
HAL Id: hal-04685537
https://hal.science/hal-04685537v1

Submitted on 3 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improving the Detection of Hardware Trojan Horses in
Microprocessors via Hamming Codes

Alessandro Palumbo, Luca Cassano, Pedro Reviriego, Marco Ottavi

To cite this version:
Alessandro Palumbo, Luca Cassano, Pedro Reviriego, Marco Ottavi. Improving the Detection of
Hardware Trojan Horses in Microprocessors via Hamming Codes. 2023 IEEE International Symposium
on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), Oct 2023, Juan-Les-Pins,
France. �10.1109/dft59622.2023.10313563�. �hal-04685537�

https://hal.science/hal-04685537v1
https://hal.archives-ouvertes.fr


Improving the Detection of Hardware Trojan Horses
in Microprocessors via Hamming Codes

Alessandro Palumboa, Luca Cassanoa, Pedro Reviriegob, Marco Ottavic
aPolitecnico di Milano, Italy, bUniversidad Politécnica de Madrid, Spain,

cUniversity of Rome Tor Vergata, Italy and University of Twente, The Netherlands
a{name.surname}@polimi.it, bpedro.reviriego@upm.es, cottavi@ing.uniroma2.it

Abstract—Software-exploitable Hardware Trojan Horses
(HTHs) can be inserted into commercial microprocessors
allowing the attackers to run their own software or to gain
unauthorized privileges. As a consequence, HTHs should
nowadays be considered a serious threat not only by the
academy but also by the industry. In this paper we present
a hardware security checker for the detection of the runtime
activation of HTHs. In particular, we aim at detecting HTHs
that alter the expected execution flow by launching a malicious
program. To achieve this goal the proposed checker is connected
between the microprocessor and the main memory and observes
the fetching activity. We integrated the proposed checker within
a case study based on a RISC-V microprocessor running a set
of software benchmarks. The experiment demonstrated that our
checker is able to detect 100% of possible HTHs activations
with no false alarms. We measured an area overhead of less
than 1% w.r.t. LUTs and FFs with 8.5 up to 9.5 BRAM blocks
required, a 2.51% power consumption increase, and no working
frequency reduction.

Index Terms—Hamming Codes, Hardware Security, Hardware
Trojan Horses, Microprocessor-based System, RISC-V

I. INTRODUCTION AND RELATED WORK

The continuous seek for low production cost and short time-
to-market has shifted the design and fabrication of modern
integrated circuits (ICs) to a globalized process [1]. The
design of sub-components/systems is outsourced, third-party
intellectual property cores (3PIPs) are purchased and the final
chip is fabricated by external foundries [2]. This brought a
huge design time and cost reduction but also a significant loss
of trust in the delivered ICs [3]. Ensuring the trustworthiness
of all the entities involved in such a globalized supply chain
has become unfeasible; as a consequence, several threats may
affect the system. ICs may be overproduced and counterfeited,
licenses may be violated and abused and Hardware Trojan
Horses (HTHs) may be inserted.

HTHs are very hard-to-detect modifications of a system that
are meant to stay hidden most of the time and to alter the
nominal behavior of the system or to steal sensitive infor-
mation in specific (usually rare) conditions [4]. HTHs may
be inserted by malicious 3PIPs providers, employees or CAD
tools, and mask providers, and silicon foundries. HTHs have
always been considered more an academic issue because of the
difficulty of insertion in real-world systems that led to reduced
advantages for the attacker. Recently, it has been demonstrated
that complex software-exploitable HTHs can be inserted in

real-world commercial microprocessors. Such HTHs allow the
attacker to execute his/her own malicious software, to modify
the running software, or to acquire root privileges [5]–[7].
In 2018, the Rosenbridge backdoor, has been found in a
commercial Via Technologies C3 processor [8]. A specific
sequence of instructions allowed the attacker to activate the
Rosenbridge backdoor and enter the supervisor mode1.

