
HAL Id: hal-04685617
https://hal.science/hal-04685617v1

Submitted on 3 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Towards Dependable RISC-V Cores for Edge
Computing Devices

Pegdwende Romaric Nikiema, Alessandro Palumbo, Allan Aasma, Luca
Cassano, Angeliki Kritikakou, Ari Kulmala, Jari Lukkarila, Marco Ottavi,

Rafail Psiakis, Marcello Traiola

To cite this version:
Pegdwende Romaric Nikiema, Alessandro Palumbo, Allan Aasma, Luca Cassano, Angeliki Kritikakou,
et al.. Towards Dependable RISC-V Cores for Edge Computing Devices. IOLTS 2023 – IEEE 29th
International Symposium on On-Line Testing and Robust System Design, Jul 2023, Crete, Greece.
�10.1109/iolts59296.2023.10224862�. �hal-04685617�

https://hal.science/hal-04685617v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Towards dependable RISC-V cores for edge
computing devices

Pegdwende Romaric Nikiema1, Alessandro Palumbo2, Allan Aasma3, Luca Cassano2, Angeliki Kritikakou1,5,
Ari Kulmala3, Jari Lukkarila3, Marco Ottavi4, Rafail Psiakis3, Marcello Traiola1

1Univ Rennes, Inria, IRISA, CNRS, France, 2Politecnico di Milano, Italy,
3Technology Innovation Institute, United Arab Emirates,

4Twente University, the Netherlands and University of Rome Tor Vergata, Italy
5 Institut universitaire de France (IUF)

1{pegdwende.nikiema; angeliki.kritikakou; marcello.traiola}@inria.fr, 2first name.last name@polimi.it,
3first name.last name@tii.ae, 4m.ottavi@utwente.nl

Abstract—The migration of the computation from the cloud
into edge devices, i.e., Internet-of-Things (IoTs) devices, reduces
the latency and the quantity of data flowing into the network.
With the emerging open-source and customizable RISC-V In-
struction Set Architecture (ISA), cores based on such ISA are
promising candidates for several application domains within the
IoT family, such as automotive, Unnamed Aerial Vehicles (UAVs),
industrial automation, healthcare, agriculture etc., where power
consumption, real-time execution, security and reliability are
of highest importance. In this emerging new era of connected
RISC-V IoT devices, mechanisms are needed for a reliable and
secure execution, still meeting area, energy consumption and
computation time constraints of edge devices. We propose three
mechanisms towards this goal, i.e., (i) a Root of Trust module
for post-quantum secure boot, (ii) hardware checkers against
hardware trojan horses and microarchitectural side-channel
attacks, and (iii) a fine-grained dual core lockstep mechanism for
real-time error detection and correction. The paper illustrates the
proposed mechanisms with related motivations and implications,
as well as a discussion on future research directions.

Index Terms—RISC-V, OpenTitan, RoT, Secure Boot, Post-
Quantum Cryptography, PQC, Security, Safety, CRYSTALS-
Dilithium, Lockstep Dual Core, Recovery, Security Checker,
Hardware Trojan Horses, Microarchitectural Side-Channel At-
tacks.

I. INTRODUCTION

In order to reduce not only the latency, but also the quantity
of data flowing into the network, there is an incentive to
migrate computation from the cloud into the edge devices, i.e.,
Internet-of-Things (IoTs) devices. With the emerging open-
source and customizable RISC-V Instruction Set Architecture
(ISA), RISC-V came into the foreground gaining more and
more attention of the industry [1]. RISC-V is a promising
candidate for several application domains within the IoT
family, such as automotive, Unnamed Aerial Vehicles (UAVs),
industrial automation, healthcare, agriculture etc., where power
consumption, real-time execution, security and reliability are
of utmost importance [2], [3]. However, the majority of RISC-
V works mainly focus on design for performance and power

consumption, often neglecting dependability and security is-
sues [4]. In this emerging new era of connected RISC-V IoT
devices, mechanisms are needed for reliable and secure execu-
tion [5], meeting area, energy consumption and computation
time constraints of edge devices.

To achieve this goal, such mechanisms should address the
complete system stack. The fundamental mechanism, upon
which the whole reliable and safety stack is built, is the
secure boot, where the executed code is authenticated and
its integrity is verified. After the system boot, the system
execution has to be protected from faults injected either
maliciously or unintended. Such faults can impact the fetching
of the instructions and data from the memory to the processors
or even the processor execution.

In this work, we propose three mechanisms applied at
different layers of the system stack in order to achieve
dependable and secure RISC-V cores. As a first step, a
strong dependability foundation should be established through
a secure boot scheme, bound to the hardware using a Root
of Trust (RoT) module, such as OpenTitan, that uses digital
signatures based on Public Key Cryptography (PKC) algo-
rithms, such as RSA and ECC. However, the emergence of
quantum computing technology makes integer factorization
and discrete logarithms-based cryptography, such as RSA and
ECC, respectively breakable [6]. Hence, there is a need for
data, code integrity and authentication solutions that fit the
post-quantum era. However, OpenTitan is unable to support
existing public-key Post-Quantum Cryptographic (PQC) algo-
rithms in its secure boot flow without major modifications, due
to its resource limitations. To tackle this limitation, we propose
an enhanced secure boot flow for OpenTitan RoT, modifying
the OpenTitan hardware and software architecture, enabling
post-quantum security.

