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ABSTRACT: As well as having an impact on the background state of the climate, global warming

due to human activities could affect its natural oscillations and internal variability. In this study,

we use four initial-condition ensembles from the CMIP6 framework to investigate the potential

evolution of internal climate variability under different warming pathways for the 21st century. Our

results suggest significant changes in natural climate variability, and point to two distinct regimes

driving these changes. First, a decrease of internal variability of surface air temperature at high

latitudes and all frequencies, associated with a poleward shift and the gradual disappearance of

sea-ice edges, which we show to be an important component of internal variability. Second, an

intensification of the interannual variability of surface air temperature and precipitation at low

latitudes, which appears to be associated with the El Niño–Southern Oscillation (ENSO). This

second regime is particularly alarming because it may contribute to making the climate more

unstable and less predictable, with a significant impact on human societies and ecosystems.
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1. Introduction

The Earth’s climate is a complex system that varies on a broad spectrum of time and space scales

(Baede et al. 2001). This variability is often academically divided into two components. First,

the forced variability, caused by external factors acting on the climate. Examples include volcanic

eruptions that emit large amounts of aerosols that reflect solar radiation or anthropogenic CO2

emissions that intensify the greenhouse effect. The second component is the internal variability

related to the Earth system itself and represents the spread of the range of possible system states for

a given forcing or background state. A wide range of phenomena at very different scales contribute

to this variability, from large climate oscillations such as El Niño–Southern Oscillation (ENSO)

to atmospheric cyclones, eddies or ocean waves. Despite its ”internal” label, the latter component

has been observed to evolve over time in response to changes in the climate background state

and external forcings, as in the example of ENSO and other specific climate modes under global

warming (Maher et al. 2018; Cai et al. 2021; Callahan et al. 2021; Coburn and Pryor 2023). These

two components of Earth’s variability are intertwined in the climate records, posing a challenging

problem for scientists seeking to accurately disentangle the forced and internal contributions.

Since the late 1990s, the Coupled Model Intercomparison Project (CMIP) has enabled significant

development of fully-coupled global climate models (Bock et al. 2020) and facilitated their use

to investigate the future of Earth’s climate under various emissions scenarios. More recently, the

initial-condition large ensembles, which gather multiple coupled climate simulations from the same

model but starting from different initial conditions, have experienced a rapid spread (Deser et al.

2012, 2020; Lehner et al. 2020; Maher et al. 2021). They allowed, among other things, to make

important progress in estimating the intensity of internal variability in a given climate model using

ensemble variance as a proxy. While this method has proved useful for extracting the forced signal

from simulations, as well as for quantifying the importance of internal variability relative to other

sources of uncertainty and its evolution over time (Lehner et al. 2020), less work has been done

on the mechanisms linked to these changes in internal variability, and much remains to be learned

about their evolution in the context of future warming scenarios.

Given that internal variability is a dominant factor of uncertainty in interannual-to-decadal

projections (Hawkins and Sutton 2009; Lehner et al. 2020), it is a key component for realistic

and reliable climate predictions. Assessing its evolution under a range of forcing scenarios –

3

Accepted for publication in Journal of Climate. DOI 10.1175/JCLI-D-23-0606.1.
Brought to you by University of Maryland, McKeldin Library | Unauthenticated | Downloaded 04/19/24 07:27 AM UTC



particularly in the next few decades – is a critical research objective as it has the potential to

impact the predictability of the climate or alternatively temporarily mask or amplify long-term

warming trends (e.g., Sévellec and Drijfhout 2018). In the case of masking, it could make potential

arguments for minimizing the climate problem and make the case for action against climate change

less compelling (as in the context of the global warming hiatus, e.g., Roberts et al. 2015). In the

amplifying case, this could worsen the short-term consequences of climate change on societies and

ecosystems in particular by causing more intense extreme events (such as more intense heatwaves,

e.g., Perkins-Kirkpatrick and Gibson 2017). In this context, a previous study investigated the

evolution of interannual internal variability of temperature using CMIP5 and CMIP6 ensembles

over the historical period and under the RCP8.5/SSP5-8.5 scenario (Olonscheck et al. 2021).

They detected a clear anthropogenic change emerging at the end of the 21st century from these

high-emission scenarios and observed a latitudinal pattern of changes in internal variability with

increasing variability in the tropics and decreasing at high latitudes. Other studies identified

comparable latitudinal changes of variability without using ensemble simulations (Rehfeld et al.

2020; Shi et al. 2023). They estimated the climate variability by filtering or detrending the total

signal. This implies making assumptions to remove the trend, corresponding to the forced signal,

and makes the results potentially sensitive to these choices.

Building on these results, in the present work, we investigate the variability on interannual-to-

decadal time scales, with precipitation in addition to surface temperature and using three different

emission scenarios. We investigate how internal climate variability has evolved during this first

past period of significant industrial human development (since 1850) and how it might evolve in

the future (up to 2100). To this end, rather than studying the evolution of known modes of internal

variability in our climate, we choose an objective approach by studying the internal variability

signal from a general point of view, without pointing to specific climate modes. We use for

this purpose a collection of four initial-condition large ensembles from the 6th phase of CMIP

to estimate the evolution of internal variability of surface air temperature and precipitation. We

focus our analysis on the temporal scales of this variability, extending previous studies to decadal

frequencies, and explore the spatial signature of the changes detected. In particular we describe

the underlying spatial patterns of these changes and study the physical mechanisms driving them.
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In the first section the methods and data sets are described, whereas the results are presented in

section 3. Discussion and conclusions follow in section 4.

