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On High Performance Control of Concentric Tube
Continuum Robots through Parsimonious

Calibration
Quentin Boyer, Sandrine Voros, Pierre Roux, François Marionnet,

Kanty Rabenorosoa, Member, IEEE, and M. Taha Chikhaoui, Member, IEEE

Abstract—Continuum robots deform continuously, compared
to conventional robots composed of rigid links and joints, and
require dedicated calibration methods. Indeed, calibration is an
essential step to obtain high performance control, as it directly
influences robot accuracy. In this paper, we investigate how model
parameters influence both model accuracy and model-based
closed-loop control accuracy of Concentric Tube Continuum
Robots (CTCR). A fast, robust, and real-time implementation
of the Cosserat rod model is first introduced. Then, a model-
based Jacobian control scheme is presented. A parsimonious
calibration procedure focused on control accuracy is finally
proposed to achieve submillimetric tracking errors along a 3D
trajectory at velocity reaching 5mm/s in complex scenarios
including actuation constraints, obstacle avoidance, and external
forces. Results are demonstrated both in simulation and on an
experimental setup of a 3-tube CTCR.

Index Terms—Medical Robots and Systems, Surgical Robotics:
Steerable Catheters/Needles, Calibration and Identification, Per-
formance Evaluation and Benchmarking, Continuum Robots

I. INTRODUCTION

CALIBRATION is an essential part of robotic applications.
It involves identifying an accurate relationship between

actuator displacement sensor readings and tip pose in the
workspace [1]. It has been widely studied for rigid-link
robots but far less for continuum robots (CRs). Compared to
conventional robots, CRs have an elastic structure that deforms
continuously. They can be miniaturized due to the absence of
joints and their ability to follow curved trajectory makes them
promising for applications in tortuous environments, such as
medical applications [2].

Concentric Tube Continuum Robots (CTCRs) are one of the
smallest types of CRs and address a large number of minimally
invasive surgical applications [3]. They are composed of a set
of precurved elastic tubes assembled in a telescopic manner.
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Fig. 1: Experimental setup of our 3-tube CTCR with electro-
magnetic sensors, and an example of weight used to generate
external forces.

Each tube is actuated at its base in translation and rotation
and the elastic interaction between the tubes deforms the
whole shape of the robot. Because of their simple structure,
they can be designed with smaller diameters than other types
of CRs and have an interesting ratio of lumen to external
diameter, allowing tool integration inside the structure and
navigation in restricted environments. Numerous prototypes
have been developed, and the CR community is showing
increasing interest in control to guarantee accurate positioning
and trajectory tracking while considering interaction with
the environment [4]. Nevertheless, the continuum backbone
and complex phenomena involved in CTCR motions make
the calibration challenging. Improper calibration impacts all
aspects that rely on the model including control performances,
handling of actuation limits, and running into singular config-
urations. In this paper, we are interested in CTCR calibration
methods, and their influence on model accuracy and on control
accuracy. Therefore, we review the current state of the art
concerning modeling, control, and calibration of CTCR.

A. Related Works

1) CTCR standard model: The nominal working regime
for most CTCR applications is at the kinetostatic level, which
can be accurately captured by a Cosserat rod model [5]. This
model accounts for torsion in the tubes, which often have non-
negligible effects and can even lead to instabilities known as
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snapping [6]. This model can also consider external loads and
is now the standard model for CTCRs.

The model computation time is a crucial consideration for
online applications. Several approximations of the canonical
model [5] are proposed for faster computation. Using truncated
Fourier series, the model computes at 1 kHz but does not con-
sider external loads [7]. Linearization with first-order Taylor
series expansion is used in [8] to achieve 1 kHz computation
rate but it requires additional force and torque sensors. A
nonlinear observer is also proposed in [9] to rapidly estimate
the solution of the Cosserat rod equations for a single rod. A
fast implementation of the canonical model is proposed in [10],
achieving up to tens of kilohertz, but it relies on an optimized
C++ implementation that is not straightforward to reproduce.

The robot Jacobian J and compliance C matrices, de-
scribing changes of the robot shape with respect to actuation
variations and external loads variations, respectively, have
many applications such as control and force sensing. They
can be estimated using finite differences of the model but it
is more efficient to compute them along with the model [11].
Computation of the canonical model, Jacobian, and compli-
ance matrices at high rate is still an ongoing challenge.