As a second step, in order to protect from attacks during
the transfer of the data from memory to the processors,
mechanisms are proposed to protect from executing unwanted
software and accessing illegal memory locations. To achieve
that, we propose hardware mechanisms to monitor the fetching
activity, the processed data and the status of the micropro-979-8-3503-4135-5/23/$31.00 ©2023 IEEE

20
23

 IE
EE

 2
9t

h
In

te
rn

at
io

na
l S

ym
po

siu
m

 o
n

O
n-

Li
ne

 T
es

tin
g

an
d

Ro
bu

st
 S

ys
te

m
 D

es
ig

n
(IO

LT
S)

 |
 9

79
-8

-3
50

3-
41

35
-5

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IO
LT

S5
92

96
.2

02
3.

10
22

48
62

Authorized licensed use limited to: Universita degli Studi di Roma Tor Vergata. Downloaded on September 03,2024 at 12:57:59 UTC from IEEE Xplore. Restrictions apply.

cessor in order to detect potentially suspicious activities, i.e.,
the activation of a Hardware Trojan Horse or the attempt of
running a Microarchitectural Side-Channel Attack.

Last, in order to deal with hardware faults of different
nature (i.e., related to manufacturing imperfections, to aging,
or radiation-induced) occurring inside the processors, mecha-
nisms typically based on redundancy are used: the same set of
operations with same inputs is executed on different proces-
sors. Such approach is very effective, since the probability of
having the same fault concurrently occurring on all processors
is very small [7]. However, it comes in high error detection and
correction cost, when it is applied at a coarse-grained level.
Therefore, we propose a fine-grained lockstep version a RISC-
V processor with fast error detection and correction features.
We designed the approach by using High-Level Synthesis
(HLS). HLS makes the design process less complex, as the
processor model can easily be modified, expanded and verified,
compared to HDL implementations [8].

The reminder of this paper is organized as follows: Section
II presents the post-quantum secure boot mechanism; Section
III introduces the hardware security checkers for anti-Trojan
and anti-Side-Channel Attacks; Section IV discusses the dual-
core lock step implementation for error detection and correc-
tion; finally, Section V concludes the paper.

II. POST-QUANTUM SECURE BOOT ON OPENTITAN ROT
A. Motivation

OpenTitan is an open source RISC-V based Root of Trust
(RoT), one use case of which is to establish the foundation of
a secure chain of trust, through a secure boot procedure. As
mentioned, for its secure boot, OpenTitan currently uses PKC
schemes that are not post quantum safe, therefore our goal is
to identify the best candidate algorithm for OpenTitan.

Current PQC mathematical solutions are based on hashes,
codes, multi-variants and lattices [9]. Taking into consideration
the resource constraint environments of the RISC-V edge
devices, PQC secure boot algorithms should be implemented
meeting area and energy consumption, as well as computation
time. The first PQC hardware-based secure boot implementa-
tion using the post-quantum hash-based signature scheme is
presented and compared to a hardware and software ECDSA
secure boot solution [10]. PQC secure boot signatures for effi-
cient PQC UEFI Secure Boot based on LMS and SPHINCS+
algorithms have minimal authentication time and boot time,
and memory footprint [11], making these algorithms very good
candidates for edge devices with restricted resources.

A survey on lattice-based cryptography implementations on
constrained embedded devices, compared to traditional public-
key schemes, is presented in [12]. It is shown that, as the
key size increases, the performance of lattice-based cryptog-
raphy schemes deteriorates. When measuring performance of
different lattice-based schemes on ARM cortex-M4 micro-
processor, CRYSTALS-Dilithium has the highest throughput
performance in comparison to other schemes. CRYSTALS-
Dilithium is also one of the two signature finalists in the
third round of the NIST PQC standardization project [13],

making it a good candidate to be implemented in OpenTitan.
However, such a security scheme implies a complex software
implementation and its introduction in the first boot stages of
an IoT device is not straightforward, due to the ROM size
limitations of edge devices.

To overcome this limitation and provide PQC resistant
boot scheme, we extend the RTL of OpenTitan to sup-
port CRYSTALS-Dilithium acceleration. The CRYSTALS-
Dilithium hardware primitive [14] is used in our design in
order to verify the signature of the next stages of the boot.

B. The proposed PQC Secure Boot For OpenTitan
The proposed PQC Secure Boot on OpenTitan ensures that

only payloads, which have been verified, are executed, as the
system boots-up. Note that, the Secure Boot flow discussed in
this manuscript excludes the later boot stages of BL0 firmware
and the boot of the kernel of the supported OS. The first stage
of the Boot process resides in the Boot ROM. The ROM code
is programmed into the chip’s ROM during manufacturing,
and it is immutable. It contains a set of public keys used to
verify the first boot stage (i.e. ROM EXT) stored in flash.

