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Numerical methods for frictional contact 
problems and applications 

M.RAOUS,P.CHABRANDetRLEBON 
Centre National de Ja· Recherche Scientifique 

Laboratoire de MCcanique et d' Acoustique 

13402 Marseille Cedcx 9, France 

et 

GRECO Grandcs DCformations et Endommagement 

Resume - Nous presentons ici une synthese des differentes methodes numeriques developpees 
au laboratoire ces dernieres annees pour resoudre les prohlemes de contact unilateral avec 
frottement. Les formulations variationnelles classiques associees au cas statique sont 
etendues au cas de chargements quasi-statiques complexes par l'introduction de termes en 
vitesse dans ces formulations, La generalisation aux probl8mes de viscoelasticite et 
viscoplasticite est donnee. Les methodes utilisees pour le contact sont de differents 
types relaxation avec projection, programmation lineatre, point fixe sur conditions aux 
limites par penalisation. Des techniques d'amelioration des performances des algorithmes 
sont presentees. L'efficacite des algorithm.ea est discutee sur des exemples test, et des 
applications a des exemples de type industriel sont presentees. 

Abstract - We present a synthesis of the different numerical methods developped these last 

few years in the laboratory to solve frictional unilateral contact problems. The classical 

variational formulations associated to the static case are extended to complex 

quasi-static loading cases by the use of velocity terms in the formulations. A 

generalization for viscoelasticity and viscoplasticity is given. Contact is dealt with by 
the use of different numerical methods relaxation with projection, mathematical 

programming, 

improving the 

fixed point on boundary conditions through penalization. Techniques for 

algorithms are presented. Their efficiency is discussed on test examples and 

applications concerning industrial problems are presented. 

1. INTRODUCTION 

Contact problems are caracterized by non linear relations between displacements, or 
rates of displacement and forces on a part of the boundary. The real contact area and the 
contact forces are unknown a priori and have to be determined by solving the whole 
problem. They are caracterised by a set of inequalities which lead to a complementarity 
problem [1]. In elasticity, the associated variational form is set as an implicit 
variational inequation, An extension is given for viscoelasticity and viscoplasticity by 
introducing a coupling with a linear or non linear differential equation. 

The model is generalized to several b ody contact problems. Duvaut (2] gav� a 

formulation of the Signorini problem with friction for the static case. We first give 
numerical methods based on punctual relaxation to solve this problem. Different 
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accelerating processes are used so as to obtain a powerfull algorithm even for large 
dimensional problem. A generalization for quasistatic evolutive problems is given. A 

velocity formulation leads to an incremental form solved by a step by step algorithm using 
the previous numerical techniques, For frictionless problems, mathematical programming 
methods are also used [l]. The efficiency is appreciated on a few test examples provided 
by a group of the GRECO 'Grandes Deformations et Endommagement' and applications to 
industrial examples are presented. 

2. THE SIGNORINI PROBLEM WITH FRICTION 

We first set a unilateral contact problem between an elastic solid and a rigid 
obstacle for the static case under small transformation hypothesis. It is a Signorini's 
problem with friction [2]. We denote by n the open set limiting the solid. Its boundary &n 
is separated as follows 00 r1 U r2 U r3 . On r1, we impbse homogeneous boundary 
conditions. On r2 , a force density q:>2 is applied. The part r3 is concerned by the contact 
with the rigid obstacle. We denote u the displacement field. On 13, we partition the 
vector u (in fact in the sense of the trace of u) and the density contact force vector F 
into normal and tangential components (n is the exterior normal unit vector to r3) : 

u-°tfn +t1..r, 

In n, a force density q:>1 , and a thermal strain are prescribed e0 - • X(0-00) 
dilatation tensor, e the actual temperature field and eo the initial one. 

Unilateral conditions 

(1) 

X is the 

The unilateral conditions, written on the part 13 of the boundary, lead to the 
following complementarity conditions 

u,,.F, -0 (2) 

The case {u N - 0, F N � OJ characterizes the contact zone and the l°tf < 0, FN - OJ 
corresponds to the separate part. 

Note 1 : for this formulation, 13 is defined as the initial real contact area and only a 
loss of contact on r3 will be allowed. The extension of the contact area cannot be 
modelized by these relations. More generally, we could write : 

u,, - et<O, (U,, - et) F, -0 ( 3) 
where et: is a given function defined on r3 as the initial distance of each point of 13 to 
the obstacle. For large dis.placements a satisfactory definition of ex is a serious problem, 
but under a small transformation hypothesis there is no ambiguity and the distance may be 
defined according either to the normal to the solid or the normal to the obstacle. We have 
to note that under a small transformation hypothesis, relations (3) are incorrect because 
°tf is an infinitesimal functioh and ex a finite one. Nevertheless, this will be used in the 
numerical model. 

Friction conditions 

We use here the classical Coulomb friction law. In spite of its elementary form, this 
friction law is capable of describing correctly numerous problems involving dry friction 
(especially for metal/metal contact) as long as t;he numerical treatement is carefull_Y 
effected (see experimental comparison (29)). It iS clear that lubrificated contact or 
problems involving very high temperatures will need more sophisticated laws. The Coulomb 
friction law is formulated ; 
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IF r l .:i;;; µ I FN I 
IF11 < µ  IFNI •Ur -o 
I FT I - µ I FN I .. Ur - ->.. FT >. > 0 

The dot denotes the time relative derivation, and µ is the friction coefficient. 