Several techniques for the design-time detection of HTHs
have been proposed. The idea is to analyse the system,
generally at the circuit-level, before its deployment by exploit-
ing logic testing [9], formal property verification [10], side-
channel analysis [11], structural and behavioral analysis [12],
[13] and machine learning [14]. Nevertheless, it has to be
considered that HTHs are stealthy by nature, therefore it is
extremely hard to detect them before deployment. On the other
hand the Design-for-Trust paradigm raised: there is a growing
interest in system-level techniques that allow to obtain a trusted
system built from untrusted components [15], [16]. Similarly,
HTHs may be defeated by enabling a trusted software execu-
tion on an untrusted microprocessor-based system [17], [18].

In this paper, we propose a system-level solution for the
runtime detection of HTHs in microprocessor-based systems
and forcing the microprocessor to run a malicious program.
The proposed solution relies on the integration of a hardware
security checker between the microprocessor under protection
and the main memory in order to monitor the fetching activity.
The security checker is programmed during the installation of
the program in the main memory: information about the in-
structions that compose the program and the memory locations
in which the program is installed are used by the checker
during this phase. At runtime, the checker is in charge of
monitoring the fetching activity to check whether the right
instructions are loaded from the right memory addresses. By
doing so, the security checker detects the runtime activation of
HTHs infesting the microprocessor logic, the main memory,
or the bus. The proposed solution is completely transparent
w.r.t. the nominal functioning of the microprocessor. Indeed,
the security checker works without neither interrupting or
interfering with the execution of the program under protection.

We integrated the security checker in a case study system
based on a RISC-V microprocessor implemented on an FPGA

1Via Technologies officially commented that this behavior was due to an
undocumented feature meant for debugging.979-8-3503-1500-4/23/$31.00 ©2023 IEEE

20
23

 IE
EE

 In
te

rn
at

io
na

l S
ym

po
si

um
 o

n 
D

ef
ec

t a
nd

 F
au

lt 
To

le
ra

nc
e 

in
 V

LS
I a

nd
 N

an
ot

ec
hn

ol
og

y 
Sy

st
em

s (
D

FT
) |

 9
79

-8
-3

50
3-

15
00

-4
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
D

FT
59

62
2.

20
23

.1
03

13
56

3

Authorized licensed use limited to: Universita degli Studi di Roma Tor Vergata. Downloaded on September 03,2024 at 12:59:01 UTC from IEEE Xplore.  Restrictions apply. 



and running a set of software benchmarks. The experiment
demonstrated that our checker is able to detect 100% of
possible HTHs activations with no false alarms. We measured
an area overhead of less than 1% w.r.t. LUTs and FFs with 8.5
up to 9.5 BRAM blocks required, a 2.51% power consumption
increase, and no working frequency reduction.

The works more closely related to ours are the system-
level design-for-trust methodologies proposed in [17]–[20].
Unlike in our proposal, in [17], [18] the microprocessor
is assumed to be untrusted and the memory to be trusted.
In [17] the presented checker observes whether the opcodes
and associated control signals are legal or not and whether the
number of clock cycles required to complete the execution of
an instruction is compliant with the expected one. In [18] the
security checker keeps track of the liveness of the micropro-
cessor and of the privilege mode in which it is running. On the
other hand, none of the previous solutions target those HTHs
that make the CPU run normal instructions without changing
the privilege mode. More in details, none of these works is
able to detect those cases where the microprocessor is forced
to execute an unexpected program or where the microprocessor
is forced to access illegal memory locations (as we do in the
current paper). The works that we consider the most similar
to the current proposal are the ones in [19], [20]: in these
papers, a checker to detect the activation of HTHs infesting
the microprocessor, the bus and the main memory have been
proposed. The solution in [19] introduces a large area overhead
still suffering from a not-zero false negative rate. The solution
in [20] overperforms the previous one from the overhead point
of view but it leaves room for attacks where the accessed
address is not altered but the fetched instruction (either opcode
or operands) is maliciously modified. The solution proposed in
the current paper borrows the principles from the previous two
works and adds Hamming codes to overcome the previously
mentioned security limitations while requiring limited area and
power overhead (and no working frequency reduction).