The main task of the ROM code is to prepare OpenTi-
tan for executing ROM EXT, ensuring also that the loaded
ROM EXT is allowed to be executed on this chip (ROM
Extension - Stored in flash and signed by the Silicon Creator).
Figure 1 gives an overview of the two steps of the boot code.
As soon as the system is powered-on/reset, the boot process

ROM

Exec restricted to
ROM region

Power
On

Clear SRAM
except retention

Read flash
Boot Info

Active ROM_EXT Slot
Flash slot
empty?

No

Boot failure

Silicon
Creator
Dilithium
public key
and
signature Derive CreatorRootKey

identity from keymanager

KO

OK

PMP configuration Exec transfer
to ROM_EXT

PMP
configuration

Yes

Processing
requests from

persistent SRAM

Construct boot info
struct in SRAM

OK

PMP
configuration

Exec transfer to
BL0

Yes

Read Boot
Info page

Active BL0/Kernel image

Boot Abort

KO

Start

Silicon Owner
Dillithium
public key (derived)

ROM_EXT

No

Compute Digest
of ROM_EXT

Compute Digest of BL0

Verify ROM_EXT
manifest signature

Verify BL0 manifest
signature

Is boot service
request

Fig. 1. OpenTitan PQC secure boot code.

starts. The execution is restricted to the OnChip ROM, which
resides inside OpenTitan. Execution of other types/areas of
memory is initially prevented by the reset logic. The execution
enters the ROM code and the enhanced Physical Memory
Protection (ePMP of the Ibex core of OpenTitan) is enabled
and configured. At this stage, only the ROM region, where
the executable boot code resides, is accessible to the core. All
SRAM, except for retention SRAM, is cleared. The active boot
slot is loaded from the flash Boot Info. Flash boot info resides
in the flash default bank. Starting with the Active ROM EXT
Slot, the ROM code performs the following steps:

Authorized licensed use limited to: Universita degli Studi di Roma Tor Vergata. Downloaded on September 03,2024 at 12:57:59 UTC from IEEE Xplore. Restrictions apply.

• It determines if the Active ROM EXT slot is empty, by
testing for presence of the header magic value. If it is
present, it continues with the validation of ROM EXT. If
it is not present, it executes the boot failure logic.

• If the Active ROM EXT slot is empty, the boot process
reads the ROM EXT code and computes its SHA2-256
digest.

• Using CRYSTALS-Dillithium hardware primitive we per-
form a verification of the signature inside the ROM EXT
manifest, using the digest and the Silicon Creator Public
Key, which is stored into the ROM. If the validation is
successful, the process continues. If it fails, the process
executes the boot failure logic.

• Afterwards, it performs system state measurements and
it derives the CreatorRootKey Identity, which will reside
in the key manager, as an intermediate state.

• Next, it enables the execution of the ROM EXT by
configuring the appropriate PMP entry.

• Finally, it transfers the execution to the entry point
specified in the ROM EXT manifest for the active slot.

• The execution jumps into the flash, which is eXecute In
Place (XIP), and it enters in ROM EXT code part.

• The ROM EXT reads the Boot Info page to determine
which BL0/kernel image it should be booting.

• The ROM EXT reads the BL0 and computes its SHA2-
256 digest.

• Using CRYSTALS-Dillithium hardware primitive we per-
form a verification of the signature inside the BL0 man-
ifest, using the digest and the Silicon Owner Public Key
derived from the Key Manager (KM) derive function. If
the validation is successful, the process continues. If it
fails, the process executes the boot failure logic.

Execution gets transferred to the entry point (from the
BL0/Kernel image manifest) of the Silicon Owner Code.
Execution enters Silicon Owner Code (i.e. BL0, Kernel Apps
and Data which are all out of scope of this manuscript).

TABLE I
CRYSTALS-DILLITHIUM FPGA IMPLEMENTATION IN OPENTITAN

Design LUTs Relative
Footprint Clk(MHz)

OpenTitan 166.180 - 10
Dilithium 55.123 33% 2.5

We integrated the proposed approach on the original Open-
Titan pipeline and evaluated on a Xilinx Virtex UltraScale+
VCU118 FPGA board. The FPGA implementation results
are shown in the Table I. The proposed Dillithium hardware
primitive is 33% of the whole OpenTitan design, since this
implementation is tuned for high performance. In order to
avoid synchronization issues, we had to clock it down to 1/4 of
OpenTitan’s frequency. To reduce the above cost, as a future
work, we will trade-off performance for area footprint gains in
our next hardware primitive design, and implement hardware
accelerator solutions to offload the lattice computations of
Dilithium algorithm. Offloading only the most demanding

parts of the algorithm in the hardware, i.e., the random gener-
ation and the polynomial multiplication operations, could be
studied and compared against pure hardware implementation.

III. HARDWARE SECURITY CHECKERS

A. Motivation

The RISC-V architecture natively features a number of
security extensions like privilege levels, physical memory
protection and cryptography [15]. Nevertheless, these native
mechanisms do not protect the microprocessor from two rising
menaces: Hardware Trojan Horses and Microarchitectural
Side-Channel Attacks [16].

