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A B S T R A C T 

The use of Gaussian Process Regression (GPR) for foregrounds mitigation in data collected by the LOw-Frequency ARray 

(LOFAR) to measure the high-redshift 21-cm signal power spectrum has been shown to have issues of signal loss when the 
21-cm signal covariance is misestimated. To address this problem, we have recently introduced covariance kernels obtained 

by using a Machine Learning based Variational Auto-Encoder (VAE) algorithm in combination with simulations of the 21-cm 

signal. In this work, we apply this framework to 141 h ( ≈10 nights) of LOFAR data at z ≈ 9 . 1, and report revised upper limits 
of the 21-cm signal power spectrum. Overall, we agree with past results reporting a 2- σ upper limit of � 

2 
21 < (80) 2 mK 

2 at 
k = 0 . 075 h Mpc −1 . Further, the VAE-based kernel has a smaller correlation with the systematic excess noise, and the overall 
GPR-based approach is shown to be a good model for the data. Assuming an accurate bias correction for the excess noise, we 
report a 2- σ upper limit of � 

2 
21 < (25) 2 mK 

2 at k = 0 . 075 h Mpc −1 . Ho we ver, we still caution to take the more conserv ati ve 
approach to jointly report the upper limits of the excess noise and the 21-cm signal components. 

Key words: methods: data analysis – techniques: interferometric – cosmology: dark ages, reionization, first stars – cosmology: 
observations. 
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 I N T RO D U C T I O N  

he eras between redshifts z ∼ 30 to z ∼ 5, when the first astro-
hysical objects formed and started to emit photons that ionized the
eutral hydrogen in the intergalactic medium (IGM), are known as the
osmic Dawn and the Epoch of Reionization (EoR). The brightness
uctuation of the 21-cm line of neutral hydrogen as observed in
mission or absorption against the Cosmic Microwave Background,
s one of the most promising probes to study this redshift range
e.g. Field 1959 ; Madau, Meiksin & Rees 1997 ; Shaver et al. 1999 ;
ozzi et al. 2000 ; Ciardi & Madau 2003 ; Zaroubi 2013 ). Even a
tatistical upper limit estimate of the strength of such fluctuations
ould allow us to constrain models of structure formation in the

arly Universe (Ghara et al. 2020 ; Mondal et al. 2020 ; Greig et al.
021a , b ; Abdurashidova et al. 2022 ). 
While multiple interferometric low-frequency radio telescopes

ave been designed to search for this signal (e.g. PAPER, 1 MWA, 2 
 E-mail: anshuman@mpa-garching.mpg.de 
 Precision Array to Probe EoR, http://eor.berkeley.edu 
 Murchison Widefield Array, http://www.mwatelescope.org 

3

4

f
5

6

Author(s). Published by Oxford University Press on behalf of Royal Astronomic
Creative Commons Attribution License ( https:// creativecommons.org/ licenses/ by/ 
ERA, 3 NenuFAR 

4 and the upcoming SKA 

5 ), in this work we focus
n LOw-Frequency ARray (LOFAR). 6 The most recent and stringent
- σ upper limits on the power of the 21-cm signal from 141 h
 ≈10 nights) of observation with LOFAR at z = 9.1, were provided by

ertens et al. ( 2020 , hereafter M20 ) as � 

2 
21 ( k = 0 . 075 h Mpc −1 ) <

73) 2 mK 

2 . 
As the 21-cm signal is seen through foregrounds that are several

rders of magnitude stronger than the signal itself, one of the
hallenges faced by all 21-cm signal experiments is to develop an
ccurate modelling and removal of the foregrounds. The LOFAR
oR Key Science Project (KSP) team employs Gaussian Process
egression (GPR) to model different components of the observed
ata, as described by Mertens, Ghosh & Koopmans ( 2018 ), Gehlot
t al. ( 2019 ), and Hothi et al. ( 2021 ). In this method, each contributing
omponent of the data is represented by a Gaussian Process, which
ompletely depends on the mean and the covariance between the
 Hydrogen Epoch of Reionization Array, https:// reionization.org/ 
 New Extension in Nan c ¸ay Upgrading LOFAR, https://nenufar.obs-nancay. 
r/en 
 Square Kilometre Array, https:// www.skao.int/ en 
 Low-Frequency Array, http://www.lofar.org 
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ange of frequencies considered. This covariance can thus be repre- 
ented as a matrix, which is also referred to as a ‘covariance kernel’.
o we ver, gi ven the choice of normalization and bias correction in

he power-spectra estimation used by M20 , Kern & Liu ( 2021 ) noted
he dependence of the results on the choice of the covariance kernel
sed for the 21-cm signal so that any misestimation of the kernel
ould lead to spurious signal gain/loss. This in turn would affect 
he astrophysical interpretation of the estimated 21-cm signal power 
pectrum. 