This paper is organized as follows: Section II presents the
HTHs models targeted by our proposal; Section III presents
the proposed HTH detection methodology and the details of
the security checker on which it relies; Section IV highlights
results from a case study application, while Section V dis-
cusses the security analysis; Section VI concludes the paper.

II. HTH THREAT MODEL

We consider change-functionality HTHs that force the CPU
to execute an unwanted program. An HTH may reside in the
microprocessor and may change the content of the program
counter to force the fetch unit to access instruction memory
locations where a malicious program has been loaded. Simi-
larly, HTHs may infest the instruction memory or the system
bus altering the pointed instruction memory locations, thus
again allowing to launch a malicious program.

Referring to the classical classification of HTHs [4], we
do not make any assumption on the triggering mechanism
of the infesting HTH, i.e., our proposal takes into account
both triggered and always-on HTHs. The considered HTHs

Figure 1: The proposed protection architecture

are supposed to be inserted by a malicious IP provider;
on the other hand, we assume that the design team of the
company and the employed foundry are trusted, therefore, we
the introduced security checker is assumed to be trusted. Since
the attacker is the IP provider, we assume that, when injecting
the HTH, the attacker knows all the details of the hardware
platform he/she is attacking. To summarize, the possible attack
scenarios considered by our proposal are:

• A HTH in the microprocessor that alters the content of
the program counter;

• A HTH in the bus or in the main memory that modifies
the memory address required for instruction fetch;

• A HTH in the bus or in the main memory that modifies
the instruction fetched from the right memory address;

Finally, it is worth mentioning that denial-of-service and
information-stealing HTHs fall outside the scope of this paper.

III. THE PROPOSED SECURITY SOLUTION

Our proposal relies on adding a Security Checker (SC)
between the microprocessor and the instruction memory (as
depicted in Figure 1) to detect HTHs that try to force the
execution of malicious programs. The SC is first configured
during the installation of the program(s) that the system will
execute; then, during program(s) execution at runtime, the
SC monitors the fetching activity to detect and signal the
activation of an HTH2.

While each program is loaded in the instruction memory, the
SC works in configure mode: the SC is configured with the
instructions that compose the program and with the memory
addresses where the instructions are stored. Then, during
program(s) execution at runtime, the SC switches into query
mode: after every instruction has been fetched the SC checks
whether the accessed address and the fetched instruction are
compliant based on the previously configured information.
More in details, the SC checks whether the accessed address
belongs to the memory space of the program under execution
and whether the fetched instruction is the one that was stored
in that memory address during program installation.

A. The Architecture of the Security Checker
The architecture of the Security Checker (SC) is drawn in

Figure 2: it takes as input a memory address, an instruction,

2The management of the warning, e.g., a non-maskable interrupt, by the
overlying operating system does not fall into the scope of this work.

Authorized licensed use limited to: Universita degli Studi di Roma Tor Vergata. Downloaded on September 03,2024 at 12:59:01 UTC from IEEE Xplore.  Restrictions apply. 



Figure 2: The structure of the proposed Security Checker

and the CONFIGURE/QUERY signal (that specifies whether
the SC is working in configure or in query mode) and produces
as output a warning signal. When the SC works in configure
mode, both the address and the instruction come from the user
space, i.e., a user is installing a program in the memory of the
system. When the SC works in query mode, the address comes
from the microprocessor that is fetching while the instruction
comes from the main memory.

The input address and instruction are combined together (in
a way that will be presented in the next subsection) and then
used, both when configuring and when querying the SC, to
address a number of bit arrays within the SC. We call k (the
fragmentation factor) the number of bit arrays in the SC. The
content of specific entries of these k bit arrays is set to 1 at
configuration time to keep track of all the address-instruction
pairs that are legal for the program under installation. At query
time, the content of these bit arrays is read to check whether
the current address-instruction pair is legal or not.

