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Abstract 

Electro-separations (e.g., electro-filtration, electrosorption, electro-deposition, electro-precipitation, 

electro-coagulation) have received growing interest towards the selective recovery of value-added 

compounds from wastewater. The coupling of electro-separations with electro-conversion (e.g. 

advanced electro-oxidation, organic electro-synthesis) has given rise to new materials and systems 

that uniquely combine reactivity and selectivity. These new reactive separation platforms offer several 

synergistic advantages beyond each individual component, such as (i) mass transport enhancement, 

(ii) increased removal rates and yields towards biorecalcitrant pollutants, and the (iii) improvement of 

recovery and regeneration of porous electrosorptive materials. Significant efforts have recently been 

devoted to the functionalization of tunable conductive materials for enhanced selectivity (e.g., by 

leveraging redox-electrochemistry), and in parallel, hybrid systems designs are emerging that enhance 

efficiency and modularity. Going forward, a major challenge remains to evaluate the efficiency of 

reactive electroseparation schemes in real effluent contexts, and to test the lifetime and viability of 

these electrochemical systems at larger scales. 
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1. Introduction 

The world is facing critical water issues with the concomitant rise of water stress, partly due to climate 

change, and partly due to the increase of water demand from agriculture, industry and households [1]. 

As such, new strategies for water and wastewater management are urgently needed to implement 

water reuse, which is recognized as one of the most reliable solutions to the impending crisis. The 

recovery of value-added inorganic (e.g., metals, phosphorus) and organic (e.g., phenols, short chain 

carboxylic acids, biomolecules) compounds represents an emerging co-development strategy, that 

enables the circular economy loop through generating value-added streams from waste. 

The implementation of new advanced physico-chemical treatments is required in wastewater 

plants to achieve the removal of biorecalcitrant pollutants, while extracting the valuable molecules [2]. 

As a design target, these systems should reduce the overall capital costs, while achieving a high 

removal rate and yield of recovery even in dilute water streams. Furthermore, the treatment system 

should also minimize the release of unwanted byproducts. Advanced electrochemical systems are 

gaining interest through their modularity and possible pathways for process intensification. 

Electrochemical systems can combine several unit operations in hybrid reactors, especially through 

the combination of electro-conversion (i.e. involvement of electrochemical reactions) [3–10] with 

electro-separation (i.e. absence of conversion) technologies, which we will refer to as reactive electro-

separation [11]. For these integrated reactive separation systems, a critical component is the control 

of interfacial selectivity, through the development of new electrode materials to enhance the 

separation performance [12]. In conjunction, at a systems scale, there is increased attention needed 

for the selection and optimization of operating conditions, and electrochemical process design. Here, 

we will highlight recent developments in reactive electroseparations, and discuss future opportunities 

in this growing area of research. 

2. Main reactive electro-separation systems 

2.1. Reactive electro-filtration 

Reactive methods for breaking electroneutrality in water to drive salt migration have grown in 

attention as energy-efficient methods for selective separations and desalination. Core to these 

technologies are filters and membranes that enable charge and species separation and reaction. The 

major electrochemical technology for desalination is electrodialysis, which relies on water splitting at 

each electrode and alternating anion- (AEM) and cation-exchange membranes (CEM) between two 

electrodes to drive ionic transport [13–15]. While this technology has historically been used for 

desalination, modifications to the membranes and integration of ion exchange resins have led to 
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emerging applications, including resource recovery [14]. Recently, Kim et al. combined electrodialysis 

with redox-flow concepts and nanofiltration membranes (NFs) to eliminate the need for AEMs, which 

carry a high cost and propensity for fouling [16]. A poly(ferrocenylproylmethacrylamide-co-[2-