2. Materials and Methods

a. Materials

Surface Air Temperature, Precipitation, Sea-Ice Concentration and Sea Surface Tem-

perature data

The study is based on yearly averaged data from CMIP6 ensemble models. Two quantities were

investigated: Surface Air Temperature (SAT) and Precipitation (PRECIP). Sea-Ice Concentration

(SIC) and Sea Surface Temperature (SST) were used to contextualize and better understand changes

of the SAT variance. The ensembles used have been chosen to satisfy three conditions: (i) more

than 20 members in the same configuration (meaning the same physics and forcings), (ii) available

from 1850 to 2100, and (iii) available for the three selected forcing scenarios. The scenarios

investigated are: ”Sustainability” (SSP1-2.6) with a low radiative forcing of 2.6 W m−2, ”Middle

of the Road” (SSP2-4.5) with a radiative forcing of 4.5 W m−2, and ”Fossil-fueled Development”

(SSP5-8.5) with a high radiative forcing of 8.5 W m−2. The radiative forcings mentioned above are

the nominal values reached in 2100. Four models (Table 1) matched these conditions: ACCESS-

ESM1-5 (Ziehn et al. 2020, CSIRO), CanESM5 (Swart et al. 2019, CCCma), MIROC6 (Tatebe et al.

2019, MIROC), and MPI-ESM1-2-LR (Olonscheck et al. 2023, MPI-M). They can be considered

as quite independent since they are based on distinct atmosphere and ocean models. They also

come from separate model families according to the evaluation performed by Brunner et al. (2020).

This independence is important because it is the very motivation of our multi-ensemble strategy,

assuming, to some extent, that model errors partially vanish if the models are independent. In

practice, the models always share at least some assumptions and are therefore never completely

independent. However, we believe that we can consider results derived from a set of models with

more confidence than those derived from a single model, particularly when we are interested, as

here, in the dispersion of each model around its own ensemble mean and not in the differences

between the different models.

For all models, we decided to use a single configuration for physics and forcing per model to

preserve the consistency among members concerning the physical processes simulated and their
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parameterization. We did not want to consider multiple configurations of the same model, because

we do not know exactly how much the configurations will differ from each other, and if they are

too close it would artificially increase the importance of the model in the multi-model average. For

each model, we selected the most common configuration, which is generally the first configuration

(referred to as p1 f1). The only exception is CanESM5 model from CCCma, where we used the

second physical configuration because the first configuration showed ”cold spots in Antarctica,

which arise from a misspecified land fraction in p1 and were resolved in p2” according to Swart

et al. (2019, p. 4860).

b. Methods

In this section, the methods are presented using SAT in the mathematical formulas, but are also

applied to PRECIP, SIC and SST data throughout the work.

1) Ensemble variance as a proxy of internal variability

The variance computation in the present work is based on ensemble anomalies, which means that

at each time step 𝑡, the ensemble mean𝑇 (𝑡) is subtracted from each member 𝑗 of the ensemble. Each

model-ensemble is processed separately. The ensemble anomaly of a member (𝑇 ′
𝑗
) corresponds to:

𝑇 ′
𝑗 (𝑡) = 𝑇𝑗 (𝑡) −𝑇 (𝑡) or equivalently 𝑇 ′ = 𝑇 −𝑇. (1)

The use of ensemble variance and ensemble anomalies allows to focus on the evolution of

internal variability without being impacted by models differences/bias in absolute temperature or

precipitation (Chen et al. 2021, IPPC, AR6 Chapter 1 Section 1.4.1).

The ensemble variance is also computed at each time step. Two ensemble variances are computed:

the ensemble variance on yearly data at each location (Eq. 2) and on globally-averaged data (Eq.

3). Taking SAT anomalies as an example, ensemble variances are computed for each model or

ensemble of size 𝑁 as:

EnVarSAT(𝑡, 𝑥, 𝑦) =
1

𝑁 −1

𝑁∑︁
𝑗=1

𝑇 ′2
𝑗 (𝑡, 𝑥, 𝑦) = 𝑇 ′2, (2)
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EnVarGSAT(𝑡) =
1

𝑁 −1

𝑁∑︁
𝑗=1

⟨𝑇 ′
𝑗 ⟩

2 (𝑡) = �⟨𝑇 ′⟩2, (3)

where ⟨.⟩ is the spatial average, such as ⟨𝑇 ′
𝑗
⟩ = 1

𝑆

∫ ∫
𝑆
(𝑇𝑗 −𝑇) 𝑑𝑠, where 𝑑𝑠 is the surface area

differential and 𝑆 is the Earth surface. In the calculation of ensemble variance, .̂ corresponds to
1

𝑁−1
∑𝑁 to take into account the degrees of freedom.

The computation of the multi-ensemble variance is detailed in the following section.

2) Construction of the multi-ensemble data set

We based our work on a multi-ensemble approach for two reasons. First, as explained in the

material section, the relative independence of the models is expected to partially remove model

errors via averaging. Another way to think about it is that combining the internal variability of the

different models makes it possible to study their common signal in terms of internal variability.

Second, calculating the variance on a larger ensemble constructed from members of different

models helps to improve the estimation of internal variability by potentially encountering more

possible states.

The multi-ensemble data set was defined according to the ”model democracy”, which means

that each model has the same weight in the data set. The weighting of models is an active research

question and no general methodology is yet accepted (Knutti 2010). In addition, all the selected

models have a large number of members (between 25 and 50) allowing us to assume a relatively

good resolution of the internal variability in the ensembles given their relatively coarse spatial

resolutions (around or greater than 1◦). According to a recent paper, ensembles of 25 members

could be sufficient to determine changes in temperature internal variability with about 10% error

or less and with 30% when studying the internal response to forcing (Milinski et al. 2020). So

here we decided to assign the same weight to all models. In addition, we also desired to use all

the members available for the multi-ensemble computation. We therefore used two methodologies

that return similar results but present different advantages:

• Averaging the individual results from the four models to construct an ensemble acknowledging

all members from the four models (145 members). This is done by applying a weight on each

individual member that corresponds to the inverse of the size of the ensemble it comes from

8
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(for example: MIROC6 has 50 members, each member from MIROC6 receives a weight equal

to 1/50).

