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Abstract  15 

Laboratory studies with rodents indicate that in utero proximity of a female to male foetus 16 

can affect female’s subsequent reproduction due to elevated testosterone exposure during 17 

early development. It remains unknown whether these findings can be generalised to non-18 

laboratory species because the need for caesarean section makes it difficult to determine the 19 

intrauterine position outside laboratory conditions. As an alternative, some studies have 20 

compared the reproductive performance of individuals born in male-biased litters to those 21 

born in female-biased litters. We identified 44 of those studies in 28 viviparous species for a 22 

total of 176 relationships between litter sex composition around the time of birth and 23 

subsequent reproductive performance (fertility, fecundity, age at first reproduction, interbirth 24 

intervals or post-natal survival of offspring). Those relationships are discordant and complex 25 

both within and across species. Some factors can mask an actual association between litter 26 

sex composition and reproductive performance. Conversely, a part of significant relationships 27 

between litter sex composition and reproductive performance likely arises via pathways other 28 

than androgen- and oestrogen-transfer between foetuses of different sexes.  29 

In brief 30 

In litter-bearing species, developing offspring can be exposed to different concentrations of 31 

androgens and oestrogens according to the sex of neighbouring foetuses. However, the 32 

relationships between litter sex composition and subsequent reproductive performance are 33 

discordant and complex.   34 



Introduction 35 

The ‘developmental origins of health and disease’ (DOHaD) hypothesis posits that events 36 

experienced during critical periods of development, and particularly during intrauterine life, 37 

have profound and long-term consequences on health (Gluckman et al., 2010). Initially 38 

focused on the association between foetal exposure to maternal undernutrition and increased 39 

risk of cardiovascular diseases in adults (Barker et al., 1989), DOHaD studies now include a 40 

wide range of non-communicable diseases such as fertility problems (Jazwiec & Sloboda, 41 

2019). Environmental factors explain most of the observed variation in subfertility for women 42 

as well as men (Ahrenfeldt et al., 2020). In particular, exposure to endocrine-disrupting 43 

chemicals (EDCs) during foetal development is associated with altered fertility and fecundity 44 

(Green et al., 2021). Most of these substances are able to cross the placenta, interfere with 45 

androgen and oestrogen synthesis, secretion or metabolism to alter the action of these sex 46 

hormones and lead to long-latency adverse outcomes (Green et al., 2021; Vaiserman, 2014). 47 

Natural hormonal perturbations during early development can also have long-term 48 

consequences on fertility and fecundity, similar to the effects of EDCs. The most extreme 49 

illustration of such effects is the freemartin syndrome in domesticated bovids (Iannuzzi et al., 50 

2021; Padula, 2005). A freemartin is a sterile female that shows masculinisation of the 51 

reproductive tract to varying degrees due to the presence of a male co-twin in utero. This 52 

syndrome arises when the placentae of male and female twins establish vascular connections 53 

enabling the passage of cells and hormones involved in sexual differentiation (e.g. anti-54 

Mullerian hormone and testosterone) from a male foetus to the female foetus. Genetically, a 55 

freemartin is chimeric with lymphocytes showing XX/XY chromosomes. Freemartinism 56 

concerns a vast majority (between 82 and 92%) of female cows born co-twin to a male (Esteves 57 



et al., 2012; Zhang et al., 1994). In addition, some freemartins are from single births because 58 

of death of their male co-twin in utero (Iannuzzi et al., 2021; Padula, 2005). Freemartinism is 59 

mostly reported in cattle, although it is increasing in prevalence in sheep populations under 60 

selection for increased litter size  (Padula, 2005). 61 

Less extreme, but far more common, is the influence of intrauterine position (IUP) on 62 

subsequent reproduction in laboratory rodents. During sexual differentiation in mammals, 63 

male foetuses have higher amounts of serum testosterone than females, whereas in some 64 

species, such as house mice, females have greater serum concentrations of oestradiol than 65 

males (vom Saal, 1989a). These hormones can transfer among adjacent foetuses through the 66 

amniotic fluid (Even et al., 1992). As a result, foetuses positioned between two males in the 67 

uterus (2M females and 2M males) have greater concentrations of serum testosterone 68 

whereas those positioned between two females (2F females and 2F males) can have greater 69 

concentrations of serum oestradiol relative to other foetuses of the same sex (Ryan & 70 