(methacryloyloxy)ethyl]trimethylammonium chloride] (P(FPMAm-co-METAC)) was used as a water-

soluble redox-copolymer containing redox-active ferrocene groups, to prevent crossover over 

nanofiltration membranes, while reducing the energy consumption of a conventional sing-unit cell 

electrodialysis system by 88% [16]. Conventional electrodialysis relies on the water-splitting reaction 

to drive ionic transport through AEM and CEM while redox-mediated electrodialysis uses reversible 

redox reactions to drive deionization (Fig. 1). Since the standard reduction potential of the ferricyanide 

and ferrocyanide redox pair is lower than the water-splitting reaction, their redox-flow system lowered 

energy consumption by 52% compared to traditional electrodialysis [17]. Membrane tuning by layer-

by-layer polyelectrolyte was also found to be able to impart ion selectivity to redox-electrodialysis – 

with the benefits of improving membrane stability by suppression of radicals or pH change [17]. In 

particular, these redox-mediated electrodialysis concepts have been expanded to different aspects of 

food and biomanufacturing, including the ion-selective recovery of carboxylic acids, and the 

sustainable valorization of whey proteins [17–19]. 

 

Reactive electrochemical membranes (REMs) can also be considered as a major technology class of 

reactive electrofiltration, in which the membrane is often the working electrode and promotes an 

electrocatalytic reaction (Fig. 2) [20,21]. For example, REMs can combine an electrochemical advanced 

oxidation process (EAOP) with physical separation and could mediate some drawbacks of even 

polymeric electrodialysis, including organic and mineral fouling and high production costs [22]. More 

recent work by Le et al. applied Magnéli phase Ti4O7 REM to the oxidation of perfluorooctanoic acid 

(PFOA) and perfluorooctanesulfonic acid (PFOS). After a single pass through the REM, they reported 

Figure 1. Schematic illustrating redox-mediated flow electrodialysis. 
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concentrations of < 86 ng L-1 and 35 ng L-1 PFOA and PFOS, respectively, reduced from starting 

concentrations of 4 mg L-1 and 5 mg L-1 [23]. Work by Guo et al. in 2016 began tests on a novel 

chemically resistant Magnéli phase REM for water treatment that could eliminate fouling and scaling 

[22]. 

 

Overall, reactive electrofiltration methods that combine membranes with surface redox-

reactions provide a modular platform beyond desalination. REMs provide a pathway for process 

intensification through combination of reaction and separations, while redox-flow electrodialysis 

concepts can provide a platform for both selective membrane separations as well as low energy, low-

cost desalination. Going forward, we envision parallel efforts in process design and scaleup to de-risk 

many of these emerging technologies for practical applications, at the same time as growing studies in 

the materials design of redox-materials and membranes for more efficient separations and 

transformations.   

Other electrokinetic-based water treatment methods have recently gained growing interest 

for desalination and selective ion removal include electrodeionization (EDI) and shock electrodialysis 

or shock ED. These technologies rely on electrokinetic processes, and the transport of charged 

contaminants in an electrolyte in response to an applied electric field and can remove organic and 

inorganic ions from water [24]. Among them, shock ED is an emerging electrochemical technique for 

water treatment in which deionization shock waves are generated in a charged porous material. A 

Figure 2. Schematic illustrating a reactive electrochemical membrane (REMs) system. 
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relatively high over-limiting current is passed perpendicular to the direction of fluid flow between ion 

selective membrane [25]. This creates zones of ion depletion or enrichment within the fluid [26]. In 

2015, Schlumpberger et al. published the first example of a continuous and scalable shock ED system 

[26], with over 99% of salt removal and a water recovery of 79% at high current. In 2019, Conforti and 

Bazant showed the first use of shock ED to continuously separate ions from multicomponent 

electrolytes [25]. They showed magnesium ion, Mg2+, could be selectively removed from a mixture of 

sodium chloride, NaCl, and magnesium chloride, MgCl2. For feed solutions with 9:1 Na:Mg, a peak 

magnesium removal of 99% is achieved at a total desalination of only 68% [25]. 

Finally, it must be noted that electrohydrodynamics (EHD) can be used for a range of 

applications of environmental remediation. EHD can play a key role in process intensification, which 

has led to a growing number of applications (e.g., water treatment, soil remediation, sensing, 

monitoring, synthesis, surface finishing of materials) [27–29]. Electrokinetic remediation in particular 

has seen extensive development over the years for a range of heavy metal decontamination, organic 

species removal, among others, with several reviews providing an extensive summary of the field 

[30,31]. 