• Use a resampling methodology where we select randomly 20 members for each model and

compute the ensemble variance on the 80 (i.e. 20×4) members. Here, since we use ensemble

anomalies (as explained in the section below), it is possible to compute the variance from a set

of members coming from different models without being impacted by inter-model variance

linked to their absolute climate state or their forced response. Repeating this many times (e.g.,

100 times) allows us to assess the uncertainty.

While the first method has the advantage of being computationally efficient the second one provides

robust confidence intervals for the results. We therefore used the first method for the EOF

decomposition discussed below and the other one for all the tasks that were less computationally

expensive.

To compute the multi-ensemble variance maps, we first regridded the model outputs on a 1◦×1◦

grid with conservative algorithms (Jones 1999) using the xESMF python package (Zhuang et al.

2023).

3) Separation of time scales

The time scales have been separated using a rolling average on the ensemble anomalies time

series. For a 𝜏-year filtering, one obtains:

𝑇 ′𝜏 (𝑡) = 1
𝜏

∫ 𝑡+𝜏/2

𝑡−𝜏/2
𝑇 ′(𝑡′) 𝑑𝑡′, (4)

where 𝜏 is the time period of the filter, 𝑇 ′𝜏 is the filtered data, and 𝑑𝑡′ the time unit. The 𝜏-year

ensemble variance is thus computed by applying the EnVar, (Eq. 2) or (Eq. 3), on the 𝜏-year filtered

temperature anomalies 𝑇 ′𝑘 . The 𝜏-year ensemble variance contains also the lower frequencies. We

therefore define frequency bands (1-3 yr, 3-5 yr, 5-11 yr, and >11 yr) computed as the difference

between two filterings. For instance the 1-3 yr is the difference between the 1 yr and the 3 yr

ensemble variance time series. Each 𝜏-year ensemble variance time series is finally filtered to have

a final 11 yr resolution. Here, one must clearly distinguish the filtering on temperature anomalies

before computing the variance, that isolates a part of the variance ”energy” and the filtering on
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variance time series, that simply smooths the variance curves and homogenizes the resolution of

variance time series to allow comparison between frequency bands.

4) Decomposition in spatial modes

The spatial patterns that control the (co-)variance also known as Empirical Orthogonal Functions

(EOFs) and their temporal evolution called Principal Components (PCs) have been computed

using a Singular Value Decomposition (SVD). The entire ensemble anomaly data set constructed

by concatenating all years, models, members, scenarios and locations. Then it has been area-

weighted (square root of cosine of latitudes, to preserve variance), ensemble-size weighted (weight

= inverse of ensemble size) and decomposed to obtain the first 1 000 modes. Hence here the EOFs

represent ”typical” EOFs independent of time, ensemble members, and models. (Note that it is

possible to define EOFs that are dependent of either time, ensemble members, or models, but this

defeats the purpose of our computation that wishes to define a common basis.)

In the matrix form, the ensemble anomalies of SAT can be decomposed using the SVD into three

matrices (𝑈, Σ, and 𝑉𝑇 , where 𝑇 represents the transpose operator) and reorganized into a sum of

modes 𝑖 with PCs (mode, time, member) and EOFs (mode, lon, lat):

𝑇 ′ =𝑈Σ𝑉𝑇 =
∑︁
𝑖

PC𝑖 EOF𝑖 . (5)

Globally-averaged temperature anomalies can be obtained by spatially averaging the EOFs,

enabling the contribution of each mode to the global internal variability signal to be studied.

⟨𝑇 ′⟩ =
∑︁
𝑖

PC𝑖 ⟨EOF𝑖⟩ . (6)

In this case, we are mainly interested in the signal associated with the first mode, which is

significantly dominant (as explained below). The contribution of this first mode (𝑖 = 1) to the

globally-averaged anomalies is computed as:

⟨𝑇 ′⟩1 = PC1 ⟨EOF1⟩ . (7)
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And the ensemble variance of globally-averaged surface air temperature explained by the first

mode (only) is obtained by computing the squared anomalies and averaging over members ( .̂ ):

�⟨𝑇 ′⟩1
2 = �PC1

2 ⟨EOF1⟩2 (8)

Here, we have designed PC as a 2D matrix with a first dimension involving modes and a second

dimension involving time and members. When we average over the members, we therefore only

average over part of the second dimension, creating cross terms between modes, which are not

investigated.

The decomposition is presented above for SAT data but can be applied to any ensemble model

outputs. In this study, the same methodology is used to decompose the precipitation flux data set

in PCs and EOFs.

3. Results

We start the investigation with a broad scope using globally-averaged data and progressively

refine the analysis to move to local scope and finally to specific patterns.

a. Opposite evolution of interannual and decadal variability at global scale

The ensemble variances computed for globally-averaged temperature (Fig. 1) and precipitation

(Fig. 2) strongly differ among models. For example, MIROC6, the ensemble with the highest

resolution, has more than twice the variance of other models. However, these differences do not

prevent the models to show similar trend or behavior regarding the time evolution of this ensemble

variance.