( 4) 
(5) 

(6) 

Note 2 the no-contact situation (FN-Fr -0) is well described because the colinearity 
condition (6) between� and F7 (which is zero in this case) is then satisfied for any �r· 
Note 3 : in the case of the unilateral conditions under consideration, the inequalities 
(3) enable us to replace IFN I by -FN in the relations (4)(5)(6).

Following Duvaut [2], this friction law can be written for static cases 

IFT I "' µ IFN I 
IFT I < µ IFN 1 ... Ur - 0 
IFTI - µ IFnl -tll.r - ->..•FT >..· ;ii. 0 

(7) 
(8) 
(9) 

From a mechanical point of view, the validity of this static model is very limited because 
friction is clearly a path dependant phenomena which hRs to be set on displacement 
velocities. Nevertheless, the numerical methods for solving this problem will be used in 
the resolution of the incremental problem derived from the general relations (4)(5)(6). So 
we first focus on the following static formulation : 

Problem Pl 
Be given the loads {'P1, <p2) E (L2(0))3x (L2(12))3 ,the prescribed strain e0E(L2(0))6 . Find 
the displacement u E (H �(0))3- {v E (Hl(0))3; v - O on 12},the strain e E (L2(0))6, the 
stress u E (L2(n))6,the contact force density FE (H-�(12))3 such that : 

1 eij - 2 (ui,J+ uJ.1) + e�j 
O'ij,j - -cpli inn 
O'i j nj - "Pz i on r2 
a1JnJ - F1 on r3 aiJ - KiJkl ekl in 0 

(10) 
(11) 
(12) 
(13) 
(14) 

and verifying the unilateral conditions (2) and the friction relations (7)(8) (9).
Kijklare the elasticity coefficients. 

In other papers 
different choices of 
which allow to set the 

(Raous [4][5J,. Bouc and al. [6]), details can be found on the 
the functional scheme, the functional sets and the duality products 
problem under the following variational form : 

ProblCme P2 Let {'91 ,'P2) and e0 be given as in problem Pl 
Find u E � - { v E (H�(O)) 3; vH < 0 on r3J such that 
Ii v EU( a(u,v-u) - (f,v-u) + j(v,u) - j(u,u) ;> 0 

with a(u,v) - f n [Dv]tK[Du]dx 

(f,v) - Jn �vdx + fr2 �� v d"Y + Jn [Ke0]t[Dv]dx 

j (u,v) -J µ IFN (u) I lv1 ld"Y r, 

(15) 
(16) 

(17) 

(18) 

3



D is the symmetrical gradient mapping. 

This problem is an implicit variational inequation because of the term j(u, v) in which FN 
depends on the solution Though the convex cone OC does not depend here on the solution, 
the nature of the problem is the same as that of a quasi·variational inequation. In fact, 
the dual formulation of problem P2 is a quasi-variational inequation the unknown force 
density F1 is supposed to remain in the polar cone IK"' depending onµ lFN I . 
Through a fixed point method on the sliding limit µIF M(u)I, we get a more classical
variational inequation (see Panagiotopoulos {7]). We thus introduce a Tresca' s friction 
problem, the sliding limit function g defined on r3 being the new variable. 

Problem P3 : Find g fixed point of the application g � µIFH(u)I
where u is solution of the problem P4 depending on g 

Problem P4 Let {l.P1 , '?2 l, e0 be given as in problem Pl. Let g E L2 cr2),
find u E II( such that : 
V v E II( a(u,v-u) - (f, v-u) + j(v) - j(u) � 0 

where j(v) fr2
glvTI d� 

We now have to solve the variational inequation problem P4 
undifferentiable term (20). Thanks to the symmetry of the bilinear form 

including 
a(. , .), we 

(19) 
(20) 

the 
can 

write the problem P4 under the following equivalent minimization problem with constraints: 

Problem PS : 

with 

Let (l.P1, 
Find u E 
VvEK 

'?2), e0 and g be
II( such that : 

%' (u) " %' (v) 

given as defined in problem P4, 

1 %' (v) - 2 a(v, v) · (f, v) + j(v)

(21) 

(22) 

Note 4 : The Coulomb friction problem is solved through the intermediate resolution of a 
sequence of Tresca's problems. We would like to underline that a Tresca's model, alone, 
would not be adequate for a problem involving unilateral conditions : g needs to be equal 
to zero on the non contact parts (� strictly negative) and these parts are unknown a 
priori. Tresca's friction is adequate only in very simple cases where the contact area and 
the normal contact forces are known a priori. 

