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Robust Control of Autonomous Remotely Operated
Vehicles at Exposed Aquaculture Sites

Kenny Hoang Nguyen, Walter Caharija, Sveinung Johan Ohrem,
Jan Tommy Gravdahl, Antonio Loria, Herman Biørn Amundsen

Abstract— This paper presents two adaptive nonlinear con-
trollers for robust velocity and heading control of a remotely
operated vehicle navigating in exposed aquaculture sites. The
controllers are designed to make it possible for the vehicle to
execute autonomous traversal of an aquaculture net pen using a
net-following guidance algorithm, in the presence of significant
environmental disturbances. Each of these controllers is tailored
for different physical models depending on the application
scenario. The first is suitable for slow-speed maneuvers and
the second applies to cases in which aggressive maneuvers are
needed. The second model has the added difficulty that additional
Coriolis-forces nonlinearities must be considered. Stability proofs
for the closed-loop system under the action of each controller are
provided. For the first controller, the closed-loop system is proven
to be uniformly globally asymptotically stable and uniformly
locally exponentially stable at the origin. For the second controller
the origin of the closed-loop system is proven to be uniformly
globally stable and asymptotic convergence of the velocity and
heading error states are provided for the second control law.
In addition, the paper presents simulation and experimental
results to validate and illustrate the theoretical analysis, where
the controllers are applied to an industrial underwater robot.
In particular, the first control law was successfully tested at a
full-scale aquaculture site under realistic operational conditions.

Index terms—adaptive control, non-linear control, mod-
elling, remotely operated vehicle (ROV), aquaculture, path
following.

I. INTRODUCTION

A. Motivation
Salmon farming is expanding at a steady pace worldwide

to meet the growing demand for food [1]. The Norwegian
aquaculture industry contributed in 2021 to approximately
half of the world production of farmed salmon, account-
ing for 1.6 million metric tonnes with an export value of

This work has been funded by the Norwegian Research Council through
the Center for Research Based Innovation (SFI) Exposed (grant no. 237790).
Other funding sources include the SINTEF RACE internal funding scheme and
the Norwegian Research Council project CHANGE (grant no. 313737). The
authors greatly appreciate the funding. The authors would also like to extend
their gratitude to the personnel at the SINTEF ACE research infrastructure
for assisting in field trials.

Kenny Hoang Nguyen, Jan Tommy Gravdahl and Herman Biørn Amundsen
are with the Dept. Engineering Cybernetics, Norwegian University of Science
and Technology, 7030 Trondheim, Norway (email: kennguy@hotmail.no,
jan.tommy.gravdahl@ntnu.no, herman.b.amundsen@ntnu.no)

Walter Caharija is with Siemens Energy AS, 7031, Trondheim (email:
walter.caharija@siemens-energy.com)

Sveinung Johan Ohrem and Herman Biørn Amundsen are with the Dept.
of Aquaculture Technology, SINTEF Ocean AS, 7010 Trondheim (email:
sveinung.ohrem@sintef.no, herman.biorn.amundsen@sintef.no)

Antonio Loria is with Centre National de la Recherche Scientifique, 91190
Gif-sur-Yvette, France (email: antonio.loria@cnrs.fr)

6.9 bn. EUR [2]. In order to increase production and mitigate
some of the issues related to today’s farming methods, such as
sea lice infestations, several operators in the industry are mov-
ing the production to more exposed areas, a trend supported by
Norwegian authorities [3]. The Norwegian Ministry of Trade,
Industry and Fisheries regulates the growth of the aquaculture
industry to reduce the environmental impact caused by e.g.,
increased sea lice infestations, escape of farmed fish, and the
welfare of farmed fish in production areas [4].

Remotely Operated Vehicles (ROVs) have been introduced
in aquaculture as a technology that can assist farmers and
operators in meeting the increasing requirements for inspection
of aquaculture structures from the governing bodies. To some
extent, ROVs replace divers in hazardous operations [5]. ROV
operations in aquaculture are challenging since ROV operators
are required to manage concurring tasks. In fact, they must
navigate and maneuver the vehicle in a dynamic unstructured
environment while they simultaneously monitor the fish, in-
spect the structure or perform operations such as cleaning of
nets and mooring lines. Operators execute these demanding
tasks assisted only by elementary automatic functions such as
automatic heading and depth control.

Therefore, both ROV operators and fish farmers may benefit
from more autonomous features when it comes to control of
ROVs, as autonomy decreases costs and makes operations
more effective [6]. Such autonomous functionalities must
feature robustness towards environmental disturbances as the
industry is moving towards more exposed locations where the
effects of ocean currents and waves are stronger, compared
to today’s locations closer to the shore. Robust control laws
are therefore required to maintain a specific heading angle,
track a velocity profile, or follow a path. In particular, this
paper proposes two non-linear adaptive controllers for robust
velocity and heading control of fully actuated ROVs operating
at exposed aquaculture sites.

B. Previous Work

Velocity and heading controllers for vehicles such as ROVs
are often based on the linear proportional-derivative (PD),
proportional-integral (PI) or proportional-integral-derivative
(PID) architectures. These controllers may be sufficient in
ideal scenarios [7], but their performance may be unsatisfac-
tory in the presence of large spatial and temporal variations
in the environment, and in the presence of nonlinearities.
Continuous re-adjustment of controller gains may be necessary
to obviate large offsets and oscillatory behavior [8].
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Several advanced control strategies have been proposed by
the marine control research community to address this lack of
robustness and achieve better performance in vehicle control.
For instance, adaptive feedback linearizing-based controllers
are designed for unmanned marine vehicles in [8]–[10] to
compensate for the unknown ocean currents. The proposed
controllers are designed for both fully actuated and under-
actuated marine vehicles. A simplification of the controllers
proposed in [8]–[10] is achieved in [11] at the expense of con-
trolling the vehicle’s relative velocity instead of controlling its
absolute velocity, and under the assumption of the perturbing
current being constant and irrotational. Adaptive control of
surface vessels is addressed in [12] where specific criteria to
achieve strong stability properties and simultaneously estimate
the underlying disturbance are given.

Lyapunov-based and backstepping control are used in [13]–
[16] to develop a series of robust adaptive course tracking
controllers for underactuated ships. Adaptive backstepping is
also employed in [17]–[19] to make a surface vessel track a
given course and in [20] for dynamic position (DP) of ROVs.

