terms of ∇V 1, that is, f 22(U,∇V 1) is a finite combination
of υ3(U)∇V 1

⊗
∇V 1, where υ3 is a smooth function, then one has

⋆
∥∥f 22(U,∇V 1)

∥∥
L1
T (Bs

2,1)
≤ C

∫ T

0

∥∥∇V 1
∥∥
L∞

∥∥∇V 1
∥∥
Bs

2,1
+ C

∫ T

0

∥∥∇V 1
∥∥2
L∞ (1 + ∥V ∥Bs

2,1
).

Putting this information into (91) and setting

Xε(t) = ∥V 1∥L̃∞
t (Bσ

2,1)
+

1

ε
∥V 2∥L̃∞

t (Bs
2,1)

+
c

ε
∥V 2∥L1

t (B
s+2
2,1 ),

we end up with

Xε(T ) ≤
∥∥V 2

0

∥∥
Bs

2,1
+
∥∥V 1

0

∥∥
Bσ

2,1
+

∫ T

Xε(τ)

(
∥∂tV ∥L∞ + Yε(τ)

)
dτ

+ C
∥∥V 2

∥∥
L1
T (Bs+2

2,1 )
+ ε

∥∥V 2
∥∥
L1
T (Bs+2

2,1 )

with, for all ε > 0, Yε ∈ L1(0, T0) according to the assumption of Proposition 2. Choosing ε
small enough the last two terms of the right-hand side may be absorbed by the left-hand side.
Applying then Gronwall inequality and taking advantage of (89), we conclude that (V 1, V 2) ∈

L̃∞(0, T0;B
σ
2,1) ×

(
L̃∞(0, T0;B

s
2,1) ∩ L1(0, T0;B

s+2
2,1 )

)
and thus (V 1, V 2) ∈ L∞(0, T0;B

σ
2,1) ×(

L∞(0, T0;B
s
2,1) ∩ L1(0, T0;B

s+2
2,1 )

)
· By replacing M0 in the lower bound (78) that we have

obtained for the existence time, we obtain an ε > 0 such that (11) with data (V 1(T0−ε), V 2(T0−
ε)) has a solution on [0, 2ε]. Since the solution (V 1, V 2) is unique on [0, T0) this provides a
continuation of (V 1, V 2) beyond T0.
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3 Local existence in critical spaces
We seek to establish as in the previous section the local well-posedness but, with lower regularity
assumptions on the initial data. In other words, we want to prove Theorem 1.3. In fact it’s well
known since the works of R. Danchin in [10], that the barotropic compressible Navier-Stokes
equation has a unique solution in the critical setting (here critical spaces means that the initial
density and velocity belong to Ḃ

d
2
2,1 and Ḃ

d
2
−1

2,1 , respectively). This motivates us to prove the
local existence in spaces less regular than in the previous section for a class of systems of type
(1). The price to pay is that some restrictions on the structure of matrices (assumption C) are
needed.

We recall that the initial data (U1
0 , U

2
0 ) belongs to O1

0 × Rn1 with O1
0 a bounded open set

such that O1
0 ⊂ U1 (see (15)). Let us point out that the component U2

0 of the initial data isn’t
necessary bounded. Hence we aim at proving local in time existence with initial large data and
unbounded second component. This is one of the motivation of this section.

Let us first state some a priori estimates for the system (11) under the assumptions C. Here
we omit the lower order source term f in (11) for simplicity, since it is only responsible for the
large-time behavior of solutions.

3.1 A priori estimates.

Let U be a smooth solution of the Cauchy problem (11) and (16) on QT = [0, T ]×Rd satisfying
V 1 ∈ L̃∞(0, T ; Ḃ

d
2
2,1) and V 2 ∈ L̃∞(0, T ; Ḃ

d
2
−1

2,1 ) ∩ L1(0, T ; Ḃ
d
2
+1

2,1 ) with ∂tV
2 ∈ L1(0, T ; Ḃ

d
2
−1

2,1 )·
We set:

M1
def
=
∥∥V 1

∥∥
L̃∞
T (Ḃ

d
2
2,1)

+
∥∥V 2

∥∥
L̃∞
T (Ḃ

d
2−1

2,1 )
(92)

and

M2
def
=

∫ T

0

∥∥V 2(t)
∥∥
Ḃ

d
2+1

2,1

dt M3
def
=

∫ T

0

∥∥∂tV 2(t)
∥∥
Ḃ

d
2−1

2,1

dt. (93)

We assume also that there exists a bounded open subset O1 of U1 satisfying O1 ⊂ U1 such that:

U1(t, x) ∈ O1 for t ∈ [0, T ], x ∈ Rd. (94)

Due to (94) and the continuity of the function U1 7→ S0
22(U

1) we have the following inequal-
ities that are similar to (23):

C−1In1 ≤ S0
22(U

1) ≤ CIn1 , (95)

where the positive constant C depends only on O1. We have the following results.

Proposition 3. There exists a constant C depending only on d, O1 and data such that∥∥V 1
∥∥
L̃∞
T (Ḃ

d
2
2,1)

≤ 4
∥∥V 1

0

∥∥
Ḃ

d
2
2,1

and
∥∥V 2

∥∥
L̃∞
T (Ḃ

d
2−1

2,1 )
≤ 2

∥∥V 2
0

∥∥
Ḃ

d
2−1

2,1

,∫ T

0

∥∥V 2(τ)
∥∥
Ḃ

d
2+1

2,1

dτ +

∫ T

0

∥∥(∂tV 1(τ), ∂tV
2(τ))

∥∥
Ḃ

d
2−1

2,1

dτ < C,

V 1(t, x) ∈ O1 for (t, x) ∈ QT .

We divide the proof of the proposition into several steps.
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Step 1: Estimates for V 1.

Proposition 4. Let the structure assumptions C be in force and d ≥ 2. Then there exists a
constant C = C(O1,M1) such that for all m ∈ Z, the following inequalities hold true.∑

j≥m

2jσ∥V 1
j ∥L∞

T (L2) ≤
∑
j≥m

2jσ
∥∥V 1

0,j

∥∥
L2 + CM2

(∥∥V 1
∥∥
L̃∞
T (Ḃ

d
2
2,1)

+ 1

)
, (96)

where we define V 1
j

def
= ∆̇jV

1, V 1
0,j

def
= ∆̇j(V

1
0 ).

Proof. Throughout the proof, C stands for a positive constant that depends only on O1 and
on other parameters which are independent of our system. From (11) and assumption C, V 1

is solution of the following equation

∂tV
1 +

d∑
α=1

(
Aα

11(U
2)∂αV

1 + Aα
12(U

1)∂αV
2
)
= 0,

with Aα
11

def
= (S0

11)
−1Sα

11 and Aα
12

def
= (S0

11)
−1Sα

12 for all α = 1, · · · , d.
Applying the non-homogeneous dyadic block to the above equation yields,

∂tV
1
j +

d∑
α=1

Aα
11(U

2)∂αV
1
j = −

d∑
α=1

∆̇j(A
α
12(U

1)∂αV
2) +R11

j , with R11
j

def
= [Aα

11(U
2), ∆̇j](∂αV

1).

Next, following the classical procedure for hyperbolic system (see the Step 1 of the proof of
Lemma 4) we arrive at

2jσ∥V 1
j ∥L∞

T (L2) ≤ 2jσ
∥∥V 1

j (0)
∥∥
L2 + C2jσ

d∑
α=1

∫ t

0

∥∥∇Aα
11(U

2)
∥∥
L∞ ∥Vj∥L2

+ C2jσ
d∑

α=1

∫ t

0

(∥∥∥∆̇j(A
α
12(U)∂αV

2)
∥∥∥
L2

+
∥∥R11

j

∥∥
L2

)
· (97)

It is clear that for closing our estimate, we need that for all t ∈ [0, T ], ∇Aα
11(U(t)) ∈ L∞(Rd).

However, our critical functional framework does not ensure that ∇V 1(t) belongs to L∞(Rd).
Hence, to be under control, the terms Aα

11, for α = 1, · · · , d have to depend only on U2.
Moreover, as U2 does not need to be bounded on QT , one has to assume that Aα

11 is at most
linear with respect to U2.

The terms ∥(∆̇j(A
α
12(U

1)∂αV
2)∥L1

T (L2) for α = 1, · · · , d may be bounded according to the

stability of the space Ḃ
d
2
2,1 by numerical product and Proposition 10. One has

∥∆̇j(A
α
12(U

1)∂αV
2)∥L1

T (L2) ≤ C2−
d
2 cj
∥∥Aα

12(U
1)∂αV

2
∥∥
L1
T (Ḃ

d
2
2,1)

≤ Ccj(1 +
∥∥V 1

∥∥
L̃∞
T (Ḃ

d
2
2,1)

)
∥∥V 2

∥∥
L1
T (Ḃ

d
2+1

2,1 )
.

(98)

As we can see, in the above estimate, to bound the term ∥∆̇j(A
α
12(U

1)∂αV
2)∥L1

T (L2), we need

that Aα
12(U)− Aα

12(U) is in L∞(0, T ; Ḃ
d
2
2,1). Hence we are stuck to the framework where all the

matrices Aα
12(U) depend only on U1.

Thanks to Proposition 8, we have the following bound for R11
j :

∥R11
j ∥L1

T (L2) ≤ C2−j d
2 cj∥∇Aα

11(U
2)∥

L1
T (Ḃ

d
2
2,1)

∥V 1∥
L∞
T (Ḃ

d
2
2,1)

.
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Using the fact that Aα
11(U

2) is at most linear, we finally get

∥R11
j ∥L1

T (L2) ≤ C2−j d
2 cj
∥∥V 2

∥∥
L1
T (Ḃ

d
2+1

2,1 )

∥∥V 1
∥∥
L̃∞
T (Ḃ

d
2
2,1)

. (99)

Plugging (99) and (98) into (97), using Ḃ
d
2
2,1 ↪→ L∞ and summing over j ≥ m yields (96).

The second step is devoted to bounding V 2 and ∂tV .

Step 2: Estimates for V 2 and ∂tV . We turn to the second equation of (11), under assump-
tions C, namely

S0
22(U

1)∂tV
2 +

d∑
α=1

(
Sα
21(U)∂αV

1 + Sα
22(U)∂αV

2
)
−

d∑
α,β=1

∂α(Z
αβ(U1)∂βV

2) = 0,

which can be rewritten as follows:

S0
22(U

1
m)∂tV2 −

d∑
α,β=1

∂α(Z
αβ(U1

m)∂βV
2) = −

d∑
α=1

(
Sα
21(U)∂αV

1 + Sα
22(U)∂αV

2
)

+ (S0
22(U

1
m)− S0

22(U
1))∂tV

2 +
d∑

α,β=1

∂α((Z
αβ(U1)− Zαβ(U1

m))∂βV
2), (100)

where we denote
Um

def
= U + Vm

def
= U + ṠmV = U +

∑
j≤m−1

∆̇jV. (101)

Note that the localisation of Zαβ and S0
22 in (100) allows us to consider a parabolic equation

with smooth (and decaying) coefficients. The perturbation terms induced by these localizations
(that is the last two terms of r.h.s of (100) ) may be treated as harmless source terms, since
the prefactors S0

22(U
1
m)− S0

22(U
1) and Zαβ(U1)−Zαβ(U1

m) are sufficiently small, provided that
we choose m large enough.