2.2. Reactive electrosorption 

Electrosorption, the mechanism in capacitive deionization (CDI), is a technique in which species in 

solution are attracted to a positively polarized electrode and subsequently released by applying a 

negative polarization [32–34]. While CDI has proven effective in certain contexts of desalination, 

recent studies have expanded beyond double layer effects to achieve selectivity through redox-

reactions [35]. In order to transition from a purely capacitive method to more selective ion-binding, 

redox-active materials can be utilized [24,36,37]. Redox reactions can create a tunable surface charge 

on immobilized electrodes, attracting ions towards the respective electrodes – and the redox-site can 

be tuned for selectivity and also controlled voltage [38]. When the opposite bias is applied, the redox 

reaction is reversed, and the ions are expelled (Fig. 3a). Furthermore, this electrochemical ion binding 

process can be coupled with electrocatalytic moieties to promote reaction upon adsorption or 

desorption (Fig. 3b-c) [39,40]. 
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C 

Figure 3. Schematic illustrations showing redox-mediated reactive separation mechanisms: A) 
Redox-reaction driven asymmetric electrosorption (left) and release (right). B) Asymmetric 
electrosorption by redox species (left) and reactive conversion upon desorption (right). C) Coupled 
reaction and reaction by redox-electrodes. 
  



8 

Redox-mediated electrosorption has been applied to a range of wastewater treatment and resource 

recovery contexts, with some of them highlighted as follow: 

 Arsenic 

In many cases, the removal of anionic As(V) over neutral As(III) species is favored by membrane 

separation and conventional adsorption techniques. As such, there is a growing focus on the 

development of electrochemical remediation techniques which transform As(III) into the less harmful 

As(V) [39,41]. Su et al. utilized redox-active polyvinylferrocene/carbon nanotubes (PVF/CNT) 

electrodes to selectively capture As(V) at concentrations as low as 100 ppb in the presence of 

competing excess ions [42]. Song et al. performed a similar study using PVF/CNT functionalized 

electrodes to adsorb arsenic at zero applied voltage leading to the selectivity of As over competing 

anions like Cl-, SO4
2-, and NO3

-, which have low affinity at 0 V. A total As removal efficiency of 51% of 

the original 150 µg/L present in the feed solution was performed with a low electrical energy 

consumption only on the order of 0.12 kWh/m3 [41].  

Next, through an asymmetric electrosorption and electrocatalytic system, Kim et al. achieved over 

90% removal efficiencies in wastewater where the concentration of arsenic was as low as 10 ppb [39]. 

As(III) was selectively captured by a redox-active PVF electrode, and catalytically converted into As(V) 

during desorption by the TEMPO group of poly-TEMPO-methacrylate (PTMA), another redox-electrode 

[39]. This combined system showed an order of magnitude decrease in energy consumption compared 

to the sequential system (in which reaction and separation are decoupled), thus highlighting the 

importance of integration reaction and separations. Recent work by Shi et al. combined redox-active 

ferrocene with an iron(Fe) based metal-organic framework (MOF), Fe-MIL-88B-NH2. From an initial 

arsenic concentration of 150 ug/L, they showed a reduction to < 10 ug/L with the process requiring 

only 0.025 kWh/m3 [43].  

 Nitrate 

The removal of hazardous NO3
-, which accumulates in land and water [44–46], has been proposed by 

conventional desalination techniques like electrodialysis, reverse osmosis and ion exchange [32]. More 

recently, there has been an increase in the investigation of electro-adsporption based techniques 

which can be coupled with ion exchange membranes, to increase the selectivity of CDI-based 

technologies towards nitrate [32]. To expand upon conventional membrane capacitive deionization 

(MCDI), Kim et al. coated active carbon electrodes with AF20E, a nitrate-selective resin, in an ion 

exchange resin and tested their system using real municipal wastewater. The electrodes containing 

AF20E proved more selective for NO3
-, over chloride (Cl-) and sulfate (SO4

2-), compared to an electrode 

coated with just an ion exchange polymer [35]. 
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While the above techniques aim to remove the nitrate present in water, reactive electroseparation 

technologies can also offer a platform to convert nitrate into value-added ammonia [40]. Kim et al. 

recently combined polyaniline, a nitrate-selective redox-active polymer, with cobalt oxide, an 

electrocatalyst for nitrate-to-ammonium conversion. Using a wastewater source containing dilute 

nitrate of 0.27 mM, a wholly electrified system for capture, up-concentration, and conversion was 

demonstrated within a single electrochemical cell[40]. The impact of the electro-separation step on 

the efficiency of electro-conversion was highlighted, where concentration of the dilute nitrate into a 

more concentrated stream significantly enhanced current efficiency towards ammonia production.  