Moreover, at configuration time a single error correction
Hamming sequence is calculated for every installed instruc-
tion. These Hamming bits are then stored in small an ad-hoc
Hamming memory (every instruction of the program has a
dedicated address in the Hamming memory). At query time,
the Hamming bits of the fetched instruction are calculated
and compared with the Hamming bits that have been stored at
configuration time in the Hamming memory address associated
with the address from which the microprocessor fetched the
current instruction. By adding these Hamming bits we solve
the problem that the solution in [20] had left unsolved, i.e., the
current solution is also able to detect those HTHs that do not
modify the accessed memory address (which will therefore be
a legal address) but that directly tamper the fetched instruction.

When the SC is in query mode a warning is raised if at
least one of the accessed bit array locations is set to 0 or the
calculated Hamming code mismatches with the stored one.

B. Configuration and Usage of the Security Checker

The SC takes in input an address and an instruction; such
two inputs are combined within the SC and then fragmented

into a number of data chunks (DATA0 up to DATAk−1 in
Figure 2). More in details, if we call n the size in bits
of addresses and instructions in the considered architecture,
DATA0 is a data chunk composed of the first n/k bits of
the address paired with the first n/k bits of the instruction.
Similarly, DATA1 is a data chunk composed of the second
n/k bits of the address paired with the second n/k bits of the
instruction and so on. These groups of bits are then decoded
and used as addresses to access a number of bit arrays, one for
each data chunk. At the same time, the SC contains a memory,
dubbed the Hamming memory, meant to store the Hamming
code of each of the t instructions of the previously installed
program.

When the SC is in configure mode, both the address a and
the instruction i come from the user space that is installing
the program. The values of a and i are combined and the
k data chunks are produced: such chunks are then used as
memory addresses to access the corresponding bit arrays. More
in details, a 1 is written in each bit array location addressed
by the corresponding chunk to teach to the SC that the tuple
< a, i > is legal for the program. Moreover, the Hamming
code associated with i is calculated and it is stored at address
a in the Hamming memory within the SC.

Figure 3 shows an example configuration procedure for the
first two instructions of the program. It is worth mentioning
that for different address-instruction pairs one or more data
chunks may point to the same location of the corresponding bit
array (the so called collision). This is the case of the last data
chunk in the example that points to the last bit of the bit array
in both Subfigures 3a and 3b. Moreover, as it can be seen in the
bottom of Subfigures 3a and 3b, for every instruction installed
in the main memory, the Hamming code is calculated and
stored in the corresponding address of the Hamming memory.

When the SC is in query mode, the address comes from
the microprocessor and, after reading the main memory, the
instruction comes from the main memory itself. The k data
chunks are generated exactly as it has been previously de-
scribed but in this phase, the content of the bit arrays is read
(while it is written in configure mode). As soon as at least one
of the values read from the bit arrays is 0, the SC raises an
alarm. Moreover, in this phase, the SC calculates the Hamming
code of the instruction coming from the main memory and
compares it with the Hamming code stored in the Hamming
memory at the address coming from the microprocessor. As
soon as this comparison produces a mismatch, the SC raises
an alarm. Figure 4 depicts an example query procedure for the
very first instruction of the program.

IV. EXPERIMENTAL RESULTS

A. Experimental setup

In our experimental campaign, we considered the
RI5CY [21] of the PULPINO architecture which is an ultra-
low-power 32-bit processing platform mainly targeted to the
Internet of Things applications [22].

When synthesized on a Xilinx Artix XC7A35T, RI5CY
requires 15314 LUTs and 9881 FFs and it works at about

Authorized licensed use limited to: Universita degli Studi di Roma Tor Vergata. Downloaded on September 03,2024 at 12:59:01 UTC from IEEE Xplore.  Restrictions apply. 



(a) Writing the first program instruction (b) Writing the second program instruction

Figure 3: Configuring the Security Checker

Figure 4: Querying the Security Checker

50MHz with a total power consumption of 159mW (17mW
dynamic power consumption on average), as reported in [23].
Finally, we considered the benchmark programs reported in
Table I together with the number of assembly instructions.