Vandenbergh, 2002; vom Saal, 2016). Differences in sex hormone concentration due to IUP 71 

are relatively small (Vandenberg et al., 2012). For example, in house mice, the difference in 72 

serum concentration of testosterone and oestradiol between 2M and 2F females is 1 ng/mL 73 

and 40 pg/ml, respectively (vom Saal, 2016). However, very small differences in sex hormones 74 

due to IUP are associated with marked effects on morphological, behavioural and 75 

reproductive traits (Ryan & Vandenbergh, 2002). For example, 2M female mice have 76 

masculinised traits, including relatively long anogenital distances, delayed puberty, increased 77 

aggression, decreased attractiveness, earlier age at cessation of fertility compared to 2F 78 

females (Rines & vom Saal, 1984; vom Saal, 1989b; vom Saal & Bronson, 1978; vom Saal & 79 

Moyer, 1985). In addition, the IUP of a female can influence the sex ratio of her own litters, 80 

with 2M female mice and gerbils producing more males and 2F females producing more 81 



females (Clark & Galef, 1995; Vandenbergh & Huggett, 1994). The consequences of IUP are 82 

not limited to females (vom Saal, 2016; vom Saal et al., 1983). For example, 2M gerbil males 83 

are more attractive to females and sire more offspring than do 2F males (Clark et al., 1992). 84 

Interestingly, effects of IUP on adult phenotype and reproduction of males and females vary 85 

from one species to the next. Vom Saal et al. (1999) hypothesised that such variability in IUP 86 

effects reflect differences in the way that testosterone and oestradiol regulate development 87 

in different species.      88 

It has been proposed that the IUP phenomenon could be an evolutionary response to 89 

environmental variability (vom Saal, 1981, 1989a). By diversifying the phenotypes of a litter 90 

via differential sex hormone exposures, a mother could ensure that a least one of her offspring 91 

matches the future environmental conditions. For example, 2F females may have better 92 

reproductive success when resources are plentiful, but 2M females may be more successful 93 

breeders under stressful conditions because their higher aggressiveness would allow them to 94 

access to more resources or mates (Vandenberg et al., 2012). Individuals living under 95 

laboratory conditions are usually fed ad libitum, which can potentially mask any reproductive 96 

advantage of masculinisation due to IUP. In addition, results involving endocrinology and 97 

behaviour can differ substantially between laboratory and field settings (Calisi & Bentley, 98 

2009). Thus, empirical tests of IUP effects in the wild, where food availability is limiting, are 99 

complementary to those performed under laboratory conditions. One study has explored IUP 100 

effects under seminatural conditions by releasing laboratory-reared house mice onto a 101 

highway island approximatively 1ha in size (Zielinski et al., 1992). The only effect of IUP found 102 

was a 45% larger home range size for 2M females than for 2F females (Zielinski et al., 1992). 103 

However, the failure to detect a difference in survival rate or reproductive traits of females 104 

from different IUP may have been due to the short duration of the 8-week experiment (vom 105 



Saal et al., 1999). Unfortunately, the study of IUP effects outside laboratory is extremely 106 

challenging since it requires a caesarean section in litters with more than 3 offspring to identify 107 

the position of each foetus. In contrast to the IUP, litter sex composition (i.e. litter sex ratio or 108 

co-twin sex) does not require a caesarean section and, consequently, is more easily 109 

measurable. Thus, empirical studies testing for the effects of litter sex composition on 110 

subsequent reproductive performance in captive animals, wild animals and humans have 111 

accumulated in the last two decades.  112 

Here, we review studies investigating the potential influence of litter sex composition 113 

around the time of birth on subsequent reproductive performance in viviparous organisms. 114 

After describing our literature search protocol, we discuss the results for each taxonomic 115 

group. The variability across species in IUP effects (vom Saal et al., 1999) limits the relevance 116 

of conducting an overall study across taxa.  117 

 Literature review protocol  118 

Our search protocol consists of a backward-forward citation search. Backward citation search 119 

aims at identifying references cited in an article, while forward citation search involves 120 

identifying references that cite an article. As a first step, we searched backward and forward 121 

citations of six highly relevant studies to our systematic review using ISI Web of Science on 122 