Hathematical remarks 
The existence and uniqueness of the solution of the Signorini problem have been 

proved by Fichera [8], Stampacchia [ 9] thanks to an extension of the Lax-Milgram theorem. 
The static Tresca problem or the Coulomb problem with a given FH (see Duvaut (2]) also
have a unique solution : they are not unilateral problems, the contact area is given. The 
existence and uniqueness for the unilateral problem including static Coulomb' s friction 
(i. e. problem P2) are not proved. The difficulties arise from the fact that Fx which is 
unknown in this problem, belongs to H-�(r) (this leads to compacity problems .. . ). In the 
other problems, this given force is choosen only in L2(r). Nevertheless on the regularized 
problem introduced by Duvaut {2), Oden-Pires [11], Cocu [12j, existence is proved and 
unicity is obtained for small friction coefficients. This concerns a non local friction 
law (Duvaut defines FN through a convolution with a smooth function with compact support). 
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3. MULTIBODY CONTACT PROBLEM (SEE [13]) 

Let A and B be two deformable solids 
occupying the open sets O" and ffJ . 
Boundary conditions are set on � and !t , 
volumic force densities � and <p � are 
applied in O<' and ffJ , surfacic force 
densities � and � are given on � and 
� . The contact areas are � and � . P 
and Q denote an opposite pair of points of � and � as described on figure 1. The 
unit vector nA and n8 are still the 
external vectors to � and � . 

Unilateral conditions 

figure 1 

n• .• ;n• t!.J 
r:; r• nAT tA 3 

two body contact problem 

Under a small transformation hypothesis, we write the unilateral .problem as: 

F� < 0, (23) 

We have shown in {16] that this problem is still a complementarity problem thanks to a 
convenient choice of the duality product between the trace spaces. 

Friction condition 

The static Coulomb friction law can be written 

Fi•� 
IFil <µ.IF: I 
I Fi I < µIF: I • ui+ � - 0 
IFil - µ.IF:I ->3 A> 0 such that ui+ � - -A Fi 

(24) 
(25) 
( 26) 
(27) 

This problem will be treated after discretization by a change of variable (see 
[13]). We will see in paragraph 7 the application to a multibody contact problem. 

4. VARIATIONAL FORMULATION FOR QUASI-STATIC PROBLEMS 

We first set the quasi-static problem using the general Coulomb friction law 
(4)(5)(6) (written in terms of rates of displacement) in the case of a given contact 
boundary (no unilateral conditions). For an evolutive problem, it is clear that friction 
is an irreversible phenomena which has to be written in terms of rates of displacement. It 
is a path dependant phenomena and the final solution does not depend only on the final 
force state but on all the intermediate states. 

Problem P6 : 
Be given the forces {<p1,<p 2) : (O,T] - (L2(0))3x (L2(r2))3, the 
e0: (O,T] - (L2(0))"',find u: (0,T] (H�(r1))3such that: 
for t - 0 u(O)-u0 be given in n 
for t E }0,Tj (10)(11)(12)(13)(14) and (4)(5)(6) be verified. 

thermal strain 

Restricting the dynamical formulation of Duvaut·Lions [2J to the quasi-static case, we 
remove the inertial terms and we get the following variational formulation. 
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Problem PZ : 
(<p1 , <p2) and e0 

be given as in problem P6, find u(t) EU - (H�(0))3 such that
for t - 0 u(O) - u0 be given in 0 
for t E ]O,T] V v EU a(u,v-U)-f(v-�)+j(v)-j(�) � O (28) 

In view of the numerical resolution, we give now an incremental formulation by appro­
ximating the derivatives by finite differences. Let (t0, .. ,tk, .. ,tM) be a partition of the
interval [0,T], we get a forward finite difference approximation of U by : 

�(t,.,) • (u(t,.1)-u(t,))/(t,.,·t,) (29) 

Substituting u(Sr.) by uk and f(tk) by fll: and setting 
.Quk- uk+l - uk and 6.tk - ek+l - tk , we write (28) under the following form

a(u'+t:u•,v-l::u') - (f'+ Af',v-l::u') +j(v) - j(l::u') � 0 (30) 
a(l::u',v-i::u') - (Af',v-l::u') + j(v) - j(l::u') � - a(u',v-llu') + (f', v-llu,) (31) 

The left part of the inequality (31) is connected to the equilibrium deflect Rk, i.e. the 
friction force at the previous time e._. 

(32) 

So, we get a problem formally analogous to the static case one 

Problem PS : 
find 6u,kE U such that 

V v EU a(llu', v-l::u') - (R'+ [>fk, v - t:u') + j (v) - j (llu') � 0 (33) 
The non penetration condition corresponding to the initial unilateral problem is 

introduced by projecting Diu.k such as to asswne : 

(34) 
Consequently, We have to solve problem PB which is of the same form as the static 

problem P4. We note that we have for each step an extra load coming from the friction 
force of the previous step and that the projection is now different as shown in (34). We 
have to underline that the solution depends on the time increment size and that the 
equivalence with the initial problem occurs only for 6t -+ 0 , So, the time discretization 
has to be small, except if the loads are piecewise linear (which is often the case). In 
this case, we take one increment on each piece. 