If V 1 belongs to L̃∞
T (Ḃ

d
2
2,1), then U1

m tends to U1 uniformly on [0, T ] × Rd. Hence we have
U1
m ∈ O1 for m large enough. Furthermore, taking advantage of Bernstein’s inequality, there

exists a constant C > 0 independent of m so that for all real numbers γ ≥ d
2
:∥∥V 1

m

∥∥
Ḃγ

2,1
≤ C2m(γ− d

2
)
∥∥V 1

∥∥
Ḃ

d
2
2,1

. (102)

We aim at getting uniform estimates on V 2 in suitable Besov spaces. For that, as in the previous
section, we consider the unknown V S def

= V 2 − V L where V L stands for the solution of (66).
This function satisfies the following parabolic system:

S0
22(U

1
m)∂tV

S −
∑d

α,β=1 ∂α(Z
αβ(U1

m)∂βV
S)

=
∑d

α,β=1 ∂α
(
(Zαβ(U1)− Zαβ(U1

m))∂βV
S
)
+Rt +R21 +R22 +RL,

V S(0) = 0,

(103)

where rαβ(U1) = Zαβ(U1)− Z
αβ and

Rt def
= (S0

22(U
1
m)− S0

22(U
1))∂tV

2, R22 def
= −

d∑
α=1

Sα
22(U)∂αV

2,

RL def
= (S

0

22 − S0
22(U

1
m))∂tV

L +
d∑

α,β=1

∂α(r
αβ(U1)∂βV

L), R21 def
= −

d∑
α=1

Sα
21(U)∂αV

1.

(104)

We have the following result.
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Proposition 5. Under the hypotheses of proposition 4 there exists a constant C depending on
O1 and ∥V 1

0 ∥
Ḃ

d
2
2,1

, ∥V 2
0 ∥

Ḃ
d
2−1

2,1

such that setting

AS(T )
def
=
∥∥V S

∥∥
L̃∞
T (Ḃ

d
2−1

2,1 )
+
∥∥V S

∥∥
L1
T (Ḃ

d
2+1

2,1 )
; AL(T )

def
=
∥∥∂tV L

∥∥
L1
T (Ḃ

d
2−1

2,1 )
+
∥∥V L

∥∥
L1
T (Ḃ

d
2+1

2,1 )

AS
m(T )

def
=

m∑
j=−∞

(
2(

d
2
−1)j∥∆̇jV

2∥L∞
T (L2) + 2(

d
2
+1)j∥∆̇jV

2∥L1
T (L2)

) (105)

and assuming in addition T ≤ 1, we have, for all m ∈ Z(
1− CT − 2mC

∥∥∂tV 1
∥∥
L1
T (Ḃ

d
2−1

2,1 )

)
AS

m(T )

≤ C

(
2m

√
TM1 +

∥∥V − V 1
m

∥∥
L̃∞
T (Ḃ

d
2
2,1)

+ (1 +M1)
2
√
T

)
AS(T ) + C(1 +M1)(A

S(T ))2

+ C(1 +M1)
2(
√
T ∥V 2

0 ∥
Ḃ

d
2−1

2,1

AL(T ) + AL(T )) + C(1 +M1)
∥∥V 2

0

∥∥
Ḃ

d
2−1

2,1

AL(T )

+ C

(∥∥V 1 − V 1
m

∥∥
L̃∞
T (Ḃ

d
2
2,1)

+ 2m
∥∥V 1

∥∥
L̃∞
T (Ḃ

d
2
2,1)

)
M3.

(106)

Moreover, ∥∥(∂tV 1, ∂tV
2)
∥∥
L1
T (Ḃ

d
2−1

2,1 )
≤ C(1 +M1)

2
(√

TM1 +
√
T
√
M1M2 +M2

)
· (107)

Proof. Let us stress that V 1
m is bounded since, ∥V 1

m∥L∞ ≤ C∥V 1∥L∞ and V 1 is bounded.
Apply ∆̇j to (103) to get :

S0
22(U

1
m)∂tV

S
j − Zαβ

(U1
m)∂α∂βV

S
j = RL

j +R21
j +R22

j +RS
j +Rt

j + ES
j + Et

j,

where we denote:

RL
j

def
= ∆̇jR

L; Rt
j
def
= ∆̇jR

t; R21
j

def
= ∆̇jR

21; R22
j

def
= ∆̇jR

22;

RS
j

def
=

d∑
α,β=1

[
∆̇j, Z

αβ(U1
m)
]
∂α∂βV

S +
d∑

α,β=1

∆̇j

(
∂α(Z

αβ(U1
m))∂βV

S
)

Em
j

def
=

d∑
α,β=1

∆̇j∂α
(
Zαβ(U1)− Zαβ(U1

m)∂βV
S
)
, Et

j
def
= −[∆̇j, S

0
22(U

1
m)](∂tV

S).

Perform the energy method for parabolic system (see the Step 2 of the proof of Lemma 4)
to get:

∥V S
j ∥L∞

T (L2) + 22jc

∫ t

0

∥∥V S
j

∥∥
L2 ≤ C

∫ T

0

∥∥V S
j

∥∥
L2 (1 +

∥∥∂t(S0
22(Um))

∥∥
L∞)

+

∫ T

0

∥∥(RL
j , R

21
j , R22

j , RS
j , E

S
j , R

t
j, E

t
j)
∥∥
L2 , (108)

where c > 0 and C > 0 depending on O1.
Note that the embedding Ḃ

d
2
2,1 ↪→ L∞ and the fact that U1 is bounded combined with (102)

lead to : ∥∥∂t(S0
22(U

1
m))
∥∥
L∞ ≤ C

∥∥∂tV 1
m

∥∥
L∞ ≤ C

∥∥∂tV 1
m

∥∥
Ḃ

d
2
2,1

≤ C2m
∥∥∂tV 1

∥∥
Ḃ

d
2−1

2,1

. (109)
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Owing to Proposition 9 and 10, we have for all α, β = 1 · · · , d

∥(S0

22 − S0
22(U

1
m))∂tV

L∥
L1
T (Ḃ

d
2−1

2,1 )
≤ C

∥∥V 1
m

∥∥
L̃∞
T (Ḃ

d
2
2,1)

∥∥∂tV L
∥∥
L1
T (Ḃ

d
2−1

2,1 )
,

∥∂α(rαβ(U1)∂βV
L)∥

L1
T (Ḃ

d
2−1

2,1 )
≤ C

∥∥V 1
∥∥
L̃∞
T (Ḃ

d
2
2,1)

∥∥V L
∥∥
L1
T (Ḃ

d
2+1

2,1 )
,

which combined with (102) yields the following bound on RL
j ,

∥RL
j ∥L1

T (L2) ≤ C2−j( d
2
−1)cj

∥∥V 1
∥∥
L̃∞
T (Ḃ

d
2
2,1)

(∥∥∂tV L
∥∥
L1
T (Ḃ

d
2−1

2,1 )
+
∥∥V L

∥∥
L1
T (Ḃ

d
2+1

2,1 )

)
· (110)

The next step is to bound R22
j and R21

j in L1
T (L

2). The term R21
j can be decomposed as

R21
j = −

d∑
α=1

Sα
21(U)∂αV

1 +
d∑

α=1

(
Sα
21(U)− Sα

21(U)
)
∂αV

1.

Now bearing in mind the structure of the matrices Sα
21 (that is, the second derivative of Sα

21

w.r.t. V 2 vanishes ) and using directly Propositions 11 (especially (196) with s = d
2
) and 9 to

the second term in the previous identity yields

∥R21
j ∥L1

T (L2) ≤ C2−j( d
2
−1)cj

(
(T + T

∥∥V 1
∥∥
L̃∞
T (Ḃ

d
2
2,1)

+
√
T (1 +

∥∥V 1
∥∥
L̃∞
T (Ḃ

d
2
2,1)

)
∥∥V 2

∥∥
L̃2
T (Ḃ

d
2
2,1)

)∥∥V 1
∥∥
L̃∞
T (Ḃ

d
2
2,1)

. (111)

Since, for all α = 1, · · · , d, Sα
22 has the same structure as Sα

21, the term R22
j may be bounded

by employing the same techniques allowing to get (111). There holds

∥R22
j ∥L1

T (L2) ≤ C2−j( d
2
−1)cj

(
√
T +

√
T
∥∥V 1

∥∥
L̃∞
T (Ḃ

d
2
2,1)

+ (1 +
∥∥V 1

∥∥
L̃∞
T (Ḃ

d
2
2,1)

)
∥∥V 2

∥∥
L̃2
T (Ḃ

d
2
2,1)

)∥∥V 2
∥∥
L̃2
T (Ḃ

d
2
2,1)

. (112)

To bound the term Rt
j we take advantage of Propositions 9 and 10 that give

∥Rt
j∥L1

T (L2) ≤ C2−j( d
2
−1)cj

∥∥V 1 − V 1
m

∥∥
L̃∞
T (Ḃ

d
2
2,1)

∥∥∂tV 2
∥∥
L1
T (Ḃ

d
2−1

2,1 )
. (113)

Bounding the last term RS
j and Em

j involves Propositions 8 (with σ = d
2
− 1), 10 (with s = d

2
)

and 9 combined with the fact that U1
m is bounded (let us notice that Propositions 8, 9 require

that d ≥ 2 ). We have for all α, β = 1, · · · , d,

▶
∥∥∥[∆̇j, Z

αβ(U1
m)
]
(∂α∂βV

S)
∥∥∥
L1
T (L2)

≤ C2−j( d
2
−1)cj

√
T
∥∥∇V 1

m

∥∥
L̃∞
T (Ḃ

d
2
2,1)

∥∥∇V S
∥∥
L̃2
T (Ḃ

d
2−1

2,1 )
,

▶
∥∥∥∆̇j

(
∂α(Z

αβ(U1
m))∂βV

S
)∥∥∥

L1
T (L2)

≤ C2−j( d
2
−1)cj

√
T
∥∥∇V 1

m

∥∥
L̃∞
T (Ḃ

d
2
2,1)

∥∥∇V S
∥∥
L̃2
T (Ḃ

d
2−1

2,1 )
,

▶
∥∥∥∆̇j∂α

(
(Zαβ(U1)−Zαβ(U1

m))∂βV
S
)∥∥∥

L1
T (L2)

≤ C2−j( d
2
−1)cj

∥∥V − V 1
m

∥∥
L̃∞
T (Ḃ

d
2
2,1)

∥∥∇V S
∥∥
L̃1
T (Ḃ

d
2
2,1)

,

▶
∥∥∥[∆̇j, S

0
22(U

1
m)](∂tV

2)
∥∥∥
L1
T (L2)

≤ C2−j( d
2
−1)cj

∥∥∇V 1
m

∥∥
L̃∞
T (Ḃ

d
2
2,1)

∥∥∂tV 2
∥∥
L1
T (Ḃ

d
2−2

2,1 )
.