August 15th 2022. These six classic papers correspond to a review on IUP effects (Ryan & 123 

Vandenbergh, 2002), a review on sex-specific sibling interactions in vertebrates (Uller, 2006), 124 

a review on prenatal influences of hormones on reproductive life history strategies (Clark & 125 

Galef, 1995), two early studies of IUP effects in mice (vom Saal & Bronson, 1978, 1980) and an 126 

early study on long-term consequences of litter sex ratio on reproduction in swine (Drickamer 127 

et al., 1997). After removing duplicated papers, we obtained 1033 studies. We then identified 128 



76 studies potentially relevant to our synthesis after reading titles and abstracts. We then 129 

inspected these 76 studies in detail and checked whether they still met our inclusion criteria 130 

(see below). This allowed us to obtain 26 out of 44 studies displayed in table 1. We reiterated 131 

the procedure (backward and forward citation searching, titles and abstracts screened, full 132 

text papers screened) from these 26 studies until no further relevant studies could be 133 

identified (three iterations; the last iteration on January, 15, 2023). The additional backward 134 

citation searching was conducted manually by checking the reference list of the study. We 135 

used Google Scholar instead of ISI Web of Science for the additional forward citation searching 136 

because it can find much grey literature (Haddaway et al., 2015). 137 

To be included in our review, the paper had to contain statistical information testing 138 

the  influence of litter sex composition on reproductive performance. These individuals belong 139 

to the F0 generation. We included studies that measured litter sex composition at birth, or if 140 

this was impossible, at weaning. For instance, in many social carnivores, females give birth to 141 

their litter underground, and therefore measures of litter sizes at birth are not possible 142 

(Russell et al., 2003). For twin studies, we included only those comparing opposite-sex and 143 

same-sex twins. For instance, studies comparing the reproductive performance of twin 144 

animals with non-twin animals (Dunn et al., 1979) were not included in our sample. 145 

We classified the different traits of reproductive performance into 7 categories: 146 

fecundity, fertility, post-natal survival of offspring, age at first reproduction, parental care, 147 

interbirth interval and mating success. Fecundity is the biological ability of an individual to 148 

conceive and have a live birth (Gardner et al., 2009). As such, fecundity can never be measured 149 

directly and is only estimated from multiple indicators, such as the time to pregnancy, 150 

probability of becoming parent, pregnancy success, stillbirth rate, ovulation rate, blastocyst 151 



production and sperm concentration. Fertility is a productive term representing the number 152 

of offspring an individual has (Gardner et al., 2009). We included the number of offspring per 153 

litter or per unit time (e.g. year) in the category ‘fertility’. The number of offspring was 154 

measured either at birth or independence (weaning). Nevertheless, we included post-natal 155 

survival of offspring (i.e. survival rate of F1 generation between birth and independence) as a 156 

separate category because this is a measure specifically of offspring viability. The three traits 157 

included in the category ‘age at first reproduction’ correspond to an actual reproduction (i.e. 158 

age at first birth, age at first conception) or to a potential reproduction (i.e. age at sexual 159 

maturity). Parental care mostly reflects offspring provisioning and protection in mammals 160 

(Clutton-Brock, 1991). The most direct measures of food provisioning during the period of 161 

lactation are milk production and composition (Landete-Castillejos et al., 2005) whereas 162 

offspring mass at weaning is often used as indirect measure (Hamel et al., 2012). The category 163 

‘interbirth interval’ includes time between births and number of litters per unit time. Finally, 164 

we included dominance rank in animals and probability of marriage in human (von Rueden & 165 