Neural networks and sliding mode control are combined
with adaptive backstepping to achieve path following and
navigation control of underactuated ships in the works of [21]–
[24] under the assumption of sway motion boundedness. All
these works rely on assumptions that the model parameters
are known.

Sliding mode control is a design method known for its
intrinsic robustness features with respect to disturbances and
model uncertainties [25]. Therefore, it is often employed
in marine control systems [26], [27]. However, a known
drawback with some sliding mode controllers compared to
other nonlinear controllers is chattering, which increases wear
and tear on the actuators. A way to deal with chattering is to
use higher-order sliding mode techniques such as the super-
twisting algorithm (STA) [28] or variations thereof, including
generalized STA and adaptive generalized STA techniques.
In [29], both generalized and adaptive generalized STA was
used to control an ROV operating at an aquaculture site.

C. Contribution

This paper proposes two nonlinear adaptive controllers for
robust velocity and heading control of a fully actuated ROV in
three degrees of freedom (DOFs), i.e., surge, sway and yaw,
operating in exposed aquaculture sites. Preliminary results can
be found in [30]. The two controllers are inspired by the
work of [8], [9], [11] where environmental disturbances are
modelled as irrotational ocean currents. In contrast to these
references, however, in this paper we address the case when
it is impossible to control relative velocity and it is simul-
taneously required to provide an estimation of the prevailing
disturbance. The latter requirement is not possible with the
higher-order sliding mode techniques of [29], as these offer
controller parameter adaptation only.

The papers [8] and [9] demonstrate full-state stabilization
of fully actuated and underactuated vehicles with an increased
complexity due to the presence of absolute and relative veloc-
ities in the system dynamics, and do not provide controllers

capable of estimating the underlying disturbance. The integral
line-of-sight (ILOS) guidance law, first proposed in [9], is
analyzed in [11] with full-state stabilization, but employs a
relative velocity approach for underactuated surface vessels as
well as underactuated underwater vehicles.

The relative velocity approach of [11] models the ocean
current disturbance as a bias in the kinematics of the closed-
loop system, thereby making it possible to avoid the unknown
terms in the system dynamics. In turn, this simplifies the
design of the velocity and heading controllers. This results
in strong stability properties for the closed-loop system, i.e.,
uniform global asymptotic stability (UGAS) and uniform local
exponentially stability (ULES) at the origin, or equivalently
global κ-exponential stability [31], at the expense of control-
ling the relative velocity of the vehicle instead of the absolute
velocity. In some cases, however, it is impossible to control the
relative velocity. This may be due to sensor limitations, or due
to the nature of the control objective, e.g., following a certain
ground speed, as required by the task addressed in [8]. In
such cases, the relative velocity approach from [11] cannot be
applied, and alternative velocity and heading control strategies
are required if the objective is to achieve robustness, strong
stability properties, and a reliable estimation of the prevailing
environmental disturbance.

The two controllers proposed in this paper perform absolute
velocity control (i.e. ground speed control). In particular, the
first controller is derived using a simplified 3-DOF non-linear
control plant model, while the second controller considers a
more complex, non-linear 3-DOF control plant model. The
first controller, hereafter referred to as C1, follows the design
strategy outlined in [12] and utilizes an adaptation law to
ensure that the origin of the closed-loop system is UGAS and
ULES without a persistency of excitation requirement often
required by adaptive controllers [32]. The controller is also
able to estimate the acting disturbance vector. As opposed
to the systems analyzed in [12], [15], [33], the disturbance
in this paper is modelled as an irrotational ocean current,
and not as a pure force vector. This difference in modeling
approach is required as the controllers proposed in this paper
are designed for path following or trajectory tracking purposes
which have a different velocity range compared to station
keeping or weather waning solutions [34].

To validate the theoretical results, the controller C1 is
demonstrated in simulations, and in experiments using an in-
dustrial ROV. In particular, the controller C1 was successfully
tested at a full-scale aquaculture site under realistic operational
conditions. The results show that C1 successfully compensates
the disturbances under significant spatial variations, and that
the ROV follows the given reference signals with negligible
offsets and limited transients compared to a PID controller.

The second controller, hereafter referred to as C2, builds
on the first but it is tailored for a more complex plant model
that takes into account more of the non-linearities in the
underlying system. Such non-linearities may arise when high
rotational rates (e.g., r ≥ 0.05 rad/s ≈ 3 deg/s) are generated
by aggressive maneuvers, e.g., when the ROV reactively avoids
obstacles or follows a net that presents tight bends and sharp
corners [35]. Hence, the controller C2 is expected to be
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Fig. 1: Body frame axis on the Argus Mini ROV

more robust than C1. In particular, the adaptive law of C2 is
expanded to adapt and compensate for unknown higher-order
disturbances. For C2, the origin of the closed-loop system is
proved to be uniformly globally stable (UGS). Furthermore, it
is showed that the velocity and heading error states converge
asymptotically and uniformly to zero. The performance of the
controller C2 is validated in simulations.

D. Manuscript Structure

The remainder of the paper is structured as follows: Sec-
tion II introduces the prerequisities for the control plant
models, and the control objective. Section III presents the first
control law and its stability analysis. Section IV presents the
second control law and its stability analysis. Section V presents
the simulation setup while Section VI presents the simulations
results for both controllers. Section VII presents the results
from a full scale trial where controller C1 is compared to a PID
controller in similar operating conditions. Lastly, conclusions
and proposals for future work are given in Section VIII.

II. MODEL PREREQUISITES AND CONTROL OBJECTIVE

A. Model Prerequisites

The control plant models [36] of the ROV are defined
based on 3 DOFs: surge, sway and yaw. The kinematics of
the vehicle are given in the North-East-Down (NED) frame,
denoted {n}, while the dynamics are described in the body-
fixed coordinate frame, denoted {b}. The local ROV body-
fixed frame is illustrated in Figure 1.

For both control plant models the state of the ROV is given

by the vector
[
ηn

>
νb

>
]>

where ηn =
[
x y ψ

]>
is the

generalized vector describing position and orientation of the
ROV in {n} and νb =

[
u v r

]>
describes the linear and

angular velocity of the ROV in {b}. The following assumptions
apply to both presented control plant models:

Assumption 1: The roll and pitch motion of the ROV can
be neglected due to passive stabilization properties.

Assumption 2: The ROVs weight and buoyancy are equal
(the vehicle is neutrally buoyant), i.e., it will not move in the
heave (vertical) direction without influence from an external

force. Hence, the motion in heave can be neglected. In
addition, the vehicle centre of gravity (CG) and the centre
of buoyancy (CB) are located in the same vertical axis in {b}.