2) Control: Most of the work regarding CTCR closed-loop
control is addressed from a quasi-static inverse kinematics
perspective using the robot Jacobian matrix for Resolved-
Rate Motion Control (RRMC). The Jacobian can be model-
based [12], or data-based with online updates of the Jaco-
bian [13]. RRMC is studied in simple scenarios, without con-
straints, external loads or obstacles in the workspace. Recently,
model-based Nonlinear Model Predictive Control (NMPC)
has been proposed to handle explicit actuation constraints
and to avoid unstable configurations [14]. It is compared to
RRMC which fails to achieve those tasks. Using NMPC, linear
trajectories are performed without external loads, with 1.2mm
root-mean-squared error (RMSE) and 2.9mm maximum er-
ror for 3-tube CTCR. Data-based linear Model Predictive
Control (MPC) is also proposed, claiming that model-based
approaches have difficulties due to the inability to predict un-
known external forces and disturbances [15]. Using MPC for
a 2-tube CTR, various trajectories are performed, some with
external loads, with mean errors from 0.748mm to 2.4mm
and standard deviation from 0.45mm to 1.7mm depending
on the scenarios. However, in [16], a model-based Jacobian
method considering a manipulability criterion is used to steer
an unstable 3-tube CTCR, in presence of external loads,
while respecting actuation constraints and avoiding snapping.
Tracking errors under external loads are not provided, but
0.85mm RMSE and 5.6mm maximum error are achieved in
unloaded cases. In open-loop control, stability and stiffness
criteria are used in a model-based Jacobian scheme to perform
instability avoidance and stiffness tuning of an unstable 3-tube
CTCR and achieving 4.18±1.98 mm mean error in [17]. This
shows that model-based Jacobian methods are promising for
CTCR control in complex scenarios but accurate control in
complex scenarios is still challenging.

3) Calibration: The model of the complete system studied
here can be divided in three parts, each one requiring a
proper calibration. First, the actuation model describes the

relationship between sensor readings at actuator level and
actual tube displacements. Modes et al. [18] focuses on
calibration at the actuation level and proposes an automatic
and repeatable method to determine rotational offsets. Then,
the model of the effective part of the CTCR relates the motion
of the backbone with reference to the tube displacements. In
this paper, we consider the standard CTCR model including
external loads [5]. The considered parameters of this model
include geometric and material parameters. Finally, the sensor
model relates the sensor readings to the actual signal of
interest, often the tip pose or the backbone position.

On the one hand, some parameters, such as reduction ratio,
are known with sufficient accuracy, and nominal values are
often used. On the other hand, some parameters can have a
large range of possible values (e.g. the tubes’ Young modulus
provided by manufacturers) and calibration procedures are
often used to identify them [16], [19], [15]. Furthermore,
parameters such as the relative pose between the robot base
frame and a sensor reference frame are considered known
accurately enough or calibrated [6].

Two approaches are mainly used to identify CR parameters.
The first one consists of identifying multiple parameters at
once by minimizing the error between the tip position [12] or
several positions along the robot backbone [5], predicted by
the model and experimental measurements on the complete as-
sembled system. This approach is used to identify parameters
before implementing a model-based Jacobian control in [12],
[16]. We initially used this approach and obtained maximum
model errors of around 3% of robot length. However, this
approach involves a number of difficulties. Choosing which
parameters to identify and the proper robot configurations
to identify them is generally not trivial [20] and it can be
particularly challenging for CTCRs because of nonlinearities
and coupling effects. It can lead to fitted values that are
not physically realistic, as pointed out in [21] and [22].
Moreover, the shape of the robot does not only depend on the
current actuator positions but also on the past trajectory [23].
The second approach consists of measuring each parameter
independently. It avoids the aforementioned difficulties but
can be time consuming as it requires several parameter-
specific measurements and may require disassembling parts
of the robot. For example, Young’s modulus can be identified
from static cantilever deflection measurements and the tube
precurvature from image processing [19].

