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ABSTRACT

The use of Gaussian Process Regression (GPR) for foregrounds mitigation in data collected by the LOw-Frequency ARray
(LOFAR) to measure the high-redshift 21-cm signal power spectrum has been shown to have issues of signal loss when the
21-cm signal covariance is misestimated. To address this problem, we have recently introduced covariance kernels obtained
by using a Machine Learning based Variational Auto-Encoder (VAE) algorithm in combination with simulations of the 21-cm
signal. In this work, we apply this framework to 141 h (=10 nights) of LOFAR data at z & 9.1, and report revised upper limits
of the 21-cm signal power spectrum. Overall, we agree with past results reporting a 2-o upper limit of A3, < (80)* mK? at
k=0.075h Mpc‘l. Further, the VAE-based kernel has a smaller correlation with the systematic excess noise, and the overall
GPR-based approach is shown to be a good model for the data. Assuming an accurate bias correction for the excess noise, we
report a 2-o upper limit of A%, < (25)> mK? at k = 0.075 1 Mpc~!. However, we still caution to take the more conservative
approach to jointly report the upper limits of the excess noise and the 21-cm signal components.

Key words: methods: data analysis —techniques: interferometric —cosmology: dark ages, reionization, first stars —cosmology:

observations.

1 INTRODUCTION

The eras between redshifts z ~ 30 to z ~ 5, when the first astro-
physical objects formed and started to emit photons that ionized the
neutral hydrogen in the intergalactic medium (IGM), are known as the
Cosmic Dawn and the Epoch of Reionization (EoR). The brightness
fluctuation of the 21-cm line of neutral hydrogen as observed in
emission or absorption against the Cosmic Microwave Background,
is one of the most promising probes to study this redshift range
(e.g. Field 1959; Madau, Meiksin & Rees 1997; Shaver et al. 1999;
Tozzi et al. 2000; Ciardi & Madau 2003; Zaroubi 2013). Even a
statistical upper limit estimate of the strength of such fluctuations
would allow us to constrain models of structure formation in the
early Universe (Ghara et al. 2020; Mondal et al. 2020; Greig et al.
2021a, b; Abdurashidova et al. 2022).

While multiple interferometric low-frequency radio telescopes
have been designed to search for this signal (e.g. PAPER,! MWA,?

* E-mail: anshuman @mpa-garching.mpg.de
IPrecision Array to Probe EoR, http://eor.berkeley.edu
2Murchison Widefield Array, http://www.mwatelescope.org

HERA,? NenuFAR* and the upcoming SKA?), in this work we focus
on LOw-Frequency ARray (LOFAR).® The most recent and stringent
2-0 upper limits on the power of the 21-cm signal from 141h
(~10nights) of observation with LOFAR at z =9.1, were provided by
Mertens et al. (2020, hereafter M20) as A3,(k = 0.075 h Mpc™!) <
(73)> mK2.

As the 21-cm signal is seen through foregrounds that are several
orders of magnitude stronger than the signal itself, one of the
challenges faced by all 21-cm signal experiments is to develop an
accurate modelling and removal of the foregrounds. The LOFAR
EoR Key Science Project (KSP) team employs Gaussian Process
Regression (GPR) to model different components of the observed
data, as described by Mertens, Ghosh & Koopmans (2018), Gehlot
etal. (2019), and Hothi et al. (2021). In this method, each contributing
component of the data is represented by a Gaussian Process, which
completely depends on the mean and the covariance between the

3Hydrogen Epoch of Reionization Array, https:/reionization.org/

4New Extension in Nangay Upgrading LOFAR, https://nenufar.obs-nancay.
fr/en

3Square Kilometre Array, https://www.skao.int/en

SLow-Frequency Array, http://www.lofar.org
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range of frequencies considered. This covariance can thus be repre-
sented as a matrix, which is also referred to as a ‘covariance kernel’.
However, given the choice of normalization and bias correction in
the power-spectra estimation used by M20, Kern & Liu (2021) noted
the dependence of the results on the choice of the covariance kernel
used for the 21-cm signal so that any misestimation of the kernel
could lead to spurious signal gain/loss. This in turn would affect
the astrophysical interpretation of the estimated 21-cm signal power
spectrum.