Remark 1: Most ROVs are designed to be slightly posi-
tively buoyant so that they rise to the surface, in the case of
a system shut down. For all practical purposes the ROV can
be assumed to be neutrally buoyant.

Assumption 3: The ROV is symmetric in port-starboard,
fore-aft and bottom-top.

Assumption 4: The body-fixed frame center of origin (CO)
is located in the CG.

Remark 2: Assumption 1-Assumption 4 are common as-
sumptions when designing control plant models of ROVs and
can be found in other works such as [8] and [37].

Assumption 5: The ROV operates at speeds that are less
than 2 m/s.

Remark 3: The ROV has four thrusters actuating the DOFs
in the horizontal plane. The thrusters have physical limitations
and cannot generate enough force for the ROV to achieve
speeds over 2 m/s.

Assumption 6: The hydrodynamic damping is linear.
Remark 4: Non-linear damping is not considered in order

to reduce the complexity of the controllers. For low-speed
maneuvering, Assumption 6 is considered a mild assumption
since the passive nature of any non-linear hydrodynamic
damping enhances the directional stability of the vehicle, [8],
[10]. On the other hand, the linear damping terms dominate
the non-linear terms at low speeds.

Assumption 7: The ocean current is constant, irrotational
and bounded with a velocity vector Vn

c = [Vx Vy 0]> in {n}.
Therefore there exists a constant Vmax > 0 such that Vmax ≥√
V 2
x + V 2

y . Furthermore, due to the current being constant in

the inertial frame {n}, the time-derivative is V̇n
c = 0.

B. Control Objective

The primary control objective is to make the vehicle track
the desired time-varying velocity and heading references in 3-
DOF, in the presence of unknown, constant, and irrotational
ocean currents. A secondary objective is to estimate the
underlying disturbance, i.e., the ocean current vector. The
primary control objective is formalized as follows:

lim
t→∞

|u(t)− ud(t)| = 0, (1a)

lim
t→∞

|v(t)− vd(t)| = 0, (1b)

lim
t→∞

|ψ(t)− ψd(t)| = 0, (1c)

where ud(t), vd(t) and ψd(t) are the desired reference signals
assumed to be uniformly bounded and smooth, see Assump-
tion 8 below. The secondary control objective is formalized as
follows:

lim
t→∞

[
V̂x(t)− Vx

]
= 0, (2a)

lim
t→∞

[
V̂y(t)− Vy

]
= 0 , (2b)

where V̂x and V̂y are the estimates of Vx and Vy , respectively.
Finally, the following assumption is introduced:
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Assumption 8: The reference signals ud(t), vd(t) and ψd(t)
are uniformly bounded class C2 functions.

Remark 5: Assumption 8 does not represent a limitation for
any practical implementation since all the reference signals
can be considered, in practice, to be continuous, bounded and
differentiable.

III. FIRST CONTROL PLANT MODEL AND CONTROLLER
C1

A. First Control Plant Model

Under Assumption 5 one can employ low-speed maneu-
vering models for control design purposes. Such models are
similar to DP models [36], [38], but instead of modeling the
disturbance using a force vector, the relative velocity is used
in the low-speed approach. The first control plant model relies,
in addition to the aforementioned assumptions, on two other
assumptions:

Assumption 9: The desired heading ψd is slowly varying
and the vehicle experiences very low rotation rates r, i.e. |r| <
0.05 rad/s ≈ 3 deg/s. Therefore, the Coriolis-centripetal forces
are neglected, and ψ̇d ≈ 0.

Remark 6: Assumption 9 is valid in a regime where the
ROV performs smooth maneuvers, such as when the vehicle
is required to follow a flat net pen [35], strengthened by the
fact that the ROV is assumed to maneuver at low speeds
(Assumption 5).
Following Assumptions 1-9, the 3-DOF control plant maneu-
vering model of the ROV, which is adequate for slow-speed
maneuvering tasks, is given by the equations

η̇n = R(ψ)νb (3a)

MRBν̇
b +MAν̇

b
r +Dνbr = τC1 , (3b)

where ηn,νb ∈ R3 and the matrix R(ψ) ∈ R3×3 is the
principal rotation matrix around the z-axis. In addition, νbr ,
νb − νbc is the relative velocity vector of the vehicle with
respect to the ocean current. In the frame {b}, the current
velocity is

νbc = R>(ψ)Vn
c =

[
uc vc 0

]>
. (4)

The matrices MRB = M>
RB > 0 ∈ R3×3 and MA =

M>
A > 0 ∈ R3×3 describe the rigid-body inertia and the

added mass, respectively, whileD > 0 ∈ R3×3 is the damping
matrix. The matricesR(ψ),MRB ,MA andD are as follows:

R(ψ) ,

cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 , (5a)

M i ,

mi
11 0 0
0 mi

22 0
0 0 mi

33

 , D ,

d11 0 0
0 d22 0
0 0 d33

 ,
(5b)

where i ∈ {RB,A}. The control forces and moments acting
on the vehicle are collected in the vector

τC1 =
[
τC1,u τC1,v τC1,r

]>
(6)

and the following assumption is introduced
Assumption 10: Thruster failures are not considered and the

ROV is fully actuated at all times.

B. First Control Plant Model in Component Form

To solve the control design problem it is useful to expand
the kinematic and kinetic equations, (3a) and (3b), into their
component forms. The time-derivative of the current velocity
vector in {b}, (4) is

ν̇bc =
d

dt

(
R>(ψ)Vn

c

)
=
[
rvc −ruc 0

]>
, (7)

the 3-DOF control plant model may be written as

ẋ = u cos(ψ)− v sin(ψ), (8a)
ẏ = u sin(ψ) + v cos(ψ), (8b)

ψ̇ = r, (8c)

u̇ = − d11
m11

u+ φ>u V̄n
c +

1

m11
τC1,u, (8d)

v̇ = − d22
m22

v + φ>v V̄n
c +

1

m22
τC1,v, (8e)

ṙ = − d33
m33

r +
1

m33
τC1,r , (8f)

where mii , mRB
ii +mA

ii , V̄n
c =

[
Vx Vy

]>
, and

φu =

[
d11
m11

cos(ψ)− mA11
m11

r sin(ψ)
d11
m11

sin(ψ) +
mA11
m11

r cos(ψ)

]
, (9a)

φv =

[
− d22
m22

sin(ψ)− mA22
m22

r cos(ψ)
d22
m22

cos(ψ)− mA22
m22

r sin(ψ)

]
. (9b)

C. Surge, Sway and Yaw Control for the First Model

This part presents the controller C1 that achieves the
primary and secondary control objectives (1) and (2). Its
derivation is based on the control plant model given by (3a)
and (3b).