Jaeggi, 2016) in the category ‘mating success’.  166 

Results of the literature survey  167 

Characteristics of included studies  168 

Our search protocol allowed us to identify 44 studies of 28 species for a total of 176 169 

relationships between litter sex composition during early development and reproductive 170 

performance (Table 1).  There was a strong bias towards research on mammals. Human is the 171 

most represented species with 26% of relationships and 34% of studies. Farm animals and 172 

captive primates were also well represented in the sample (61% of relationships). A striking 173 

feature of the studies investigating the consequences of litter sex composition on 174 



reproductive performance is their focus on females (81% of relationships). A female bias is 175 

frequent in mammalian studies of life-history traits, in part because of the relative ease of 176 

assigning maternity versus paternity (Archer et al., 2022). This bias is likely to have been 177 

reinforced here by the economic importance of female productivity in farm animals because 178 

there are no studies examining how litter sex composition influences male reproductive 179 

performance in pigs, sheep, goats and rabbits (Table 1).  180 

Litter sex composition was measured in different ways depending on litter size. When 181 

there were two offspring per litter, studies have examined the effect of co-twin sex on 182 

reproductive performance, as in sheep and human. When there were more than 3 offspring 183 

per litter, studies have assessed the impact of litter sex ratio either by (i) comparing individuals 184 

from same-sex vs mixed-sex litters, (ii) entering the proportion of males in the litter as a 185 

continuous variable in the model, or (iii) converting the proportion of males in the litter to two 186 

or more groups (Table S1). For the dependant variable, the 7 categories of reproductive 187 

performance that we considered were represented in our sample but fecundity, fertility and 188 

age at first reproduction represented over three quarters of the relationships (Table S1). 189 

Human (n = 15 studies) 190 

Several studies have tested the effects of co-twin sex on the same reproductive traits of 191 

women from different populations. Inconsistent results are found for each of those 192 

reproductive traits: the probability of giving birth, the number of offspring born, the age at 193 

sexual maturity or the probability of marriage (Tables 1 and S1). Pre-industrial Finnish women 194 

(born between 1734 and 1888) with a male co-twin in utero had reduced lifetime reproductive 195 

success compared with women born with a co-twin female, as a result of a lower probability 196 

of marriage as well as decreased fertility (Lummaa et al., 2007). A Norwegian study (Bütikofer 197 



et al., 2019) including twins born between 1967 and 1978 has found that women born with 198 

female co-twins had 11.7% lower probability of ever having married and 5.8% fewer children, 199 

although it is unclear why these two variables were measured at age 32 rather than later. In 200 

contrast, there were no differences in the number of children between women born of same- 201 

or opposite-sex twin pairs in Australia, the Netherlands and USA during the 20th century 202 

(Medland et al., 2008). A possible explanation for these divergent findings is spatio-temporal 203 

variation in exposure to EDC. By altering the effects of endogenous hormones on 204 

development, EDCs can make the direction and the magnitude of the relationships between 205 

co-twin sex and reproductive performance hard to predict (Howdeshell et al., 1999; vom Saal, 206 

2016). Although some EDCs are produced naturally by plants (phytoestrogens), the majority 207 

are made-man compounds whose production started in the 1930s (Darbre, 2021). Thus, the 208 

fitness consequences of co-twin sex have been relatively well studied in women potentially 209 

exposed to EDCs (Figure 1). More studies are needed to confirm that in the past (e.g. before 210 

the industrial revolution) women with male co-twins had reduced reproductive success.  211 

It is also possible that the observed inconsistency between study results is, at least 212 

partially, linked to another aspect of the in utero environment: nutrient competition (Box 1). 213 

Males, being selected to grow faster, may be more successful in that competition, particularly 214 

in poor environmental conditions (Oddie, 2000) such as encountered in pre-industrial 215 

populations. Under this scenario, girls born with a sister co-twin should be heavier than those 216 

born with a brother co-twin (James, 2002). In 15 developed countries, girls having a co-twin 217 

brother were, at maximum (values depend on gestational age), 12 g heavier than those with 218 

a co-twin sister (Jelenkovic et al., 2018), suggesting that this difference was due to a positive 219 

effect of androgen on foetal growth (De Zegher et al., 1998) rather than nutrient competition 220 



with male co-twin. However, the association between birth mass and co-twin sex remains to 221 

be tested in less favourable conditions.  222 

During their study examining the influence of co-twin sex on reproductive performance 223 

in Norwegian women, Bütikofer et al. (2019) also measured long-term impacts on men. They 224 

have found that men with a female co-twin had a lower probability of ever having married by 225 

age 32 yr. However, this relationship was no longer significant for a subset of men with a 226 

deceased co-twin within first year of life, suggesting that it reflects differences in post-birth 227 

socialisation effects rather than hormonal influences in utero. In other populations, men had 228 

a similar probability of marriage or produced similar number of children, irrespective of 229 

whether they had a female or male co-twin (Lummaa et al., 2007; Steeno & Vlietinck, 1989; 230 