To improve the set of 21-cm signal covariance kernels, Mertens,
Bobin & Carucci (2024) introduced the concept of a learned co-
variance kernel, using a Variational Auto-Encoder (VAE) algorithm
applied to 21-cm signal simulations. This was employed by Acharya
et al. (2024, hereafter A24) after training on GRIZZLY simulations of
reionization (Ghara, Choudhury & Datta 2015; Ghara et al. 2018,
2020), and tested against various mock data sets. In this work,
we apply the VAE-based covariance kernels trained at z = 9.16 by
A24 to the same ~10 nights of data used by M20, and compare
its performance with that of the Exponential Matern-class function
based kernel employed by M20.

In Section 2, we briefly highlight the covariance kernels used for
the different components of the data set; in Section 3, we present two
cases of recovery, and compare the obtained upper limits to those
presented in M20. In Section 4, we discuss the quality of our results
by comparing the residuals on applying our model to the data, and
also the limitations of the method. Finally, in Section 5, we give our
conclusions.

2 METHODOLOGY

GPR (Rasmussen & Williams 2006; Aigrain & Foreman-Mackey
2023) has been used to model radio data in frequency space as
noisy observations of the form y = f(x)+ €, with € Gaussian
noise vector having variance o2, (see e.g. A24, M20 and Munshi
et al. 2024). The vector f(x) can be split into the 21-cm signal
(f,;) and foregrounds. To the latter contribute an intrinsic sky
component (f,) and mode-mixing contaminants (f ). Further,
M20 identified an additional term for bias correction, defining it
as an ‘excess noise’ component ( f,), which corrects for additional
systematic noise after the subtraction of foregrounds. While the exact
source of this excess is yet to be identified, various possibilities have
been discussed in section 6.2 of M20, and the LOFAR EoR KSP
team is currently working on testing each one of them. The overall
datacube y can be expressed as:

Y = Fag@) + Frix@®) + fex () + fr(x) + €. 1)

For a set of points x (independent parameters in frequency), for
each value x, f(x) given by a Gaussian Process G P(m, «) is fully
defined by its mean m and covariance matrix « . The vector f(x) is then
fully defined by its mean vector m and covariance matrix vector K.
The joint distribution for all random variables that share the desired
covariance properties is a normal distribution vector (N) which can
be represented as:

f(x)~ N@n(x), K(x, x)). (2)

Here, the matrix K gives the covariance between the function values at
any two points, and can be written as K;; = «(xi, Xj, §) + 807 e
where k (x;, x j, ¢) can be optimized by the choice of hyperparameters
represented by ¢, §;; is the Kronecker-delta function and o7, ;. is
the noise at x;.

If we assume that the various components are uncorrelated, we
can utilize the additive property of matrices. Thus, the covariance
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kernels of the right-hand side of equation (1) can be represented as a
single covariance kernel K given as:

K=Ksky+Kmix+Knoise+Kex+K21- (3)

Ky, Knix, and K are modelled using the best-fitting Matern-class
functions (Stein 1999) as done by M20 and A24:

22170 (2nr nK N 2nr
() l 7 l ’

with gy = +00, Nmix = 3/2, and nex = 5/2. Additionally, [ is the
coherence-scale hyperparameter, with its associated variance given
by o2, r is the absolute difference between the frequencies of two
sub-bands, «, is the modified Bessel function of the second kind,
and I' is the Gamma-function. 7sy, 7Mmix, and ne were obtained
by M20 by assuming different values of the hyperparameter 7,
and finding the one that maximized the marginal likelihood (or the
‘evidence’). This was done by calculating the analytical integral
over f, which is the log-marginal-likelihood (LML, see section 2.3
in Mertens et al. 2018). While M20 used a gradient-descent-based
optimization algorithm for maximizing the LML, A24, instead,
introduced an MCMC sampling based approach (Foreman-Mackey
et al. 2013) to estimate the hyperparameters by sampling their
posterior distributions. This additionally provides a measure of the
uncertainty on the hyperparameters.