First, a heading controller able to track the desired heading
ψd(t) is proposed. Let

τC1,r = m33ṙd(t) + d33rd(t)− kp,ψψ̃ − kd,ψ r̃, (10)

where kp,ψ and kd,ψ > 0 are constant controller gains, m33,
d33 > 0, and we introduced the closed-loop states ψ̃ := ψ −
ψd(t) and r̃ := r − rd(t). After Assumption 8, rd(t) = ψ̇d(t)
is bounded and smooth. τC1,r above is a PD-controller with
reference feedforward, designed to steer r → rd(t) and ψ →
ψd(t). More precisely, we have the following.

Lemma 1: With d33, kd,ψ, kp,ψ, m33 > 0, and if assump-
tions 1-8 hold, the origin of the closed-loop subsystem for
yaw, resulting from (8f) and (10):

˙̃r = −
(
d33 + kd,ψ

m33

)
r̃ − kp,ψ

m33
ψ̃, (11a)

˙̃
ψ = r̃ (11b)

is uniformly globally exponentially stable (UGES).
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Proof: The eigenvalues of the subsystem, which is linear
in r̃ and ψ̃, can be calculated by finding the zeros of the
characteristic equation:

λ2 +
d33 + kd,ψ

m33
λ+

kp,ψ
m33

= 0 . (12)

The eigenvalues are strictly negative for all gains
kd,ψ, kp,ψ > 0, and the solution will thus converge uniformly
and exponentially to the origin for any initial values r̃(0) = r̃0
and ψ̃(0) = ψ̃0.

Next, we introduce the velocity controller. Given the desired
velocities ud(t) and vd(t) let vd =

[
ud vd

]>
and v =[

u v
]>

and let us define the error state variables:

z1 := v − vd (13)

z2 := V̄n
c − ˆ̄Vn

c , (14)

where ˆ̄Vn
c =

[
V̂x V̂y

]>
is the estimate of the actual ocean cur-

rent velocity V̄n
c . Then, the following controller is proposed:

Zτ̄C1 = D2vd +M2

(
v̇d −Kpz1 −G(t) ˆ̄Vn

c

)
(15)

˙̄̂
Vn
c = ΓG(t)>z1, (16)

where

M2 =

[
m11 0

0 m22

]
(17)

D2 =

[
d11 0
0 d22

]
(18)

Kp =

[
kp,u 0

0 kp,v

]
(19)

G(t) =

[
d11
m11

cos(ψd(t))
d11
m11

sin(ψd(t))

− d22
m22

sin(ψd(t))
d22
m22

cos(ψd(t))

]
, (20)

kp,u, kp,v > 0 are constant control gains, and the matrix Γ =
Γ> > 0 ∈ R2×2 is a diagonal matrix containing the constant
adaption gains to update ˆ̄Vn

c .

D. Stability Analysis for Controller C1

The closed-loop system corresponding to the velocities is
obtained by differentiating on both sides of (13) and (14). For
the latter, since the current V̄n

c is constant (Assumption 7),
we have

ż2 = − ˙̄̂
Vn
c , (21)

Then, we can use (16). On the other hand, we split τ̄C1 in
(15) as τ̄C1 =:

[
τC1,u τC1,v

]>
and we use (15) and (17)–

(20) to find the explicit expressions of τC1,u and τC1,v , and
use them in (8d) and (8e). Thus, we obtain

ż1 = −(M−1
2 D2 +Kp)z1 +G(t)z2 + g(θ, t)θ, (22)

ż2 = −ΓG(t)>z1 (23)

where θ ,
[
r̃ ψ̃

]>
and g(θ, t) is a bounded function

describing the influence of θ on the velocity states. The
explicit definition of g(θ, t) is given in Appendix A.

It is important to remark that the overall closed-loop system,
given by Equations (10) and (22)-(23) has a cascaded form.

Since the interconnection term g(θ, t) is independent of z and
uniformly bounded in t, and the θ-dynamics is UGES (Lemma
1), with the purpose of invoking a cascades argument (see
Theorem 1 farther below) we establish next that the origin is
UGAS for (22)-(23).

Consider an unperturbed version of the system described
by (22) and (23), i.e., omitting the term g(θ, t)θ.

Lemma 2: With M2, D2, Kp and G(t) as in (17)-(20),
respectively, Γ = Γ> > 0 ∈ R2×2, and under Assumptions 1-
8 the origin of the unperturbed closed loop velocity error
system given by

˙̃v = −(M−1
2 D2 +Kp)ṽ +G(t) ˜̄Vn

c (24a)
˙̃Vn
c = −ΓG(t)>ṽ (24b)

is UGAS and ULES.
Proof: Consider the nominal system obtained from (24a)

by discarding the term G(t) ˜̄Vn
c :

˙̃v = −(M−1
2 D2 +Kp)ṽ. (25)

It is first shown that (25) is UGES. Consider the positive
definite radially unbounded Lyapunov function candidate:

k1‖ṽ‖2 ≤ V (ṽ) =
1

2
ṽ>ṽ ≤ k2‖ṽ‖2 . (26)

It can be shown that there exists a k3 > 0 such that:

V̇ (ṽ) = −ṽ>(M−1
2 D2 +Kp)ṽ ≤ k3‖ṽ‖2 . (27)

This is due to the fact that M2, D2 and Kp are positive
definite matrices. Then, by applying [25, Thm. 4.10] the origin
of the nominal system is UGES. Furthermore, we have

G(t)>G(t) =[
a1 cos2(ψd) + a2 sin2(ψd) a3 cos(ψd) sin(ψd)

a3 cos(ψd) sin(ψd) a1 sin2(ψd) + a2 cos2(ψd)

]
≥ bmI ,

(28)
where bm > 0 and

a1 =

(
d11
m11

)2

(29)

a2 =

(
d22
m22

)2

(30)

a3 =

(
d11
m11

)2

−
(
d22
m22

)2

. (31)

The last inequality in (28) follows from the fact that the
principle minors of G(t)>G(t) are strictly positive. Indeed,
on one hand, a1 cos2(ψd) + a2 sin2(ψd) ≥ min{a1, a2} while
the determinant of this matrix satisfies

|G>G|
=
(
a1 cos2(ψd) + a2 sin2(ψd)

) (
a1 sin2(ψd) + a2 cos2(ψd)

)
− a23 sin2(ψd) cos2(ψd)

= a1a2[sin4(ψd) + 2 cos2(ψd) sin2(ψd) + cos4(ψd)]

= a1a2(sin2(ψd) + cos2(ψd))
2

= a1a2 > 0 .
(32)
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Heading dynamics

Velocity dynamics

ψ̃, r

Current estimations

Heading reference

Velocity references

V̂x, V̂y

ũ, ṽ

Σ1

Σ2

Fig. 2: The cascaded system

For the second equality above we completed the squares using
the values given for a1, a2 and a3 in (29)-(31). Therefore, all
the assumptions of [12, Thm. 1] are satisfied and UGAS and
ULES for the origin of the system (22) and (23) follows.