Hardware Trojan Horses (HTHs) have been considered as
a purely academic issue for a long time, since they generally
exposed limited complexity and dangerousness. Nevertheless,
a new menace recently raised, that made HTH a concern also
for industries: the software exploitable HTHs [17]. Complex
and highly dangerous HTHs may infect IP cores implementing
microprocessors: such HTHs may allow the attacker to execute
malicious software, to modify the running software, to acquire
unauthorized privileges or to steal secret information [18]. A
recent real-world HTH, the Rosenbridge backdoor, has been
found in a commercial Via Technologies C3 processor [19].
This HTH can be activated and exploited via software to
enter the supervisor mode of the system1. Although several
circuit-level design-time HTH detection techniques have been
proposed [20]–[22], there is a growing interest in system-
level techniques that allow to obtain a trusted system built
with untrusted components [23], [24] or a trusted software
execution over a (partially) untrusted system [25], [26]. We
argue that existing solutions do not take into account those
HTHs that change the functionality of the system by making
the CPU run normal (but unexpected) instructions without
changing privilege mode. In other words, none of these works
checks whether the microprocessor is executing an unwanted
software and whether it is accessing illegal memory locations.

Another menace that raised in the very last years are
Microarchitectural Side-Channel Attacks (MSCAs) [27], e.g.,
Spectre and Meltdown. These attacks allow to steal unau-
thorized information without requiring the attacker to have
physical access to the system under attack. Indeed, such
attacks only rely on the exploitation of legal HW features, e.g.,
speculative execution and branch prediction, and on the obser-
vation of the timing behavior of the system while running sen-
sitive applications. Several countermeasures against MSCAs
have been proposed in the last few years [28]. Constant-
time techniques, rely on making execution time constant to
protect secret information; compile-time techniques have been
proposed to identify and modify those instruction sequences
that may open the door to MSCAs; and OS-level solutions
based on cache partitioning, and periodic cache flushing have
been proposed. All these techniques suffer from a limited
applicability and a significant slowdown. Finally, a large

1After the publication of [19] Via Technologies officially commented that
this behavior was due to an undocumented feature meant for debug.

Authorized licensed use limited to: Universita degli Studi di Roma Tor Vergata. Downloaded on September 03,2024 at 12:57:59 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. The security architecture.

number of techniques that exploit machine learning and the
observation of hardware performance counters exist. These
techniques achieve very high detection accuracy, but they all
require either multithreading or an additional (trusted and not
attacked core) dedicated to the execution of the detection
engine. Therefore, these techniques can be applied to high
performance computing systems, e.g., high-end servers, but
they are not suitable for edge devices and low-end systems,
e.g., smart cards or automotive embedded systems, where a
single core is available and the operating system is either not
available or extremely simple.

B. The Proposed Hardware Security Solutions
Our solutions (whose high-level representation is depicted

in Figure 2) aim at allowing the system integrator to build a
trusted system by purchasing possibly untrusted components.
Therefore, we consider the IP provider as the attacker; on
the other hand the system integration employees and the
foundry are considered trusted. We introduce Hardware Secu-
rity Checkers (HSCs) in the architecture, such that the HSCs
are able to monitor the fetching activity, the processed data and
the status of the microprocessor in order to detect potentially
suspicious activities, i.e., HTHs and/or MSCAs activations.
These HSCs work in two phases: in a first design-time
configuration step they learn2 which instructions/sequences of
instructions are legitimate. In subsequent runtime monitoring
step, they check whether the activity of the microprocessor
corresponds to previously learned legitimate profiles or not.

1) Detection of Hardware Trojan Horses: In [29] we pro-
posed a HSC based on Bloom filters to protect the micro-
processor against HTHs in the main memory. The HSC is
configured while the software is installed in the instruction
memory by storing information about legal instructions and
corresponding memory addresses. At runtime, the HSC mon-
itors the memory locations accessed by the microprocessor
and the corresponding fetched instructions and based on this
information it queries the Bloom filter. In case the accessed
memory address and/or the corresponding fetched instruction
are not legitimate the HSC will raise an alarm. A lighter
version of the HSC has been proposed in [30].

We integrated the proposed anti-HTH security checker in
the RI5CY version of the PULPINO platform, which is a small

2The term ”learn” is here used although the proposed solutions do not rely
on machine learning/artificial intelligence.

4-stage RISC-V core. When synthesized on a Xilinx Artix
XC7A35T, RI5CY requires 15097 LUTs and 9881 FFs and
it works at about 50MHz with a total power consumption of
127mW. We considered the following benchmarks: Binary
Search (BinS), Matrix Multiplication (MM),
Bubble Sort (BubS), Quick Sort (QS), Sudoku

Solver (SS) and Motion Detection (MD). We
simulated 10,000 cases, where the HTH forces a malicious
fetch from an unexpected memory address and 10,000 cases
where the HTH modifies the fetched instruction read from
a legitimate address. Table II reports false positive (false
alarms) and false negative (undetected attacks) rates for the
two attack scenarios. It can be observed that we always have
0% false alarm rate and on average only about 2% attacks are
not detected, but only when the HTH modifies the fetched
instruction. Regarding the overhead, we introduce about 10%
area increase, about 2% power consumption increase and no
working frequency reduction.