B. Contribution

In the literature, fast implementation of the standard
mechanics-based model is described as a challenge for online
applications such as control. Model-based Jacobian control is
described as unsuited to handle actuation constraints or un-
known external loads [14], [15] and calibration is sparsely in-
vestigated. Our first contribution is to propose a fast and robust
implementation of the standard CTCR model, along with the
robot Jacobian and compliance matrices. Our implementation
is at least 5 times faster than the fastest implementation in
the literature [10]. Moreover, our implementation being real-
time, it can be used in online applications. We provide our
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code1 for reproducibility and to facilitate future work. We
then use our implementation in a closed-loop control scheme
to show that model-based Jacobian control can efficiently
handle complex scenarios with actuation constraints, obstacles
in the workspace, and in presence of external loads. We
finally provide extensive studies on the influence of model
parameters both on the model predictions and on control
performances. We identify the most influential parameters in
order to determine on which parameters to put the calibration
efforts, aiming to help standardizing and simplifying calibra-
tion routines of CTCRs, which can be especially challenging
in real-life usage. A dedicated and parsimonious calibration
procedure for CTCR is proposed to increase control accuracy
and results are presented for a 3-tube CTCR both in simulation
and on an experimental setup.

II. EXPERIMENTAL AND SIMULATION SETUPS

The 3-tube CTCR used in the experiments and the ref-
erence frame are shown in Figure 1. The actuation unit
uses 6 stepper motors (Beckhoff AS1020, 0.5Nm holding
torque and 1.8◦ step angle) with their incremental encoders
(1024 steps/revolution). The control scheme is implemented
on a computer with Real-Time Operating System (Xenomai),
handling the actuators and sensors using Beckhoff EtherCAT
terminals. We use Nitinol tubes with a straight and a curved
part. Tube parameters are summarized in Table II. The tubes
are designed to ensure that the robot is globally stable,
meaning that there is no snapping in the entire workspace.
An electromagnetic (EM) tracking system (Aurora, NDI) is
used to measure the tip position with 0.88mm accuracy and
orientation with 0.48◦ accuracy (95% CI) at 40Hz.

In order to assess our method performances in simulation
in a wide range of conditions, random configurations were
simulated with random external point force up to 0.3N applied
at the tip. Actuation variables are randomly sampled similarly
to [24]. Simulations are computed using an Intel Xeon W-2275
CPU at 3.30 GHz.

III. EFFICIENT MODEL IMPLEMENTATION

In this section, we propose an efficient implementation to
compute the CTCR shape, Jacobian, and compliance matrices.

A. Modeling Background

We use the standard forward kinetostatic model considering
external loads for a n-tube CTCR [5]. This model consists
of a multipoint Boundary Value Problem (BVP) on a set of
nonlinear differential equations:

ẏ = f(s,y, q,w) (1)

where y is the set of state variables, the dot operator (˙) rep-
resents derivative with respect to the arc length s, q = [β, α]
contains the n translation actuation variables β, and n rotation
actuation variables α. w is an external point wrench applied

1https://github.com/TIMClab-CAMI/Modeling-and-Control-of-
Concentric-Tube-Continuum-Robots

at the robot tip. The boundary conditions (BC) can be written
in the following form:

b(y, q,w) = 0 (2)

To solve the BVP, a shooting method is commonly used [12].
First, the related Initial Value Problem (IVP) is solved at
iteration k for a certain guess of the unknown initial condi-
tions yk

u(0) using numerical integration. Discontinuities where
the tubes end or have a step change in precurvature and
where external point loads are applied, prevent the use of
a standard IVP solver over the entire robot. Instead, the
robot is divided in segments delimited by the discontinuity
locations and piecewise integration is used. Then, BC residuals
b(yk, q,w) are computed from the IVP solution and a new
guess yk+1

u (0) is estimated using a nonlinear root-finding
algorithm to iteratively converge to a guess satisfying the BC.
Not only do we consider computation of the robot shape but
also of the robot Jacobian J and compliance C matrices along
the model using IVP finite differences method [11]. J will be
used for model-based control in Section IV and C is included
in our framework to facilitate future work.

B. Numerical Implementation

Many elements influence the model convergence and com-
putation rate. Here we present the choice of state variables,
the resolution methods for the IVP and BVP, the computation
of the Jacobian matrices, and implementation details.

1) State variables: Using curvatures along x and y axis
as state variables, as in [11], can cause step change in the
initial conditions that the BVP solver has to estimate for
certain configurations. Instead, we use the sums of internal
moments along x and y axis, as in [12], leading to better
convergence. When there are no external loads, the number of
state variables and unknown initial conditions is reduced for
faster computation, as in [10].