The noise is modelled based on the Stokes-V visibility difference,
according to the methodology laid out in M20. Further, for the 21-
cm signal we use the VAE-based kernel at z = 9.16 built by A24
by training on GRIZZLY simulations. This VAE-based kernel is fully
defined using two hyperparameters x; and x, with uninformed flat
priors in linear space in the range [—10, 10], and an associated
variance. The kernel has been trained on a training set of ~1500
simulations with four independently variable parameters. While
more hyperparameters could be employed, they do not provide
any significant improvement, and thus we do not use them to
avoid overfitting. A24 also used an additional testing set of 2150
simulations and found a recovery error of <1 per cent for wave-
modes of k < 0.43hMpc~!. In this work, the performance of the
VAE-based kernel is compared against the results obtained in M20
when using a Matern-class function with 7, = 1/2.

“

kMalem(r ) =0

3 RESULTS

Following A24, we recover the hyperparameters of the various
signal components by applying GPR to the data using an MCMC
approach (Foreman-Mackey et al. 2013). We adopt the same broad
flat priors for the variances, and uniform priors for the coherence-
scale parameters (see Table 1 and section 2.5 of A24). The recovered
values are listed in Table 1, where we compare them to those obtained
by M20. We find that the hyperparameters for the fy, and f,
components differ from the M20 estimates by about 2—4¢, while
those for f,;x are in good agreement. This is expected with a more
accurate 21-cm kernel, as it reduces the strength of the correlation of
hyperparameters of the different components. This allows for better
characterisation of the different components in the overall data. We
discuss the details below after analysing each component’s recovered
power spectra.

To have a better understanding of the results quantified above, in
Fig. 1, we show the recovered upper limits on the power spectra in
two cases. In the first one (top panel), we present the excess noise
component (dashed-dotted green line) and the 21-cm signal (blue
dashes with downward arrows) separately, as done for the mock data
sets in A24, and refer to this as the individual upper limits case. We

MNRASL 534, L30-134 (2024)
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Table 1. Comparison of hyperparameters obtained in M20 and in this work.
From left to right the columns refer to the hyperparameters used, the results
from M20, the results obtained in this work, and the difference between the
two. As the covariance kernels used for the 21-cm signal component are not
the same, we just provide the values of the hyperparameters obtained in each
case. Lastly, 02 is 74 x 10° mK? (see M20).

noise

Parameter M20 This work Difference
Lsky 47.5%34 38.612¢ 230
Oy /Toise 61172 530+18 3.00
Imix 2,970 3.057008 0.70
02 /O 50.47%5 48.87%0 0.60
lex 0.267501 0.3240401 4.20
08 /Tnoise 218005 2827010 420
S n1 =1/2 xp = 0497100, -

by > 0.73 x2 = —0.34707 -

a‘;i <0.77 a‘;ﬂ =0.0175% -

108 indlivitliu;al upper limits
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Figure 1. Upper limits on the power spectrum of the 21-cm signal from
10 nights of LOFAR observational data at z &~ 9.1. Top: individual upper
limits case. The upper limits on A%l (blue dashes with downward arrows)
are obtained using the VAE-based kernel separately from the excess noise
(dashed-dotted green line). The 2-o confidence of the recovery by the VAE-
based kernel is shaded in blue, and noted to effectively extend down to zero.
We also plot the upper limits obtained by M20 (crosses with downward
arrows), the noise (dashed yellow line), and the 2-o error on the noise (dotted
brown). Bottom: joint upper limits case. The upper limits on the power
spectrum of the 21-cm signal and excess noise are recovered together (solid
blue line and shaded region), as done in M20. The other lines and symbols
have the same meaning as in the top panel.