TABLE II
HTH DETECTION ACCURACY

Bench. Adddress modification Instruction modification
FP FN FP FN

BinS 0% 0% 0% 2.25%
MM 0% 0% 0% 0.40%
BubS 0% 0% 0% 3.01%
QS 0% 0% 0% 3.91%
SD 0% 0% 0% 0.72%
MD 0% 0% 0% 2.83%
AVG 0% 0% 0% 2.18%

2) Detection of Microarchitectural Side-Channel Attacks:
An approach similar to the previously presented ones, but
meant for the identification of the activation of MSCAs has
been proposed in [31]. We exploited the Count-Min Sketch
model to detect at runtime the execution of pre-defined and
reproducible sets of suspicious instruction patterns that are
representative of specific MSCAs. These instruction patterns,
one for each attack of interest, are carefully identified by the
security engineer at design and then used to configure the
HSC. Therefore, our proposal is able to check several mi-
croarchitectural attacks in parallel thus representing a flexible
and scalable security solution.

We integrated our HSC into the RSD core, which is a 32-
bit, speculative out-of-order, super-scalar, two-fetch front-end
and five-issue back-end pipelines RISC-V core with 16 KByte
Instruction cache. We implemented the target microprocessor
on a Virtex7 FPGA employing 18334 LUTs, 10885 FFs,
4512 LUTRAM cells and 17 BRAM cells and worked at
57 MHz with an estimated power consumption of about
0.926W. We considered Coremark, Towers, RSort and
Median as benign programs under attack and Spectre,
Orchestration, Flush+Reload and Rowhammer as
MSCAs. We ran 10000 experiments for each benign program
– attack program and the result has been that 100% of the
attacks has been detected. Then, we measured the number of
false alarms raised by the introduced HSC: it ranged from

Authorized licensed use limited to: Universita degli Studi di Roma Tor Vergata. Downloaded on September 03,2024 at 12:57:59 UTC from IEEE Xplore. Restrictions apply.

about 80% down to 0% depending on the configuration of the
HSC itself. The smallest HSC configuration that allowed us to
get both 0% false positive and false negative rates introduced
about 10% area overhead, about 4% power consumption
increase and no working frequency reduction.

IV. LOCK-STEP DUAL CORE

A. Motivation

Processor redundancy can be implemented in a non-
intrusive or in an intrusive way, using homogeneous or het-
erogeneous processors. Non-intrusive approaches introduce
redundancy at core level without modifying the internal pro-
cessor micro-architecture, thus they are typically used when in-
ternal micro-architecture details are not available or difficult to
modify, e.g., Commercial Off-The-Shelf (COTS) processors.
For instance, two identical MicroBlaze soft cores are used to
implement a homogeneous Dual Core LockStep (DCLS) [32],
where the faulty processor is excluded from computation and
repaired through reconfiguration, while the correct processor
keeps working. A heterogeneous non-intrusive DCLS uses a
RISC-V soft core along with an ARM A9 hard core [33].
Checkpoints are used in the application to check for mismatch
between the cores and a roll-back strategy is used upon detec-
tion. Heterogeneous approaches may reduce performance, with
the low-speed processor being the upper bound to the DCLS
performance. Moreover, performing lockstep with hard cores
requires specific architecture support, which is not present
on all processors [33]. Overall, non-intrusive approaches are
simple to implement, as no micro-architectural modifications
are needed. However, they leave to the application level the
responsibility to define a correction strategy (e.g., through
regular checkpoints), leading to possible high timing overhead.

On the other hand, intrusive approaches modify the inter-
nal processor micro-architecture, improving flexibility when
implementing correction mechanisms (e.g. rollback). For
instance, the Dynamic Adaptive Redundancy Architecture
(DARA) is a homogeneous intrusive DCLS approach applied
to RISC ISA SH-2 processors and achieves error correction
through rollback [34]. DARA adds additional hardware to
check the consistency of all pipeline stage registers, between
the lockstep cores. However, DARA does not support faults
occurring in branch instructions. Another homogeneous intru-
sive approach uses two virtual RISC-V cores to implement a
DCLS through fine-grained interleaved multitasking to tackle
common-mode failures (CMFs) [35]. Other approaches extend
the pipeline registers with error detection and correction codes,
e.g., Duckcore extends a RISC-V core with Single Error
Correction Double Error Detection (SECDED) in the pipeline
registers [36]. However, such an approach can add significant
overhead due to the encode and decode time and do not
guarantee protection against faults in the computation logic
of pipeline stages. Other approaches triplicate components
within the RISC-V core to enhance its reliability. For instance,
Control and Status Registers, Program Counter and the register
file [37], FFs, LUTs, BRAMS, and DSPs [38], and the

== ?

== ?

== ?

== ?

== ?