From the previous Lemmata we obtain the following.
Theorem 1: The origin of the heading error system with the

controller from (10), in cascade with the velocity error system
of (22) with the adaptive laws given in (23) is UGAS and
ULES under Assumption 1-10 for the control plant model (8).

Proof: Define x1 ,
[
r̃ ψ̃

]>
and x2 ,

[
ṽ Ṽ c

]>
.

Then,

Σ1 : ẋ1 = f1(t,x1) , (33)
Σ2 : ẋ2 = f2(t,x2) + g(θ, t)x1 . (34)

The origin {x1 = 0} is shown to be UGES for Σ1. Fur-
thermore, the interconnection term g(t) is bounded element-
wise by application of L’Hôpital’s rule [39], see Appendix A.
As such the cascaded system (Σ1,Σ2) given by (33)-(34)
and shown in Figure 2 satisfies the assumptions required for
applications of [40, Thm. 2] and the cascaded system (Σ1,Σ2)
is UGAS. Furthermore, both (33) and (34) satisfy conditions
for κ-exponential stability as defined in [41, Def. 2.2.9] and
as such, by [42, Lemma 8] the cascaded system (Σ1,Σ2) is
κ-exponentially stable, i.e., UGAS and ULES and the origin
{x2 = 0} is shown to be UGAS for ẋ2 = f2(t,x2).

This means that the proposed controller C1 achieves the
primary control objectives (1) as well as the secondary control
objectives (2) with UGAS and ULES properties.

IV. SECOND CONTROL PLANT MODEL AND CONTROLLER
C2

A. Second Control Plant Model

The first control plant model does not consider the Coriolis-
centripetal forces, which may arise when the ROV performs
more aggressive maneuvers to avoid obstacles or attempts to
follow a net with sharp bends and corners [35]. Therefore the
second control plant model omits Assumption 9 and expands
the first control plant model to also consider the nonlinear
Coriolis-centripetal term. The maneuvering model of the 3-

DOF ROV then becomes:

η̇ = R(ψ)ν (35a)
MRBν̇ +MAν̇r +Dνr +CRB(ν)ν +CA(νr)νr = τC2,

(35b)

where the matrices and vectors are as defined in (5a), (5b)
and (6), ur and vr are the relative surge and sway velocities,
respectively, and

CRB(ν) =

 0 0 −mRB
22 v

0 0 mRB
11 u

mRB
22 v −mRB

11 u 0

 (36)

CA(νr) =

 0 0 −mA
22vr

0 0 mA
11ur

mA
22vr −mA

11ur 0

 (37)

represent the rigid body and added mass Coriolis and cen-
tripetal forces, respectively.

The model, in its component form, becomes:

ẋ = u cos(ψ)− v sin(ψ), (38a)
ẏ = u sin(ψ) + v cos(ψ), (38b)

ψ̇ = r, (38c)

m11u̇+ (mA
11 −mA

22)r(Vx sin(ψ)− Vy cos(ψ))

+d11(u−Vx cos(ψ)− Vy sin(ψ))−m22vr = τC2,u ,
(38d)

m22v̇ − (mA
11 −mA

22)r(Vx cos(ψ) + Vy sin(ψ))

+d22(v+Vx sin(ψ)− Vy cos(ψ)) +m11ur = τC2,v ,
(38e)

m33ṙ + d33r+(m22 −m11)uv − (mA
11 −mA

22)v>φ(ψ)V̄n
c

+
1

2
(mA

11 −mA
22)V̄n>

c φ(2ψ)V̄n
c = τC2,r,

(38f)

where V̄n
c ,

[
Vx Vy

]>
, v ,

[
u v

]>
, and

φ( · ) ,

[
sin( · ) − cos( · )
− cos( · ) − sin( · )

]
. (39)

B. Surge, Sway and Yaw Control for the Second Model

In this section the controller C2 for the 3-DOF control plant
model given by (35a) and (35b) is proposed. The controller
C2 achieves the primary control objective as follows:

τC2 =Mν̇d +Dνd + s+ â

−MKν̃aug −MaugGC2(νaug, t)
ˆ̄Vn
c ,

(40)

where M , MRB + MA, νd =
[
ud vd rd

]>
, ν̇d =[

u̇d v̇d ṙd
]>

. The vector ν̃aug is defined as:

ν̃aug =
[
ũ ṽ r̃ ψ̃

]>
, (41)

where ũ = u − ud, ṽ = v − vd, r̃ = r − rd and ψ̃ =
ψ − ψd. A feedback linearizing term, s, and a vector for
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handling unknown quadratic terms arising in this model, â,
are introduced. These terms are defined as:

s ,

 −m22vr
m11ur

(m22 −m11)uv

 , (42)

â ,

 0
0

(mA
22 −mA

11)α>e ê

 , (43)

where:

αe =

− 1
2 sin(2ψ)
cos(2ψ)
1
2 sin(2ψ)

 , ê =

 V̂ 2
x

V̂xVy

V̂ 2
y

 . (44)

The matrices are defined as in (5b), in addition to:

Maug ,

m11 0 0 0
0 m22 0 0
0 0 m33 0

 , (45)

K ,

kpu 0 0 0
0 kpv 0 0
0 0 kdψ kpψ

 , (46)