2) Solving the IVP: It has been shown in [10] that a
single 8th order Runge-Kutta (RK8) step for each segment can
accurately solve the IVP. We simulated 103 random designs
and for each, 103 random configurations, as described in
Section II. We investigate the use of lower order schemes
to achieve faster computation. Using RK3 (SSPRK3 [25])
or classical RK4 is approximately 3.5 and 2.9 times faster
than using RK8 (RK8(7)13M [26]), respectively. The errors
between the tip positions computed using a single RK3, RK4,
and RK8 step per segment and the reference tip positions
computed using 100 RK8 steps per segment are shown in
Figure 2 with errors relative to robot length. Maximal errors
using RK3 are 1% of robot length, which is the same order of
magnitude as the modeling error. RK4 is slightly slower but
more accurate with 0.1% maximal error and 0.003% mean
error. RK8 is much more accurate but slower. We choose to
use RK4 as it produces negligible integration error compared
to modeling error while being faster than RK8.

3) Solving the BVP: We then use the Gauss-Newton algo-
rithm to solve the BVP:

yk+1
u (0) = yk

u(0)−B†
ub(y

k, q,w) (3)

https://github.com/TIMClab-CAMI/Modeling-and-Control-of-Concentric-Tube-Continuum-Robots
https://github.com/TIMClab-CAMI/Modeling-and-Control-of-Concentric-Tube-Continuum-Robots
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TABLE I: Model computation rate

Computed elements Required number of
IVP computations

Number of threads
1 4 6 8 10 12 14 18*

Unloaded 4 154 kHz 277 kHz - - - - - -
Unloaded + J 10 63 kHz 128 kHz 150 kHz 150 kHz 181 kHz - - -
Loaded 6 41 kHz 91 kHz 134 kHz - - - - -
Loaded + J 12 20 kHz 54 kHz 67 kHz 67 kHz 67 kHz 87 kHz - -
Loaded + J + C 18 14 kHz 36 kHz 50 kHz 50 kHz 63 kHz 63 kHz 59 kHz 68 kHz

* 14 physical cores, 18 threads

Fig. 2: Comparison of the IVP integration error depending on
the integration scheme (log scale).

where the matrix Bu = ∂b
∂yu(0)

describing changes of b with
respect to changes in yu(0) is computed using IVP finite
differences method. The algorithm stops when ∥b∥ < 10−10.
This threshold is chosen according to the desired accuracy.

4) Parallel computation of the Jacobian matrices: The
IVP finite differences method lends itself well to parallel
computation. We investigate the computation rates for different
cases, depending on the number of available CPU cores, the
presence of external loads, and whether the Jacobian and
compliance matrices are computed. The required number of
IVP computations and computation rates are in Table I.

5) Implementation details: The model is implemented in
C++ and compiled with g++ with -O3 optimization flag.
Equations are implemented using Eigen linear algebra library
to take advantage of vectorization optimization. Vectors and
matrices are declared with fixed size, known at compile time,
allowing more efficient optimization and implementation in
real-time context, where dynamic allocation is prohibited.

C. Performances

In order to assess our implementation performances, 103

random designs, and for each 103 configurations were simu-
lated (cf. Section II). The proposed implementation can com-
pute one step of the Gauss-Newton algorithm, i.e. computation
of yk, bk, and Bk

u, along with the Jacobian and compliance
matrices, at rates from 14 kHz to 277 kHz depending on the
presence of external loads and which elements need to be
computed (cf. Table I). Using parallel computation signifi-
cantly increases the computation rates by about 3 to 5 times.
To the best of our knowledge, the fastest implementation in
the literature is [10], where computation rates of 36.9 kHz,
9.7 kHz, 27 kHz, and 2.7 kHz are achieved for the following
computed elements: unloaded, unloaded + J, loaded, and
loaded + J + C, respectively. These results are obtained using

single-thread computation on an Intel i7-4790 at 3.6GHz.
Depending on the computed elements, our implementation is
5 to 25 times faster.