We first analysed how the choice of the value of the frag-
mentation factor k affected accuracy and overhead. We started
with k = 1, thus requiring a 264 bits memory, which is of
course totally unfeasible. For the same reason, also a checker
with a k = 2 (with two 232 bits memories) has been discarded,
being this choice unfeasible for an embedded system. On
the other hand, SC configurations having k = 8 or greater
(eight 28 bits, sixteen 24 bits memories, and so on) achieved
extremely poor accuracy and, for this reason, have also been
discarded. Therefore, the only feasible checker configuration
that provides acceptable accuracy is the one having k = 4 with
four 216 bits memories: the results reported in the following of
this section always refer to this SC configuration. After having

Table I: The considered benchmark programs

Benchmark #Instructions
Binary Search (BinS) 215
Matrix Multiplication (MM) 216
Bubble Sort (BubS) 268
Quick Sort (QS) 1023
Sudoku Solver (SS) 475
Motion Detection (MD) 934
Coremark (CM) 1288
Median (MED) 1026
Towers (TW) 350
RSort (RS) 4466

identified the target configuration, we integrated the SC in the
previously described case study processing architecture.

As a first experiment, we assessed the effectiveness of the
proposed checker in detecting the activation of HTHs and,
at the same time, not in raising false alarms when no HTH
is activated. We refer to false negatives (FNs) as those cases
where the HTH activated but the checker did not detect it
and to false positives (FPs) as those cases where no HTH
activated but the checker raised a false alarm. More in details,
we wanted to analyse the capability of our checker in detecting
both those HTHs that modify the accessed memory address but
also those HTHs that directly tamper the fetched instruction
after fetching from the expected memory address. In particular,
this last HTH category was the one that limited the accuracy
of the proposal in [20]

We first emulated the activation of HTHs by modifying at a
random time the instruction memory address from which the
microprocessor fetches. Therefore, we emulated HTH able to
hijack the execution flow towards a new program. In particular,
we forced the selected memory address to be outside the
memory space of the program under execution. We simulated
10,000 randomly generated HTH activation cases and we
measured the FN rate as the number of runs in which the

Authorized licensed use limited to: Universita degli Studi di Roma Tor Vergata. Downloaded on September 03,2024 at 12:59:01 UTC from IEEE Xplore.  Restrictions apply. 



Table II: FP and FN rates when the HTH modifies the accessed
instruction memory location

Bench. Proposed solution Solution in [20] Solution in [19]
FP FN FP FN FP FN

BinS 0% 0% 0% 0% 0% 0.523%
MM 0% 0% 0% 0% 0% 0.520%
BubS 0% 0% 0% 0% 0% 0.572%
QS 0% 0% 0% 0% 0% 0.607%
SS 0% 0% 0% 0% 0% 0.249%
MD 0% 0% 0% 0% 0% 0.912%
CM 0% 0% 0% 0% - -
MED 0% 0% 0% 0% - -
TW 0% 0% 0% 0% - -
RS 0% 0% 0% 0% - -
AVG 0% 0% 0% 0% 0% 0.663%

checker did not raise an alarm over the total number of runs.
Similarly, we simulated 10,000 runs in which no HTH was
activated and we measured the FP rate as the number of runs
in which the checker raised an alarm over the total number
of runs. Results from this experiment are reported in Table II,
where we compare the current solution with the ones in [20]
and in [19] (although the solution in [19] could not be applied
to all benchmarks). As a first note, our proposal (as for the
one in [20]) always achieves both 0% FP and FN rates; on the
other hand, the proposal in [19] (which is based on Bloom
filters) guarantees 0% FP rate but a not null FN rate.