To impro v e the set of 21-cm signal co variance kernels, Mertens,
obin & Carucci ( 2024 ) introduced the concept of a learned co-
ariance kernel, using a Variational Auto-Encoder (VAE) algorithm 

pplied to 21-cm signal simulations. This was employed by Acharya 
t al. ( 2024 , hereafter A24 ) after training on GRIZZLY simulations of
eionization (Ghara, Choudhury & Datta 2015 ; Ghara et al. 2018 ,
020 ), and tested against various mock data sets. In this work,
e apply the VAE-based covariance kernels trained at z = 9 . 16 by
24 to the same ≈10 nights of data used by M20 , and compare

ts performance with that of the Exponential Matern-class function 
ased kernel employed by M20 . 
In Section 2 , we briefly highlight the covariance kernels used for

he different components of the data set; in Section 3 , we present two
ases of reco v ery, and compare the obtained upper limits to those
resented in M20 . In Section 4 , we discuss the quality of our results
y comparing the residuals on applying our model to the data, and
lso the limitations of the method. Finally, in Section 5 , we give our
onclusions. 

 M E T H O D O L O G Y  

PR (Rasmussen & Williams 2006 ; Aigrain & F oreman-Macke y 
023 ) has been used to model radio data in frequency space as
oisy observations of the form y = f ( x ) + ε, with ε Gaussian 
oise vector having variance σ 2 

noise (see e.g. A24 , M20 and Munshi
t al. 2024 ). The vector f ( x ) can be split into the 21-cm signal
 f 21 ) and foregrounds. To the latter contribute an intrinsic sky
omponent ( f sky ) and mode-mixing contaminants ( f mix ). Further, 
20 identified an additional term for bias correction, defining it 

s an ‘excess noise’ component ( f ex ), which corrects for additional 
ystematic noise after the subtraction of foregrounds. While the exact 
ource of this excess is yet to be identified, various possibilities have
een discussed in section 6.2 of M20 , and the LOFAR EoR KSP
eam is currently working on testing each one of them. The o v erall
atacube y can be expressed as: 

y = f sky ( x ) + f mix ( x ) + f ex ( x ) + f 21 ( x ) + ε. (1) 

For a set of points x (independent parameters in frequency), for
ach v alue x , f ( x) gi ven by a Gaussian Process GP ( m, κ) is fully
efined by its mean m and covariance matrix κ . The vector f ( x ) is then
ully defined by its mean vector m and covariance matrix vector K .
he joint distribution for all random variables that share the desired 
ovariance properties is a normal distribution vector ( N ) which can 
e represented as: 

f ( x ) ∼ N ( m ( x ) , K ( x, x ) ) . (2) 

ere, the matrix K gives the covariance between the function values at
ny two points, and can be written as K ij = κ( x i , x j , φ) + δij σ

2 
i, noise ,

here κ( x i , x j , φ) can be optimized by the choice of hyperparameters
epresented by φ, δij is the Kronecker-delta function and σ 2 

i, noise is 
he noise at x i . 

If we assume that the various components are uncorrelated, we 
an utilize the additive property of matrices. Thus, the covariance 
ernels of the right-hand side of equation ( 1 ) can be represented as a
ingle covariance kernel K given as: 

K = K sky + K mix + K noise + K ex + K 21 . (3) 

K sky , K mix , and K ex are modelled using the best-fitting Matern-class 
unctions (Stein 1999 ) as done by M20 and A24 : 

 Matern ( r) = σ 2 2 
1 −η


( η) 