Wyshak & White, 1969). This absence of effects is not really surprising. Indeed, while 231 

numerous effects of IUP on behaviour and reproductive organs in male mice have been 232 

attributed to differences in serum oestradiol during foetal life (vom Saal, 2016; vom Saal et 233 

al., 1983), prenatal levels of oestriol and oestradiol do not appear to differ by foetal sex in 234 

human (Inkster et al., 2021). 235 

Non-human primates (n = 6 studies) 236 

The reproductive consequences of litter sex composition have been analysed relatively 237 

recently in captive callitrichines (marmosets, tamarins and lion tamarins). In this family of 238 

primates, the early shared intrauterine vascularisation facilitates the transfer of signalling 239 

molecules between co-twins, including hormones involved in sexual differentiation. However, 240 

the majority of the relationships between increased presence of males in the litter and female 241 

reproductive performance, when present, are positive (Table 1), i.e. in the opposite direction 242 

of what we would expect based on testosterone transfer between male and female foetuses. 243 



It has been suggested that mate competition between same-sex siblings limits the 244 

reproductive performance of individuals born in same-sex litters compared to those born in 245 

mixed-sex litters (McCoy et al., 2019). Although Perret (2021) found that male mouse lemurs 246 

in same-sex litters were more competitive and produced more offspring than males born in 247 

mixed-sex litters, she suggested that this pattern may result from social interactions after birth 248 

rather than testosterone levels. Specifically, play fighting between brothers could play a major 249 

role in the development of the skills or behaviours required for mating success (Perret, 2021). 250 

Ovine and caprine (n = 11 studies) 251 

Sheep play an important part in research on the freemartinism syndrome, which causes an 252 

economic loss for farmers (Esteves et al., 2012).  If the risk of freemartinism is too high, this 253 

may counteract selection for large litter size in sheep populations. However, the incidence of 254 

freemartins in ewes born with male siblings is only 3.15% (Marí & Casellas, 2018). This 255 

contrasts with results in cattle where approximatively 80-92% of females born co-twin to male 256 

are freemartins (Padula, 2005). In addition, all XX/XY chimeric females born co-twin with a 257 

male are freemartins and sterile in cattle (Eldridge & Blazak, 1977), whereas there are no 258 

significant differences in the frequency of female chimeras between litters with different sex 259 

ratios in sheep (Brace et al., 2008). These differences between sheep and cattle cannot be 260 

explained by different structures of placentae. Indeed, the placenta in ruminants is multiple 261 

and cotyledonic (Rousseau-Ralliard et al., 2020). A possible reason behind these disparities is 262 

that sex differentiation occurs much earlier in sheep than in cattle (Iannuzzi et al., 2021). 263 

Indeed, mixed-sex pregnancies can avoid the freemartinism phenomenon when placental 264 

anastomoses fail to fuse or when fusion occurs after the critical period of sexual differentiation 265 

(Marí & Casellas, 2018).  266 



In domestic sheep, blastocyst production rates and embryonic survival were increased 267 

in ewes born with a female co-twin compared with those born with a male co-twin, but the 268 

co-twin sex or litter sex ratio did not affect the number of offspring born or weaned (Table 1). 269 

In contrast, in feral Soay sheep, female born with a male co-twin had lower number of lambs 270 

born over their entire life compared with those born with a female co-twin (Korsten et al., 271 

2009). Those differences in lifetime reproductive success were mainly due to higher first-year 272 

mortality of females born with a male co-twin. In addition, female Soays born with a male co-273 

twin had reduced birth mass relative to those born with a female co-twin (Korsten et al., 2009), 274 

which is the opposite of what we would expect based on the hypothesis of testosterone-275 

induced masculinisation. It is likely that nutrient competition in utero contributes to the 276 

observed pattern in the population of Soay sheep consequent to low resource availability (a 277 

function of population density and weather). 278 

Only two studies have been conducted in goats. The coexistence of a female with one 279 

or two males in utero did not alter the fecundity, fertility and age at first birth of adult does 280 