Looking specifically at the total variance, we see an increase over time for precipitation which

seems also correlated to the intensity of the radiative forcing whereas no such trends are observed

for temperature. For precipitation, the total ensemble variance reaches its maximum for all models

in the 2065-2095 segment under SSP5-8.5 forcing scenario. For temperature, the discrepancies

between models do not allow to identify the future evolution of the total ensemble variance. One

model (CanESM5) shows an overall decrease over time and scenario, two models (MPI-ESM1-

2-LR and ACCESS-ESM1-5) mainly exhibit stagnation, and the last one (MIROC6) shows an

increase.
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Fig. 1: Ensemble variance of globally-averaged surface air temperature. The four first rows
show the ensemble variance for four different models: MPI-ESM1-2-LR, MIROC6, ACCESS-
ESM1-5 and CanESM5. The last row presents the variance computed from a multi-ensemble
constructed from the concatenation of the four previous models. The left panels presents the yearly
results for the historical and projected period with the Fossil-fueled Development scenario (SSP5-
8.5). The colors represent the contribution of the various frequency bands to the total variance:
blue for the variability with a period band of 1-3 yr, orange for 3-5 yr, red for 5-11 yr, and grey
for periods longer than 11 yr. The bands are obtained from a temporal filtering of temperature at
the given period and all the bands of variance are finally filtered to be consistent with the 11 yr
period. The right panels present the results for a given climatic period (averaged over 30 yr): early
historical (1870-1900), end of historical (1980-2010) and end of projections (2065-2095) for three
shared socioeconomic pathways, Sustainability (SSP1-2.6), Middle of the Road (SSP2-4.5) and
Fossil-fueled Development (SSP5-8.5). The black lines represent the quarters of the total variance.
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Fig. 2: Ensemble variance of globally-averaged precipitation. As Fig. 1 but for precipitation.

Despite this difference regarding the evolution of the total variance of precipitation and temper-

ature, the two quantities share a strong common signal concerning the spectral change obtained

with the filtering approach (see Section 3 of Methods). Indeed, both show an intensification of

interannual variability with a period between 1 and 3 years, in both absolute and relative con-

tributions. At the same time, a weakening of the decadal variability of temperature with period

larger than 11 years is observed. This explains why despite the increase of interannual variability,

temperature does not present a net increase of the total variance as observed in precipitation. The
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robust inter-model agreement of this shift allows us to analyse the multi-ensemble variance to

describe and summarize this phenomenon.

Regarding the precipitation, the initial variances of each frequency band at the early historical

period (1870-1900) are: 6.1 mm2 yr−2 (52% of the total variance) for the 1-3 yr period band (i.e.,

interannual), 1.8 mm2 yr−2 (16%) for 3-5 yr, 1.5 mm2 yr−2 (13%) for 5-11 yr, and 2.3 mm2 yr−2

(20%) for periods longer than 11 yr (i.e., decadal). The absolute (relative) contribution of the

interannual variability increases to 8.4 mm2 yr−2 (55%) for the 1980-2010 time segment and, for

the end of the 21st century, increases respectively to 8.8 mm2 yr−2 (58%), 9.8 mm2 yr−2(62%), and

12.3 mm2 yr−2 (65%) for SSP1-2.6, SSP2-4.5, and SSP5-8.5. The absolute variance of the other

bands does not change much over time or scenario, except the 3-5 yr period band that increases

from 1870-1900 to 1980-2010 and then stabilizes.

Concerning the SAT, the initial variances are 5.3×10−3 K2 (40% of the total variance) for the

interannual component, 2.4×10−3 K2 (18%) for period band of 3-5 yr, 2.1×10−3 K2 (15%) for

5-11 yr, and 3.6×10−3 K2 (27%) for decadal variability. The absolute (relative) contribution of the

interannual variability increases to 7.7×10−3 K2 (45%) for the 1980-2010 time segment. For the

end of the current century it increases to 8.3×10−3 K2 (50%), 8.9×10−3 K2 (55%), and 9.6×10−3 K2

(59%) for SSP1-2.6, SSP2-4.5 and SSP5-8.5, respectively. After an increase of their variance from

1870-1900 to 1980-2010, frequency bands above 1-3 yr show significant declines. The maximum

decrease is observed for the decadal variability that diminishes to 2.2×10−3 K2 for SSP5-8.5 in

2065-2095, which represents a 40% loss relative to the early historical period.

These frequency changes in temperature and precipitation variance are very intense. Indeed,

the ensemble variance from the 1-3 yr band almost doubles from 1870-1900 to 2065-2095 for

the SSP5-8.5 scenario, when at the same time, temperature variance in the other bands decreases

significantly, up to 40%. The interannual timescale dominates the internal variability of temperature

and precipitation, both in the past and present, and even more so in the future. In contrast, the

contribution of low frequencies to the total variability of these two quantities at global scale appears

to be of second-order importance, and is projected to decrease even further over the 21st century.

To better understand this phenomenon, we refined the analysis on the five identified 30-yr

segments (1870-1900, 1980-2010, and 2065-2095 for the three scenarios) with spatial maps of

local ensemble variance (Fig. 3 and 4). The objective is to determine, among other things, if the
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signal is spatially homogeneous or located in specific regions. We also seek to determine whether

the opposite changes in temperature variance are driven by the same mechanism or not. For that,

we use the multi-ensemble data set built from the 100-times resampling method (see Section 2

of Methods) to investigate a robust signal. The area where the signal-to-noise ratio of the change

in ensemble variance is less than one (i.e. where the 95% confidence interval associated with the

change in variance is greater than the mean magnitude of that change) indicates low significance

and covers most of the area where the changes are weak.