(√ 

2 ηr 

l 

)η

κη

(√ 

2 ηr 

l 

)
, (4) 

ith ηsky = +∞ , ηmix = 3 / 2, and ηex = 5 / 2. Additionally, l is the
oherence-scale hyperparameter, with its associated variance given 
y σ 2 , r is the absolute difference between the frequencies of two
ub-bands, κη is the modified Bessel function of the second kind, 
nd 
 is the Gamma-function. ηsky , ηmix , and ηex were obtained 
y M20 by assuming different values of the hyperparameter η, 
nd finding the one that maximized the marginal likelihood (or the
evidence’). This was done by calculating the analytical integral 
 v er f , which is the log-marginal-likelihood (LML, see section 2.3
n Mertens et al. 2018 ). While M20 used a gradient-descent-based
ptimization algorithm for maximizing the LML, A24 , instead, 
ntroduced an MCMC sampling based approach (F oreman-Macke y 
t al. 2013 ) to estimate the hyperparameters by sampling their
osterior distributions. This additionally provides a measure of the 
ncertainty on the hyperparameters. 
The noise is modelled based on the Stokes-V visibility difference, 

ccording to the methodology laid out in M20 . Further, for the 21-
m signal we use the VAE-based kernel at z = 9 . 16 built by A24
y training on GRIZZLY simulations. This VAE-based kernel is fully 
efined using two hyperparameters x 1 and x 2 with uninformed flat 
riors in linear space in the range [ −10, 10], and an associated
ariance. The kernel has been trained on a training set of ≈1500
imulations with four independently variable parameters. While 
ore hyperparameters could be employed, they do not provide 

n y significant impro v ement, and thus we do not use them to
 v oid o v erfitting. A24 also used an additional testing set of ≈150
imulations and found a reco v ery error of � 1 per cent for wave-
odes of k < 0 . 43 h Mpc −1 . In this work, the performance of the
AE-based kernel is compared against the results obtained in M20 
hen using a Matern-class function with η21 = 1 / 2. 

 RESULTS  

ollowing A24 , we recover the hyperparameters of the various 
ignal components by applying GPR to the data using an MCMC
pproach (F oreman-Macke y et al. 2013 ). We adopt the same broad
at priors for the variances, and uniform priors for the coherence-
cale parameters (see Table 1 and section 2.5 of A24 ). The reco v ered
alues are listed in Table 1 , where we compare them to those obtained
y M20 . We find that the hyperparameters for the f sky and f ex 

omponents differ from the M20 estimates by about 2–4 σ , while
hose for f mix are in good agreement. This is expected with a more
ccurate 21-cm kernel, as it reduces the strength of the correlation of
yperparameters of the different components. This allows for better 
haracterisation of the different components in the o v erall data. We
iscuss the details below after analysing each component’s reco v ered
ower spectra. 
To have a better understanding of the results quantified abo v e, in

ig. 1 , we show the reco v ered upper limits on the power spectra in
wo cases. In the first one (top panel), we present the excess noise
omponent (dashed-dotted green line) and the 21-cm signal (blue 
ashes with downward arrows) separately, as done for the mock data
ets in A24 , and refer to this as the individual upper limits case . We
MNRASL 534, L30–L34 (2024) 
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Table 1. Comparison of hyperparameters obtained in M20 and in this work. 
From left to right the columns refer to the hyperparameters used, the results 
from M20 , the results obtained in this work, and the difference between the 
two. As the covariance kernels used for the 21-cm signal component are not 
the same, we just provide the values of the hyperparameters obtained in each 
case. Lastly, σ 2 

noise is 74 × 10 3 mK 

2 (see M20 ). 

Parameter M20 This work Difference 

l sky 47 . 5 + 3 . 1 −2 . 8 38 . 6 + 2 . 6 −2 . 6 2.3 σ

σ 2 
sky /σ

2 
noise 611 + 22 

−19 530 ±18 3.0 σ

l mix 2 . 97 + 0 . 09 
−0 . 08 3.05 + 0 . 08 

−0 . 08 0.7 σ

σ 2 
mix /σ

2 
noise 50 . 4 + 2 . 1 −1 . 9 48 . 8 + 2 . 1 −2 . 0 0.6 σ

l ex 0 . 26 + 0 . 01 
−0 . 01 0.32 + 0 . 01 

−0 . 01 4.2 σ

σ 2 
ex /σ

2 
noise 2 . 18 + 0 . 09 

−0 . 14 2 . 82 + 0 . 10 
−0 . 10 4.2 σ

f 21 η21 = 1 / 2 x 1 = 0 . 49 + 1 . 00 
−1 . 00 , –

l 21 > 0 . 73 x 2 = −0 . 34 + 0 . 97 
−0 . 97 –

σ 2 
21 

σ 2 
noise 

< 0 . 77 
σ 2 

21 
σ 2 

noise 
= 0 . 01 + 0 . 09 

−0 . 01 –

Figure 1. Upper limits on the power spectrum of the 21-cm signal from 

10 nights of LOFAR observational data at z ≈ 9 . 1. Top : individual upper 
limits case. The upper limits on � 