MNRASL 534, L30-L34 (2024)

additionally show the 2-o confidence interval on the recovery of the
VAE-based kernel, the overall noise (yellow dashed line), and the
2-¢ error on the noise (brown dotted line). We compare our recovery
with the results from M20 shown with magenta crosses. We note that
while the upper limits are higher than the 2-o error on the noise,
the values approach similar values at the higher k bins (see values
listed in Table 2). Further, it is still possible that some fraction of
the 21-cm signal may be assigned to the excess noise, and vice-
versa. Thus, we also show a second case (bottom panel), which takes
a more conservative approach of including the excess noise in the
upper limits along with the 21-cm signal (solid blue line), as done in
M?20. We refer to this as the joint upper limits case.

We note that, in the individual case, the upper limits on the 21-
cm signal power spectrum are significantly deeper than those of
the combined power spectrum of the excess noise and 21-cm signal
found by M20.

Because we depict just the extracted 21-cm signal component, we
assume that the bias correction for the excess noise is accurate, with
minimal loss of the 21-cm signal. This is an idealized scenario, where
the excess noise component is accurately described by the covariance
kernel used for it. To verify this, we need a better understanding of
the source of the excess noise component. Nevertheless, we report
results with our current best choice of the kernel as identified by
M20, to test the extent of improvement possible with the inclusion of
the VAE-based kernel for the 21-cm signal. However, in Fig. 1, the
2-0 confidence interval on the lower side extends to < 1 mK?, and
thus is effectively zero. Thus, this confirms that this is just an upper
limit and not a detection.

When comparing the joint upper limits cases, we find marginally
higher values than those found by M20 for k < 0.2 A cMpc~!, and
marginally lower for 0.2 & cMpc™' <k < 0.5 h cMpc~'. This is
caused by the power of the excess noise component being mildly
higher in the lower k-bins, and mildly lower in the higher k-bins,
compared to the results of M20. This shows up as a 4.2¢0 difference
of the hyperparameters e, and 62 /o2, from the results of M20. A
closer inspection shows that this occurs because a small fraction of
the intrinsic sky component is assigned to the excess noise component
at lower k-bins, and vice-versa for the higher k-bins, due to the
usage of a more accurate 21-cm kernel. While the difference in the
recovered power spectrum for the foregrounds is not significant, the
higher contributions at small scales for the excess noise, could allow
a better characterisation of the same.

The exact values of the recovered median power spectrum of the
21-cm signal and their upper limits in each k-bin are listed in Table 2
for the joint and individual upper limits case discussed in this work,
as well by M20. We also show the 2-o0 error of the noise (which
represents the maximum sensitivity achievable) to compare against
the obtained upper limits. We can summarize the results as follows:

(1) The excess noise is confirmed to be the dominant signal
component after sky-model and residual foregrounds subtraction,
with its recovered power spectrum being about an order of magnitude
stronger than the noise.

(ii) While the hyperparameters for the excess noise component
differ by 4.2¢ from the results of M20, the recovered power spectrum
and 2-o upper limits show only a minor deviation.

(iii) In the case of individual upper limits, the upper limits of the
21-cm signal power spectrum lie above the 2-0 error on the noise,
and thus are not noise-dominated. However, this is not a detection,
because the lower limit on the recovery by the VAE-based kernel is
consistent with zero.
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Table 2. Comparing the results of M20 with those of our joint and individual upper limits of the excess noise component and 21-cm signal
power spectra. The first column refers to the k bins, and the following to the recovered 21-cm signal power (A%I) and its corresponding 2-o
upper limit (A%I,UL) for M20, the joint upper limits (bottom panel in Fig. 1) and the individual upper limits (top panel in Fig. 1) applied in
this work. The last column shows the 2-o error on the noise (2-0 errorpgjse ).