The maps of temperature variance present, first of all, a strong initial (1870-1900) ensemble

variance located over the ocean at high latitudes (Fig. 3, first column). This signal shows significant

intensity at all frequencies, and reaches its peak for the interannual variability, in the 1-3 yr band.

On the other hand, an important ensemble variance signal is observed at lower latitudes on land

and in the equatorial central Pacific, for the interannual variability. The changes computed for

the four following segments (Fig. 3, second to fifth column) appear as a progressive evolution of

two regimes. The first one is associated with a decrease of the ensemble variance located in the

ocean at high latitudes and for all time scales, in agreement with the initial variance signal. The

second one is associated with an increase solely visible at band frequency of 1-3 yr and located at

lower latitudes. Only this second regime appears in the precipitation maps (Fig. 4). Its signature

is particularly visible around the equatorial band of the Pacific. According to the assessment of

significance, represented by the grey hatches, these two patterns of change clearly stand out as

being robust at the 95% confidence level. In the next two sub-sections we will discuss these two

changes more specifically.

b. Decline of internal variability at high latitudes

The decrease in temperature variance located at high latitudes and acting on all time scales

has an amplitude varying with the intensity of the scenarios (Fig. 3). In the two less emissive

scenarios (SSP1-2.6 and SSP2-4.5), this decrease seems also linked, in the northern hemisphere,

to a local increase of the variance further poleward of the decrease patch. Given the location of the

decrease and the associated increase poleward, we have tested if this decrease is associated with

sea-ice-atmosphere interactions.
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Fig. 5: Comparison between Sea-ice Concentration and Surface Air Temperature ensemble
variance changes. The colors represent the changes of sea-ice concentration ensemble variance (in
%) compared to the early historical reference (1870-1900). Areas in red represent local increases
of ensemble variance and the blue areas represent local decreases. Contours represent the changes
of surface air temperature ensemble variance (in K2) compared to the early historical reference.
The thick lines represent the zero contour and the thin solid and dashed lines represent respectively
the positive (increase) and negative (decrease) contours. The first column presents the results for
the end of the historical period (1980-2010). The three following columns present the results for
the end of the 21st century for the three scenarios studied: SSP1-2.6 (2nd column), SSP2-4.5 (3rd

column) and SSP5-8.5 (4th column). The first row shows the results around the North Pole, the
contours are plotted from −2 to 2 K2 every 0.4 K2. The variances are smaller around the South
Pole, therefore the colormap and contours values are reduced by half.

To investigate this hypothesis of sea-ice impact on SAT variance, we computed, following the

same methodologies, the multi-ensemble variance of the yearly sea-ice concentration (SIC) and

its evolution (Fig. 5). The SAT variance changes precisely match the SIC variance changes. In

the northern hemisphere, we observe a decrease of the ensemble variances in the Barents Sea in

1980-2010 that intensifies and extends progressively in the future scenarios to the Greenland Sea

and to the Irminger and Labrador Seas for the higher scenarios. In the Southern Hemisphere, the

decrease is a bit smaller but still exists. It is mainly located at both sides of the Antarctic Peninsula

and propagates and intensifies all around Antarctica proportionally to the radiative forcing. At the

same time, we observe an increase of the ensemble variance of temperature at higher latitudes that
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corresponds to an increase of SIC variance change in the Northern Hemisphere but that cannot be

matched to SIC variance changes in the south because of the presence of the land.

Fig. 6: Schematic link between ensemble variance of sea-ice and ensemble variance of surface
air and ocean temperature. The inter-member sea-ice edge is the area where some members are
covered by sea ice and others are not. Sea ice controls and enables heat exchange between the
ocean and the atmosphere. Consequently, in these transition zones, variance will be important not
only for sea ice concentration, but also for atmospheric and ocean surface temperature.

We explain this almost perfect match between the variance signals with the impact of sea-ice

on surface air temperature as explained by the schematic diagram in Figure 6. In the presence of

sea-ice (”ice-covered” area), the atmosphere is isolated from the warmer ocean and its temperature

can decrease very low. Conversely, in the absence of sea-ice (”ice-free” area), the ocean warms the

atmosphere and prevents its temperature from decreasing to very low levels. The area of variance

changes are therefore simply linked with the presence/absence of sea-ice among members. The

region where some members present sea-ice and some others do not (referred to as ”sea-ice edge”)
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will have very high SAT ensemble variance. In contrast, the regions that are either covered by

sea-ice in all members or in none of them have much lower SAT ensemble variance. The signature

showing a decrease in variance is therefore the footprint of the inter-member sea-ice edge during

the early historical period changing from being ice-covered in some members and ice-free in

others to being ice-free in all or most of the members. Following the same line of reasoning,

the signature showing an increase in variance is the footprint of the inter-member sea-ice edge

in a given scenario changing from being ice-covered in all or most of the members to being

ice-covered in some members and ice-free in others. The combined increasing and decreasing

patches indicate the displacement of the sea ice edge. The fact that SSP5-8.5 presents almost

no increase of ensemble variance reflects the almost disappearance of sea-ice in yearly averaged

sea-ice concentration, linked to global warming. Indeed, in SSP5-8.5, the multi-ensemble mean

sea-ice concentration does not have any cell in the Northern Hemisphere with more than 50% of

sea-ice after 2090 and no cell with more than 75% of sea-ice after 2062. The system described

here therefore involves three components with mutual impact on their variances: the ocean, the

atmosphere and the sea ice. In this relationship, sea ice is the main driver of variance, enabling or

preventing heat exchange between the ocean and atmosphere.

To test the validity of the proposed system we extended the investigations to Sea Surface Temper-

ature. In Figure 7, the evolution of the ensemble variance of SST with respect to the early historical

period is compared to the ensemble variance of sea-ice. As for the SAT case, the SST variance

changes match the changes of the sea-ice variance. This results from the fact that under sea ice,

SST is locked near the freezing point, so when sea ice concentration changes, temperature changes.