2 
21 (blue dashes with downward arrows) 

are obtained using the VAE-based kernel separately from the excess noise 
(dashed-dotted green line). The 2- σ confidence of the reco v ery by the VAE- 
based kernel is shaded in blue, and noted to ef fecti v ely e xtend down to zero. 
We also plot the upper limits obtained by M20 (crosses with downward 
arrows), the noise (dashed yellow line), and the 2- σ error on the noise (dotted 
brown). Bottom : joint upper limits case. The upper limits on the power 
spectrum of the 21-cm signal and excess noise are reco v ered together (solid 
blue line and shaded region), as done in M20 . The other lines and symbols 
have the same meaning as in the top panel. 
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dditionally show the 2- σ confidence interval on the reco v ery of the
AE-based kernel, the o v erall noise (yellow dashed line), and the
- σ error on the noise (brown dotted line). We compare our reco v ery
ith the results from M20 shown with magenta crosses. We note that
hile the upper limits are higher than the 2- σ error on the noise,

he values approach similar values at the higher k bins (see values
isted in Table 2 ). Further, it is still possible that some fraction of
he 21-cm signal may be assigned to the excess noise, and vice-
ersa. Thus, we also show a second case (bottom panel), which takes
 more conserv ati ve approach of including the excess noise in the
pper limits along with the 21-cm signal (solid blue line), as done in
20 . We refer to this as the joint upper limits case . 
We note that, in the individual case, the upper limits on the 21-

m signal power spectrum are significantly deeper than those of
he combined power spectrum of the excess noise and 21-cm signal
ound by M20 . 

Because we depict just the extracted 21-cm signal component, we
ssume that the bias correction for the excess noise is accurate, with
inimal loss of the 21-cm signal. This is an idealized scenario, where

he excess noise component is accurately described by the covariance
ernel used for it. To verify this, we need a better understanding of
he source of the excess noise component. Nevertheless, we report
esults with our current best choice of the kernel as identified by

20 , to test the extent of impro v ement possible with the inclusion of
he VAE-based kernel for the 21-cm signal. Ho we ver, in Fig. 1 , the
- σ confidence interval on the lower side extends to < 1 mK 

2 , and
hus is ef fecti vely zero. Thus, this confirms that this is just an upper
imit and not a detection. 

When comparing the joint upper limits cases, we find marginally
igher values than those found by M20 for k � 0 . 2 h cMpc −1 , and
arginally lower for 0 . 2 h cMpc −1 � k � 0 . 5 h cMpc −1 . This is

aused by the power of the excess noise component being mildly
igher in the lower k-bins, and mildly lower in the higher k-bins,
ompared to the results of M20 . This shows up as a 4.2 σ difference
f the hyperparameters l ex and σ 2 

ex /σ
2 
noise from the results of M20 . A

loser inspection shows that this occurs because a small fraction of
he intrinsic sky component is assigned to the excess noise component
t lower k-bins, and vice-versa for the higher k-bins, due to the
sage of a more accurate 21-cm kernel. While the difference in the
eco v ered power spectrum for the foregrounds is not significant, the
igher contributions at small scales for the excess noise, could allow
 better characterisation of the same. 

The exact values of the reco v ered median power spectrum of the
1-cm signal and their upper limits in each k-bin are listed in Table 2
or the joint and individual upper limits case discussed in this work,
s well by M20 . We also show the 2- σ error of the noise (which
epresents the maximum sensiti vity achie v able) to compare against
he obtained upper limits. We can summarize the results as follows: 

(i) The excess noise is confirmed to be the dominant signal
omponent after sky-model and residual foregrounds subtraction,
ith its reco v ered power spectrum being about an order of magnitude

tronger than the noise. 
(ii) While the hyperparameters for the excess noise component

iffer by 4.2 σ from the results of M20 , the reco v ered power spectrum
nd 2- σ upper limits show only a minor deviation. 