(Mellado et al., 2005). However, female goats that developed in utero with a male co-twin 281 

produced more milk, but with lower fat percentage, than those that developed in utero with 282 

a female co-twin (Abecia et al., 2020). The effect of milk volume diluting macronutrients has 283 

been observed in other species (Chalupa et al., 2000; Hinde, 2009). In sheep, no effect of the 284 

co-twin sex on female milk production was detected (Avdi & Driancourt, 1997); however this 285 

study was limited to the first lactation and the results were in the same direction as those in 286 

goats. This should encourage researchers to investigate whether male-specific foetal 287 

hormones cause changes in the mammary glands of their female litter mates. In particular, 288 

such investigations could be insightful to evaluate the potential benefits of considering sex 289 

composition of the litter in the breeding programs used in dairy species. 290 



Porcine (n = 4 studies) 291 

 The four studies in pigs found at least one statistically significant correlation between litter 292 

sex ratio and one reproductive trait (Table 1). It is certainly possible, but has not been 293 

examined, that the complex counter-current uterine blood flow system in swine females leads 294 

to an effect on maternal hormone levels that is different from what occurs in rodents, that 295 

have a very different uterine vasculature. Thus, a foetal pig may be more sensitive to the 296 

hormonal contribution of every foetus belonging to the litter than that of adjacent foetuses 297 

(Ryan & Vandenbergh, 2002). In support of this idea, age at puberty of female swine was 298 

related to litter sex ratio but not IUP (Lamberson et al., 1988; Rohde Parfet et al., 1990). Some 299 

results are more difficult to interpret. For instance, it is unclear why the direction of the 300 

relationship between the sex-ratio in the litter in which the mother was born and piglet 301 

mortality seen in Polish Landrace pigs is the opposite of that seen in Polish Large White pigs 302 

(Rekiel et al., 2012). 303 

Rodents (n = 7 studies) 304 

In two different populations of Alpine marmots (Dupont et al., 2015; Hackländer & Arnold, 305 

2012), females from male-biased litters were more likely to become dominant than those 306 

from female-biased litters. As in many other cooperative breeders, competition for 307 

reproductive opportunities is particularly intense in this species, where reproduction within 308 

social groups is monopolised by a single dominant female. While studies carried out in 309 

laboratory rodents have shown a negative influence of masculinisation on female 310 

reproductive performance, the opposite happens in Alpine marmots. A possible reason for 311 

this discrepancy is that the relationships between aggressiveness and mating success are 312 

variable between species. In rodents used in laboratory experiments, masculinised females 313 



being more aggressive are less receptive to males and less preferred by them (Ryan & 314 

Vandenbergh, 2002). In some wild animals, the benefits of aggressiveness are probably higher 315 

than its costs. In support of this idea, female Alpine marmots from male-biased litters are 316 

more likely to become dominant by fighting, defeating and expelling the previous dominant 317 

(Hackländer & Arnold, 2012). If masculinised females are also more aggressive towards male 318 

intruders, masculinisation in Alpine marmots might also reduce the risk of infanticide by males 319 

(Coulon et al., 1995). Trade-offs between development of traits increasing competitiveness, 320 

like fighting ability, and fitness components may occur as in other taxa. For instance, in rustic 321 

breeds of Swiss domestic cattle, the selection for fighting ability has led to reductions both in 322 

milk production and fecundity (Sartori et al., 2015). However, in female alpine marmots, there 323 

was no evidence for effects of litter sex ratio at weaning on the number of young per litter or 324 

during the entire period of dominance as an adult (Hackländer & Arnold, 2012).  325 

The effects of litter sex ratio on female reproduction performance have been studied 326 

in another marmot species. In the yellow-bellied marmot, the probability of reproduction in a 327 

given year was independent of litter sex ratio (Monclús et al., 2014). The yellow-bellied 328 

marmot is primarily polygynous with low reproductive skew (reproduction is shared rather 329 

equally) among females of a social group compared all other social marmot species, including 330 

the Alpine marmot (Allainé, 2000). Litter sex composition may have a stronger influence on 331 

competitive ability and the acquisition of dominance in species with high levels of 332 

reproductive skew (i.e. when reproduction is monopolised by a single individual of each sex 333 

per social group). 334 

In Peromyscus rodents, males reared in litters with more brothers develop larger testes 335 

as adults and this difference in testis size is associated with increased fertility (Fisher et al., 336 