(114)
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Then, owing to (102), we deduce then∥∥Em
j

∥∥
L1
T (L2)

≤ C2−j( d
2
−1)cj

∥∥V − V 1
m

∥∥
L̃∞
T (Ḃ

d
2
2,1)

∥∥V S
∥∥
L̃1
T (Ḃ

d
2+1

2,1 )

≤ C2−j( d
2
−1)cjC

∥∥V − V 1
m

∥∥
L̃∞
T (Ḃ

d
2
2,1)

AS(T ), (115)

and ∥∥RS
j

∥∥
L1
T (L2)

≤ C2−j( d
2
−1)2mcj

√
T
∥∥V 1

∥∥
L̃∞
T (Ḃ

d
2
2,1)

∥∥V S
∥∥
L̃2
T (Ḃ

d
2
2,1)

,

which, combined with interpolation inequality yields∥∥RS
j

∥∥
L1
T (L2)

≤ C2−j( d
2
−1)2mcj

√
T
∥∥V 1

∥∥
L̃∞
T (Ḃ

d
2
2,1)

AS(T ). (116)

Using Bernstein inequality and the injection Ḃ
d
2
−1

2,1 ↪→ Ḃ
d
2
−2

2,1 in the last inequality of (114)
insures that ∥∥Et

j

∥∥
L1
T (L2)

≤ C2−j( d
2
−1)2mcj

∥∥V 1
∥∥
L̃∞
T (Ḃ

d
2
2,1)

∥∥∂tV 2
∥∥
L1
T (Ḃ

d
2−1

2,1 )
. (117)

Inserting (117), (116), (115), (113), (112), (111), (110) and (109) into (108), then summing
over j ≤ m, and using the definition of M1,M2,M3 (we use also T ≤ 1), we end up with(

1− CT−2mC
∥∥∂tV 1

∥∥
L1
T (Ḃ

d
2−1

2,1 )

)
AS

m(T )

≤ C

(
2m

√
T
∥∥V 1

∥∥
L̃∞
T (Ḃ

d
2
2,1)

+
∥∥V − V 1

m

∥∥
L̃∞
T (Ḃ

d
2
2,1)

)
AS(T ) + CM1A

L(T )

+ cjC

(∥∥V 1 − V 1
m

∥∥
L̃∞
T (Ḃ

d
2
2,1)

+ 2m
∥∥V 1

∥∥
L̃∞
T (Ḃ

d
2
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∥∥
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T (Ḃ

d
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2,1 )

+ C(1 +M1)

(
√
T (1 +

∥∥V 2
∥∥
L̃2
T (Ḃ

d
2
2,1)

)M1 +
√
T
∥∥V 2

∥∥
L̃2
T (Ḃ

d
2
2,1)

+
∥∥V 2

∥∥2
L̃2
T (Ḃ

d
2
2,1)

)
·

Finally, using again interpolation inequality to V 2 gives∥∥V 2
∥∥
L̃2
T (Ḃ

d
2
2,1)

≤
∥∥(V L, V S)

∥∥
L̃2
T (Ḃ

d
2
2,1)

≤ AS +
√
∥V L∥

L̃∞
T (Ḃ

d
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2,1 )
∥V L∥

L1
T (Ḃ

d
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2,1 )

≤ AS +
√
∥V 2

0 ∥
Ḃ

d
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2,1

AL, (118)

and simplifying redundant terms yields (106).

To prove (107) we recall that

∂tV
1 +

d∑
α=1

(
Aα

11(U)∂αV
1 + Aα

12(U)∂αV
2
)
= 0,

∂tV
2+(S0

22(U
1))−1

d∑
α=1

(
Sα
21(U)∂αV

1 + Sα
22(U)∂αV

2
)
− (S0

22(U
1))−1

d∑
α,β=1

∂α(Z
αβ(U1)∂βV

2) = 0.
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Then, thanks to Propositions 9 and 11 and remembering the structure assumption C, we have
for all α, β = 1, · · · , d,

♦
∥∥Aα

11(U)∂αV
1
∥∥
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T (Ḃ

d
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♦
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d
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√
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d
2
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)
∥∥V 2

∥∥
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d
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,

♦
∥∥(S0

22(U
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1
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L1
T (Ḃ

d
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2,1 )
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∥∥V 1
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L̃∞
T (Ḃ

d
2
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)(T

+ T
∥∥V 1
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d
2
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+
√
T
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d
2
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)
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,

♦
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22(U
1))−1Sα
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d
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T (Ḃ
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)(
√
T

+
√
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L̃∞
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+
∥∥V 1

∥∥
L̃∞
T (Ḃ
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)
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T (Ḃ

d
2
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,

♦
∥∥(S0

22(U
1))−1∂α(Z

αβ(U1)∂βV
2)
∥∥
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T (Ḃ

d
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∥∥V 1
∥∥
L̃∞
T (Ḃ

d
2
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)2
∥∥V 2

∥∥
L1
T (Ḃ

d
2+1
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.

We deduce by means of interpolation inequality (118) and of the fact T ≤ 1, that∥∥(∂tV 1, ∂tV
2)
∥∥
L1
T (Ḃ

d
2−1

2,1 )
≤ C(1 +M1)

2
(√

TM1 +
√
T
√
M1M2 +M2

)
·

This completes the proof of the Proposition.

Let us now state the last ingredient needed to prove Proposition 3.

Step 3: Closing the estimates In this part we are going to prove the priori estimate of the
solution V in the set determined by the following constraints:

(C1) ∥V 1∥
L̃∞
T (Ḃ

d
2
2,1)

≤ 4 ∥V 1
0 ∥

Ḃ
d
2
2,1

,

(C2) ∥V 2∥
L̃∞
T (Ḃ

d
2−1

2,1 )
≤ 2 ∥V 2

0 ∥
Ḃ

d
2−1

2,1

,

(C3) ∥V 1 − V 1
m∥

L̃∞
T (Ḃ

d
2
2,1)

≤ ηm,

(C4)
∥∥V S

∥∥
L̃∞
T (Ḃ

d
2−1

2,1 )
+
∫ T

0

∥∥V S
∥∥
Ḃ

d
2+1

2,1

≤ η ,

(C5)
∫ T

0
∥∂tV ∥

Ḃ
d
2−1

2,1

≤ ηT ,

(C6) |U1(t, x)− U1
0 (x)| ≤ d1 for any (t, x) ∈ QT ,

(C7) ∥V 2 − V 2
m∥

L̃∞
T (Ḃ

d
2−1

2,1 )
≤ ηm,

where ηT , ηm > 0 and 0 < η < 1 are constants, that will be determined in the sequel; d1 <
dist(O0, ∂U1). Let O1 be a bounded open convex set in Rn satisfying

O1 = d1 − neighborhood of O1
0. (119)

Then, from (C6), we have U1(t, x) ∈ O1 for any (t, x) ∈ QT .
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We are going to prove that under suitable assumption on T (≤ 1) and η (to be specified
below) if Conditions (C1) to (C7) are satisfied, then they are actually satisfied with strict
inequalities. Since all those conditions depend continuously on the time and are strictly satisfied
initially, a basic bootstrap argument insures that (C1) to (C7) are indeed satisfied for T.

Let ηL > 0. According to Proposition 6, there exists TL > 0 such that V L verifies (see
Proposition 5 for the definition of AL(T ))

AL(TL) ≤ ηL. (120)

From (C1) to (C5) and the definition of M1,M2,M3 in (92),(93) we have on the one hand

M1 ≤ 4
∥∥V 1

0

∥∥
Ḃ

d
2
2,1

+ 2
∥∥V 2

0

∥∥
Ḃs

2,1
and M3 ≤ ηT . (121)

Bearing in mind that V 2 = V L+V S and taking advantage of (163), we have on the other hand∥∥V 2
∥∥
L̃∞
T (Ḃ

d
2−1

2,1 )
≤ η +

∥∥V 2
0

∥∥
Ḃ

d
2−1

2,1

and M2 ≤
∥∥V L, V S

∥∥
L1
T (Ḃ

d
2+1

2,1 )
≤ η + ηL. (122)

So, up to changing M1 (resp. M2) in the right-hand side of the first inequality of (121) (resp.
second inequality of (122)), we can suppose that M1 (resp. M2) depends only on initial data
(resp. η, ηL).

We shall assume that M2 (so η, ηL) satisfies

CM2 <
1

2
· (123)

Recall that, from Proposition 4, V 1 satisfies or all m ∈ Z,∑
j≥m

2j
d
2∥V 1

j ∥L∞
T (L2) ≤

∑
j≥m

2j
d
2

∥∥V 1
j (0)

∥∥
L2 + CM2

(∥∥V 1
∥∥
L̃∞
T (Ḃ

d
2
2,1)

+ 1

)
· (124)

Taking the limit when m goes to −∞ in the last inequality and using (123) we deduce that
(C1) is satisfied with strict inequality. Then, the inequality (124) becomes∑

j≥m

2j
d
2∥V 1

j ∥L∞
T (L2) ≤

∑
j≥m

2j
d
2

∥∥V 1
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∥∥
L2 + CM2

(
4
∥∥V 1

0

∥∥
Ḃ

d
2
2,1

+ 1

)
·

Hence, (C3) is satisfied with strict inequality provided that M2 and m satisfy∑
j≥m

2j
d
2

∥∥V 1
j (0)

∥∥
L2 <

ηm
2

and M2 <
ηm

2C(4 ∥V 1
0 ∥

Ḃ
d
2
2,1

+ 1)
· (125)

Next, as T ≤ 1, Proposition 5 can be applied. Under assumptions (C4), (C3), (C4) the
inequality (106) can be reduced to:(

1− CT − 2m
√
TCM1 − Cηm − 2mηT (1 +M1)

2
√
T − C(1 +M1)η

)
AS(T )

≤ C(ηm + 2mM2)ηT + C(1 +M1)
2(
√
T ∥V 2

0 ∥
Ḃ

d
2−1

2,1

ηL + ηL) + C(1 +M1)
∥∥V 2

0

∥∥
Ḃ

d
2−1

2,1

ηL. (126)

Assuming that

T <
1

16C
;
√
T ≤ 1

16C2m(1 +M1)2
; ηm ≤ 1

16C
; ηT <

1

32C
; η <

1

32C(1 +M1)
(127)
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so that the prefactor of the left-hand side of (126) is less than 1/2, and remembering Inequality
(120) and the fact M2 ≤ ηm (according to (125)), we can simplify (126) as follows:

AS(T ) ≤ C(1 + 2m)ηmηT + C(1 +M1)
2

(
(
∥∥V 2

0

∥∥
Ḃ

d
2−1

2,1

+ 1)1/2 +
∥∥V 2

0

∥∥
Ḃ

d
2−1

2,1

)
(ηL +

√
ηL)

from which we deduce that (C4) is satisfied with strict inequality if (for instance) η, ηL, T and
M2 verify

(ηL+
√

ηL) <
η

16C(1+M1)2
((

∥V 2
0 ∥

Ḃ
d
2−1

2,1

+1
)1/2

+ ∥V 2
0 ∥

Ḃ
d
2−1

2,1

) ; ηTηm <
η

16C(1 + 2m)
. (128)

Let us notice that under conditions (128) and (127), the inequality (106) of Proposition 5
becomes

AS
m(T ) <

1

2
AS(T ) + η < 2η.

Then combining this inequality and inequality (164) which provides∑
j≥m

2j(
d
2
−1)∥∆̇jV

L∥L∞(L2) ≤
∑
j≥m

2j(
d
2
−1)∥∆̇jV

2
0 ∥L2

we deduce that assumption (C7) holds with strict inequality if

2η <
ηm
2

and
∑
j≥m

2j(
d
2
−1)∥∆̇jV

2
0 ∥L2 <

ηm
2
· (129)

Under assumption (C3) and from (122), we deduce that (C2) is satisfied with strict inequal-
ity provided that

η <
∥∥V 2

0

∥∥
Ḃ

d
2−1

2,1

. (130)

Let us apply (107). We get, under M2 ≤ 1∥∥(∂tV 1, ∂tV
2)
∥∥
L1
T (Ḃ

d
2−1

2,1 )
≤ C(1 +M1)

2
(√

TM1 +
√
T
√
M1 +M2

)
·

Hence (C5) is satisfied with a strict inequality provided that T,M2 (so η, ηL) satisfy
√
T <

ηT

2C(1 +M1)2(M1 +
√
M1)

and M2 <
ηT

2C(1 +M1)2
· (131)

In order to check whether (C6) is satisfied, we use the fact that:

V 1 − V 1
0 = Ṡm+1(V

1 − V 1
0 ) + (Id− Ṡm+1)(V

1 − V 1
0 ).