Convergence of the BVP solver typically takes 1 iteration
for small actuation variations (~ 1◦, 1mm) with reference to
the previous computation, as in a control scenario. For globally
stable CTCRs, the Gauss-Newton algorithm converges even
for actuation large variations (~ 360◦, 10mm) but may need
up to 2 or 3 iterations. However, in the case of CTCR prone
to snapping, one could use our method with small actuation
variations to ensure convergence.

The accuracy of our implementation is similar to that of a
naive one, with very fine discretization and strict tolerances
on BVP resolution. Numerical errors are negligible compared
with modeling errors. This efficient implementation allows to
use the model intensively for a wide range of applications,
both offline and online, such as design, trajectory planning,
calibration, model-based control, and force sensing. Moreover,
we provide a real-time implementation to ensure a desired
sampling frequency in online applications.

IV. CONTROL

Using our efficient implementation, we introduce a model-
based Jacobian control scheme. We then present the tuning of
the gains, the complex scenarios we consider, and we finally
assess the performances in simulation.

A. Control Scheme

We use the generalized-damped least squares (GDLS)
method for its ability to easily integrate several competing
tasks [12]. We consider the following objective function:

F =
1

2

p∑
i=1

(Jq′ − vX,i)
TWi(Jq

′ − vX,i)

+
1

2

m∑
j=p+1

(q′ − vq,j)
TWj(q

′ − vq,j)

(4)

accounting for m competing goals, where the p first tasks
are described using the desired tip velocities vX,i and the
next m − p tasks are described using the desired actuator
velocities vq,j . Wi is a nonnegative symmetric weighting
matrix associated with the ith task. The prime operator (′)
represents derivative with respect to time. Setting ∂F

∂q′ = 0
gives the necessary condition for q′ to minimize F .

We consider four tasks: trajectory tracking, vX,tra = X ′
des

with X ′
des the desired tip velocity computed using a standard

feedback/feedforward control scheme and trapezoidal veloc-
ity profile generation; damping (actuator velocity limitation),
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a b

Fig. 3: a) Trajectory tracking of a 30mm-sided cube in presence of a spherical obstacle and under external point force applied
at the tip. b) Tracking error for different forces in S2 (no force), S3, and S4 scenarios in simulation.

vq,dam = 02n×1; actuator limit avoidance, vq,act = −∂L
∂q with

L the sum of the squared distance between the tube bases, the
actuation unit base plate, and the tube tips; obstacle avoidance
with vX,obs pointing away from the obstacle and whose norm
is inversely proportional to the squared distance between the
tip and the obstacle.

The EM tracking system has the lowest update rate in the
setup at 40Hz, so the entire system is operated at this rate.

B. Weight Tuning

We use diagonal weighting matrices with equal first three
diagonal elements wi,t relating to translation and equal last
three diagonal elements wi,r relating to rotation, of either the
tip or the actuators depending on the considered task. The
tuning of the weights is done in two steps. The first step is
to roughly estimate the weights, allowing to run the control
scenario in simulation. Estimating the relative importance
of each task gives a first rough estimation of the weights.
Using SI units for all variables and choosing that a 1mm
(10−3 m) tracking error is penalized as much as an actuator
velocity of 1mm/s (10−3 m/s) and 10 ◦/s ( 10π180 rad/s), we
set wtra,t = 1

(10−3)2 = 106, wtra,r = 0, wdam,t = 106,
wdam,r = ( 18010π )

2 ≈ 33. The second step is to leverage the
simulation to finely tune the weights, starting with the tracking
and damping tasks, then the actuation limit task, and finally
the obstacle avoidance task. After manual tuning, we obtain
wtra,t = 107, wtra,r = 0, wdam,t = 106, wdam,r = 10,
wact,t = 100, wact,r = 0, wobs,t = 10, wobs,r = 0.

C. Scenarios

We designed several control scenarios to investigate how
the considered tasks, the amplitude of the external forces, and
their knowledge by the controller influence the performances.
In all the scenarios, the reference trajectory is cube-shaped
as shown in Figure 3a, with 30mm sides, representing a
significant portion of the robot workspace, and it is performed
at a velocity of 5mm/s and an acceleration of 2.5mm/s2.
Without loss of generality, trajectory tracking is performed
considering the tip position only. An obstacle modeled as
a 10mm diameter sphere is included onto the reference
trajectory. We consider the following scenarios:

• S1: Unloaded, and the objective function does not consider
the actuator limit avoidance task.