5. EXTENSION TO THE VISCOELASTICITY AND VISCOPLASTICITY CASES 

We have shown in (14] how to set a viscoelasticity problem as a variational equation 
coupled to a differential equation. This form has been extended to contact problems both 
in viscoelasticity and viscoplasticity in [15] and [16}. These cases are often concerned 
with thermal effects as it has been set in Problem Pl. We set : 
Problem P9 : 
Let the loads f - {�1, �zl ,the prescribed strain e0 be given, find u and Y such that: 

u(O) - u0 

V v EU a(u,v-u) - (f,v-�) + J0[KY]tD(v-�)dx + j(v) -j(u) � 0 (35) 

\It E ]0,T] Y - F(Y,u,t) (36) 
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For the viscoelasticity case, a Maxwell's model leads to the following form of the 
general form (36) where Y - E is the viscous strain : 

E - �-l K (Du+ e0 - E) (37) 

� and K are respectively the viscosity and the elasticity matrices caracterised by the 
Young modulus E, the Poisson coefficient v, and the relaxation times Tc (cubic part) and 
T1 (deviatoric part). Usually �c is taken infinite [ 14]. 

In viscoplasticity, we consider a Norton-Hoff law including isotropic and cinematic 
hardening introduced by Lemaitre-Chaboche (p.309 of [17)). In this case Y is a vector 
(EP, Xlt where EP is the viscoplastic strain and X (which is a deviatoric part) 
caracterises the hardening. (36) becomes 

�'- 3/2 p(CT' -X)/J

x 2/3 c(atP-Xji) 

where P - <(J-k)/�> n (< > means [K(Du + e0- EP) ] J is the second 
�.a,c,k,n are coefficients. 

the positive 
invariant of 

(38) 

(39) 

part), a' is the deviatoric part of 
the deviatoric part of (a - X) and 

So we get a variational inequation problem coupled with a differential equation which 
is linear in viscoelasticity and strongly non linear in viscoplasticity. The first problem 
is a global relation whose resolution is presented in paragraph 6 and the second one will 
be solved locally element by element after the finite element discretization. Numerical 
methods for solving this differential equation problem are presented in [16] [ 18] [ 19] [20). 
Among the explicit and implicit methods which have been tested, the 0-method is our 
favorite. 

6. NUMERICAL METHODS USED IN THE FINITE ELEMENT CODE PROTIS [21] 

6.1. Relaxation method with projection (SORP) 

We extend to the friction case the Successive Over Relaxation Method with Projection 
(SORP) introduced in [22] [23] for the Signorini problem. A finite element discretization 
is done with linear elements Pl under the classical plane hypothesis (plane strain, plane 
stress or cylindrical symmetry). We have to underline that for the case of finite elements 
with a higher degree of approximation, the projection on the constraint convex is much 
more difficult and that this point is often neglected in the litterature. The contact 
variables are treated in local 
done on the finite element 
written 

normal tangential coordinates. The convenient rotations are 
matrix. The discrete problem associated to problem PS is 

Problem PlO 
Find � E Kh c R2N such that : 

J(u1,U2·····U2N) �J(v1,v2·····v2N> v;E Kb 
u is the displacement vector of components u1; i-l,2N N is the total node number 

2N 
Kh is the approximate convex defined by Kb - fl K1 with :�ex.- K2cx.-i - R if a� lb 

i•l 

Ih is the set of the indices of the contact nodes. 

K2cx.-i -Rifae1h 
K,� - Ill lf 1> E Ih 

(40) 
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2N 2N 

.!. 2: 2: 
2 i-1 i-1 

a1 J -' a(W1 ,wJ) is the general term of the elasticity finite element matrix 
£1 - ( f ,W1) where W1 are the shape functions. 

G2«-1 - Jr
3

g w2«-1 d� 

(41) 

A punctual relaxation process defines the solution of problem PlO as the limit of the 
solutions u�+l of the successive problems Pll set on one component after the other. 

Problem Pll : 
Find u�+l E K1 such that for i - 1, . . . 2N : 

J(u�+1,u�+l,,., ,u�+l ,u�+l'.,. ,u�11) � J(u�+1,u�-+l .. ,v,u�+l '.,, ,u�N (42) 

The convergence of the algorithm is given in (22] for this special form of the convex 
Kh.for the Signorini problem. 

The problem Pll is a pretty simple one dimensional minimization problem. According to 
the value of i, it will be one of the three following problems : 
- if i - 2 a or i - 2a-l with a� Ih : minimization on R of a quadratic functional (the 
last term of J(u) in (41) is not present). An overrelaxation method is used. 

1 
i-1 2N 

L a1 J u�+i L a1J uj ) 
J-1 J-i+l 

w is the relaxation coefficient. w E ]0,2 [ 

(43) 

(44) 

- if i - 2a with a E Ih minimization on IR" of the same quadratic functional. The form (43) 
is still available and we introduce a projection on IR" in (44) which is replaced by: 

(45) 

- if i - 2a-1 with a E th minimization on R of the non differentiable functional (41) 
containing an absolute valor. As the problem is set on� it is easy to solve it by 
considering the two alternatives, the solution u�+1to be positive or negative, and adding 
in (43) ±G1. The relaxation process (45) remains without projection. 