(iii) In the case of individual upper limits, the upper limits of the
1-cm signal power spectrum lie abo v e the 2- σ error on the noise,
nd thus are not noise-dominated. Ho we ver, this is not a detection,
ecause the lower limit on the reco v ery by the VAE-based kernel is
onsistent with zero. 
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Table 2. Comparing the results of M20 with those of our joint and individual upper limits of the excess noise component and 21-cm signal 
power spectra. The first column refers to the k bins, and the following to the reco v ered 21-cm signal power ( � 

2 
21 ) and its corresponding 2- σ

upper limit ( � 

2 
21 , UL ) for M20 , the joint upper limits (bottom panel in Fig. 1 ) and the individual upper limits (top panel in Fig. 1 ) applied in 

this work. The last column shows the 2- σ error on the noise (2- σ error noise ). 

k M20 ( f ex + f 21 ) Joint upper limits ( f ex + f 21 ) Individual upper limits ( f 21 ) 2- σ error noise 

� 

2 
21 � 

2 
21 , UL � 

2 
21 � 

2 
21 , UL � 

2 
21 � 

2 
21 , UL 2 � 

2 
noise , err 

( h cMpc −1 ) (mK 

2 ) (mK 

2 ) (mK 

2 ) (mK 

2 ) (mK 

2 ) (mK 

2 ) (mK 

2 ) 

0.075 (58.96) 2 (72.86) 2 (71.33) 2 (79.68) 2 (6.58) 2 (24.55) 2 (18.63) 2 

0.100 (95.21) 2 (106.65) 2 (107.05) 2 (115.77) 2 (8.56) 2 (29.43) 2 (19.05) 2 

0.133 (142.17) 2 (153.00) 2 (158.65) 2 (167.76) 2 (10.48) 2 (37.29) 2 (23.22) 2 

0.179 (235.80) 2 (246.92) 2 (245.42) 2 (261.40) 2 (14.40) 2 (43.92) 2 (30.47) 2 

0.238 (358.95) 2 (370.18) 2 (360.08) 2 (372.28) 2 (16.29) 2 (56.32) 2 (38.70) 2 

0.319 (505.26) 2 (520.33) 2 (472.49) 2 (490.22) 2 (19.95) 2 (73.79) 2 (58.72) 2 

0.432 (664.23) 2 (683.20) 2 (601.37) 2 (626.81) 2 (26.61) 2 (99.19) 2 (86.01) 2 
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Figure 2. Posterior probability distributions of the GPR model hyperparam- 
eters used: x 1 , x 2 , the variances σ 2 

21 , σ
2 
sky , σ

2 
mix , and σ 2 

ex , and the coherence- 
scales l sky , l mix , and l ex . The purple contours show the 68 per cent, 95 per cent, 
and 99.7 per cent confidence intervals and the diagonal plots refer to the 
individual posterior distributions of each of the hyperparameters listed. Note 
that the hyperparameters of each component are largely uncorrelated with 
those of other components. 
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We conclude that with these data, performing a bias correction 
or the excess noise provides an individual upper limit on the 21-
m signal power spectrum that is higher than the 2- σ error on the
oise. Ho we ver, the upper limits approach the 2- σ error on the
oise at higher k bins. Thus, lowering the noise threshold with 
onger observations could allow a greater separation between the 
pper limits and the noise threshold, and eventually also a detection, 
rovided no correlation between the excess noise and the 21-cm 

ignal is present. For this, the LOFAR EoR KSP team has ≈100
ights of data to analyse and is currently in the process of doing
o. We discuss the correlations of the different components and the 
imitations of the o v erall model in the subsequent section. 

 DISCUSSION  

he individual upper limits are greater than the 2- σ error on the
oise, and thus is not noise dominated. Ho we ver, it is still possible
hat the VAE-based kernels provide an incomplete model of the data. 
n this case, we would be biased towards cases where the model
s enough for the 21-cm signal, and the remainder of the data is
odelled with the excess and foregrounds components as defined 

bo v e. F or e xample, better characterisation of the e xcess noise may
ndeed lead to broader models for it. In our current model, what
e can explore ho we ver, is the degeneracy between the VAE-based
ernel and the excess noise kernel. A decrease in the correlation 
etween them would indicate that at least the models we use for them
re not de generate. F or e xample, the difference in the intrinsic sky and
xcess noise component hyperparameters with respect to M20 could 
e due to a decrease in correlation of the hyperparameters for these
omponents by using the VAE-based kernel for the 21-cm signal. To 
ave a clearer picture of this, it is important to investigate whether the
yperparameters of the different components in our o v erall model 
re correlated and whether the o v erall model is a complete picture of
he data. 