Then, the embedding Ḃ
d
2
2,1 ↪→ L∞ and the fact that ∆̇j(Id− Ṡm+1) = 0 if j < m ensure that for

all (t, x) ∈ QT∣∣V 1(t, x)− V 1
0 (x)

∣∣ ≤ C

(∫ t

0

∥∥∥Ṡm+1∂tV
1(τ)

∥∥∥
Ḃ

d
2
2,1

dτ +
∑

j≥m−1

2j
d
2

∥∥∥∆̇j(V
1(t)− V 1

0 )
∥∥∥
L2

)
·

Hence using (C3), (C5) and Bernstein inequality lead to:

|U1(t, x)− U1
0 (t, x)| ≤ C

(
2m+1ηT + ηm

)
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which yields (C6) with a strict inequality if

CηT <
d1

2m+2
and Cηm <

d1
2
· (132)

The continuity of the operator Ṡm and (C6) guarantee that: for all (t, x) ∈ QT ,

|U1
m(t, x)− U1

0 (x)| ≤ sup
0≤t≤T

∥∥U1(t, ·)− U1
0 (x)

∥∥
L∞ < d1. (133)

Then, (C6) and (132) imply that U1
m(t, x) ∈ O1, for all, (t, x) ∈ QT .

Remark 3.1. The existence time T may be bounded from below by

T ≥ min
{
P;TL

}
· (134)

where P is a non-increasing positive function of ∥V 1
0 ∥

Ḃ
d
2
2,1

and ∥V 2
0 ∥

Ḃ
d
2−1

2,1

which depends also on

the matrices involved in system (11) and d·

3.2 The Proof of Existence

We use a standard scheme:

1. We smooth out the data and get a sequence of smooth solutions (V 1
n , V

2
n ) to (11) under

the assumption C on a bounded interval [0, T n] which may depend on n.

2. We exhibit a positive lower bound T ≤ 1 for T n and prove uniform estimates in the space

ET = C̃([0, T ]; Ḃ
d
2
2,1)×

(
C̃([0, T ]; Ḃ

d
2
−1

2,1 ) ∩ L1
T (Ḃ

d
2
+1

2,1 )
)

for the smooth solution (V 1
n , V

2
n ).

3. We use compactness to prove that the sequence converges, up to extraction, to a solution
of (11).

First step: We smooth out the data as follows:

V0,n = (Ṡn − Ṡ−n)V0.

Note that V0,n belongs to all nonhomogeneous Besov spaces Bs
2,1, and that

∀ n ∈ N;
∥∥V 1

0,n

∥∥
B

d
2
2,1

≤ Cn

∥∥V 1
0

∥∥
Ḃ

d
2
2,1

;
∥∥V 2

0,n

∥∥
B

d
2−1

2,1

≤ Cn

∥∥V 2
0

∥∥
Ḃ

d
2−1

2,1

.

V 1
0,n (resp. V 2

0,n ) tends to V 1
0 (resp. V 2

0 ) in Ḃ
d
2
2,1 (resp. Ḃ

d
2
−1

2,1 ).
Now, according to Theorem 1.2 (note that assumption (C) implies assumption (BB) ), one

can solve (11) under assumption (C) with the smooth data (V 1
0,n, V

2
0,n). For all s ≥ d

2
, we get a

solution (V 1
n , V

2
n ) on a non trivial time interval [0, T ] such that

(V 1
n , V

2
n ) ∈ C̃([0, T ];Bs+1

2,1 )×
(
C̃([0, T ];Bs

2,1) ∩ L1
TB

s+2
2,1 )

)
· (135)
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Second step : Let T n,s be the lifespan of Vn, that is, the supremum of all T such that the
system (11) under assumption (C) with data V0,n has a solution which satisfies (135). Let
T ∈ [0,min(1, T n,s)],m, η, ηm and ηT be chosen such that conditions (123), (125), (127), (128),
(129), (130), (131) and (132) are satisfied (this can be ensured independently of n). Then Vn

satisfies (C1)- (C7) thus is bounded independently of n on [0, T ].
We still have to showcase that T n,s may be bounded by below by the supremum T of all

times T such that the conditions obtained in the stability step of Subsection 3.1. This is actually
a consequence of the uniform bounds we have just obtained, and of Remark 3.1. We thus have
T n,s ≥ T .

Last step: We now have to prove that (Vn)n tends (up to a subsequence) to some function
V which belongs to ET and satisfies (11) with assumption (C). The proof is based on Ascoli’s
theorem, Fatou’s Lemma and compact embeddings in Besov spaces. As similar arguments have
been employed in [2, chapter 10], or [8], the details are left to the reader.

3.3 Uniqueness

Assume that we are given (V 1
1 , V

2
1 ) and (V 1

2 , V
2
2 ), two solutions of (11) under assumption

C (with the same data), satisfying the regularity assumptions of Theorem 1.3. Let us put
Ui = Vi + U . In order to show that these two solutions coincide, we shall give estimates for
(Ṽ 1, Ṽ 2)

def
= (V 1

2 − V 1
1 , V

2
2 − V 2

1 ). The proof will consist in obtaining suitable a priori estimates
for the following system:∂tṼ

1 +
∑d

α=1A
α
11(U

2
2 )Ṽ

1 = h

S0
22(U

1
2,m)∂tṼ

2 −
∑d

α,β=1 Z
αβ(U1

2,m)∂α∂βṼ
2 = g

(136)

with h = h1 + h2 + h3 and g =
∑7

k=1 gk, where

h1 =
d∑

α=1

(
Aα

11(U
2
2 )− Aα

11(U
2
1 )
)
∂αV

1
1 , h2 = −

d∑
α=1

Aα
12(U

1
2 )∂αṼ

2,

h3 = −
d∑

α=1

(
Aα

12(U
1
2 )− Aα

12(U
1
1 )
)
∂αV

2
1 ,

g1 = g1,1 + g1,2 = −(S0
22(U

1
2,m)− S0

22(U
1
2 ))∂tṼ

2 −
(
(S0

22(U
1
1 )− S0

22(U
1
2 ))
)
∂tV

2
1 ,

g2 = −
d∑

α=1

(Sα
22(U2)− Sα

22(U1)) ∂αV
2
1 , g3 = −

d∑
α=1

Sα
22(U2)∂αṼ

2

g4 = g4,1 + g4,2 = −
d∑

α=1

Sα
21(U2)∂αṼ

1 −
d∑

α=1

(Sα
21(U2)− Sα

21(U1)) ∂αV
1
1 ,

g5 = −
d∑

α,β=1

∂α
(
Zαβ(U1

2,m)
)
∂βṼ

2,

g6 =
d∑

α,β=1

∂α

(
(Zαβ(U1

2 )− Zαβ(U1
2,m)∂βṼ

2
)
, g7 =

d∑
α,β=1

∂α
(
(Zαβ(U1

2 )− Zαβ(U1
1 ))∂βV

2
1

)
.

Like in the previous section, one cannot avoid a loss of one derivative in the stability estimates,
which leads us to proving the uniqueness in the function space

FT = L̃∞
T (Ḃ

d
2
−1

2,1 )×
(
L̃∞
T (Ḃ

d
2
−2

2,1 ) ∩ L1
T (Ḃ

d
2
+1

2,1 )

)
.
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In the two-dimensional case, the regularity index of the second component Ṽ 2 is only 0, so that
some product laws fail when estimating some terms on the right-hand side of the equation for
Ṽ 2 (e.g. g2 and g4). The reason why is that the product of functions only maps Ḃ0

2,1×Ḃ0
2,1 in the

larger space Ḃ−1
2,∞, rather than in Ḃ−1

2,1 . Consequently, we look for estimates of Ṽ 1 in L∞
T (Ḃ

d
2
−1

2,∞ )

and Ṽ 2 in L∞
T (Ḃ

d
2
−2

2,∞ ). Yet, another problem arises due to Ḃ1
2,∞ ↪̸→ L∞, the term f1 in the

right-hand side of the first equation of (136) cannot be estimated properly. This difficulty may
be bypassed by making use of the following logarithmic interpolation (see [8] or Lemma 7 for
nonhomogeneous case)

∥a∥L̃ρ
T (Ḃs

p,1)
≤ C

∥a∥L̃ρ
T (Ḃs

p,1)

η
log

(
e+

∥a∥L̃ρ
T (Ḃs−1

p,∞) + ∥a∥L̃ρ
T (Ḃs+1

p,∞)

∥a∥L̃ρ
T (Ḃs

p,∞)

)
, for all s ∈ R. (137)

This being said, we are going to estimate (Ṽ 1, Ṽ 2) in6

L∞
T (Ḃ

d
2
−1

2,∞ )× L∞
T (Ḃ

d
2
−2

2,∞ ) ∩ L̃1
T (Ḃ

d
2
2,∞).

Apply operator ∆̇j to (136)1 to get

∂tṼ
1
j +

d∑
α=1

Aα
11(U

2
2 )Ṽ

1
j = hj + R̃j with hj = ∆̇jh, R̃j = −

d∑
α=1

[∆̇j, A
α
11(U

2
2 )](∂αṼ

1).

As Ṽ 1(0) = 0, following the energy method and remembering that Aα
11(U

2
2 ) is at most linear

yields

∥Ṽ 1
j ∥L∞

T (L2) ≤ ∥Ṽ 1
j ∥L∞

T (L2)∥∇V 2
2 ∥L1

T (L∞) + ∥(R̃j, hj)∥L1
T (L2).

Next bounding ∥(Rj, hj)∥L∞
T (L2) may be achieved by combining Propositions 8 and 9. We have

2j(
d
2
−1)∥R̃j∥L∞

T (L2) ≤ C
∥∥∥Ṽ 1

∥∥∥
L̃∞
T (Ḃ

d
2−1

2,∞ )
∥∇V 2

2 ∥
L̃1
T (Ḃ

d
2
2,∞)∩L1

T (L∞)
,

2j(
d
2
−1)∥hj∥L1

T (L2) ≤ C

∫ T

0

∥∥∥Ṽ 2
∥∥∥
Ḃ

d
2
2,1

∥∥∇V 1
1

∥∥
Ḃ

d
2−1

2,∞

+

∫ T

0

(1 +
∥∥V 1

2

∥∥
Ḃ

d
2
2,1

)
∥∥∥∇Ṽ 2

∥∥∥
Ḃ

d
2−1

2,∞

+
∥∥∥Ṽ 1

∥∥∥
L̃∞
T (Ḃ

d
2−1

2,∞ )

∥∥∇V 2
1

∥∥
L̃2
T (Ḃ

d
2
2,1)

.

Finally using the embedding L1
T (Ḃ

d
2
2,1) ↪→ L̃1

T (Ḃ
d
2
2,∞) ∩ L1

T (L
∞), we arrive at

∥∥∥Ṽ 1
∥∥∥
L∞
T (Ḃ

d
2−1

2,∞ )
≤ C

∥∥(V 2
2 , V

2
1 )
∥∥
L1
T (Ḃ

d
2+1

2,1 )

∥∥∥Ṽ 1
∥∥∥
L∞
T (Ḃ

d
2−1

2,∞ )

+ C

∫ T

0

(
1 +

∥∥V 1
1

∥∥
Ḃ

d
2
2,1

+
∥∥V 1

2

∥∥
Ḃ

d
2
2,1

)∥∥∥Ṽ 2
∥∥∥
Ḃ

d
2
2,1

.