Turning back to the complete problem P3, a fixed point method is used on the sliding 
limit g, i.e. on its discrete form G, to insure the Coulomb relations to be true. Starting 
with G0 equal to zero (friction less case), the resolution of problem PlO gives the 
solution �k and the normal contact forces� for the step k, The next Gk+1is constructed 
by : 

(46) 

The process involving a resolution of problem PlO for each step is stopped when the 
variation of G in the sense of an euclidian norm is smaller than a given E1 (we usually 
take E1 - 0,1%). It is very important to note that� is directly obtained as the residu 
of the minimization of (41) and that it is not computed from the stress solution which 
would give a very bad estimation. And so is Gk. 
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Acceleration with a diagonal process. 

In reality, the first updatings of Gk are done after only a partial resolution of 
problem PlO. The relaxation algorithm is stopped by a relative variation test on the 

current solution �k (Euclidian norm) which is asked to be lower than a coefficient €2. 
This coefficient is large for the first iterations on Gk ( €2 � 10.1) and decreases, 

progressively when k increases, down to a final value of .5 10.5. Usually the number of 

iterations k on Gk is lower than 10. This diagonal process is very efficient and reduces 
the resolution time in a proportion which may be of 3 or 4. 

Condensation 

In a lot of cases, the number of 
contact node M is small in front of the 
total number of nodes N. Then, it is 
interesting to reduce the size of the 
problem to the only contact variables 
which are concerned by the contact non 
linearities. Let us formally part the 
finite element matrix A (general term a1J) 
as shown on fig. 2 : figure 2 the FEM matrix 

The parts containing the indice c concern the contact variables. The initial problem can 
be set on J*(u) defined by 

(47) 

where uc is the vector of the contact displacements 

A;c - Aca · Aa! A;i Ar.c
f* - · A;i Ar.c f · 

(48) 

(49) 

the inversion of Ar.r. is 
resolutions involving the 

not necessary, the term A;i Ar.c is computed directly by 2M 
matrix Ar.r. and the columns of Ar.c as different second members. 

This is not expensive because the factorization of Ar.r. is effected only once. We have to 

underline that A:c is now a full symetrical matrix but its dimension is only 2M. 

Hatrix storage 

For solving the complete problem without condensation a sparse matrix storage (or 

Morse storage) is used. This is very efficient for the Gauss·Seidel type method because no 
products by zero are done. (see table 4 in paragraph 8). 

For solving the problem after condensation, a skyline storage is used because the 
computation of A;c is done !ith a Cholesky variante method which is most efficient with 

this storage. In any case, the matrix A;c is full. 

Choice of the relaxation coefficient w 
There 

constrained 
are no theoretical results 

problem. It depends on the 
solution. We have experimentally 

on the optimum relaxation coefficient for the 
number of constraints which are saturated on the 
observed that for the frictionless problem, this final 

optimal 
problem 

coefficient remains close to the one 
with friction the sensitivity according 

of bilateral contact For the unilateral 
to this coefficient is smaller (see [5]) 

and it is easier to get a convenient relaxation coefficient, The optimal values of W are 
usually between 1.5 and 1.9. 
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To avoid the determination of the optimum coefficient w, a Gauss-Seidel method 

accelerated by a Aitken procedure is actually developped [33). 

6.2. Mathematical programming method (LEMKE) 
This kind of method is applied on the complementarity problem form (2) together with 

the relation between 1-'N and FN given through the equilibriums and the constitutive 
equations. The method has been introduced by Lemke (see in reference {3)) for the 

Signorini problem and has been extended to the friction case by Klarbring f25]. It is used 

by Barbosa-Feijoo [26] both on contact problems and plasticity problems. It is a direct 

method which is an extension of the Simplex technics to a problem including constraints. 

An extension to the two body contact problem has been presented in Pinto-Raous [27}. This 

method is always used on the problem after condensation. Details of the method can be 

found in the previous references and the comparative efficiency is presented in the 

paragraph 8. 

6.3. Fixed Point method on Boundary Conditions -FPBC- (see [28]) 

This method could be compared to a strong penalization method because of the use of 

the Irons coefficient to impose the boundary conditions. 

It is an iterative method using the direct solution of a classical elasticity problem 

with a given state of the contact boundary. On this part, boundary conditions and given 

forces are introduced or removed for the next iteration according to a sequence of tests 

on the previous solution such as to avoid penetration, traction forces and to assume the 

relations (7)(8)(9). 

The method works pretty well for frictionless problems but a few instabilities are 

observed for cases including friction. This method is very efficient for specific cases. 

We use it a lot for the study of cracked viscoplastic solids with large scale temperature 

variations. The (frictionless) unilateral problem is set by the conditions of non 

penetration of one edge of the crack on the other. Because of the non homogeneous 

temperature effects, the finite element matrix has to be assembled again from time to 

time. We do this updating of the matrix when we have to change the boundary conditions. 

So, in this case there is no need for extra computation to deal with unilateral contact 

because a new factorization has to be effected in any case. 

7. APPLICATIONS 

7.l. Contact of a long bar on a plane surface 

This example and the next one have been treated by 6 different laboratories of the 

groupe 'Validation of computer code' of the GRECO 'Grandes Deformations et Endommagemenc". 