• S2: Unloaded, and all tasks are considered.
• S3: All tasks are considered and an external, constant

point force is applied on the tip, with the force considered
unknown for the controller.

• S4: S3 but the force is considered known for the controller.
Results are presented for loads applied along y-axis, as this

loading direction produces larger deflections than along z-axis.
Forces along x-axis produce similar results. In simulation,
Gaussian noise Xn is added to the tip simulated position,
where Xn ∼ N ([0, 0, 0], diag([σ2, σ2, σ2])) with σ = 35 µm
such as Xn magnitude is similar to the magnitude of the
measurement noise observed on the experimental setup. Each
simulation is repeated 10 times.

D. Simulation Results

In scenario S1, the task fails because the actuator limits are
violated. In S2, the addition of the actuator limit avoidance
allows the controller to steer the tip along the desired trajectory
while respecting the actuation constraints. For S3 and S4,
trajectory tracking results while applying a force along the y-
axis, with a magnitude corresponding to weights ranging from
0 g (no force) to 20 g, are shown in Figure 3b. For weights
higher than 20 g, the controller fails in both S3 and S4 because
of actuation constraint violation. When the force is known
by the controller, it does not influence the performances, and
when it is unknown, the tracking error slightly increases with
the magnitude of the force. The controller is quite robust to
the external loads, as a 20 g mass increases the maximum
and mean error by only 0.3mm and 0.01mm, respectively, in
closed-loop, whereas it produces a 12mm deflection in open-
loop. Figure 3a shows that the robot accurately follows the
trajectory when far from the obstacle, and deviates near the
obstacle to avoid collision.

The model-based Jacobian control scheme implemented in
this section is relatively straightforward and has successfully
performed several simultaneous tasks, such as accurate and
fast trajectory tracking, while limiting actuator velocities,
respecting actuation limits and avoiding obstacles in the task
space. For experimental validation, we now focus on the
development of a dedicated calibration procedure.



6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED AUGUST, 2024

V. CALIBRATION

In this section, we investigate the influence of calibration
on model-based Jacobian control accuracy. We first provide
an exhaustive sensitivity analysis of the influence of model
parameters on both the model accuracy, considering the tip
position, and the impact on control accuracy. We then propose
a calibration procedure to estimate the model parameters
of our experimental setup and assess the obtained control
performances. We consider all the parameters involved in the
model of the complete system (actuation, CTCR effective part,
and sensor). The actuation is modeled by qi = ρiθi + ∆i,
with ρi the transmission reduction ratio, θi the motor angular
position, and ∆i the offset. Parameters of the CTCR standard
model are for each tube i: Young modulus Ei, Poisson ratio
νi, precurvature κi, effective length (between the point where
the tube is grasped in the actuation unit and the tube tip)
ℓi, precurved length ℓκ,i, inner and outer diameters �in

and �out, respectively. The sensor is finally modeled by
X

Rref
m = TrefX

R0
m , with X

Rref
m and XR0

m the measured
pose in the reference sensor frame and in the robot base
frame, respectively, and Tref the homogeneous transformation
between the two frames.

A. Proposed method

Considering the challenges induced by the optimization
procedure described in Section I, we propose to individually
identify the model parameters and to focus the calibration
efforts on the most influential parameters. In order to deter-
mine which parameters require accurate identification, we first
investigate the influence of model parameters by performing
a sensitivity analysis in simulation. We consider a nominal
model, using the parameters in Table II, and an uncertain
model for which one parameter at a time varies in a large
range: ±5mm for ∆β,i, ℓi, and ℓκ,i, ±5◦ for ∆α,i, ±15GPa
for Ei, [0; 0.5] for νi, ±10% for κi, ±15% for tube wall
thickness, ±3mm for the translational part of Tref , and ±3◦

for the rotational part of Tref . Uncertainties of transmission
reduction ratios are considered negligible as we use standard

mechanical components manufactured with tight tolerances.
Influence on model accuracy is assessed using 106 random
configurations sampled as described in Section II and influence
on control performance is assessed using the same trajectory
tracking scenarios as in Section IV-C. For control, the nominal
model is used to simulate the robot, and the uncertain model
is used in the controller to estimate the robot Jacobian. A first
interesting result is that the maximum variation of the model
prediction is a few centimeters but around a hundred times
less with only a few hundred of microns in closed-loop, so the
closed-loop control is quite robust to parameters uncertainties.
We then examine the sensitivity analysis in closed-loop to
determine the admissible uncertainties for each parameter,
regarding the desired control accuracy.