k M20 (fex + f21) Joint upper limits ( fex + f21) Individual upper limits (f21) 2-0 eITOrnpise
A%I A%LUL A%l A%I,UL A%l A%LUL 2Aﬁoise,err
(h cMpc™") (mK?) (mK?) (mK?) (mK?) (mK?) (mK?) (mK?)
0.075 (58.96)? (72.86)? (71.33)? (79.68)* (6.58)% (24.55)? (18.63)?
0.100 (95.21)% (106.65)? (107.05)? (115.77)% (8.56)? (29.43)2 (19.05)?
0.133 (142.17)% (153.00)? (158.65)? (167.76)* (10.48)? (37.29)% (23.22)?
0.179 (235.80)% (246.92)? (245.42)? (261.40)* (14.40)* (43.92)2 (30.47)2
0.238 (358.95)% (370.18)? (360.08)* (372.28)* (16.29)* (56.32)2 (38.70)2
0319 (505.26)? (520.33)2 (472.49)% (490.22)% (19.95)? (73.79) (58.72)
0.432 (664.23)? (683.20)% (601.37)2 (626.81)? (26.61)? (99.19)? (86.01)?

We conclude that with these data, performing a bias correction
for the excess noise provides an individual upper limit on the 21-
cm signal power spectrum that is higher than the 2-o error on the
noise. However, the upper limits approach the 2-o error on the
noise at higher k bins. Thus, lowering the noise threshold with
longer observations could allow a greater separation between the
upper limits and the noise threshold, and eventually also a detection,
provided no correlation between the excess noise and the 21-cm
signal is present. For this, the LOFAR EoR KSP team has ~100
nights of data to analyse and is currently in the process of doing
so. We discuss the correlations of the different components and the
limitations of the overall model in the subsequent section.

4 DISCUSSION

The individual upper limits are greater than the 2-o error on the
noise, and thus is not noise dominated. However, it is still possible
that the VAE-based kernels provide an incomplete model of the data.
In this case, we would be biased towards cases where the model
is enough for the 21-cm signal, and the remainder of the data is
modelled with the excess and foregrounds components as defined
above. For example, better characterisation of the excess noise may
indeed lead to broader models for it. In our current model, what
we can explore however, is the degeneracy between the VAE-based
kernel and the excess noise kernel. A decrease in the correlation
between them would indicate that at least the models we use for them
are not degenerate. For example, the difference in the intrinsic sky and
excess noise component hyperparameters with respect to M20 could
be due to a decrease in correlation of the hyperparameters for these
components by using the VAE-based kernel for the 21-cm signal. To
have a clearer picture of this, it is important to investigate whether the
hyperparameters of the different components in our overall model
are correlated and whether the overall model is a complete picture of
the data.

To assess this, in Fig. 2, we show the corner plot of the
hyperparameters, where the purple contours are the 68 per cent,
95 percent, and 99.7 percent confidence intervals. We see that
hyperparameters of each component are largely uncorrelated with
those of other components. In particular, we note that the 21-cm
signal hyperparameters are completely uncorrelated from those of the
excess noise. This provides greater confidence in the 2-o confidence
intervals obtained in the individual upper limits case.

Furthermore, to assess the performance of our model, we plot
the residual obtained by subtracting the data cube of the model

3
.34
345 —
33t ]
315 - ]
[OR ) e s | e |y | o | o ey | B S
NON NON 00O NN ONO S —HOANNMUMNST 00 MUNMLE
! ' Tl od Nt © 'O . MmnmMaN =<
| - e m . Om M
e — oonN M NN o',
1 Q% RENINI I

Figure 2. Posterior probability distributions of the GPR model hyperparam-
eters used: x1, x, the variances 0221, Oy Omix> and aczx, and the coherence-
scales /sy, Imix, and lex. The purple contours show the 68 per cent, 95 per cent,
and 99.7 percent confidence intervals and the diagonal plots refer to the
individual posterior distributions of each of the hyperparameters listed. Note
that the hyperparameters of each component are largely uncorrelated with

those of other components.