Their variances are directly related. Although obvious, this result reinforces our confidence in this

three-component (ocean, sea-ice, atmosphere) system.

c. Reinforcement of interannual variability at low latitudes

As discussed above, the second regime observed on local ensemble variance maps is characterized

by an increase of variance at low latitudes (Fig. 3 and Fig. 4). For temperature, the changes are

located both above the ocean, in the eastern and central equatorial Pacific region, and above land,

over the Amazon rainforest or in the tropical regions in Africa, Asia, and Australia. The evolution

appears proportional to the radiative forcing with a maximum reached for SSP5-8.5 at the end of
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Fig. 7: Comparison between Sea-ice Concentration and Sea Surface Temperature ensemble
variance changes. Similarly to Fig. 5, colors represent the changes of sea-ice concentration
ensemble variance (in %) compared to the early historical reference (1870-1900). Contours
represent the changes of sea surface temperature ensemble variance (in K2) compared to the early
historical reference. The thick lines represent the zero contour and the thin solid and dashed
lines represent respectively the positive (increase) and negative (decrease) contours. The first line
shows the results around the North Pole, the contours are plotted from −1 to 1 K2 every 0.2 K2.
The variances are smaller around the South Pole, therefore the colormap and contours values are
reduced by half.

the 21st century. For this time segment, the maximum change is located in the Amazonian region

where the initial (1870-1900) variance is 0.34 K2 and increases to 1.59 K2. In terms of standard

deviation, it corresponds to an increase by 0.67 K of the interannual variability, which is more than

a doubling.

Local ensemble variances for precipitation are consistent with the results from globally-averaged

data and on local variance of temperature (Fig. 4). Indeed, we find the low-latitude signature

associated with the increasing variance at interannual scale. The increase seems again proportional

to the radiative forcing and closely looks like a typical ENSO signature. For the end of the 21st

century time segment, the maximum change is located in the western Pacific where the initial

variance was 4×105 mm2 yr−2 and increased to 13×105 mm2 yr−2. In terms of standard deviation,

it corresponds to an increase by 520 mm yr−1 of the interannual variability (i.e., close to a doubling).
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The absence of signal at lower frequency is also an argument to associate this precipitation variance

signal to the signal of SAT variance and consider they are driven by the same mechanism.

To determine whether this pattern of increasing variance is driven by a specific mechanism or is

the results of the superposition of different mechanism, we decomposed the SAT and precipitation

into a collection of EOFs (referred to as spatial modes) and their associated PCs (referred to as

time series of the modes), using a Singular Value Decomposition (see Section 4 of Methods). This

is done by using the entire data set (i.e., all time periods, scenarios, models, and ensembles). It

allows to build a typical variability pattern valid across and representative of all models, scenarios

and time periods.

For both SAT and precipitation, the leading modes obtained (Fig. 8) are largely dominant and

explain a significant part of the variance. The first mode (EOF1) of SAT explains alone 15% of

the variance of the entire data set, while the following mode explains only 6%. Regarding the

precipitation, the EOF1 explains 24% of the total variance whereas EOF2 is representative of only

5%. These EOFs are particularly intensified at low latitudes. Within the 20◦S to 20◦N region, the

first mode of SAT and of precipitation explains 46% and 28% of the variance, respectively. Focusing

on the Pacific sector only (20◦S to 20◦N and 130◦ to 290◦E) they are even more important. Indeed

there the EOF1 of SAT and of precipitation explains 55% and 35% of the variance, respectively.

Fig. 8: First Empirical Orthogonal Functions from a Singular Value Decomposition of SAT
and Precipitation. The first EOF modes for (left) Surface Air Temperature and (right) Precipitation
multiplied by the standard deviation of the first principal component. The first mode of SAT explains
15% of the variance of the entire data set, the second mode explains only 6%. For precipitation,
the first mode explains 24% of the variance and the second mode only 5%.

22

Accepted for publication in Journal of Climate. DOI 10.1175/JCLI-D-23-0606.1.
Brought to you by University of Maryland, McKeldin Library | Unauthenticated | Downloaded 04/19/24 07:27 AM UTC



These leading EOFs for temperature and precipitation with their strong signature in the equatorial

Pacific and teleconnections transporting their influence around the world mainly in the tropical

region are very close to the typical ENSO pattern that dominates the variability of climate at global

scale (Cassou et al. 2021).

To determine whether these ENSO-like patterns are responsible for the increase of ensemble

variance frequency, we computed the ensemble variance of globally-averaged data explained by

the first mode alone (Figs. 9 and 10 for SAT and precipitation, respectively). We used for each

quantity its PC1 and its globally-averaged EOF1. In this work, we do not investigate the impact of

cross terms involving the first mode and the other ones.

For both SAT and precipitation, the variability is dominated mainly by the 1-3 yr band and by

the 3-5 yr band to a lesser extent. This is typical of ENSO, generally assumed to have a period

between 2 and 7 years (Fredriksen et al. 2020). For SAT (Fig. 9), the relative importance of 1-3 yr

band is very close between models, starting around 50% at the beginning of the historical period

and reaching 65-75% for the end of the SSP5-8.5 scenario. Regarding precipitation (Fig. 10), the

differences are much larger among models. MPI shows a weak increase of interannual variability,

starting around 60% and finishing at 63%. MIROC6 presents the largest increase from 64% to 77%.