We start with the parameters that are simple to measure
accurately: ∆β,i, ℓi, and Tref . For ∆β,i, the robot is set to
its home configuration, and distances between the insertion
point and each tube prehension point (where the actuation unit
grasps the tube) is manually measured, providing millimetric
accuracy. The deployed length of each tube when the robot
is in home position is then measured with the incremental
encoders, by retracting each tube so the tips are flush with
the insertion point. Adding the previously measured transla-
tional offsets gives ℓi with similar millimetric accuracy. Tref

is identified by registering several reference points on the
actuation unit baseplate. Positions in the robot base frame
are known using the CAD and positions in the reference
sensor frame are manually measured using an EM probe. The
identified transformation is consistent with the CAD, with
difference around 0.5mm and 0.3◦. The cumulative influence
of uncertainties of ∆β,i, ℓi, and Tref increases the maximum
tracking error by at most 15 µm, which we consider negligible.

We then consider ∆α,i. A simple identification method
consists of visually aligning the tube with reference to the
robot base frame and the associated uncertainties are reported
to be around ±5◦ in [18]. Based on our sensitivity analysis
(cf. Figure 4a), 5◦ uncertainties for each tube would increase
the maximum tracking error by 210 µm. We therefore propose
an automatic procedure, similar to [18], to identify rotational
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Fig. 4: Influence of uncertainties of a) rotational offsets ∆α, b) precurvatures κ, c) precurved lengths ℓκ, and d) Young’s
moduli E on tracking error in closed-loop control.



BOYER et al.: ON HIGH PERFORMANCE CONTROL OF CONCENTRIC TUBE CONTINUUM ROBOTS THROUGH PARSIMONIOUS CALIBRATION 7

a b c

Fig. 5: a) Measured tip trajectory, b) translational actuation, and c) rotational actuation, for experimental scenario S2.

offset more accurately and limit the error increase. To identify
the offset associated with one tube, only this tube is deployed
out of the actuation unit, with an EM sensor attached to its
tip. The tube is then rotated so its tip is assumed to follow a
circular trajectory in a plane parallel to the x − y plane. We
then search for the offset minimizing the error between the
measurements and the circular trajectory:

min
∆α,i

(
(xcenter + radius · cos(ρiθi +∆α,i)− xmeas)

2

+(ycenter + radius · sin(ρiθi +∆α,i)− ymeas)
2

)
(5)

As we assume the torsional effects to be symmetrical with
reference to the rotational direction, we perform the procedure
in both directions and keep the mean value as the identified
offset. This procedure is performed for each tube indepen-
dently and allows to reduce the uncertainties to a few tenths of
degrees, resulting in negligible influence on maximum control
tracking error of a few microns.

We finally examine the parameters that are challenging
to measure accurately: κi, ℓκ,i, Ei, and νi. Using image
processing of tubes’ photos before assembly, similarly to [27],
we validated that κi and ℓκ,i are consistent with the nominal
values from the CAD and we estimated the image processing
accuracy of 10% for κi and 5mm for ℓκ,i. Such uncertainties
increase the maximum tracking error by at most 236 µm for κi

and 281 µm for ℓκ,i (cf. Figure 4b and c). The manufacturer
provides a large range for Ei, between 41 and 75 GPa, and
a wall thickness tolerance of 15%. We observe that such
variations increase the maximum tracking error by at most
265 µm for Ei (cf. Figure 4d) and 85 µm for wall thickness.
A variation of νi in a range of [0; 0.5] has a negligible influence
on the tracking error. Considering the worst-case scenario,
where all parameters produce the maximum possible error,
the cumulative influence of κi, ℓκ,i, Ei, and wall thickness
uncertainties are an 867 µm increase of the maximum error and
a 304 µm increase of the mean tracking error, which are below
the accuracy of our tracking system. We therefore propose to
simply use the nominal values for these parameters. Calibrated
parameters are presented in Table II.