from the observational data cube in Fig. 3, and compare its power
spectrum (black solid) to that of the noise data cube (yellow dashed).
We find excellent agreement between them within the 2-o error on
the noise. To numerically quantify this, we calculate the x2 of the
residual versus the noise power spectrum, and find this to be ~6.12.
With 7 k bins, this gives a reduced x? ~ 0.87, thus confirming the
performance of the model. However, it is still possible that some
minor leakage can occur between the different signal components.
Thus, better modelling of the excess noise remains necessary to
improve the bias correction as more data is added. Furthermore,
for an eventual detection, reduction of the noise component through
longer observations is also needed.

MNRASL 534, L30-L34 (2024)

202 4990100 1.z U0 1s9nB Aq £2€8€///0€1/1/¥ES/9191LE/|SEAUL/WO0"dNO"olWapede//:sdny Wwoly papeojumoq



L34  A. Acharya et al.

10°

\

mK?]

— 104

A? (k)

103 =
E — residual noise variance 3
1 1 1 | 1 1 1
1071 2x1071 3x1074x107!
k [h cMpc~t]

Figure 3. Residual (black solid line) obtained by subtracting the full GPR
model from the data, and its corresponding 2-o confidence interval (grey
shaded region). The noise is shown as a yellow dashed line with 2-o error
bars. We note an excellent agreement between them.

5 CONCLUSIONS

To improve the modelling of the 21-cm signal covariance kernel,
Mertens et al. (2024) introduced a Machine Learning based method
that uses a VAE based algorithm. This was trained on GRIZZLY
simulations (Ghara et al. 2015, 2018, 2020) of the 21-cm signal
and tested against mock data sets by A24. In this work, we use
the VAE-based kernel trained at z = 9.16 to obtain an updated
upper limit on the 21-cm signal from 141 h of LOFAR data (~10
nights) at z & 9.1. We compare our results to past efforts, which used
analytic functions instead of Machine Learning (M20), and find that
they are consistent with errors, although the new upper limits are
slightly increased at k < 0.2 & cMpc~!, and mildly decreased for
0.2 h cMpc~! <k < 0.5 h cMpc~!. Overall, we report a 2-c upper
limit of A2, < (80)> mK? at k = 0.075 2 Mpc~' in the conservative
case, when jointly recovering the 21-cm signal and excess noise
components.

We also investigate the case in which the upper limits of the 21-
cm signal are evaluated including a bias correction for the excess
noise component. In this case, we report a 2-o upper limit of
A% < (25 mK?atk = 0.075 h Mpc~'. We confirm that the VAE
kernel hyperparameters are uncorrelated from the excess component
ones, thus providing confidence for the estimated upper limits. This
is strengthened by the fact that the residuals obtained by subtracting
the full model from the data are consistent with the noise with
0.870. Although the bias correction is promising, we still caution
against using the bias-corrected upper limits, as better modelling
of the excess noise remains necessary to improve confidence on its
separation from the 21-cm signal, as the data improves and the signal
to noise increases. In future work, the LOFAR EoR KSP team will
be improving the characterisation of the excess noise component and
its corresponding covariance kernel, and assess whether an excess
noise bias correction can reliably be applied as this work suggests it
can. As demonstrated here, this approach would substantially reduce
the current upper limits on the 21-cm signal, although this should
still be considered as an upper limit and not a detection for the given
data, as it is already reaching the sensitivity limit due to the noise,
given by the 2-¢ error on the noise. This improvement could offer
enhanced astrophysical constraints compared to Ghara et al. (2020),
allowing for the rejection of a significantly greater number of cold

IGM scenarios and achieving stricter constraints on the sources of X-
ray heating. This shall be carried out in future work. Additionally, the
team will make use of VAE-based covariance kernels as developed in
A24 across multiple redshifts with data from the LOFAR telescope.
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