Interannual variability also increases in ACCESS but is limited by its already high level at the start

of the simulation. The relative importance of its 1-3 yr band increases from 73 to 80%. Finally,

CanESM5 presents also a significant increase from 68 to 76%. The differences regarding the

increase of interannual variability seem linked to the concomitant increase of the 3-5 yr frequency

band that can dilute a part of the 1-3 yr band increase in relative importance. In general, the

total ensemble variance increases with time and radiative forcing, in line with recent literature

based on SST (Cai et al. 2022; Maher et al. 2023) and as indicated in the IPCC AR6 report (Lee

et al. 2021, Chapter 4, Section 4.3.3.2) for precipitation. According to our results, this is achieved

through the absolute and relative increase of the interannual variability (i.e., 1-3 yr period band).

For the precipitation and using the multi-ensemble, the absolute (relative) ensemble variance at

interannual scale is 0.27 mm2 yr−2 (65%) during the early historical (1870-1900), increases to

0.37 mm2 yr−2 (66%) between 1980 and 2100, and reaches at the end of the century 0.47 (69%),

0.52 (72%), and 0.59 mm2 yr−2 (74%) for SSP1-2.6, SSP2-4.5, and SSP5-8.5, respectively. For

the SAT, the interannual multi-ensemble variance is 2.5×10−3 K2 (53%) during early historical,
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Fig. 9: Ensemble variance of globally-averaged Surface Air Temperature explained by the
first EOF mode. Each row corresponds to a given model, except the last one which is the
concatenation of all of them. The rows present the ensemble variance over the historical and
projection (SSP5-8.5) periods. Similarly to Fig. 1, the colors represent the contribution of the
various frequency of variability to the variance and the right panels gathers information for three
climatic periods (1870-1900, 1980-2010 and 2065-2095) and for the three investigated scenarios
for the last period (2065-2095). The black lines represent the quarters of the total variance.

increases to 3.7×10−3 K2 (56%) between 1980 and 2100, and reaches at the end of the century 4.1

(60%), 4.5 (63%), and 4.6×10−3 K2 (67%) for SSP1-2.6, SSP2-4.5, and SSP5-8.5, respectively.
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Fig. 10: Ensemble variance of globally-averaged precipitation flux explained by the first EOF
mode. As in Fig. 9 but for precipitation.

The interannual variance component almost doubles between early historical and the end of the

21st century for SSP5-8.5.

MIROC6 presents a small decrease of ensemble variance at the end of SSP5-8.5 scenario both for

SAT and precipitation. This is due to a change of the low-latitude variability pattern, moving from

canonical-type/Eastern ENSO to Modoki-type/Central ENSO (Shin et al. 2022). In our framework,

this implies a transfer of the variability to another EOF. CanESM5 also presents such a decrease
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but its spatial resolution is much lower and we were not able to recognize a clear Modoki pattern

emerging. However, we clearly identify alternative patterns emerging in the Equatorial Pacific and

therefore expect leakage of the variance of its first mode to these other EOFs.

4. Discussion

Using four ensemble models from CMIP6, we studied the evolution of ensemble variance as an

indicator of internal variability. Our results suggest that this internal variability has changed since

the beginning of the historical period, and is likely to change in the future depending on the emission

scenario. We paid particular attention to separating the different temporal scales of variability,

by highlighting and associating frequencies with the simulated changes. This aspect has not been

much studied in the literature, particularly using different realistic forcing scenarios. For instance,

Rehfeld et al. (2020) studied variability frequencies, but only using idealized experiments (e.g.,

1pctCO2 or abrupt-4xCO2). Our results highlighted two distinct patterns of changes consistent

with previous works, using ensemble simulations (Olonscheck et al. 2021), or single-member

datasets (Rehfeld et al. 2020; Shi et al. 2023). However, the two mechanisms driving the changes

identified in the present study are to some extent different from those proposed in these previous

studies.

The first one, inducing a net loss of internal variability at high latitudes, is linked to the progressive

disappearance of sea-ice, as also suggested by Olonscheck et al. (2021) or Shi et al. (2023). Here

we show that the changes are shared from interannual-to-decadal time scales and show that the

dominant signal is related to the sea-ice edge shifting poleward. In addition, we highlight the

importance of the coupled ocean-atmosphere-sea ice system reinforced by the similar changes

observed in sea surface temperature variance. Olonscheck et al. (2021) has proposed that the

meridional temperature gradient may also play an important role in reducing temperature variability

from high to mid-latitudes. Although this mechanism may indeed play a role in the decrease in

variance, we believe that this role is second-order, since the decrease at mid-latitudes is not visible

compared to the one at high latitudes. Shi et al. (2023) suggests that snow cover changes on land

contribute to the decrease of temperature variability at high latitudes. This is a potential mechanism

explaining the small decrease of variability we observe at high latitudes over land. However, we
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find that the signal is mainly oceanic, therefore the sea-ice edge displacement is likely the dominant

mechanism to explain the decreasing signal detected at global scale.

The second mechanism acts at low latitudes where we suggest an increase of the internal

variability frequency in the future. Although Olonscheck et al. (2021) also observed an increase

of variability at low latitudes, they linked these observations to changes in vegetation cover, with a

transition to drier surface types. In particular, they suggest a shift from tropical forest to semi-arid

landscapes. Another study based on single-member datasets suggests that changes at low latitudes

are linked to a decrease of soil moisture and an increase of clouds and longwave radiations

associated (Shi et al. 2023). In the present work, thanks to the study of precipitation in addition

to temperature, an ENSO-like pattern emerges naturally from the singular value decomposition of

the data. Moreover, the separation of frequencies enables us to investigate this aspect of changes

concerning the entire low-latitude pattern. We suggest that the increasing frequency of internal

variability observed at low latitudes may reflect an increase of the frequency of ENSO, with

an interannual component becoming increasingly dominant reflecting stronger associated events.