We note that by virtue of the Lebesgue dominated convergence theorem, ∥(V 2
2 , V

2
1 )∥

L1
T (Ḃ

d
2+1

2,1 )

tends to 0 when T goes to 0, and hence there exists a positive time (which we still denote by T )
6Obviously, this problem does not occur in dimension d ≥ 3, and one can provide a simpler proof of uniqueness

in the space FT , with no need of logarithmic estimates.
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such that the first term on the right-hand side may be absorbed by the left-hand side. Then,
making use of inequality (137), and setting

M1(T ) =
∥∥(V 1

1 , V
1
2 )
∥∥
L̃∞
T (Ḃ

d
2
2,1)

+
∥∥(V 2

1 , V
2
2 )
∥∥
L̃∞
T (Ḃ

d
2−1

2,1 )
and

M2(T ) = ∥(∂tV1, ∂tV2)∥
L1
T (Ḃ

d
2−1

2,1 )
+
∥∥(V 2

1 , V
2
2 )
∥∥
L1
T (Ḃ

d
2+1

2,1 )

(138)

we end up with the following inequality:

∥∥∥Ṽ 1
∥∥∥
L∞
T (Ḃ

d
2−1

2,∞ )
≤ C (1+M1)

∥∥∥Ṽ 2
∥∥∥
L̃1
T (Ḃ

d
2
2,∞)

log

e+

∥(V 2
1 , V

2
2 )∥

L̃∞
T (Ḃ

d
2−1

2,1 )
+ ∥(V 2

1 , V
2
2 )∥

L1
T (Ḃ

d
2+1

2,1 )∥∥∥Ṽ 2

∥∥∥
L̃1
T (Ḃ

d
2
2,∞)


≤ C (1+M1)

∥∥∥Ṽ 2
∥∥∥
L̃1
T (Ḃ

d
2
2,∞)

log

e+
TM1 +M2∥∥∥Ṽ 2

∥∥∥
L̃1
T (Ḃ

d
2
2,∞)

 . (139)

We now bound Ṽ 2. Apply the operator ∆̇j to (136)2 to get

S0
22(U

1
2,m)∂tṼ

2
j −

d∑
α,β=1

Zαβ(U1
2,m)∂α∂βṼ

2
j = gj +Gj,

with

Gj = S0
22(U

1
2,m)

d∑
α,β=1

[
∆̇j,

(
S0
22(U

1
2,m)

)−1
Zαβ(U1

2,m)
]
(∂α∂βṼ

2
j )

gj = S0
22(U

1
2,m)∆̇j

((
S0
22(U

1
2,m)

)−1
g
)
.

Following the energy method for parabolic system we get

∥Ṽ 2
j ∥L∞

T (L2) + 22j∥Ṽ 2
j ∥L1

T (L2) ≤ ∥Ṽ 2
j ∥L∞

T (L2)∥∂tV 1
2,m∥L1

T (L∞) + ∥(gj,Gj)∥L∞
T (L2).

Since d ≥ 2, taking advantage of commutator estimates (see Proposition 8), one may write

∥Gj∥L1
T (L2) ≤ C2−j( d

2
−2)

∫ T

0

∥∥∇U1
2,m

∥∥
Ḃ

d
2
2,1

∥∥∥∇Ṽ 2
∥∥∥
Ḃ

d
2−2

2,∞

≤ C2−j( d
2
−2)

√
T
∥∥∇U1

2,m

∥∥
L̃∞
T (Ḃ

d
2
2,1)

∥∥∥∇Ṽ 2
∥∥∥
L̃2
T (Ḃ

d
2−2

2,∞ )
,

(140)

from which and the fact that

∥Ṽ 2
j ∥L∞

T (L2)∥∂tV 1
2,m∥L1

T (L∞) ≤ C∥Ṽ 2
j ∥L∞

T (L2)∥∂tV 1
2,m∥

L1
T (Ḃ

d
2
2,1)

≤ C2mM2,

we deduce that

∥Ṽ 2
j ∥L∞

T (L2) + 22j∥Ṽ 2
j ∥L1

T (L2) ≤ C2mM2(T )∥Ṽ 2
j ∥L∞

T (L2)

+ C2−j( d
2
−2)(2m

√
TM1(T ))Ũ(T ) + ∥gj∥L∞

T (L2), (141)

where hereafter we define

Ũ(T ) =
∥∥∥Ṽ 2

∥∥∥
L∞
T (Ḃ

d
2−2

2,∞ )
+
∥∥∥Ṽ 2

∥∥∥
L̃1
T (Ḃ

d
2
2,∞)

.

In order to bound all the gj’s, we may exploit that the product of two functions maps Ḃ
d
2
−1

2,∞ ×
Ḃ

d
2
−1

2,1 or Ḃ
d
2
−2

2,∞ × Ḃ
d
2
2,1 to Ḃ

d
2
−2

2,∞ (recall that d ≥ 2), and Propositions 8, 9 and 10, adapted to the
spaces L̃ρ

T (Ḃ
s
2,r).
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From the definition of gj and the fact that U1
i,m is bounded, one may write

2j(
d
2
−2)∥gj∥L1

T (L2) ≤ C
∥∥∥(S0

22(U
1
2,m)

)−1
g
∥∥∥
L̃1
T (Ḃ

d
2−2

2,∞ )
≤ C(1 +M1) ∥g∥

L̃1
T (Ḃ

d
2−2

2,∞ )
. (142)

To bound g2 and g4,2 we use the inequality (198) of Proposition 11 and that the product of two

functions maps Ḃ
d
2
−1

2,∞ × Ḃ
d
2
−1

2,1 in Ḃ
d
2
−2

2,∞ . It holds

∥g2∥
L̃1
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d
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2,∞ )
≤ C

√
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∥∥∥Ṽ 2

∥∥∥
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1
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+
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∥∥∥
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1
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Ḃ
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2,1

,

∥g4,2∥
L̃1
T (Ḃ

d
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1
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+
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Ḃ
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∥∥V 2
1
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Ḃ
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+
∥∥∥Ṽ 1
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Ḃ
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∥∥
Ḃ

d
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2,1

.

Besides, using (196) and the product law Ḃ
d
2
−2

2,∞ × Ḃ
d
2
2,1 in Ḃ

d
2
−2

2,∞ yields

∥g4,1∥
L̃1
T (Ḃ

d
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2,∞ )
≤ C
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(1 +
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Ḃ

d
2
2,1

) +
∥∥V 1

2

∥∥
Ḃ

d
2
2,1

)
∥∥∥∇Ṽ 1

∥∥∥
Ḃ

d
2−2

2,∞

∥g3∥
L̃1
T (Ḃ

d
2−2

2,∞ )
≤ C(

√
T +

∥∥V 2
2

∥∥
L̃2
T (Ḃ

d
2
2,1)

(1 +
∥∥V 1

2

∥∥
L̃∞
T (Ḃ

d
2
2,1)

) +
√
T
∥∥V 1

2

∥∥
L̃∞
T (Ḃ

d
2
2,1)

)
∥∥∥∇Ṽ 2

∥∥∥
L̃2
T (Ḃ

d
2−2

2,∞ )
.

Next, thanks to (193) and to the fact that the numerical product maps Ḃ
d
2
−2

2,∞ × Ḃ
d
2
2,1 to Ḃ

d
2
−2

2,∞ ,
we get

∥g1,1∥
L̃1
T (Ḃ

d
2−2

2,∞ )
≤ C

∥∥V 1
2 − V 1

2,m

∥∥
L̃∞
T (Ḃ

d
2
2,1)

(1 +
∥∥(V 1

2 , V
1
m,2)

∥∥
L̃∞
T (Ḃ

d
2
2,1)

)
∥∥∥∂tṼ 2

∥∥∥
L̃1
T (Ḃ

d
2−2

2,∞ )
,

∥g5∥
L̃1
T (Ḃ

d
2−2

2,∞ )
≤ C

√
T
∥∥∇V 1

2,m

∥∥
L̃∞
T (Ḃ

d
2
2,1)

∥∥∥∇Ṽ 2
∥∥∥
L̃2
T (Ḃ

d
2−2

2,∞ )
. (143)

Combining inequality (194) and the product law Ḃ
d
2
−1

2,∞ × Ḃ
d
2
−1

2,1 → Ḃ
d
2
−2

2,∞ we have the following
bound for g1,2:

∥g1,2∥
L1
T (Ḃ

d
2−2

2,∞ )
≤ C(1 +

∥∥(V 1
2 , V

1
1 )
∥∥
L̃∞
T (Ḃ

d
2
2,1)

)

∫ T

0

∥∥∥Ṽ 1
∥∥∥
Ḃ

d
2−1

2,∞

∥∥∂tV 2
1

∥∥
Ḃ

d
2−1

2,1

. (144)

Finally, thanks to the product law Ḃ
d
2
−1

2,∞ × Ḃ
d
2
2,1 → Ḃ

d
2
−1

2,∞ , Proposition 10 (especially (193)) and
Bernstein inequality, we get

∥g6∥
L̃1
T (Ḃ

d
2−2

2,∞ )
≤ C

∥∥V 1
2 − V 1

2,m

∥∥
L̃∞
T (Ḃ

d
2
2,1)

(1 +
∥∥(V 1

2 , V
1
m,2)

∥∥
L̃∞
T (Ḃ

d
2
2,1)

)
∥∥∥∇Ṽ 2

∥∥∥
L̃1
T (Ḃ

d
2−1

2,∞ )
(145)

∥g7∥
L̃1
T (Ḃ

d
2−2

2,∞ )
≤ C(1 +

∥∥(V 1
1 , V

1
2 )
∥∥
L̃∞
T (Ḃ

d
2
2,1)

)

∫ T

0

∥∥∥Ṽ 1
∥∥∥
Ḃ

d
2
2,∞

∥∥∇V 2
1

∥∥
Ḃ

d
2
2,1

.

Multiplying (141) by 2j(
d
2
−2), taking into account the above estimates, using many times Bern-

stein inequality and interpolation inequality, one concludes that (for simplicity we assume that
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T ≤ 1 and M2(T ) ≤ 1):

Ũ(T ) ≤ CM1

(
2mM2(T )(1 +

√
T ) +M2(T ) +

√
M2(T ) +

∥∥V 1
2 − V 1

2,m

∥∥
L̃∞
T (Ḃ

d
2
2,1)

)
Ũ(T )

+ CM1

∫ T

0

(
1 +

∥∥(V 2
1 , V

2
2 )
∥∥
Ḃ

d
2+1

2,1

+
∥∥∂tV 2

1

∥∥
Ḃ

d
2−1

2,1

)∥∥∥Ṽ 1
∥∥∥
Ḃ

d
2−1

2,∞

+ CM1

∥∥V 1
2 − V 1

2,m

∥∥
L̃∞
T (Ḃ

d
2
2,1)

∥∥∥∂tṼ 2
∥∥∥
L̃1
T (Ḃ

d
2−2

2,∞ )
,

where CM1 depends on M1. In order to pursue our proof for uniqueness, we need to estimate∥∥∥∂tṼ 2
∥∥∥
Ḃ

d
2−2

2,∞

. More precisely we are going to bound
∥∥∥∂tṼ 2

∥∥∥
L̃1
T (Ḃ

d
2−2

2,∞ )
in terms of Ũ(T ). Starting

from (136)2, we have

∂tṼ
2 =

(
S0
22(U

1
2,m)

)−1
d∑

α,β=1

Zαβ(U1
2,m)∂α∂βṼ

2 +
(
S0
22(U

1
2,m)

)−1
g. (146)

Then, bounding ∂tṼ
2 in L1(Ḃ

d
2
−2

2,∞ ) is similar to what we did to bound ∥gj∥L1
T (L2). In fact, com-

bining the product law Ḃ
d
2
−2

2,∞ ×Ḃ
d
2
2,1 → Ḃ

d
2
−2

2,∞ (taking into account the structure of
(
S0
22(U

1
2,m)