2018). As discussed by Fisher et al. (2018), it was unknown whether differences in testis size 337 

among Peromyscus males are due to differential investment in sperm production by the males 338 

themselves and/or passive exposure to higher levels of testosterone in utero. However, a 339 

study on wild house mice found support for the former but not latter possibility (Lavoie et al., 340 

2019), suggesting that growing males allocate more in sperm production under a perceived 341 

risk of male-male competition. 342 

Reptiles (n = 1 study) 343 

Only one study in the common lizard showed that females from male-biased clutches grew 344 

faster and matured earlier, but had reduced fecundity (Uller et al., 2004). In addition, male 345 

common lizards from male-biased clutches were more likely to successfully reproduce at age 346 

one than males from female-biased clutches (Uller et al., 2004). To our knowledge, no other 347 

study in non-mammalian viviparous species has investigated whether reproductive 348 

performance of females and males may depend on the sex ratio of their litter of origin, but 349 

there are two studies of snakes which have examined the consequence of litter sex ratios on 350 

sex-specific morphological traits (Osypka & Arnold, 2000; Weatherhead et al., 2006). Thus, 351 

there is potential for more work to be done to further understand if and how prenatal sex 352 

ratio influence future reproduction in reptiles.  353 

Attempts to explain differences between studies based on IUP vs litter sex composition  354 

Relationships between litter sex composition and reproductive performance appear more 355 

discordant and complex than those between IUP and reproduction. For twin studies, IUP is 356 

equivalent to litter sex composition. Even if sex hormones transfer between twins, it is 357 

possible that the level of in utero hormonal exposure from a single opposite sex co-twin is not 358 

high enough to induce reproductive consequences. However, laboratory studies show that 359 



foetuses situated between a single male and a female foetus (1MF foetuses) have 360 

intermediate concentrations of testosterone and oestradiol, and in adulthood are 361 

intermediate between 2M and 2F individuals of the same sex in many morphological, 362 

physiological and behavioural traits (vom Saal, 2016; vom Saal et al., 1999).  363 

In studies that examined the influence of litter sex ratio on future reproductive 364 

performance, litter sex ratio was generally used as a proxy of prenatal exposure to 365 

androgens/oestrogens while it was unknow whether foetuses developed in a close proximity 366 

to opposite-sex foetuses, or not. If not, they might have been less affected by androgens and 367 

oestrogens than 2M and 2F individuals. Litters containing many males may increase the 368 

concentrations of testosterone in the mother’s circulation and, in turn, increase blood 369 

concentration of this hormone in the entire litter. However, there was no evidence for this 370 

possibility in mice (vom Saal & Bronson, 1980).  371 

 Outside the laboratory, there are many factors that can mask relationships between 372 

litter sex composition and reproductive performance (e.g. exposure to EDCs in human 373 

studies). Conversely, some relationships between litter sex composition and reproductive 374 

performance could arise via pathways that have nothing to do with prenatal sex hormones 375 

(Box 1). 376 

Conclusions 377 

Back to our initial questions, our review of the literature in viviparous organisms (n = 44 studies 378 

in 28 species) shows that evidence for an association between litter sex composition around 379 

the time of birth and adult reproductive performance is currently conflicting. Almost all 380 

studies were on mammal species, principally humans and farm animals. In humans, the 381 

absence of long-term effects of co-twin sex on fecundity and fertility in the majority of 382 



contemporary populations is reassuring given the increase in the frequency of twin births in 383 

nearly all countries (Monden et al., 2021). In future studies, it will be important to differentiate 384 

the effects of sex hormones in utero from the other pathways (Box 1). These different 385 

pathways may explain why relationships between litter sex composition and reproductive 386 

performance are variable even between populations within the same species. In sum, the 387 

effects of litter sex composition around the time of birth on subsequent reproduction are less 388 

clear compared with IUP effects in laboratory rodents. 389 
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BOX  718 