These observations can be linked to the work of Fredriksen et al. (2020) describing a shift of the

Niño 3.4 index toward the higher frequency in its power spectrum. Here, we obtain the same

results using a completely different and independent method making a supplementary argument in

the direction of this hypothesis. In addition, we bring additional evidence to answer the question

opened by Fredriksen et al. (2020) about the proportionality of the frequency increasing with the

radiative forcing. Our results with EOF decomposition suggest that the increase of frequency is

greater if the radiative forcing is stronger. Our description of the increasing frequency of ENSO

is reinforced by the robust agreement among models regarding this evolution despite their large

differences on other aspects. Indeed, they all used different resolutions and model components.

They also exhibit various ensemble variance time series and equilibrium climate sensitivity (Meehl

et al. 2020, Table 1) and are relatively independent inside the CMIP6 framework (Brunner et al.

2020). Previous studies (Cai et al. 2014, 2015) have shown an increase of the frequency of extreme

El Niño and La Niña events which seems consistent with the general increase of the frequency we

identified. Finally, this increase appears compatible with the mechanisms explaining the changes

of variability at low latitudes proposed in Olonscheck et al. (2021) and Shi et al. (2023) (i.e.,

changes in vegetation, clouds, soil moisture, etc.) which could even be consequences of the change
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of ENSO, since its teleconnections are known to have a profound impact on the water cycle in

America, Asia and Africa, closely linked to these mechanisms.

The results obtained with the time filtering to separate the time scales of variability have been

compared to various low, high, and band-pass filterings. The relative importance of each time

scales appears sensitive to the filtering method with, for instance, a more important 3-5 yr band

and a lower 1-3 yr using a 4th order Butterworth filter. However, regardless of the method used, we

found the increasing frequency of the variability over time and an intensification of the interannual

variability. The dominant period can be either 1-3 yr or 3-5 yr depending on the methodology

used, but it remains an interannual variability strengthening and a shift towards higher frequencies.

In the present work, we have not studied shorter time scales such as seasonal or intra-annual

variability. Some high-impact events (e.g. repeated heat waves) occur on these shorter time scales,

and changes in their variability could be different from those studied. Shi et al. (2023) investigated

such seasonal changes and showed that the decreasing high-latitude signal is reinforced in winter.

The computational cost of ensemble simulations remains a limiting factor for the study of internal

variability. On the one hand, the quite coarse spatial resolution of CMIP6 models means that some

of them may have difficulty representing specific climate modes such as the different types of

El Niño (Canonical or Modoki). However, although some of the selected models have shown

such difficulties, they all show a relatively good ability to represent ENSO in general, and more

particularly to predict its periodicity (Hou and Tang 2022), which is the focus of our attention here.

On the other hand, ensemble size is also a limitation. Large ensembles with a hundred members

have already been run, but not on such long time scales with such a wide variety of scenarios.

A larger number of members could help improve the resolution of internal variability by visiting

more possible states. However, our main results are consistent between the four ensemble models,

which have different sizes, and the confidence intervals built by selecting members randomly are

very narrow. We can therefore expect the size of the ensembles to be sufficient to resolve the

processes studied here.

The internal variability of the climate is known to have potentially strong impact on human

societies and ecosystems. ENSO is a perfect example with the warm El Niño events causing

wildfires and drought in the West Pacific, Australia, and Asia, as well as marine heatwaves in the

East Pacific; whereas the cold La Niña events causing drought over South America and floods
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over Asia and Australia (Cai et al. 2021). In the present study, we found dramatic changes

over the Amazon rainforest with interannual SAT standard deviation increasing by 0.67 K, which

corresponds to more than a doubling.

It is usual to interpret climate changes as a modification of the forced variability or similarly

of the background state. However, here we have shown that we may also be entering an era of

changing ”internal” climate variability. For some regions this means a more variable, volatile

and unstable climate. This has the potential to strongly impact ecosystems (Dee et al. 2020) and

societies (Bathiany et al. 2018), in particular around the Pacific where the changes are stronger, but

also on the whole planet given the variance changes observed over tropical Africa and the known

teleconnections of ENSO. It is key to integrate these variance changes in future adaptation plans.
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Rehfeld, K., R. Hébert, J. M. Lora, M. Lofverstrom, and C. M. Brierley, 2020: Variability of

surface climate in simulations of past and future. Earth System Dynamics, 11 (2), 447–468,

https://doi.org/10.5194/esd-11-447-2020.

Roberts, C. D., M. D. Palmer, D. McNeall, and M. Collins, 2015: Quantifying the likelihood of

a continued hiatus in global warming. Nature Climate Change, 5 (4), 337–342, https://doi.org/

10.1038/nclimate2531.

Shi, J., Z. Tian, X. Lang, and D. Jiang, 2023: Projected changes in the interannual variability of

surface air temperature using CMIP6 simulations. Climate Dynamics, https://doi.org/10.1007/

s00382-023-06923-3.

Shin, N.-Y., J.-S. Kug, M. F. Stuecker, F.-F. Jin, A. Timmermann, and G.-I. Kim, 2022: More

frequent central Pacific El Niño and stronger eastern pacific El Niño in a warmer climate. npj

Climate and Atmospheric Science, 5 (101), 1–8, https://doi.org/10.1038/s41612-022-00324-9.

Swart, N. C., and Coauthors, 2019: The Canadian Earth System Model version 5

(CanESM5.0.3). Geoscientific Model Development, 12 (11), 4823–4873, https://doi.org/

10.5194/gmd-12-4823-2019.
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