This example has the advantage of being very elementary and that of giving different 

contact states according to the loadings and the friction coefficient values. 

2h I 

G ! !f !El �
' ' T 

' ' ' • 
� 0------------;, -- <Ill-----

--.!:... i �-----

--.A _____________ J <111-----

1·""" 
Fig.3 : the geometry (h-40mm) 

and the loadings N-230 M-32 Fig.4 the mesh 
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Constitutive law : plane strain elasticity E-13000 daN/mm2, v-0.2 
Boundary conditions : ux-0 on DE, ux-uy-0 at D.
Unilateral conditions with friction on the side AD : µ-0.2 or µ-1 (academic) 

Loadings : force densities f and F are applied respectively on EG and GA. 
Mesh : we use a 230 node mesh with 32 contact nodes N-230 M-32 

Results we give on the table l, the length (and the number of nodes) of the separate 
part AB, the sliding part BC and the stick part CD for different choices of the loads f 
and F, and of the friction coefficientµ, 

µ F f Separate part AB Sliding part BC Stick part CD 
daN/mm2 daN/mm2 mm mm mm 

1 10 -5 3.75 (3 nodes) 18.75 (15 nodes) 17 5 (15 nodes) 
1 15 -5 3.75 (3 nodes) 26.25 (21 nodes) 10 (9 nodes) 

0 .2 10 -5 0 40 (32 nodes) 0 
0. 2 10 -15 0 23 75 (19 nodes) 16.25 (14 nodes) 
0.2 10 -25 0 3 75 (3 nodes) 36.25 (30 nodes) 

Table l contact states for different loading cases 

NODE u, u, '• F, NODE u, u, '• •, 
l -0.569BE-3 0.1466E-1 o. o. 50 o. 0.6662E-3 -6.994 -6.993 

3 -0.2709E-3 0.1375E-l o. o. 65 o. 0.24!2E-3 -7.503 -7.503 

5 -0.4861E-4 0.12B2E-l o. o. 69 o. o. -8.162 -7.602 

6 o. O.llBOE-1 -1.157 -1.158 63 o. o. -S.595 -5.073 

7 o. 0.1073E-l -2.157 -2.156 67 o. o. -8. 676 -4.332 

13 o. 0.9679E-2 -2.834 -2.832 100 o. o. -S.750 -3.728 

15 o. 0.8647E-2 -3.401 -3.399 ll5 o. o. -S.799 -3.226 

16 o. 0.7647E-2 -3.871 -3.870 132 o. o .. -8.865 -2.787 

17 o. o. 6683E-2 -4.291 -4.290 150 o. o. -S.903 -2.410 

27 o. 0.5757E-2 -4.657 -4.657 170 o. o. -8.943 -2.060 

30 0. 0.4S72E-2 -5.ooa -s.ooa 191 o. o. -8.961 -1.727 

31 o. 0. 4031E-2 -5.329 -5.329 206 o. o. -8.995 -1.409 

32 o. 0.3239E-2 -5.644 -5.645 214 o. o. -9.011 -1.114 

45 o. 0.2497E-2 -5.948 -5.950 221 o. o. -9.035 -0.8269 

46 o. 0.1815E-2 -6.269 -6.270 226 o. o. -9.044 -0.·5424 

49 o. 0.1199E-2 -6.608 -6.607 229 o. o. -9.074 -0.2599 

Table 2 displacements and forces for the contact nodes case µ-1 F-10 f-.s 

It can be observed on the table 2 that the relations (2) and (4)(5)(6) are 
verified with a very good accuracy. 
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7. 2. A dovetail assembling (proposed by the CETIH-Paris). 
This example is a two body contact problem with an oblique contact zone. 

a b 

cl 
lg 

A 

I 
d a= 87 mm E 240 daN/mm2 b= 65 mm 

c= 43 mm 
d=l48 mm 
e= 60 mm f• 40 mm 

e f g= 89 mm 

Fig. 5. : geometry Fig, 6 : the mesh 
(plane stress hypothesis) N - 384 
thickness - 6.4 mm M • 38 

B v - 0.38 µ = 0.2 <I> -0.002656 

Fig.7. : displacements 
(amplified twenty times) 

caracteristics E • 240 daN/mm2 ; v • 0.38 ; µ - 0. 2 ; 'P - - . 002656 daN/mm2 

daN/mm .2 

The nodal forces and the nodal displacements on the contact area for the 
corresponding nodes are given in the table 3. 

NODE u, u, •• •, NODE u, u, •• r, 
130 0 .• 1539 -0.2609 o. o. 216 -0.1576 0.02889 o. o. 