)−1
Sα
22(U2,m)),

and Propositions 10 and 11 we have∥∥∥∂tṼ 2
∥∥∥
L̃1
T (Ḃ

d
2−2

2,∞ )
≤ CM1

(∥∥∥∇2Ṽ 2
∥∥∥
L̃1
T (Ḃ

d
2−2

2,∞ )
+ ∥g∥

L̃1
T (Ḃ

d
2−2

2,∞ )

)
·

As ∥g∥
L1
T (Ḃ

d
2−2

2,∞ )
has already been bounded above we deduce that

Ũ(T ) ≤ CM1

(
2m(M2(T ) +

√
T ) +M2(T ) +

√
M2(T ) +

∥∥V 1
2 − V 1

2,m

∥∥
L̃∞
T (Ḃ

d
2
2,1)

)
Ũ(T )

+ CM1

∫ T

0

(
1 +

∥∥(V 2
1 , V

2
2 )
∥∥
Ḃ

d
2+1

2,1

+
∥∥∂tV 2

1

∥∥
Ḃ

d
2−1

2,1

)∥∥∥Ṽ 1
∥∥∥
Ḃ

d
2−1

2,∞

. (147)

Now, the first term on the right-hand side may be absorbed by the left-hand side, provided
that, first, m is taken large enough, and then T is sufficiently small. In fact, the term∥∥V 1

2 − V 1
2,m

∥∥
L̃∞
T (Ḃ

d
2
2,1)

tends to zero when m goes to ∞ (recall that V 1
2 ∈ L̃∞

T (Ḃ
d
2
2,1)). Next,

we note that by virtue of the Lebesgue dominated convergence theorem, M2(T ) tends to 0
when T goes to 0. Note that M1 can seen as independent on time since, it is bounded by the
initial data. Hence, so does CM1 . We end up with the following inequality:

Ũ(T ) ≤ CM1

∫ T

0

(
1 +

∥∥(V 2
1 , V

2
2 )
∥∥
Ḃ

d
2+1

2,1

+
∥∥∂tV 2

1

∥∥
Ḃ

d
2−1

2,1

)∥∥∥Ṽ 1
∥∥∥
Ḃ

d
2−1

2,∞

.

We plug (139) into this inequality and we use the fact that the function r 7→ r log(e + 1
r
) is

increasing, to eventually get

Ũ(T ) ≤ CM1

∫ T

0

(
1 +

∥∥(V 2
1 (τ), V

2
2 (τ))

∥∥
Ḃ

d
2+1

2,1

+
∥∥∂tV 2

1 (τ)
∥∥
Ḃ

d
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2,1

)
Ũ(τ) log

(
e+

M2(T )

Ũ(τ)

)
dτ.
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As

1 +
∥∥(V 2

1 , V
2
2 )
∥∥
Ḃ

d
2+1

2,1

+
∥∥∂tV 2

1

∥∥
Ḃ

d
2−1

2,1

∈ L1
T and

∫ T

0

1

r log(e+ 1
r
)
dr = ∞,

Osgood’s lemma entails that Ũ(t) = 0 for all 0 ≤ t ≤ T . This means that (V 1
1 , V

2
1 ) and (V 1

2 , V
2
2 )

coincide on [0, T ] for small T > 0. Appealing to a connectivity argument yields uniqueness on
the whole interval existence, which completes the proof.

4 Application to the compressible Navier-Stokes system
In the Eulerian description, a general compressible fluid evolving in some open set Ω of Rd is
characterized at every material point x in Ω and time t ∈ R by its velocity field u = u(t, x) ∈ Rd,
density ρ ∈ R+, pressure p = p(t, x) ∈ R, internal energy by unit mass e = e(t, x) ∈ R, entropy
by unit mass s = s(t, x) ∈ R and absolute temperature θ = θ(t, x) ∈ R+. In the absence of
external forces, those quantities are governed by:


∂tρ+ div(ρu) = 0,

ρ∂tu+ ρu · ∇u− div(2µDu+ λId div(u)) +∇p = 0,

ρeθ(∂tθ + u · ∇θ) + θpθ div(u)− div(k∇θ) = Ψ,

(148)

with

Ψ
def
=

µ

2

d∑
i,j=1

(∂xj
ui + ∂xi

uj)2 + λ(div(u))2. (149)

In order to get a closed system of d+ 2 equations for the d+ 2 unknowns (ρ, u, θ), we have to
supplement System (148) with closure relations interrelating ρ, p, e and θ. Here we assume:

Assumption D

1. The thermodynamic quantities p and e are smooth functions of ρ, θ > 0 such that the
first law of thermodynamics

θds = de+ pd(
1

ρ
), (150)

holds, and we assume that for all ρ > 0 and θ > 0,

pρ(ρ, θ) :=
∂p

∂ρ
> 0 and eθ(ρ, θ) :=

∂e

∂θ
> 0. (151)

2. The viscosity coefficients λ, µ and the heat conductivity k are smooth functions of ρ, θ > 0
and satisfy the following condition

µ > 0, ν
def
= 2µ+ λ > 0 and k > 0. (152)

Let us next write (148) as a symmetric hyperbolic partially diffusive system. Set

U def
= {(ρ, u, θ) ∈ Rd+2/ρ > 0, θ > 0}.
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For some positive constants ρ > 0 and θ > 0, define

U
def
= (ρ, u, θ), U

def
= (ρ, 0Rd , θ) and V

def
= U − U.

Then, (148) is reduced to

S0(U)
d

dt
U +

d∑
α=1

Sα(U)∂αU −
d∑

α,β=1

∂α
(
Y αβ∂βV

)
= H(U) (153)

where

S0(U)
def
=

pρ
ρ

0 0

0 ρId 0
0 0 ρeθ

θ

 , H(U)
def
=

 0
0

Ψ− k∇θ · ∇(1
θ
)

 , (154)

d∑
α=1

Sα(U)ξα
def
=

pρ
ρ
u · ξ pρξ 0

pTρ ξ ρ(u · ξ)Id pTθ ξ
0 pθξ

ρeθ
θ
u · ξ

 , (155)

and

d∑
α,β=1

Y αβξαξβ
def
=

(
0 0

0
∑d

α,β=1 Z
αβξαξβ

)
(156)

with

Zαβξαξβ
def
=

(
µ|ξ|2 + (µ+ λ)ξ ⊗ ξId 0

0 k
θ
|ξ|2
)
· (157)

We note that S0(U) is a diagonal positive definite matrix for all U ∈ U , and that the matrices
Sα(U), for α = 1, · · · , d, are real symmetric. Furthermore a simple calculation shows that: for
all X, ξ ∈ Rd, Y ∈ R,

d∑
α,β=1

〈
ZαβξαξβA,A

〉
≥ min(µ, ν)|X|2 + k

θ
Y 2 (158)

where A
def
= (X, Y ) and ⟨·, ·⟩ denotes the standard inner product in Rd+1. As for the right-hand

side H, it is regarded as a lower order (quadratic) term, that satisfies the 4th condition of BB.

These considerations lead to the following result which is a direct application of Theorem 1.2:

Theorem 4.1 (Local existence). Let Assumption D be in force and let s > d
2

if d = 1 and
s ≥ d

2
if d ≥ 2. Let ρ > 0, θ > 0 be arbitrary fixed real numbers. Suppose that the initial data

(ρ0, u0, θ0) ∈ U satisfies ρ0 − ρ ∈ Bs+1
2,1 , u0 ∈ Bs

2,1 and θ0 − θ ∈ Bs
2,1.

Then, there exists some T > 0 such that the problem (148) supplemented with the initial data
(ρ0, u0, θ0) has a unique solution (ρ, u, θ) ∈ U on QT

def
= [0, T ]×Rd such that ρ and θ are bounded

away from zero on QT . More precisely, infQT
{ρ(t, x)} > 0 and infQT

{θ(t, x)} > 0. Moreover
we have

ρ− ρ ∈ C([0, T1];B
s+1
2,1 ) and (u, θ − θ) ∈ C([0, T1];B

s
2,1) ∩ L1

T1
(Bs+2

2,1 ).
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The system constituted by the first two equations in (148) is the so-called barotropic com-
pressible Navier-Stokes system (this corresponds to the case where the temperature is constant).
It reads:

{
∂tρ+ u · ∇ρ+ ρ div(u) = 0

ρ∂tu+ ρu · ∇u− div(2µ(ρ)Du+ λ(ρ) div(u)Id) +∇p(ρ) = 0.
(159)

Without difficulties, we can see that, if

µ(ρ) > 0 and ν(ρ) > 0, for all ρ > 0, (160)

then the system (159) satisfies the assumption C. Then, Theorem 1.3 can be applied and we
recover the following result of Danchin in [10]:

Theorem 4.2 (Local existence). Let Condition (160) be satisfied. Let ρ > 0 be an arbitrary
fixed constant. Suppose that the initial data (ρ0, u0) satisfy ρ0−ρ ∈ Ḃ

d
2
2,1, u0 ∈ Ḃ

d
2
−1

2,1 and ρ0 > 0.
Then, System (159) supplemented with the initial data (ρ0, u0) has a unique solution (ρ, u) on
QT with T > 0 which satisfies infQT

{ρ(t, x)} > 0. Moreover we have

ρ− ρ ∈ C([0, T ]; Ḃ
d
2
2,1) and u ∈ C([0, T ]; Ḃ

d
2
−1

2,1 ) ∩ L1
T (Ḃ

d
2
+1

2,1 ).
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Appendix

A Some inequalities
Here we gather a few technical results that have been used repeatedly in the paper. The first one
is the following well known result which consists in integrating suitably a differential inequality.

Lemma 5. Let X : [0, T ] −→ R+ be a continuous function such that X is differentiable.
Assume that there exists a constant B ≥ 0 and a measurable function A : R+ −→ [0, T ]

such that
1

2

d

dt
X +BX ≤ AX

1
2 a.e on [0, T ].

Then, for all t ∈ [0, T ], we have

X
1
2 (t) +B

∫ t

0

X
1
2 ≤ X

1
2 (0) +

∫ t

0

A.

Proof. For all ε > 0, the following inequality is verified by X:

1

2

d

dt
(X + ε2) +B(X + ε2) ≤ A(X + ε2)1−

1
2 +Bε(X + ε2)

1
2 .

As X(t) + ε2 > 0 for all t ∈ [0, T ], we have

d

dt

(
X + ε2

) 1
2 +B

(
X + ε2

) 1
2 ≤ A+Bε.
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Then, integrating the previous inequality over [0, T ] yields

(
X(t) + ε2

) 1
2 +B

∫ t

0

(
X(τ) + ε2

) 1
2 dτ ≤

∫ t

0

A(τ)dτ + tεB.

To obtain the desired inequality, it suffices to let ε go to zero.

Let V be a solution of the following linear parabolic equation:{
S∂tV −Z(D)V = 0
V (0) = V0

(161)

where S is a symmetric positive definite matrix and Z ∈ C∞(Rd;Mn(C)) is homogeneous of
degree γ ∈ R and such that the matrix Z(ξ) satisfies for some constant c > 0

(Z(ξ)z · z) ≥ c|ξ|γ|z|2, ξ ∈ Rd\{0}, z ∈ Cn. (162)

We have the following statement that turns out to be the key to proving our local existence
result.

Proposition 6. There exist universal positive constants c, C such that for all s ∈ R, T ∈ R+

and m ∈ N, the following estimates hold:

∥V ∥L̃∞
T (Bs

2,1)
≤ C ∥V0∥Bs

2,1
, (163)

∑
j≥m

2js∥∆jV ∥L∞
T (L2) ≤ C

∑
j≥m

2js∥∆jV0∥L2 , (164)

∑
j≥m

2js∥ (∆j(D
γV ),∆j(∂tV )) ∥L1

T (L2) ≤ C
∑
j≥m

(
1− e−c2jγT

)
2js∥∆jV0∥L2 , (165)

∥(∆−1V, ∂t∆−1(V ))∥L1
T (L2) ≤ CT

∥∥V 2(0)
∥∥
Bs

2,1
. (166)

Furthermore, in the case Z ∈ C∞(Rd\{0};Mn(C)), the inequalities (163) and (165) are also
valid in the homogeneous framework (i.e., with ∆̇j, m ∈ Z and homogeneous Besov norms
instead of ∆j, m ∈ N and nonhomogeneous Besov norms respectively).