GC2(νaug, t) :=


gC2,11 gC2,12

gC2,21 gC2,22

gC2,31 gC2,32

0 0

 , (47)

where the elements of the GC2(νaug, t) are defined as:

gC2,11 =
mA

22 −mA
11

m11
r sin(ψ) +

d11
m11

cos(ψ), (48a)

gC2,12 = −m
A
22 −mA

11

m11
r cos(ψ) +

d11
m11

sin(ψ), (48b)

gC2,21 = −m
A
22 −mA

11

m22
r cos(ψ)− d22

m22
sin(ψ), (48c)

gC2,22 = −m
A
22 −mA

11

m22
r sin(ψ) +

d22
m22

cos(ψ), (48d)

gC2,31 = −m
A
22 −mA

11

m33
(u sin(ψ)− v cos(ψ)), (48e)

gC2,32 =
mA

22 −mA
11

m33
(u cos(ψ) + v sin(ψ)). (48f)

Remark 7: The terms above depend on νaug and t through
ψ = ψ̃ + ψd(t)—see (41), but these arguments are not made
explicit to avoid a cumbersome notation.
The estimate for ˆ̄Vn

c is governed by the following update law:

˙̄̂
Vn
c = Γ1GC2(νaug, t)

>
(
∂W (ν̃aug)

∂νaug

)>
(49)

where W : R4 → R is a class C1 function satisfying properties
as in [12] that is function is given explicitly farther below.
Given ẽ , [V 2

x VxVy V
2
y ]> − ê and due to Assumption 7,

˙̃e = − ˙̂e. As such the error variable containing the quadratic
terms, ê, is updated using:

˙̂e = −m
A
22 −mA

11

m33
Γ2αe(m33r̃ + εψ̃). (50)

The matrices Γ1 ∈ R2×2 and Γ2 ∈ R3×3 are positive definite,
diagonal tuning matrices. In addition the tuning parameter ε
is chosen such that:

0 < ε < min

 d33kpψ +m33kpψkdψ

kpψ + 1
4

(
d33
m33

+ kdψ

) ,m33

√
kpψ

 (51)

C. Stability Analysis for Controller C2

The stability analysis for controller C2 given by (40) is
provided here and shows that the closed-loop system of (35a)
and (35b) with the proposed controller C2 converges to zero
for ν̃aug. The matrices and vectors are as in Section IV-B.

The closed-loop system describing the ROV is first pre-
sented in terms of the error variable given in (41). Consider
the following positive definite, radially unbounded function

W (ν̃aug) ,
1

2
ν̃>augP ν̃aug (52)

where

P =


m11 0 0 0

0 m22 0 0
0 0 m33 ε
0 0 ε m33kpψ

 , (53)

and (
∂W (ν̃aug)

∂νaug

)>
=


m11ũ
m22ṽ

m33r̃ + εψ̃

m33kpψ ψ̃ + εr̃

 . (54)

Inserting the control law (40) into (35b), and using error
variables ν̃aug from (41), and

˜̄Vn
c = V̄n

c − ˆ̄Vn
c , (55)

respectively, and

ẽ =

VxVx − V̂xVxVxVy − V̂xVy
VyVy − V̂yVy

 (56)

gives the closed-loop system of the ROV in the following form

˙̃νaug = −Aν̃aug + σ(v, ẽ) +GC2(νaug, t)Ṽ
n
c (57)

where

A ,


d11
m11

+ kpu 0 0 0

0 d22
m22

+ kpv 0 0

0 0 d33
m33

+ kdψ kpψ
0 0 1 0

 (58)

and

σ(v, ẽ) ,


0
0

mA11−m
A
22

m33
ẽ>αe

0

 (59)

Theorem 2: The origin of the full closed-loop system (57)
with the adaptive laws (49) and (50) is UGS under Assump-
tion 1-7, Assumption 10 and Assumption 8.
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Proof: Choose the positive definite and radially un-
bounded Lyapunov function candidate

V (ν̃aug, Ṽ
n
c , ẽ) = W (ν̃aug) +

1

2
Ṽn>

c Γ−11 Ṽn
c +

1

2
ẽ>Γ−12 ẽ

(60)
with W (ν̃aug) as defined in (52), and Ṽn

c and ẽ as in (55)
and (56), respectively. Further, Γ1 = Γ>1 > 0 ∈ R2×2 and
Γ2 = Γ>2 > 0 ∈ R3×3.

The time derivative of (60) along the trajectories of the
system (57), with the chosen adaptive laws (49) and (50)
inserted, results in (with a slight abuse of notation)

V̇ = −ν̃>augHν̃aug (61)

where

H =

[
H1 02×2
02×2 H2

]
(62)

with H1 = diag{d11 +m11kpu , d22 +m22kpv} and

H2 =

[
d33 +m33kdψ − ε 1

2ε(
d33
m33

+ kdψ )
1
2ε(

d33
m33

+ kdψ ) kpψε

]
. (63)

By application of Sylvester’s criterion, the matrix H is pos-
itive definite. Furthermore, ε is chosen such that the bounds
in (51) hold. Thus, the origin of the closed-loop system (57)
is uniformly stable, according to [25, Thm. 4.8]. Furthermore,
since (60) is radially unbounded, the origin is globally uni-
formly stable.

Corollary 1: The error term ν̃aug converges to zero.
Proof: Consider the time derivative of (61) along it’s

trajectories

V̈ = −2ν̃>augH ˙̃νaug , (64)

where all signals are bounded as a consequence of the
UGS property of Theorem 2. As such V (ν̃aug, Ṽ

n
c , ẽ) is

lower bounded and V̇ (ν̃aug, Ṽ
n
c , ẽ) is negative semi-definite

and uniformly continuous. Through applications of Barbǎlat’s
lemma [43, Ch. 4.5.2] V̇ (ν̃aug, Ṽ

n
c , ẽ)→ 0 and thus ν̃aug →

0 as t→∞ is ensured.
This means that the second control law achieves the primary
control objective (1).

V. SIMULATION AND EXPERIMENTAL SETUP

A. Path Following Algorithm

In order to traverse a net pen the guidance law from [8]
is used. This algorithm generates a desired heading angle, as
well as desired velocities in the surge and sway DOF which
assures that objective of following the net pen is achieved.

B. Reference Model

The reference model smooths out signals in order to avoid
bandwidth problems in the control system. In addition, the
reference model provides reference values for higher-order
reference terms, e.g., velocity and acceleration. A second-
order low pass filter is proposed for the velocity references,
smoothing out the reference velocity value and generating

the desired acceleration. The velocity reference model used
is given as [38, Ch. 10.2.1][

üd
v̈d

]
= −2

[
ζuωu 0

0 ζvωv

] [
u̇d
v̇d

]
−
[
ω2
u 0

0 ω2
v

] [
ud − uref
vd − vref

]
(65)

where ζu, ζv > 0 are the relative damping ratios, ωu, ωv > 0
are the natural frequencies, and uref, vref are the velocity in
surge or sway calculated by the path following algorithm.