140 0.1502 -0.2570 o. o. 217 -0.1518 0.02894 o. o. -
156 0.1461 -0.2533 o. o. 218 -0.1464 0.02882 o. o. 
184 0.1412 -0.2499 -0.1046 0.0209 220 -0.1412 0.02868 -0.1046 0.0209 

205 0.1361 -0.2466 -0.1656 0.0331 221 -0.1361 0.02840 -0.1657 0.0331 

210 0.1308 -0.2435 -0.2070 0.0414 223 -0.1308 0.02811 -0.2010 0.0414 

197 0.1255 -0.2406 -0.2361 0.0472 226 -0.1255 0.02763 -0.2361 0.0471 

180 0.1200 -0.2379 -0.2619 0.0523 229 -0.1200 0.02111 -0.2619 0.0523 

167 0.1145 -0.2353 -0.2786 0.0557 231 -0.1145 0.02642 -0.2787 0.0558 

164 0.1087 -0.2329 -0.2960 0.0591 230 -0.1087 0.02572 -0.2961 0.0589 

165 0.1030 -0.2305 -o. 3012 0.0614 232 -0.1030 0.02498 -0.3072 o·. 0614 

163 0.0971 -9.2202 -0.3171 0.0634 239 -0.0971 0.02402 -0.3171 o.0634 

155 0.0906 -0.2260 -0.3168 0.0633 244 -o. 0906 0.02293 -0.3169 0.0633 

152 0.0838 -0.2239 -0.3120 0.0624 250 -0.0838 0.02148 -0.3120 0.0624 

147 0.0763 -0.2219 -0.3059 0.0611 256 -0.0763 0.01974 -0.3059 0.0611 

141 0.0684 -0.2200 -0.2915 0.0583 264 -0.0684 0.01750 -0.2915 0.0583 

137 0.0595 -0.2185 -0.2630 0.0526 276 -0.0595 0.01478 -0.2630 0.0526 

136 0.0501 -0.2173 -0.1985 0.0397 288 -0.0501 0.01173 -0.1985 0.0397 

133 0.0394 -0.2169 -0.0828 0.0166 303 -0.0394 0.00881 -0.0828 0.0166 

Table 3 : solution on the contact area 

The vertical displacements of the lower edge is -0. 33mm (variation be.tween -0. 327 and 
·0.329). 
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7.3. The punch problem with loading and unloading 

The specifications given by Curnier [32] are used. This example has the advantage of 

having some analytical results and uses loading history including unloading. 

Fig.8. The mesh 
N-484 M-32 

p 
Po=6.28daN/rad 

T 
Parameter 

·Fig. 9. Loading evolution 

Elasticity under revolution symmetry hypothesis E - 314 daN/mm2,v-O, µ • 0.4. 

On the figures 10 and 11, the variations-of Ft/µ*FN along the radius of the punch are 
plotted. The sliding zones are caracterized by the value 1 of this quotient. The other 
parts are sticked. On the figure 10, the comparison with a semi analytical solution gives 
an error of 7% : this is due to the weakness of the use of Pl elements for axisymmetrical 
problems. The figure 11 shows the solution after the unloading step. This complex solution 
showing three different zones (stick, inward-slip, outward-slip) has been reached with 
quite the same number of iterations than the first one (see table 4). 

Fig.10. lst step of the loading 

nwnerical solution 

theoretical solution 

(semi analytical) 

·0,5 

Flg.11. 

RADIUS 
'·' ••• 

2nd step of the loading 
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7.4. Structure assembling : bolted junction under internal pressure loading 
This example deals with a real scale model on which experimental measurements have 

been done. This work has been supported by Technicatome '(Les Milles . France). It is a 
fou� body contact problem including three contact areas with different friction 
coefficients. It is a three step loading : first the closure pressure is applied, then the 
pressure on the lower part and finally the pressure on the upper part. The displacements 
with an amplicator coefficient of 100 are given on the following figures (elasticity under 
revolution symmetry hypothesis), N-674, M-54, 

Fig.12.closure pressure 

·-------

Fig.13. pressure on the 
lower part 

Fig.14, pressure on the 
upper part 

An identification of the different friction coefficients has been done on the first 
loading step and the comparison between the numerical results and experimental datas for 
all the loading steps can be found in [29] and [30]. The errors are less than lSX on the 
most significant quantities. 

7.5. Friction modelling for metal forming processes 
We focus on the behaviour of the sheet metal under the blankholder during the 

stamping process . This study has been supported by Regienov (Paris-France). It is a very 
thin structure with a large number of contact nodes (N-784, M-251). Details about the 
results can be found in [31]. The following figure shows the evolution of the contact 
forces according to the increase of 
extremity. The extension of the 
verification of Coulomb 's  law (FT/µ 

0.10 0.2 
-o. 0 

·0.10 -0.2 
-0.20 ·0·' 

the tangential displacement 6 applied to the righthand 
sliding area can be observed along with the good 

is also plotted). 

• 
.. 

·:r 
' " 161 1� 21i Bi ,.

t:. - 5' 10"' t:. - 0, 25 
normal force FN 

Fig.15. contact forces evolution 
�tangential force F1 --- quotient F1/µ 
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7.6. Cracked viscoplastic solid under alternative loading 
This example deals with the study of 

the progression of a crack in a structure 

submitted to 

temperature. The 
of the crack 

high variations of 

contact between the edges 
is frictionless, The 

viscoplastic law has been given in 
paragraph 6 (relations (38)(39)). 