Instruction
Fetch (IF)
Instruction

Decode (ID)
Execute

(EX)
Memory
Access
(MEM)

Write Back
(WB)

Instruction
Fetch (IF)
Instruction

Decode (ID)
Execute

(EX)
Memory
Access
(MEM)

Write Back
(WB)

Core 1 Core 2

Pipeline Register

Pipeline Register

Logic

Logic

Pipeline Register

Pipeline Register

Logic

Logic
Random
fault

Fig. 3. Dual Core Lock-Step principle illustration

arithmetic and logic unit (ALU) are triplicated [39]. Over-
all, intrusive approaches offer high flexibility to implement
efficient fault correction mechanisms but can be challenging
to realize. Indeed, existing intrusive approaches are based on
HDL implementations, which are usually quite complex.

Finally, the above described approaches do not focus on pro-
viding bounded error detection and correction time. However,
this is key when embedded systems are employed in domains
requiring both hard real-time and reliable execution, where the
Worst-Case Execution Time (WCET) of the application has to
be bounded also in presence of possible faults.

B. Proposed approach
To deal with the aforementioned problem, we proposed an

intrusive homogeneous RISC-V-based dual-core lock step im-
plementation providing transient error detection and correction
with a bounded number of extra clock cycles.

In particular, in [40] we resorted to the open-source Comet
RV32I RISC-V architecture3 [8] to implement two intrusive
lockstep designs, i.e., Partial Shadow Register with Rollback
(PSRR) and Full Shadow Register (FSR), through High-
Level Synthesis (HLS). We used two identical RISC-V cores
executing the same instructions at each clock cycle. Each
pipeline stage stores the result of its logic computation in
a pipeline register. At each cycle, the proposed mechanism
checks for execution consistency by comparing the pipeline
registers of the two cores, as sketched in Figure 3. If no
error is detected, the execution runs normally. Otherwise, the
detected error indicates that a fault impacted the logic, which
in turn generated a wrong result, or that a fault impacted the
pipeline register itself, flipping a bit in the result. In this case,
immediate correction is applied. In PSRR approach, the faulty
instruction is re-fetched and goes through the whole pipeline
again, similar to DARA [34]. Previous instructions still in the
pipeline are left untouched as their execution is not impacted
by the error; however, subsequent instructions already in the
pipeline are discarded. In FSR approach, when no faults are
detected, we create a backup copy of all the pipeline registers.
Then, upon fault detection, results of the current computation
are discarded, the pipeline registers of both cores are restored

3https://gitlab.inria.fr/srokicki/Comet/-/tree/master

Authorized licensed use limited to: Universita degli Studi di Roma Tor Vergata. Downloaded on September 03,2024 at 12:57:59 UTC from IEEE Xplore. Restrictions apply.

with the backup values, and finally both cores re-execute the
cycle that was impacted by a fault.

Moreover, in [41] we expose the following key aspect:
transient faults affecting the cores impacts not only the func-
tional behavior of an application, but it also has a significant
impact on its timing behavior, affecting WCET estimations. To
achieve that, we leverage typical fault-free WCET estimations
to be fault-aware, by taking into account the impact of transient
faults occurring on cores. More precisely, we firstly perform
a vulnerability analysis on a target system through extensive
fault injection. The analysis verifies not only functional cor-
rectness, but also timing correctness of applications, when
executed on a core. Then, we apply a typical measurement-
based WCET estimation method to verify the impact of faults
on WCET estimation.

We experimented on benchmarks from TACLeBench
(Binary Search and Prime), MiBench (Qsort),
AxBench (Moving Average), and Polybench (Matrix
Multiplication). From the obtained results, we observe
that the application execution time can be significantly
increased under the presence of transient faults, up to 700%,
compared to the application execution time without faults.
Furthermore, the distribution of execution time traces is
significantly modified, compared to the fault-free distribution.
The above observations have direct consequences; the time
required to finish execution under faults can be significantly
higher than the fault-free WCET. Thus, existing approaches
should use watchdog timers, in order to bound the impact of
transient faults on the application execution time, and keep
safe the overall schedule. When the timer expires or an error
is detected, the application requires to be re-executed, fully
or partially, depending on the approach, leading to high error
detection and correction timing overhead. We demonstrated
that the proposed DCLS approach corrects faults as soon
as they occur – before being propagated and affecting the
execution time. Thus, the approach provides bounded timing
overhead (i.e., two clock cycles in the FSR case) and restores
WCET estimations.

V. DISCUSSION AND CONCLUSION

Edge devices based on RISC-V architectures are emerging,
leading to the need for secure and reliable systems. The current
work presents three mechanisms deployed on RISC-V devices
towards this goal. As signature verification algorithms are
proven to be unsafe in the post-quantum era, we proposed
a post-quantum safe secure boot mechanism for IoT devices
using OpenTitan RoT. Moreover, in order to detect potentially
suspicious activities, we show hardware mechanisms to mon-
itor the fetching activity, the processed data and the status
of the microprocessor. Finally, two mechanisms with bounded
WCET overhead have been shown on a dual-core lockstep
intrusive RISC-V to detect and recover from radiation-induced
transient faults.