 Per- and polyfluoroalkyl substances (PFAS) 

Electrochemical methods have proven effective at removing highly persistent per- and polyfluoroalkyl 

substances (PFAS) [46,47] from water, with Kim et al. reporting an electrosorption system that 

effectively removed perfluorooctanoic acid (PFOA) with a high uptake capacity of > 1000 mg g-1 [48]. 

An asymmetric design of redox electrodes was accomplished by integrating P(TMAx-co-TMPMA1-x)-

CNT with a boron-doped diamond (BDD) electrode to selectively adsorb/release and subsequently 

degrade PFOA. The developed redox-electrosorbent proved highly selective towards PFOA, with a 

separation factor of 500 PFOA versus Cl- in the presence of 200-fold excess of chloride [48]. Beyond 

PFOA, other shorter chains have also been evaluated and treated using redox-electrosorption 

methods. Manufacturers have switched to short-chain PFAS compounds, like hexafluoropropylene 

oxide dimer (HFPO-DA, tradename GenX), which poses further challenges due to their higher mobility 

and recalcitrance to adsorptive treatments like granular activated carbon (GAC) and anion exchange 

[46,49]. The redox copolymer and BDD system described above was also evaluated for capturing and 

destroying GenX, with 100% defluorination being achieved after 24 hours of operations [50]. A recent 

study by Román Santiago et al. tuned redox-active copolymers with differing ratios of fluorinated and 

amine functional groups to study the effect of these interactions on short chain PFAS binding, including 

perfluorobutanoic acid (PFBA) and perfluorohexanoic acid (PFHxA) [51]. The key impact of 

fluorophilicity in promoting higher adsorption of the shorter PFBA was elucidated through both 

electrosorption tests and molecular dynamic simulations.  

Overall, there has been a fast-growing interest in leveraging redox-electron transfer reactions for 

selective separations, as well as the integration of capture and conversion for different environmental 

remediation and resource recovery applications [52–55]. We envision that a growing combination of 

tools will be leveraged to increase predictive capabilities for tailoring electrodes for selective 

electrosorption, including (i) chemical design and synthesis, (ii) multiscale modeling from an atomistic 
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model all the way to macroscopic transport and process models, and (iii) operando methods for 

investigating interfacial binding.  

2.3. Reactive electro-deposition 

Electrodeposition is a widely and historically used technique to remove heavy metal ions from 

wastewater. In particular, three-dimensional porous electrodes have been extensively studied for the 

capture and removal of metals, especially from dilute solutions [56–58]. Electrodeposition relies on a 

redox process in which a metal ion in solution can be deposited onto the cathode upon reduction and 

subsequently oxidized upon acid leaching. Electrodeposition can be performed selectively by applying 

an optimal reduction potential to target deposition of specific ions [13,37,59,60].  

More recently, electrodeposition has been applied for battery recycling, for the separation of 

cobalt and nickel from spent NMC cathodes [61,62]. A major challenge encountered is often the 

relatively close physicochemical properties of Co(II) and Ni(II), including close electrodeposition 

potentials under aqueous conditions. Armstrong et al. explored electrodeposition to separate Co and 

Ni, ultimately producing a 90% Co/10% Ni alloy, while concluding that additional steps, including 

predeposition and refining, were needed [61]. Yan et al. employed a unique technique combining 

electrodeposition with electrodialysis to treat spent electroless nickel plating bath, achieving 82% 

recovery of Ni(II) while simultaneously removing 52% of the HPO3
2- present [63]. Kim et al. sought a 

more direct approach to control the selectivity of Co/Ni separation by tailoring an electrode with a 

polyelectrolyte, PDADMA [62]. The selectivity was tuned by polymer loading and electrolyte control. 