For the second controller, a third-order reference model for
the heading angle was designed. This reference model provides
reference values for yaw, yaw rate and yaw acceleration and
is given by

...
ψd+(2ζψ+1)ωψψ̈d+(2ζψ+1)ω2

ψψ̇d+ω3
ψψd = ω3

ψψref (66)

where ζψ is the relative damping ratio, ωψ is the natural
frequency, and ψref is the heading angle calculated by the path
following algorithm.

VI. SIMULATION

The control plant model of the ROV for both C1 and C2,
given in (3) and (35), respectively, as well as the controllers
C1 (as given in (15) and (16)) and C2 (as given in (40), (49)
and (50)) were implemented in the simulation software FhSim
which is a software platform and framework for mathematical
modeling and numerical simulation, with a focus on marine
applications, developed at SINTEF Ocean [44], [45].

The matrices of (3) and (35) used in the simulations, and
from which other required matrices are derived, are as follows

MRB = diag [90, 90, 13] (67)
MA = diag [54, 72, 5.2] (68)
D = diag [250, 200, 15] . (69)

The current velocity was set to Vx = Vy = 0.1m/s in all
simulations which implies V 2

x = V 2
y = VxVy = 0.01m/s.

The net pen was simulated using a model of a static circular
net cage [46]. For the guidance law, the desired distance to
the net was set to 3 m, while the desired speed Ud was set
to 0.3m/s for C1 and 0.5m/s for C2. A higher velocity value
was used for C2 in order to excite the coupling effects of the
Coriolis-centripetal forces and thus make the control objective
more challenging.

The parameters for both controllers used in the simulations
are found in Table I. All parameters where found through trial
and error where the aim was to achieve a smooth transient
response with fast convergence and low overshoot.

A. Simulation Results

1) Controller 1: Figure 3 shows the simulation results using
C1 as given in (15) and (16). The controller tracks the velocity
references with very low error. The velocities of the ROV
are shown in the top two plots in Figure 3 where the actual
velocities are given in blue, and the red dashed lines represent
the desired velocities from the reference model.

The estimated ocean currents are given in the third and
fourth plots of Figure 3. The simulated ocean current was
constant in the NED frame (dashed yellow and purple lines
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TABLE I: Controller parameters used in simulations
Parameter C1 C2
ωu,v 2 2
ζu,v 1 1
Vmax 0.5 0.5
εVi 0.2 0.2
γx 3.5 0.01
γy 3.0 0.01
kp,u, kp,v 4.0 5.0
kp,ψ 15 46.6
kd,ψ 0.1 14.0
ωψ - 1.6
ζψ - 1.0
εψ - 0.1
γe,i - 0.0001

in the third plot), but the effects of the current on the ROVs
BODY frame (dashed yellow and purple lines in the fourth
plot) varies as the ROV moves along the circular path. From
the third plot it is clear that the estimated current velocity
(solid blue and red lines) in the NED frame is accurately
estimated. Further, from the fourth plot of Figure 3, it is clear
that the effects of the current in the BODY frame (solid red
and blue lines) are also accurately estimated.

As can be seen in the bottom plot of Figure 3 the heading
controller given in (10) ensures that the actual heading angle
(blue solid line) tracks the desired heading angle (red dashed
line) accurately.

2) Controller 2: Figure 4 shows the simulation results using
C2 as given in (40), (49) and (50). As can be seen from the
top two plots of Figure 4 the controller accurately tracks the
velocity references with very low error. The actual velocities
are given in blue and the desired velocities are given as red
dashed lines. The currents in both the NED and BODY frame
are accurately estimated using C2. The third plot of Figure 4
shows the estimated (solid blue and red lines) and actual
(dashed yellow and purple lines) currents in the NED frame,
while the fourth plot of Figure 4 shows the estimated (blue and
red lines) and actual (dashed yellow and purple lines) currents
in the BODY frame. From the bottom plot of Figure 4 it is
clear that the desired heading is tracked accurately.

C2 also includes estimates of the higher order currents in the
NED frame. These are given in Figure 5. Estimated currents
are represented by the blue, red and yellow solid lines while
the actual currents are given by the dashed purple line. The
higher order current estimates are not guaranteed to converge
to the actual values and it is clear from Figure 5 that they
do not. The control objectives as described in (1) and (2) are,
however, still achieved.

VII. EXPERIMENT AT SINTEF ACE LIVE FISH FARM

A. Experimental Setup and Vehicle Description

To experimentally validate controller C1, a set of field
experiments was conducted in a fish cage at SINTEF ACE,
a full-scale aquaculture laboratory off the coast of Norway.
The experiments were conducted in the presence of fish, but
these were in no way affected by the presence of the ROV.
Thus, the experiments did not require review or oversight from
a governing body or ethics committee.

The vehicle used in the field trials was a 90 kg Argus Mini
ROV with dimensions 0.9m, 0.65m, 0.6m, in length, width
and height, respectively.

The ROV has four horizontal thrusters and two vertical
thrusters. The horizontal thrusters have azimuth angles of
α = ±35◦, actuating the surge, sway and yaw DOFs. A Nortek
1000 Doppler Velocity Logger (DVL) was used to measure the
distance, velocity and heading relative to the net structure.

B. Practical Implementation Aspects of Controller C1

The ROV used in the field trials has thrusters that may
saturate. Furthermore, the adapted terms generated by (16)
may increase to infeasible, unrealistic values due to e.g.
measurement noise. As such, two anti-windup schemes are
implemented as part of the controller C1.

1) Clamping: Clamping is a rather simple anti-windup
scheme that stops the estimated states from growing when
the thrusters are saturated, i.e.,

˙̂
V c =


0, if τmax,n < τDOF,n < τmin,n

∧ sign
(

˙̂
V c

)
= sign (τDOF,n)

−ΓG>(t)ṽ, otherwise

(70)

where τDOF,n is the calculated control force in DOF n and
τmax,n and τmin,n is the maximum and minimum available
thrust in DOF n, respectively. The implementation of the
clamping algorithm requires the calculation of the maximum
actuation force that the ROV can exert in each DOF. The
calculated control input is compared to this limit. Furthermore,
the clamping algorithm checks if the adaptive law is pushing
the control input further into wind-up by comparing the signs.