To assess this, in Fig. 2 , we show the corner plot of the
yperparameters, where the purple contours are the 68 per cent, 
5 per cent, and 99.7 per cent confidence intervals. We see that
yperparameters of each component are largely uncorrelated with 
hose of other components. In particular, we note that the 21-cm 

ignal hyperparameters are completely uncorrelated from those of the 
xcess noise. This provides greater confidence in the 2- σ confidence 
ntervals obtained in the individual upper limits case. 

Furthermore, to assess the performance of our model, we plot 
he residual obtained by subtracting the data cube of the model 
rom the observational data cube in Fig. 3 , and compare its power
pectrum (black solid) to that of the noise data cube (yellow dashed).
e find excellent agreement between them within the 2- σ error on

he noise. To numerically quantify this, we calculate the χ2 of the
esidual versus the noise power spectrum, and find this to be ≈6 . 12.

ith 7 k bins, this gives a reduced χ2 ≈ 0 . 87, thus confirming the
erformance of the model. Ho we ver, it is still possible that some
inor leakage can occur between the different signal components. 
hus, better modelling of the excess noise remains necessary to 

mpro v e the bias correction as more data is added. Furthermore,
or an eventual detection, reduction of the noise component through 
onger observations is also needed. 
MNRASL 534, L30–L34 (2024) 
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igure 3. Residual (black solid line) obtained by subtracting the full GPR
odel from the data, and its corresponding 2- σ confidence interval (grey

haded region). The noise is shown as a yellow dashed line with 2- σ error
ars. We note an excellent agreement between them. 

 C O N C L U S I O N S  

o impro v e the modelling of the 21-cm signal covariance kernel,
ertens et al. ( 2024 ) introduced a Machine Learning based method

hat uses a VAE based algorithm. This was trained on GRIZZLY

imulations (Ghara et al. 2015 , 2018 , 2020 ) of the 21-cm signal
nd tested against mock data sets by A24 . In this work, we use
he VAE-based kernel trained at z = 9 . 16 to obtain an updated
pper limit on the 21-cm signal from 141 h of LOFAR data ( ≈10
ights) at z ≈ 9 . 1. We compare our results to past efforts, which used
nalytic functions instead of Machine Learning ( M20 ), and find that
hey are consistent with errors, although the new upper limits are
lightly increased at k � 0 . 2 h cMpc −1 , and mildly decreased for
 . 2 h cMpc −1 � k � 0 . 5 h cMpc −1 . Overall, we report a 2- σ upper
imit of � 

2 
21 < (80) 2 mK 

2 at k = 0 . 075 h Mpc −1 in the conserv ati ve
ase, when jointly reco v ering the 21-cm signal and excess noise
omponents. 

We also investigate the case in which the upper limits of the 21-
m signal are e v aluated including a bias correction for the excess
oise component. In this case, we report a 2- σ upper limit of
 

2 
21 < (25) 2 mK 

2 at k = 0 . 075 h Mpc −1 . We confirm that the VAE
ernel hyperparameters are uncorrelated from the excess component
nes, thus providing confidence for the estimated upper limits. This
s strengthened by the fact that the residuals obtained by subtracting
he full model from the data are consistent with the noise with
 . 87 σ . Although the bias correction is promising, we still caution
gainst using the bias-corrected upper limits, as better modelling
f the excess noise remains necessary to impro v e confidence on its
eparation from the 21-cm signal, as the data impro v es and the signal
o noise increases. In future work, the LOFAR EoR KSP team will
e improving the characterisation of the excess noise component and
ts corresponding covariance kernel, and assess whether an excess
oise bias correction can reliably be applied as this work suggests it
an. As demonstrated here, this approach would substantially reduce
he current upper limits on the 21-cm signal, although this should
till be considered as an upper limit and not a detection for the given
ata, as it is already reaching the sensitivity limit due to the noise,
iven by the 2- σ error on the noise. This improvement could offer
nhanced astrophysical constraints compared to Ghara et al. ( 2020 ),
llowing for the rejection of a significantly greater number of cold
NRASL 534, L30–L34 (2024) 

uthor(s). Published by Oxford University Press on behalf of Royal Astronomical Society. This is an 
( https://cr eativecommons.or g/licenses/by/4.0/), which permits unrestricted reus
GM scenarios and achieving stricter constraints on the sources of X-
ay heating. This shall be carried out in future work. Additionally, the
eam will make use of VAE-based covariance kernels as developed in
24 across multiple redshifts with data from the LOFAR telescope. 
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