When concentrated chloride was used as a background electrolyte Co exists in the form of a stable 

anion CoCl42- while nickel exists as the cationic complex [Ni(H2O)5Cl]+. This speciation led to a difference 

in onset potentials, creating a window in which nickel can be selectively electrodeposited [62].  

 Further redox reactions can be coupled to electrodeposition through electrodeposition-redox 

replacement methods (EDRR), a technique in which a target metallic element is deposited through the 

redox replacement reaction of a more reactive metal [64]. This method can be applied for noble-metal 

recovery, including platinum (Pt), silver (Ag), and gold (Au) [65]. Halli et al. applied EDRR to actual 

industrial hydrometallurgical process solutions, which contain primarily Ni and almost negligible 

concentrations of platinum (Pt) below one ppb. They achieved selective recovery of Pt by utilizing novel 

pyrolyzed carbon (PyC) electrodes, ultimately measuring an average of 90 weight percent Pt for the 

nanoparticles deposited on the electrode surface [64]. As seen, even though the field of 

electrodeposition has been well-established, the incorporation of new functional electrodes and 

modes of operation have expanded their applicability to a range of metal recovery and purification 

contexts. With the emerging supply-chain challenges and growing awareness towards recycling, we 
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envision the study of molecular selectivity in electrodeposition to play a key role for the efficient 

recycling of metals from complex, multicomponent feedstocks.  

2.4. Reactive electro-precipitation 

Electro-precipitation is based on the local alkalization at the vicinity of the cathode material, through 

the reduction of oxygen (O2) and/or H2O into hydroxyl ions (OH-) (Fig. 4) [66,67]. This local OH- 

accumulation is known to favor the cathodic precipitation of mainly calcium carbonate (CaCO3) and 

magnesium hydroxide (Mg(OH)2) in the presence of hard water [68–71]. This phenomenon can be 

implemented in water softening systems to remove the divalent cations. In practice, the reverse 

polarity technique is implemented in other electrolytic systems whose objective is to avoid scaling [72]. 

It consists of reversing the roles of cathode and anode at a given frequency, leading to the redissolution 

of precipitates in the bulk. This method could not be effective enough with effluents having high water 

hardness and/or with systems implementing cathode materials that do not stand for high anodic 

potentials. Therefore, efforts have been made to propose alternatives to minimize the scaling. The 

hybrid combination with advanced electro-oxidation has been investigated recently.  

The generation of powerful oxidant such as hydroxyl radical (•OH) at a high O2 evolution 

overvoltage anode (e.g., BDD), has shown to decrease the cathodic scaling (5-10%) issue at higher 

current density (16 mA cm-2) in a thin film reactor (500 µm interelectrode distance) [73]. This approach 

was concomitant with the local anodic acidification that converted (bi)-carbonates (HCO3
-/CO3

2-) into 

CO2, which reduced carbonates content in the bulk. In the meantime, the use of porous carbon-based 

cathode material (e.g., carbon paper) was shown to increase the electro-precipitation phenomena 

[74]. Thus, the microfluidic conditions along with the types of cathode and anode materials are critical 

parameters to consider for increasing efficiency of the process [75,76]. These factors could be tuned 

to favor phosphate recovery, which is listed as critical raw material [77], especially because the interest 

of phosphate electro-precipitation was previously shown in simpler system (i.e., without involvement 

of microfluidic) [78]. However, the efficiency of the process to achieve high purity of phosphate needs 

to be improved in real matrices. It has been noted that organic matter can adsorb on amorphous 

calcium phosphate during physical cathodic co-precipitation, which slows down the electro-

precipitation mechanism and could reduce the purity of crystallized calcium phosphate recovered [79]. 
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Figure 4. Schematic illustrations of cathodic electro-precipitation with possible interaction (dashed 

arrow) with oxidant generated at anode. 