2) Projection: The second anti-windup scheme imple-
mented is projection. The projection operator is designed to
keep the estimated variables within a pre-defined bound. In
this particular case, the ocean currents in {n} are estimated. As
such and upper bound V̂max ≤ Vmax as stated in Assumption 7
is used in the projection. A projection scheme similar to that
given in [47] is used in this work and is defined as follows

˙̂
Vi = γiProj(V̂i, yp) (71)

with yp = G>ṽ, and

Proj(V̂i, yp) ,

{
yp, if g(V̂i) < 0 ∨ g(V̂i) ≥ 0 ∧∇g>yp ≤ 0

yp − ∇g∇g
>ypg

‖∇g‖2 , if g(V̂i) ≥ 0 ∧∇g>yp ≥ 0 .
(72)

where

g(V̂i) =
(εVi + 1)V̂ >i V̂i − V 2

max

εViV
2
max

(73)
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Fig. 3: Results from simulations of C1 and the heading controller on
the control plant model.
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Fig. 4: Results from simulations of C2 on the control plant model.
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Fig. 5: Estimates of the higher order NED currents from simulations
of C2 on the control plant model.

is a smooth function with εVi > 0 as the projection tolerance
bound, ||V̂i|| ≤ V 2

max and gradient ∇g(V̂i) = 2
εVi+1

εViV
2
max

V̂i.
3) Controller Tuning for Field Trial: Experience from

previous sea trials recommends to relax the controller gains
obtained from simulations. Therefore, the time constant for the
C1 reference model in surge and sway was set to T = 1.0s.
The projection operator was tuned with Vmax = 0.5 and
projection tolerance εVi = 1.0. The adaptive laws were tuned
with γx = γy = 2.0 and the proportional gain kpu = kpv =
5.0.

The heading controller used with C1 in the simulations is
a PD controller, as no disturbances are present in the heading
degree of freedom. This was not the case for the field trial
experiments where it was quickly identified that the heading
did not converge to the desired value. As such, and integral
term was added to the heading controller. The PID controller
parameters were tuned to kpψ = 15, kiψ = 0.5 and kdψ = 1.0.
All parameters were found through trial and error.

C. Results From Field Trials

Figure 6 shows the results from using C1 at the SINTEF
ACE full scale aquaculture laboratory. The top two plots show
the velocities and it is clear that the controller is able to track
the reference velocities satisfyingly, with small deviations. At
t ∼ 350s− 370s, the thrusters saturate which leads to a small
deviation between actual and desired sway velocity. Plots three
and four of Figure 6 show the estimated ocean current in NED
(third plot) and BODY (fourth plot). The actual ocean current
values are unknown, hence it is not possible to verify the
estimated values. Looking at the third plot it is clear that when
the thrusters saturate between t ∼ 350s− 370s the projection
operator is stopping the estimation of V̂x, but is causing some
oscillatory behaviour. The bottom plot of Figure 6 shows the
heading which is satisfyingly controlled using a PID controller.

A PI controller was formerly used to control the velocities.
Results from a trial in similar operating conditions using this
PI controller is shown in Figure 7. It is clear that a deviation
is present in the sway velocity while the surge velocity is
controlled quite well. Attempts were made to reduce the
error in the sway velocity by increasing the integral gain,
but this lead to instabilities most probably caused by signal
noise. Figure 8 shows the errors between the desired and
actual surge and sway speeds for both controller C1 and the
PI controller (taken at different, but similar trials). From this
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Fig. 6: Results from field trials at SINTEF ACE using controller C1
to control the surge and sway velocities, and a PID controller for the
heading angle.
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Fig. 8: Comparison of error in surge and sway velocities using a PI
controller and the proposed controller C1.

it is clear that the proposed controller C1 has a lower overall
error compared to a PI controller (the time axis is adjusted in
order to plot the two trials in the same figure. Thus the relative
time is shown).

Note that the net following guidance system deactivates
(reference speeds are set to zero) if the signal from the DVL is
lost. This signal loss is often caused by fish swimming in front
of the sensor [48]. Data from these instances (e.g. between
t ∼ 200−t ∼ 220 of Figure 6 and between t ∼ 460−t ∼ 480
of Figure 7) are not shown in the figures.

VIII. CONCLUSION AND FUTURE WORK

This paper has presented two control laws for tracking time-
varying reference values in the surge, sway, and yaw DOFs.
The controllers are combined with a path-following algorithm
to enable autonomous traversal of an aquaculture net pen. The
main contributions of this paper are the proposed control laws,
with properties that ensure asymptotic convergence of the error
states to zero, as well as a validation in a field trial, where one
of the controllers was implemented on an industrial ROV and
tested in realistic conditions.

For the proposed controller, C1, the origin of the closed-
loop system with the adaptive law was proven to be UGAS.
Furthermore, clamping and projection were implemented as
anti-windup schemes in the field trial to ensure that thruster
saturation does not lead to unwanted behaviour. The controller
was validated in both simulations and field trials, showing
promising results.

For the second proposed controller, C2, the origin of the
closed-loop system with the adaptive laws was proven to be
UGS and the error variable containing the controlled velocities
and the heading angle was proven to converge to zero. This
controller augments C1 with heading control and estimation of
the higher order disturbance terms arising from the Coriolis-
centripetal forces. This controller was validated through sim-
ulations and also showed promising results. The controller
managed to track the reference values for the velocities,
as well as the reference value for heading while providing
accurate estimates of the current disturbance. The higher
order disturbance terms were not accurately estimated, but the
control objective was still achieved. Validating controller C2 in
a field trial and evaluating its robustness remains future work.

APPENDIX

A. Functional Expression

g(θ, t) =

[
g11 g12
g21 g22

]
(74)

where

g11 = −m
A
11

m11
(Vx sin(ψ)− Vy cos(ψ))

g12 =
d11
m11

(Vxβ1 + Vyβ2)

g21 = −m
A
22

m22
(Vx cos(ψ) + Vy sin(ψ))

g22 = − d22
m22

(Vxβ2 − Vyβ1)

and

β1 = cos(ψd(t))
cos(ψ̃)− 1

ψ̃
− sin(ψd(t))

sin(ψ̃)

ψ̃
(75a)

β2 = sin(ψd(t))
cos(ψ̃)− 1

ψ̃
+ cos(ψd(t))

sin(ψ̃)

ψ̃
. (75b)

Note that the terms g( · ) in (74) are function of ψ̃ and t,
hence of θ and t, since ψ = ψ̃+ψd(t), but the arguments are
dropped to avoid a cumbersome notation; idem for β1 and β2.
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