Moreover, we would like to emphasize the advantages
that the RISC-V open ISA can bring to the dependability
research community. The large availability of open-source core

implementations and the large community around RISC-V
enable researchers to easily implement and test their solutions
addressing different dependability issues. However, we notice
that there are not many approaches trying to address different
challenges with a unified approach, e.g., the same hardware
used to provide both fault tolerance and confidentiality [42].
Rather, experts of different domains (e.g., reliability and se-
curity) usually decide independently about their requirements
of interest, often with limited interactions. Moreover, non-
functional requirements are often considered as a optional
commodity, which increases the cost of the related solutions.
We argue that researchers from different groups with different
expertise should federate and push dependability requirements
to be among the main design requirements for future RISC-
V cores to be used in mainstream applications. In this way,
unified highly-optimized implementations ensuring efficient
and dependable operations can thrive and power the RISC-
V cores for edge computing devices of tomorrow.

ACKNOWLEDGMENT

Part of this work has been funded by the French National
Research Agency (ANR) through the FASY research project
(ANR-21-CE25-0008). Part of this work has been funded by
the Technology Innovation Institute in Abu Dhabi, UAE.

REFERENCES

[1] C. Palmiero et al., “Design and implementation of a dynamic in-
formation flow tracking architecture to secure a risc-v core for iot
applications,” in 2018 IEEE High Performance extreme Computing
Conference (HPEC). IEEE, 2018, pp. 1–7.

[2] J. Abella et al., “Security, reliability and test aspects of the risc-v
ecosystem,” in 2021 IEEE European Test Symposium (ETS), 2021, pp.
1–10.

[3] J. Anders et al., “A survey of recent developments in testability, safety
and security of risc-v processors,” in 2023 28th IEEE European Test
Symposium (ETS), 2023.

[4] A. Dörflinger et al., “A comparative survey of open-source application-
class risc-v processor implementations,” in Proceedings of the 18th
ACM International Conference on Computing Frontiers, ser. CF ’21.
New York, NY, USA: Association for Computing Machinery, 2021, p.
12–20. [Online]. Available: https://doi.org/10.1145/3457388.3458657

[5] Y. H. Hwang, “Iot security & privacy: threats and challenges,” in
Proceedings of the 1st ACM workshop on IoT privacy, trust, and security,
2015, pp. 1–1.

[6] P. W. Shor, “Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer,” SIAM review, vol. 41, no. 2,
pp. 303–332, 1999.

[7] M. Cui et al., “Fault-tolerant mapping of real-time parallel applications
under multiple dvfs schemes,” in IEEE RTAS, 2021, pp. 387–399.

[8] S. Rokicki et al., “What you simulate is what you synthesize: Designing
a processor core from c++ specifications,” in 2019 IEEE/ACM Interna-
tional Conference on Computer-Aided Design (ICCAD), 2019, pp. 1–8.

[9] V. Mavroeidis et al., “The impact of quantum computing on present
cryptography,” arXiv preprint arXiv:1804.00200, 2018.

[10] V. B. Kumar et al., “Post-quantum secure boot,” in 2020 Design,
Automation & Test in Europe Conference & Exhibition (DATE). IEEE,
2020, pp. 1582–1585.

[11] P. Kampanakis et al., “Post-quantum lms and sphincs+ hash-based
signatures for uefi secure boot,” Cryptology ePrint Archive, 2021.

[12] A. Khalid et al., “Lattice-based cryptography for iot in a quantum world:
Are we ready?” in 2019 IEEE 8th international workshop on advances
in sensors and interfaces (IWASI). IEEE, 2019, pp. 194–199.

Authorized licensed use limited to: Universita degli Studi di Roma Tor Vergata. Downloaded on September 03,2024 at 12:57:59 UTC from IEEE Xplore. Restrictions apply.

[13] J. Zheng et al., “Parallel small polynomial multiplication for dilithium:
A faster design and implementation,” in Proceedings of the 38th
Annual Computer Security Applications Conference, ser. ACSAC ’22.
New York, NY, USA: Association for Computing Machinery, 2022, p.
304–317. [Online]. Available: https://doi.org/10.1145/3564625.3564629

[14] L. Beckwith et al., “High-performance hardware implementation
of crystals-dilithium,” in 2021 International Conference on Field-
Programmable Technology (ICFPT). IEEE, 2021, pp. 1–10.

[15] A. Waterman et al., “The risc-v instruction set manual volume ii:
Privileged architecture document version 20190608-priv-msu-ratified,”
RISC-V Foundation, Tech. Rep., 2019.

[16] L. Cassano et al., “Is risc-v ready for space? a security perspective,” in
2022 IEEE International Symposium on Defect and Fault Tolerance in
VLSI and Nanotechnology Systems (DFT), 2022, pp. 1–6.

[17] X. Wang et al., “Software exploitable hardware trojans in embedded
processor,” in 2012 IEEE International Symposium on Defect and Fault
Tolerance in VLSI and Nanotechnology Systems (DFT), 2012, pp. 55–58.

[18] Y. Jin et al., “Exposing vulnerabilities of untrusted computing plat-
forms,” in Proc. Int. Conf. Computer Design, 2012, pp. 131–134.

[19] C. Domas, “Hardware backdoors in x86 cpus,” https://i.blackhat.com/us-
18/Thu-August-9/us-18-Domas-God-Mode-Unlocked-Hardware-
Backdoors-In-x86-CPUs-wp.pdf, 2018.