B. Experimental Results

We finally implement the control scheme presented in
Section IV on the experimental setup using the calibrated
parameters. For repeatability assessment, each experiment is
repeated 5 times. In order to apply external forces on the
tip, 10 g, 20 g, and 30 g weights are attached to the end-cap.

TABLE II: Calibrated parameters

Parameter Symbol Calibration
method Value

Reduction ratio
(translation) ρβ CAD 2 mm/tr

Reduction ratio
(rotation) ρα CAD -1 tr(tube)/tr(motor)

Offset
(translation) ∆β Measurement [-298.0 ; -220.5 ; -145.0] mm

Offset
(rotation) ∆α

Fit EM
measurements
and circular
model

[3.55 ; -0.22 ; 2.71] deg

Young modulus E Datasheet [58 ; 58 ; 58] GPa
Poisson ratio ν Datasheet [0.3 ; 0.3 ; 0.3]
Precurvature κ CAD [10 ; 5 ; 7] m-1

Precurved length ℓκ CAD [50 ; 50 ; 50] mm
Effective length ℓ Measurement [463.0 ; 330.5 ; 199.0] mm
Inner diameter �in Datasheet [1.30 ; 1.62 ; 2.03] mm
Outer diameter �out Datasheet [1.52 ; 1.80 ; 2.35] mm

Transformation
between the
reference sensor
frame and the
robot base frame

Tref
(xyz) Fit EM

measurements
and CAD

[-48.25 ; -7.25 ; 5.61] mm

Tref
(ϕθψ)

[120.26 ; -0.17 ; 180.13] deg

Sensor accuracy 0.88mm

Fig. 6: Tracking error for different forces in S2 (no force), S3,
and S4 scenarios in experiments.

When the weight exceeds 20 g, the controller fails in both S3

and S4 due to actuation constraint violation, similarly to the
simulation. Figure 5 shows that the actuation variables and the
tip position vary smoothly. Tracking errors are presented in
Figure 6, where each box represents the distribution of 18000
datapoints (5 repetitions of a 90-second scenario sampled at
40Hz), and a video of the experimental trajectory tracking is
also available as supplementary material. Among all scenarios,
the maximal error is 1.22mm, 99.8% of errors are submilli-
metric and 99.2% are below 0.88mm (accuracy of the EM
measurement). The errors are higher than in the simulation
results, probably due in part to parameter estimation errors
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but also to modeling errors. However, the vast majority of
the measurements are below the sensor accuracy. Combining
the GDLS method and our dedicated calibration procedure,
the robot is able to accurately follow a 3D trajectory under
external loads, in presence of an obstacle while respecting the
actuator limit constraints.

VI. DISCUSSION AND CONCLUSION

We proposed a CTCR calibration method aiming to in-
crease closed-loop control accuracy. Performing an exhaustive
sensitivity analysis, we identified the influence of the model
parameters on control accuracy with reference to the parameter
uncertainties. We then focused the calibration efforts on the
most influential parameters and introduced dedicated proce-
dures to accurately identify them. Experimental validation
of our calibration method on a 3-tube CTCR yielded very
satisfying control performances. We compare our results to
recent work, where sufficient details on trajectory data are
provided [15]. In the context of trajectory tracking in presence
of unknown external loads, we obtain mean error, standard
deviation, and velocity of 0.29mm, 0.20mm and 5mm/s,
respectively vs. 1.7mm, 2.0mm and 1mm/s in [15].

As the influence of the parameters highly depends on the de-
sign used and the desired performances depend on the targeted
application, our recommendation for a different application,
e.g. open-loop control where sensitivities are significantly
higher, would be to follow the approach proposed in this paper,
by performing a sensitivity analysis, followed by a decision on
which parameters should deserve accurate identification based
on the targeted accuracy.

Our system can consider unknown external point forces
with significant magnitude up to 0.2N. Handling of distributed
forces is straightforward but we show results for point forces
applied at the tip as it is the most unfavorable case, producing
the largest deflection. For an application requiring larger
forces, a mechanical approach, such as tube patterning [28],
or a dedicated control scheme [16] could be considered.

Our approach is compatible with image-guided medical
applications as it only requires measuring the tip position
and not the complete shape or the external loads applied on
the robot. Future works will include applying our method
in scenarios closer to clinical interventions using medical
imaging.
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