2.5. Reactive electro-coagulation 

Electro-coagulation is known for a long time by promoting the in situ generation of coagulant from 

anodic dissolution of the materials (e.g. iron, aluminium) [80,81]. It provokes the subsequent 

coagulation with particulate matter, colloidal matter and part of dissolved pollution, that are removed 

by decantation of the solid phase (i.e., flocs). Additional mechanisms such as precipitation and 

adsorption on flocs can contribute to the removal of contaminant species. This technology is known to 

remove inorganic (e.g., phosphate, nitrate, heavy metals) and organic compounds (e.g., natural organic 

matter) [82]. Electro-coagulation has more recently shown to be particularly useful to remove micro-

plastics from wastewater [83]. 

In combination with an electro-conversion system, namely the peroxi-coagulation [84], the 

dissolved organic pollution can be also removed with high yield (> 90%) [85]. When iron is polarized as 

anode, it can react after dissolution with the hydrogen peroxide (H2O2) electrogenerated at the carbon-

based cathode and produce •OH through Fenton reaction [86,87]. This leads to the concomitant 

degradation and mineralization of dissolved organic pollution (e.g., 1,4-dioxane [88], 2,4-

dichlorophenoxiacetic acid [89], 7-hydroxycoumarin [90]).This process combination could be 

particularly useful for micro- and nano-plastics removal, while eliminating the persistent dissolved 

pollutants and recovering value-added compounds (e.g., metals). However, since the value-added 

compounds are trapped into the hydroxide sludges, there is the need for an additional selective post-

treatment to recover the products from the sludge. 
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3. Conclusions and perspectives 

Reactive electro-separations technologies are gaining increased attention for their role in achieving 

environmental remediation, water treatment and purification, and a circular economy for valuable 

resources. These advanced systems could benefit from the electrochemical control through the 

polarization of emerging conductive materials to increase the selectivity of recovery, by tailoring 

electrode materials characteristics (porosity and pore size distribution, electroactive surface, 

conductivity, surface functions, elemental composition, among others) and optimizing operating 

conditions (including current density/electrode potential, inter-electrode distances and more 

generally the reactor design, ionic membranes, among others). The physico-chemical properties of the 

target compounds (such as molecular size, electrophoretic mobility, molecular structure, point of zero 

charge, acid dissociation constant) along with the matrix composition (type and concentration of salts, 

etc) are also crucial parameters impacting the efficiency. There are several areas for continued study 

to improve existing reactive electroseparation systems, as well as opportunities to develop new 

technologies, including: 

 Investigate the matrix effects (ions, organic matter, etc) on the reactive separation systems, 

particularly with real wastewater, and develop solutions to overcome potentially impacting 

side-effects such as fouling, electrode degradation, or competing ions that may impact 

selectivity.  

 Develop sustainable and energy-efficient methods to recover the value-added compounds 

deposited on the electrodes after electro-separation step. A major challenge is the 

development of low energy/low waste technique for recovering the valuable electrodeposited 

species. 

 Evaluate the long-term stability of newly proposed electrode materials, and associated cost-

effectiveness, including environmental cost. The development of accurate process models and 

technoeconomic assessments can be a critical step in de-risking many technologies for 

application in the wastewater contexts [91,92].  

 Make the full system sustainable, by recovering all valuable compounds, as well as co-

electrogenerating green energy source (e.g., H2, bioenergy [93–95]).  

 Develop innovative, scalable, and flexible design to ensure synergies in reactive electro-

separations systems (e.g., moving electrochemical cells that could combine advantages of 

micro-reactors with macro-reactors [96,97]). Innovative design should permit antagonist 

requirements (e.g., low/high overvoltage, low/high electrode gap, low/high current) for hybrid 

electro-processes combination, such as the proper integration of electrosorption (which is 



14 

usually operated lower current density) with advanced electro-oxidation (operated at high 

current density). Moreover, new designs should seek to intensify mass transport and promote 

homogeneous current and potential distributions, while avoiding the external addition of salts 

to increase the ionic conductivity. 

 On the long-term, translating existing technologies from proof-of-concept and bench-scale 

demonstrations to pilot scale, ideally through industrial/academic partnerships that can 

provide a pathway for product development and real-market end use.  
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