[20] X. Chuan et al., “An efficient triggering method of hardware Trojan in
AES cryptographic circuit,” in Proc. Int. Conf. Integrated Circuits and
Microsystems, 2017, pp. 91–95.

[21] Y. Liu et al., “Scca: Side-channel correlation analysis for detecting
hardware trojan,” in Proc. Int. Conf. Anti-counterfeiting, Security, and
Identification, 2017, pp. 196–200.

[22] A. Palumbo et al., “Is your fpga bitstream hardware trojan-free? machine
learning can provide an answer,” Journal of Systems Architecture, vol.
128, p. 102543, 2022.

[23] J. Dubeuf et al., “Run-time detection of hardware trojans: The processor
protection unit,” in 2013 18th IEEE European Test Symposium (ETS),
2013, pp. 1–6.

[24] G. Bloom et al., “Os support for detecting trojan circuit attacks,” in
2009 IEEE International Workshop on Hardware-Oriented Security and
Trust, 2009, pp. 100–103.

[25] L. Cassano et al., “Deton: Defeating hardware trojan horses in micropro-
cessors through software obfuscation,” Journal of Systems Architecture,
vol. 129, p. 102592, 2022.

[26] ——, “On the optimization of software obfuscation against hardware
trojans in microprocessors,” in 2022 25th International Symposium on
Design and Diagnostics of Electronic Circuits and Systems (DDECS),
2022, pp. 172–177.

[27] A. P. Fournaris et al., “Exploiting hardware vulnerabilities to attack
embedded system devices: a survey of potent microarchitectural attacks,”
Electronics, vol. 6, no. 3, p. 52, 2017.

[28] Y. Lyu et al., “A survey of side-channel attacks on caches and counter-
measures,” Journal of Hardware and Systems Security, vol. 2, no. 1, pp.
33–50, 2018.

[29] A. Bolat et al., “A microprocessor protection architecture against hard-
ware trojans in memories,” in 2020 15th Design & Technology of
Integrated Systems in Nanoscale Era (DTIS). IEEE, 2020, pp. 1–6.

[30] A. Palumbo et al., “A lightweight security checking module to pro-
tect microprocessors against hardware trojan horses,” in 2021 IEEE
International Symposium on Defect and Fault Tolerance in VLSI and
Nanotechnology Systems (DFT). IEEE, 2021, pp. 1–6.

[31] K. Arıkan et al., “Processor security: Detecting microarchitectural
attacks via count-min sketches,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 30, no. 7, pp. 938–951, 2022.

[32] A. Hanafi et al., “Dual-lockstep microblaze-based embedded system for
error detection and recovery with reconfiguration technique,” in 2015
Third World Conference on Complex Systems (WCCS), 2015, pp. 1–6.

[33] A. B. De Oliveira et al., “Lockstep Dual-Core ARM A9:
Implementation and Resilience Analysis Under Heavy Ion-
Induced Soft Errors,” IEEE Transactions on Nuclear Science,
vol. 65, no. 8, pp. 1783–1790, Aug. 2018. [Online]. Available:
https://ieeexplore.ieee.org/document/8401918/

[34] J. Yao et al., “Dara: A low-cost reliable architecture based on unhardened
devices and its case study of radiation stress test,” IEEE Transactions
on Nuclear Science, vol. 59, no. 6, pp. 2852–2858, 2012.

[35] M. T. Sim et al., “A dual lockstep processor system-on-a-chip for fast
error recovery in safety-critical applications,” in IEEE IECON, 2020,
pp. 2231–2238.

[36] J. Li et al., “Duckcore: A fault-tolerant processor core architecture based
on the risc-v isa,” Electronics, vol. 11, no. 1, 2022.

[37] L. Blasi et al., “A RISC-V fault-tolerant microcontroller core architec-
ture based on a hardware thread full/partial protection and a thread-
controlled watch-dog timer,” in APPLEPIES, 2019, pp. 505–511.

[38] A. E. Wilson et al., “Neutron radiation testing of fault tolerant risc-v soft
processor on xilinx sram-based fpgas,” in IEEE SCC, 2019, pp. 25–32.

[39] D. A. Santos et al., “A low-cost fault-tolerant risc-v processor for space
systems,” in DTIS, 2020, pp. 1–5.

[40] P. R. Nikiema et al., “Design with low complexity fine-grained dual
core lock-step (dcls) risc-v processors,” in 2023 53rd Annual IEEE/IFIP
International Conference on Dependable Systems and Networks - Sup-
plemental Volume (DSN-S), July 2023.

[41] ——, “Impact of transient faults on timing behavior and mitigation with
near-zero wcet overhead,” in ECRTS 2023 - 35th Euromicro Conference
on Real-Time Systems, Vienna, Austria, July 2023.

[42] N. I. Deligiannis et al., “Towards the integration of reliability and
security mechanisms to enhance the fault resilience of neural networks,”
IEEE Access, vol. 9, pp. 155 998–156 012, 2021.

Authorized licensed use limited to: Universita degli Studi di Roma Tor Vergata. Downloaded on September 03,2024 at 12:57:59 UTC from IEEE Xplore. Restrictions apply.