-

Fig.16. the structure (the loading is harmonic) 

Fig.17. displacement of a contact node 

0.010 
,/ ....................................... .. ' 

• • • 
• 

• ' ' 
• ' ' ' ' ' ' 

/ ,..----------, '·--;;-J+l+!oi:'._o___--,..,;;;------"'.:o---.: .. :,-�T 
' 
!,, 
'\.tl I I I I I 111111111111111 I 

-+-+-

Ei1 
€�2p €12 

Fig.18.viscoplastic strain near the crack tip 

The unilateral contact has been solved by the FPBC method described in paragraph 6.3 
and the viscoplastic equations have been integrated by a Runge�Kutta method. Details can 
be found in [20]. 

8. COMPARATIVE COMPUTATIONAL TIMES 

Computational times (on a Microvax II) corresponding to the examples referenced in 
paragraph 7 are presented in table 4. The methods are the ones presented in paragraph 6 
either with a skyline storage or a Morse storage (sparse matrix storage), with or without 
condensation. To give an idea of the cost of a contact problem, the computational time for 
a close classical elasticity problem on the same mesh is given as a 'reference' the 
unilateral and friction conditions are replaced in this case by classical boundary 
conditions, The global number of iterations N50RPis given together with the number NG of 

updating of Gk . 
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Example Method NSORP/NG Total Solver 
time time 

Reference Cholesky 20" 4" 

SORP+Skyline ("'"'l. 88) 90 l' 4911 l' 35" 

§ 7.1 SORP+Morse ("'"'l. 88) 90 l' 34" 33" 

Frictionless SORP+Skyline+Cond.(W-1,74) 30 l' 21" 1. 5" 

with µ.-O Lemke+Skyline+Cond. 1'10" 3" 

F-10 FPBC+Skyline 2 28" 8" 

f-·5 Friction SORP+Skyline (W-1.86) 99/8 l' 58" 1'44" 

µ...Q.2 SORP+Morse ("'"'l.86) 99/8 l' 34" 36" 

SORP+Skyline+Cond. (W-1. 72) 41/8 1' 26" 2" 

N-230 Friction SORP+Skyline ("'"'l . 72) 200/8 3, 42" 3' 28" 

M-32 µ.-1 SORP+Morse (W-1.72) 200/8 2 I 13" l' 12" 

SORP+Skyline+Cond, ("'"'l.67) 101/10 l' 
30" 5" 

Reference Cholesky 47" 12" 

§ 7.2 Frictionless SORP+Skyline+Cond . (W-1.87) 212 5' 7" 15" 

N-384 µ.-0 Lemke+Skyline+Cond. 2' 34" 7" 

M-38 Friction µ.-O. 2 SORP+Skyline+Cond. (W-1.58) 505/9 8' 59" 36" 

Reference Cho le sky l' 38" 13" 

§ 7.3 SORP+Skyline ("'"'l. 89) 166/10 8' l" 6' 33" 

N-484 ls t . load. step SORP+Morse ("'"'l. 89) 166/10 5'48" 56" 

M-32 SORP+Skyline+Cond. (W...1.58) 30/10 4' 56" 1. 5" 

2nd . l oad. st ep SORP+Skyline+Cond. (W...1.58) 30/10 4'60" 1. 5" 

Reference Cho le sky l' 26" 28'' 

§ 7 .4 µ.i -o lstload.step Lemke+S kyline+Cond. 7'49" 30" 

I N-674 lstload.step SORP+Skyline+Cond. ("'"'l.82) 686/9 28' 23" 

M-54 µ.1 +o 2ndl oad. s tep SORP+Skyline+Cond. (W...1.82) 669/9 27' 27" 

3rdload. step SORP+Skyline+cond. ("'"'l. 82) 595/9 lh39'12" 24' 27" 

§ 7.5 Step of fig.12a SORP+Morse (W...1.90) 742/151 8' 32" 

N-754 Step of fig.12b SORP+Morse ("'"l. 90) 5472/1232 50'06" 

M-251 Step of fig.12c SORP+Morse (W...1.90) 5931/1464 2lh 55'20" 

Table 4. Computational times 

In conclusion, we 

unilateral problems with 

can note that it is important to have 

friction because the efficiency of 

different solvers to treat 

each method depends on the 

nature of the problem. We can summarize this by a few remarks, 

For frictionless problems, the Lemke algorithm with condensation and the FPBC seem t o  

b e  the best ones. 

Condensation is always suitable when the number M of contact nodes is small compared 
to the total number of nodes N. The only exception is when the finite element matrix 

changes (in case of thermal e f fects for example) because in such a case the computation of A;c (see(48)) has to be done again and it will be costly. 
When the number of contact nodes is large a S uccessive OverRelaxation method with 

Projection using a sparse matrix storage (Morse) is more adequate. The example 7.5 is 

pretty stiff because the solution includes a part of the boundary where the contact is 

associated to a very small compression force. Before convergence is reached the numerical 

16



solution oscillates between two states (� -e•, FN -0 - no contact) and (�-0, FN-€" -
contact with small compression) where E' and E" are two little negative quantities. 

Condensation is very important for the multibody contact problems because the initial 

matrix is ill conditioned due to the connection relations between the different solids 
which have been meshed separatively. 
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