Proof. We provide only the proof in the nonhomogeneous case, which is an easy adaptation of
the similar result for the "ordinary" heat equation stated in [6]. First apply ∆j to (66), take
the L2 inner product with Vj

def
= ∆jV , then use Plancherel’s theorem. One gets

d

dt
∥V̂j∥2L2

S(Rd) +

∫
Rd

Z(ξ)V̂j(ξ) · V̂j(ξ)dξ = 0, with ∥V ∥2L2
S(Rd)

def
=

∫
Rd

SV · V.

Next using the strong ellipticity condition (162), we get for all j ≥ −1,

d

dt
∥V̂j∥2L2

S(Rd) + c

∫
Rd

|ξ|γ|V̂j(ξ)|2dξ ≤ 0, (167)
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with c being a universal constant. Since |ξ|γ|V̂j(ξ)|2 ≥ κ2jγ|V̂j(ξ)|2 for j ≥ 0 where κ > 0
is a universal constant, combining with the fact S is a constant, symmetric, positive definite
matrix, we get

d

dt
∥V̂j∥2L2

S(Rd) + cκ2jγ∥V̂j∥2L2
S(Rd) ≤ 0, for all j ≥ 0.

This leads to (up to a slight modification of c):

∥Vj(t)∥L2
S(Rd) ≤ e−c2jγt∥V0,j∥L2

S(Rd), for all j ≥ 0, t ∈ [0, T ] (168)

which provides (164). Another consequence of the previous inequality is

∥Vj∥Lq
T (L2(Rd)) ≤

(
1− e−c2jγTq

c2jγTq

) 1
q

∥V0,j∥L2 , for all j ≥ 0, q ∈ [1,∞) (169)

which combined with the fact that

∂tV = S−1Z(D)V (170)

and Bernstein inequality provides for all j ≥ 0, q ∈ [1,∞)

∥∆j(∂tV
L)∥Lq

T (L2(Rd)) ≤ C

(
1− e−c2jγTq

c2jγTq

) 1
q

2jγ ∥V0,j∥L2 , (171)

from which we deduce inequality (165).
It remains to deal with the case j = −1. From (167), we deduce that:

d

dt
∥V̂−1∥2L2

S(Rd) ≤ 0.

This implies that

∥V−1∥L∞
T (L2(Rd)) ≤ ∥V0,−1∥L2 (172)

which combined with (170) and Bernstein inequality yields (166). At the same time we get
(163) from (168) and (172).

So far, the operators considered were independent of x. In the following result, we explain
how to handle a second order operator with variable coefficients.

Lemma 6 (Gårding inequality). Let U : Rd 7→ Rn be a bounded function. Assume that the
operator Z(U)∇x is strongly elliptic in the sense of (3). Then, there exists a positive constant
c (depending on the ellipticity constant) and a constant ε = ε(c, U) > 0, chosen as small as we
want, such that the following inequality holds true for all smooth function f : Rd → Rn−n1:

−
∑
α,β,i,j

∫
Rd

Zαβ
ij (U(x))∂α∂βf

i(x)f j(x)dx

≥ c∥∇f∥2L2(Rd) − ε∥∇2f∥L2(R)∥f∥L2(Rd) − C∥f∥2L2(Rd), (173)

where C = C(c, ε, U) > 0 depends only on ε, the range of U and the ellipticity constant.
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Remark A.1. The ‘standard’ Gårding inequality has a better form than what we stated in
inequality (173), but, provided that we keep the divergence form of the operator Z(U)∇x. In
fact, under the assumptions of Lemma 6, there exist positive constants c, C such that for any
function f : Rd → Rn−p, the following inequality holds true:

−
∑
α,β,i,j

∫
Rd

∂β

(
Zαβ

ij (U)∂αf
i
)
(x) ∂βf

j(x)dx ≥ c∥∇f∥2L2(Rd) − C∥f∥2L2(Rd). (174)

Although Inequality (173) seems not so good because of the second order derivatives in the
right-hand side, it will be useful for us once combined with Bernstein inequality, since it will be
applied to spectrally localized functions f.

Proof of Lemma 6. As a first, suppose that the functions Zαβ
ij are constant. Then, in light of

Fourier-Plancherel theorem and of (3), we have

−
∑
α,β,i,j

∫
Rd

Zαβ
ij ∂α∂βf

i(x)f j(x)dx = Re
∑
α,β,i,j

∫
Rd

Zαβ
ij ξαξβ f̂ if̂ jdξ

=
∑
α,β,i,j

∫
Rd

Zαβ
ij ξαξβ

(
Re(f̂ i)Re(f̂ j) + Im(f̂ i)Im(f̂ j)

)
dξ

≥ c1∥∇f∥2L2(Rd)

where c1 in the constant appearing in (3). Hence, (173) is true in this special case.
We next consider the case of variable coefficients. Suppose first that the function U has

range in a small ball about U. Taking U = 0 for notational simplicity and using the preceding
case, we have

−
∑
α,β,i,j

∫
Rd

Zαβ
ij (U)∂α∂βf

i(x)f j(x)dx = −
∑
α,β,i,j

∫
Rd

Zαβ
ij (0)∂α∂βf

i(x)f j(x)dx

−
∑
α,β,i,j

∫
Rd

(Zαβ
ij (U)− Zαβ

ij (0))∂α∂βf
i(x)f j(x)dx

≥ c1∥∇f∥2L2(Rd) −
∑
α,β,i,j

∫
Rd

(Zαβ
ij (U)− Zαβ

ij (0))∂α∂βf
i(x)f j(x)dx.

If the image of U is so small that Zαβ
ij have a very small oscillation then we see that the second

term of the last inequality may be bounded by ε∥∇2f∥L2(R)∥f∥L2(R), for ε small.
Finally, we consider the general case. Construct a partition of unit in Rd as follows: We

can write the range G of U which is bounded, as

G ⊂
N⋃
k=1

Bk

where Bk
def
= B(ak, ε) is a ball of center ak ∈ G and radius ε > 0, which can be taken as small

as we want. We denote
Ωk

def
= U−1(Bk),

and consider a partition of unity such that

1 =
N∑
k=1

ω2
k(x) ∀x ∈ Rd ωk ≥ 0, Suppωk ⊂ Ωk. (175)
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Then, by the Leibniz’ rule of differentiation of the product of functions, Cauchy-Schwarz in-
equality and the estimate of the case obtained above, we have,

−
∑
α,β,i,j

∫
Rd

Zαβ
ij (U)∂α∂βf

i(x)f j(x)dx = −
∑
α,β,i,j

N∑
k=1

∫
Rd

Zαβ
ij (U)ω2

k(x)∂α∂βf
i(x)f j(x)dx

= −
∑
α,β,i,j

N∑
k=1

∫
Ωk

Zαβ
ij (U)∂α∂β(ωkf

i)(x)ωkf
j(x)dx

+ 2
∑
α,β,i,j

N∑
k=1

∫
Rd

Zαβ
ij (U)f i(x)∂αωk(x)∂βf

j(x)ωk(x)dx

+
∑
α,β,i,j

N∑
k=1

∫
Rd

Zαβ
ij (U)∂α∂β(ωk)(x)f

if j(x)ωk(x)dx

≥
N∑
k=1

(
c1∥∇(ωkf)∥2L2(Rd) − εC(ωk)∥∇2f∥L2(Rd)∥f∥L2(Rd)

−C(ωk)∥∇f∥L2(Rd)∥f∥L2(Rd) − C(ωk)∥f∥2L2(Rd)

)
· (176)

Relation (175) will be used for the first term of (176). In fact using Leibniz formula we can
observe that

2 ∥∇(ωkf)∥2L2 ≥ ∥ωk∇f∥2L2 − 2 ∥f∇ωk∥2L2 ≥ ∥ωk∇f∥2L2 − 2C(ωk) ∥f∥2L2 .

Using Young’s inequality for the term C(wk)∥∇f∥L2(Rd)∥f∥L2(Rd), that is,

C(wk)∥∇f∥L2(Rd)∥f∥L2(Rd) ≤
c1
4
∥∇f∥2L2(Rd) + C(wk)∥f∥2L2(Rd)

we deduce the following inequality for C = C(ωk):

−
∑
α,β,i,j

∫
Rd

Zαβ
ij (U)∂α∂βf

i(x)f j(x)dx ≥ c1
4
∥∇f∥2L2 − εC∥∇2f∥L2(Rd)∥f∥L2(Rd) − C∥f∥2L2(Rd).

This gives the desired result.

The following logarithmic interpolation inequality in nonhomogeneous Besov spaces is very
useful to prove the uniqueness of the solution of system (11) under the assumption C in non-
homogeneous Besov space. We haven’t used this inequality in this paper, but instead we have
used its original (inequality (137)) that has been proved by R. Danchin in [8, p. 1319] for a
class of homogeneous Besov spaces. We adapt the result to the nonhomogeneous case.

Lemma 7. For any (p, ρ) ∈ [1,∞]2, T > 0, s ∈ R and η ∈ (0, 1] we have

∥a∥L̃ρ
T (Bs

p,1)
≤ C

∥a∥L̃ρ
T (Bs

p,1)

η
log

(
e+

∥a∥L̃ρ
T (Bs+η

p,∞)

∥a∥L̃ρ
T (Bs

p,∞)

)
· (177)

Proof. We split the norm ∥a∥L̃ρ
T (Bs

p,r)
into low and high frequencies. We have

∥a∥L̃ρ
T (Bs

p,1)
=

m∑
q=−1

2qs∥∆qa∥Lρ
T (Lp) +

∞∑
q=m+1

2q(s+η)∥∆qa∥Lρ
T (Lp)2

−qη

≤ (m+ 2) sup
q≥−1

2qs∥∆qa∥Lρ
T (Lp) +

2−η(m+1)

1− 2−η
sup
q≥−1

2q(s+η)∥∆qa∥Lρ
T (Lp).
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As η > 0 we deduce that

∥a∥L̃ρ
T (Bs

p,1)
≲ (m+ 2) ∥a∥L̃ρ

T (Bs
p,∞) + η−12−ηm ∥a∥L̃ρ

T (Bs+η
p,∞) .

Choosing m to be the integer part of

1

η
log2

(
∥a∥L̃ρ

T (Bs+η
p,∞)

∥a∥L̃ρ
T (Bs

p,∞)

)

yields the desired inequality.

B Littlewood-Paley decomposition and Besov spaces
In this section we present some results on the Littlewood-Paley decomposition and Besov spaces,
the source of which can be found in [2, Chap. 2].

To define the Littlewood-Paley decomposition, we fix some smooth radial non increasing
function χ with Suppχ ⊂ B(0, 4

3
) and χ ≡ 1 on B(0, 3

4
) , then set φ(ξ) = χ( ξ

2
)− χ(ξ) so that

χ+
∑
j≥0

φ(2−j·) = 1 on Rd and
∑
j∈Z

φ(2−j·) = 1 on Rd\{0}.