BOX 1. Causal mechanisms of how correlations between litter sex composition and 719 

subsequent reproductive performance of females can arise. The sign of each arrow represents 720 

the sign of the causal relationship associated.   721 

 722 

Our understanding of how litter sex composition around the time of birth influences 723 

reproductive performance later in life is limited. In females, these effects are commonly 724 

attributed to testosterone-induced masculinisation in utero but there are plausible alternative 725 

explanations. 726 

The first alternative involves nutritional competition between males and females 727 

during gestation, particularly in sexually dimorphic species. Sex differences in energy intake 728 

and growth of juveniles are common in sexually size-dimorphic species (Clutton-Brock, 1991). 729 

Sexually size dimorphism in most mammals is biased in favour of males and this difference can 730 

be evident soon after conception (Bukowski et al., 2007). Males, growing faster, may be more 731 

successful in the competition for nutrients during prenatal development. Thus, females from 732 



male-biased litters may be nutritionally disadvantaged compared with females from female-733 

biased litters. This can lead to long-term consequences. For instance, variation in prenatal 734 

growth can influence subsequent growth and age-specific size which, in turn, influence 735 

reproductive performance (Lummaa & Clutton-Brock, 2002).    736 

Sex-specific nutritional disadvantage after birth may also contribute to the differences 737 

in reproductive performance of individuals in relation to their co-twin sex or litter sex ratio. 738 

This disadvantage may be a consequence of sex differences in competitive ability or of 739 

contrasts in parental strategy, or of a combination of both. Lactation, in particular, may be an 740 

important mechanism underlying such effects. In mammals, in general the energetic costs of 741 

gestation are small in comparison with those of lactation (Clutton-Brock, 1991). If daughters 742 

are less favoured than sons by mothers, through milk quantity (Landete-Castillejos et al., 743 

2005), being reared with more males may be detrimental to females. Under this scenario, 744 

prenatal litter sex composition is not the causal factor, it simply determines postnatal litter 745 

sex composition. 746 

Post-natal litter sex composition may also influence reproductive performance via 747 

competition or cooperation between same-sex siblings for mates. In African lions (Panthera 748 

leo), kin-related males form coalitions to take over and then defend a group of females (Packer 749 

et al., 1991). Conversely, mate competition between same‐sex siblings limits the reproductive 750 

performance of individuals born in same-sex litters compared to those born in mixed‐sex 751 

litters (McCoy et al., 2019). The relationship between the proportion of males in the litter and 752 

reproductive performance of females is expected to be positive under the hypothesis of 753 

reproductive competition, but negative under the hypothesis of testosterone-induced 754 

masculinisation, nutritional competition or reproductive cooperation.   755 



Figure legend 756 

 757 

Figure 1. Birth year range for human studies in which relationships between co-twin sex and 758 

reproductive performance have been examined. Cohorts were reported for each study listed 759 

in table 1, except two (Loehlin & Martin 1998, Wysak & White 1969).    760 
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Table legends 764 

Table 1. Summary of the 44 studies testing whether litter sex composition influenced 765 

subsequent reproductive performance of females (F) and males (M). For each species and sex, 766 

we reported the number of positive, negative or null (i.e. p-value > 0.05) relationships 767 

between increased presence of males in the litter and subsequent reproductive performance. 768 

The detailed data set, with one row per relationship, is provided in supplementary material 769 

(Table S1). The superscript numbers indicate the following used taxonomic groups: 1, human; 770 

2, non-human primates; 3, ovine and caprine; 4, porcine; 5, rodents; 6, reptile. 771 

Table S1. Studies testing whether litter sex composition influenced subsequent reproductive 772 

performance of females (F) and males (M). We report whether the relationship between 773 

increased presence of males in the litter and subsequent reproductive performance was 774 

positive (+), negative (-) or non-statistically significant (0, i.e. p-value > 0.05). This does not 775 

always match the direction of the correlation between column “D” and “E”. For instance, in 776 

common marmoset, females born with a co-twin male lost more foetuses than females born 777 

with a co-twin female (Rutherford et al., 2014), so the reported effect (column “F”) is negative. 778 

779 
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