In order to pursue our definition, we agree that for S a function, z a distribution and a a real
constant, the operator S(aD) is defined by

S(aD)z
def
= F−1S(a·)Fz, (178)

when the right-hand side makes sense. Let us now state

Ṡj = χ(2−jD) for all j ∈ Z and Sj
def
= Ṡj for all j ≥ 0, Sj = 0 for all j ≤ −1. (179)

We define the homogeneous dyadic block ∆̇j and nonhomogeneous dyadic block ∆j as

∆̇j
def
= φ(2−jD) for all j ∈ Z

∆j = ∆̇j for all j ≥ 0, ∆−1 = Ṡ0 and ∆j = 0 for all j < −1
(180)

and we define S ′
h to be the set of tempered distributions z such that

lim
j→−∞

Ṡjz = 0. (181)

Following [2], we introduce the homogeneous Besov semi-norms (resp. nonhomogeneous Besov
norms):

∥z∥Ḃs
p,r

def
= ∥2js∥∆̇jz∥Lp∥lr ( resp. ∥z∥Bs

p,r

def
= ∥2js ∥∆jz∥Lp ∥lr). (182)

Then, for any s ∈ R and (p, r) ∈ [1,∞] we define the homogeneous Besov spaces Ḃs
p,r (resp.

nonhomogeneous Besov spaces Bs
p,r) to be the subset of those z in S ′

h (resp. the subset of those
z in the tempered distribution space S ′) such that ∥z∥Ḃs

p,r
(resp. ∥z∥Bs

p,r
) is finite.

The study of non-stationary PDEs requires spaces of type Lρ(0, T ;X) (endowed with the
norm ∥z∥Lρ

T (X) = ∥∥z(t, ·)∥X∥Lρ
T
) for appropriate Banach spaces X. Here we expect X to

be a Besov space. However, for technical reasons, it is sometimes more suitable to use the
Chemin-Lerner spaces that are defined below:
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Definition B.1. Let ρ in [1,∞] and time T ∈ [0,∞]. We set

∥z∥L̃ρ
T (Bs

p,r)

def
= ∥2js∥∆jz∥Lρ

T (Lp)∥lr with ∥z∥Lρ
T (Lp)

def
= ∥z∥Lρ(0,T ;Lp).

We then define the space L̃ρ
T (B

s
p,r) to be the set of tempered distributions z over [0, T ]×Rd such

that ∥z∥L̃ρ
T (Bs

p,r)
< ∞.

We have a similar definition in the homogeneous framework.

We set C̃([0, T ];Bs
p,r) = L̃ρ

T (B
s
p,r) ∩ C([0, T ];Bs

p,r). Let us emphasize that, according to the
Minkowski inequality, we have:

∥z∥L̃ρ
T (Bs

p,r)
≤ ∥z∥Lρ

T (Bs
p,r)

, if r ≥ ρ and ∥z∥Lρ
T (Bs

p,r)
≤ ∥z∥L̃ρ

T (Bs
p,r)

, if r ≤ ρ. (183)

Even though most of the functions we shall consider here will have range in the set of vectors
or matrices, we shall keep the same notation for Besov spaces pertaining to this case.

One of the main motivations for using Littlewood-Paley decomposition when dealing with
PDEs is that the derivatives act almost as dilations on distributions with Fourier transform
supported in a ball or an annulus, as regards Lp norms. This is exactly what is stated in the
following proposition:

Proposition 7 (Bernstein inequality). Let 0 < r < R.

• There exists a constant C so that, for any k ∈ N, pair (q1, q2) in [1,∞]2 with q2 ≥ q1 ≥ 1
and function u of Lq1 with û supported in the ball B(0, λR) of Rd for some λ > 0, we
have Dku ∈ Lq2 and ∥∥Dku

∥∥
Lq2 (Rd)

≤ Ck+1λ
k+d( 1

q1
− 1

q2
) ∥u∥Lq1 (Rd) .

• For any smooth function M on Rd\{0} with homogeneity γ, there exists a constant C such
that for any λ > 0 and any function u with Fourier transform û supported in annulus
{ξ ∈ Rd \ rλ ≤ |ξ| ≤ Rλ} of Rd, we have

∥M(D)u∥Lq2 (Rd) ≤ Ck+1λ
γ+d( 1

q1
− 1

q2
) ∥u∥Lq1 (Rd) .

• There exists a constant C so that for any k ∈ N, q ∈ [1,∞] and function u of Lq with
Supp û ⊂ {ξ ∈ Rd \ rλ ≤ |ξ| ≤ Rλ} for some λ > 0, W we have

λk ∥u∥Lq(Rd) ≤ Ck+1
∥∥Dku

∥∥
Lq(Rd)

.

In order to bound the commutator terms, we use the following results:

Proposition 8. We designate by Bs
2,r both Bs

2,r and Ḃs
2,r. The following inequalities hold true:

If σ > 0

∥[a,∆j]b∥L2 ≤ 2−qσCcj(∥∇a∥L∞ ∥b∥Bσ−1
2,1

+ ∥b∥L∞ ∥∇a∥Bσ−1
2,1

) with
∑
j

cj = 1. (184)

In particular, if σ ≥ d
2
+ 1, then it holds

∥[a,∆j]b∥L2 ≤ 2−qσCcj ∥∇a∥Bσ−1
2,1

∥b∥Bσ−1
2,1

with
∑
j≥−1

cj = 1. (185)
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Moreover if −d
2
< σ ≤ d

2
+ 1, then

∥[a,∆j]b∥L2 ≤ 2−qσCcj∥∇a∥
B

d
2
2,∞∩L∞

∥b∥Bσ−1
2,1

with
∑
j

cj = 1. (186)

We have also

∥[a,∆j]b∥L2 ≤ 2−qσC∥∇a∥
B

d
2
2,∞∩L∞

∥b∥Bσ−1
2,∞

for all − d/2 ≤ σ < d/2 + 1. (187)

Similar results hold true if we replace L2 by Lρ
T (L

2) in the l.h.s and the spaces Lρ
T (Bs

2,r) (or
L̃ρ
T (Bs

2,r)) in the r.h.s.

The following product laws in Besov spaces have been used repeatedly.

Proposition 9. Let (s, r) ∈]0,∞[×[1,∞]. Then Bs
p,r ∩ L∞ is an algebra and we have

∥ab∥Bs
2,r

≤ C(∥a∥L∞ ∥b∥Bs
2,r

+ ∥b∥L∞ ∥a∥Bs
2,r
). (188)

Moreover, if −d/2 < s ≤ d/2, then the following inequality holds:

∥ab∥Bs
2,1

≤ C ∥a∥
B

d
2
2,1

∥b∥Bs
2,1

(189)

and if −d/2 ≤ s < d/2,
∥ab∥Bs

2,∞
≤ C ∥a∥

B
d
2
2,1

∥b∥Bs
2,∞

. (190)

Finally, if s > d/2 (or s = d/2 and r = 1),

∥ab∥Bs
2,r

≤ C ∥a∥Bs
2,r

∥b∥Bs
2,r

. (191)

The above estimates hold if we replace the nonhomogeneous Besov spaces with the corresponding
homogeneous Besov spaces. We have similar results for the spaces Lρ

T (B
s
2,r), L̃

ρ
T (B

s
2,r), L

ρ
T (Ḃ

s
2,r)

and L̃ρ
T (Ḃ

s
2,r) see [7, 14].

Among the results necessary to prove our Theorems, 1.3 and 1.2, we have the following one.

Proposition 10. Let f be a function in C∞(R). Let r ∈ [1,∞] and s ∈]0,∞[. Then, if
f(0) = 0, for every real-valued function u in Bs

2,r, the function f ◦ u belongs to Bs
2,r and we

have

∥f ◦ u∥Bs
2,r

≤ C(f ′, ∥u∥L∞) ∥u∥Bs
2,r
. (192)

More generally,

∥f ◦ u− f ◦ v∥Bs
2,r

≤ C(f ′, ∥u, v∥L∞)(1 + ∥u∥
B

d
2
2,1

+ ∥v∥
B

d
2
2,1

) ∥u− v∥Bs
2,r

. (193)

Furthermore, if −d
2
≤ s < d

2
then the last inequality remains valid for r = ∞, that is,

∥f ◦ u− f ◦ v∥Bs
2,∞

≤ C(f ′, ∥u, v∥L∞)(1 + ∥u∥
B

d
2
2,1

+ ∥v∥
B

d
2
2,1

) ∥u− v∥Bs
2,∞

. (194)

Finally if −d
2
< s ≤ d

2
, then we still an inequality similar to (193)

∥f ◦ u− f ◦ v∥Bs
2,1

≤ C(f ′, ∥u, v∥L∞)(1 + ∥u∥
B

d
2
2,1

+ ∥v∥
B

d
2
2,1

) ∥u− v∥Bs
2,1

. (195)

Similar results holds for homogeneous Besov spaces and Chemin-Lerner spaces.
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Proof. The proof of (192) can be found in [2, pages 94 and 104] while (193), (194) and (195)
can obtained by adapting the proof of first inequality of [2, page 449].

Finally, the following composition estimates enable us to handle the 0-th order terms in
System (11):

Proposition 11. Let 0 ≤ n1 ≤ n and m be three integers. Let f : (X, Y ) ∈ Rn1 × Rn−n1 7→
f(X, Y ) ∈ Rm be a smooth function on Rn. Assume that f is at most linear with respect to Y
(that is, the second derivative D2

Y f of f with respect to the component Y vanishes).
If f vanishes at 0Rn, then for any 0 < s ≤ d

2
the following inequality holds true

∥f(u, v)∥Bs
2,1

≤ C(f ′, ∥u∥L∞)(∥v∥Bs
2,1

(1 + ∥u∥
B

d
2
2,1

) + ∥u∥Bs
2,1
). (196)

Furthermore if −d
2
< s ≤ d

2
, then we have for some C = C(f ′, ∥u1, u2∥L∞):

∥f(u1, v1)− f(u2, v2)∥Bs
2,1

≤ C ∥v2 − v1∥Bs
2,1

(1 + ∥u2∥
B

d
2
2,1

)

+ C(1 + ∥u1∥
B

d
2
2,1

+ ∥u2∥
B

d
2
2,1

)

(
∥u2 − u1∥

B
d
2
2,1

∥v1∥Bs
2,1

+ ∥u1 − u2∥Bs
2,1

)
· (197)

Finally if −d
2
≤ s < d

2
then we have

∥f(u1, v1)− f(u2, v2)∥Bs
2,∞

≤ C ∥v2 − v1∥Bs
2,∞

(1 + ∥u2∥
B

d
2
2,1

)

+ C(1 + ∥u1∥
B

d
2
2,1

+ ∥u2∥
B

d
2
2,1

)

(
∥u2 − u1∥Bs

2,∞
∥v1∥

B
d
2
2,1

+ ∥u1 − u2∥Bs
2,∞

)
, (198)

where C = C(f ′, ∥u1, u2∥L∞).

Proof. The Taylor formula and the fact D2
Y f = 0 guarantee the existence of two smooth

functions Λ and Γ defined on Rn1 such that

f(u, v) = Λ(u)v + Γ(u) (with Γ(0Rn1 ) = 0Rm if f(0Rn1 , 0Rn−n1 ) = 0Rm .

If 0 < s ≤ d
2

then, applying the inequalities (189) and (192) to the term Λ(u)v yields the
first term of the right-hand side of inequality (196). Next, using Proposition 10 (recall that
s > 0) for the term Λ(u) gives the second term of (196).

To prove (197) (resp.(198)), we use the above decomposition to get

f(u2, v2)− f(u1, v1) = Λ(u2)(v2 − v1) + (Λ(u2)− Λ(u1))v1 + (Γ(u2)− Γ(u1)).

Having this decomposition in hand, the first two terms of the last equality may be handled by
the inequalities (189) (resp. (190)) and (192) (resp. (194)). Concerning the last one, we use
Inequality (195) (resp. (194)) .
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