We then emulated the activation of HTHs by modifying at a
random time the fetched instruction itself after the micropro-
cessor fetched from the expected memory location. In this way,
we emulated HTHs that do not hijack the execution flow but
that directly push malicious instructions in the microprocessor.
We ran 10,000 times each benchmark program and in each run
we emulated the activation of this kind of HTH by leaving
unaltered the requested instruction memory address and by
substituting the fetched instruction with a random instruction
after having accessed the instruction memory itself. Results
from this analysis are reported in Table III where we also
compare against the solution proposed in [20]. The proposed
checker never raises false alarms (as for the checker proposed
in [20]); on the other hand, when considering not detected
HTH activations, the current proposal achieves only a 0.15%
average FN rate (with several benchmarks showing 0% FN
rate) while in the same cases, the proposal in [20] achieves a
much higher 2.29% average FN rate, e.g., about 7% FN rate
for Towers, more than 5% for Coremark.

Finally, we evaluated the overhead introduced by the pro-
posed checker in terms of used resources, working frequency
reduction, and power consumption increase when targeting an
FPGA implementation. Table IV reports the number of LUTs
and FFs and the amount of BRAM blocks required by our
proposal and by the proposals in [20] and in [19] as well
as the maximum working frequency that would be imposed
by the presence of the checkers in the system (again, the
solution in [19] could not be applied to all benchmarks). First
of all, it may be noticed that the overhead introduced by the
proposed checker is independent of the executed program,

Table III: FP and FN rates when the HTH modifies the fetched
instruction

Bench. Proposed solution Solution in [20]
FP FN FP FN

BinS 0.00% 0.00% 0.00% 2.25%
MM 0.00% 0.34% 0.00% 0.40%
BubS 0.00% 0.50% 0.00% 3.01%
QS 0.00% 0.08% 0.00% 3.91%
SS 0.00% 0.00% 0.00% 0.72%
MD 0.00% 0.00% 0.00% 2.83%
CM 0.00% 0.11% 0.00% 5.67%
MED 0.00% 0.18% 0.00% 2.60%
TW 0.00% 0.21% 0.00% 7.34%
RS 0.00% 0.05% 0.00% 3.34%
AVG 0.00% 0.15% 0.00% 2.29%

while when considering the checker proposed in [19], the
larger the program, the larger the checker itself. It is also
worth noting that while the overhead in terms of additional
FFs is very similar between the two solutions (still lower in
the current one), the overhead in terms of additional LUTs is
negligible in our solution while it reaches about 9% in [19].
On the other hand, our solution requires much more BRAMs
than the one in [19]. If we then compare the current solution
with the one in [20], we can see that the introduced area
overhead is practically the same. On the other hand, the
current proposal brings the advantage highlighted by Table III.
If we look at the working frequency overhead introduced
by the considered security solutions we can see that none
of them has an impact since the considered microprocessor
works at 50 MHz. Finally, concerning the power consumption
overhead, the considered microprocessor protected with the
proposed checker has a total power consumption of 163mW,
thus we introduce a 2.51% overhead w.r.t. the 159mW power
consumption of the unprotected microprocessor, which we
believe is totally acceptable. The power consumption of the
same processor protected with the checker in [20] is about
164mW while no power consumption was reported in [19].

V. SECURITY ANALYSIS

The presented experimental results demonstrate that the
proposed security checker allows to detect 100% of the
runtime activations of HTHs that try to force the CPU to
execute malicious programs installed in instruction memory
locations outside the memory space of the running program
as well as more than 99% HTHs that try to force the CPU to
execute malicious programs by directly tampering the fetched
instructions. Furthermore, the proposed checker never incurs
in false alarms. It is worth mentioning that, as it has already
been discussed, the effectiveness of the proposed solution is
independent of the triggering mechanism of the HTH, i.e.,
combinationally/sequentially triggered, externally activated,
time-bombs and always-on, and of the design stage during
which the HTH has been inserted.

The proposed solution could be defeated by denial-of-
service HTHs that modify the execution flow of the legal
program. We identified two possible scenarios: i) HTHs that
halt the system by maliciously making the CPU fetch always

Authorized licensed use limited to: Universita degli Studi di Roma Tor Vergata. Downloaded on September 03,2024 at 12:59:01 UTC from IEEE Xplore.  Restrictions apply. 



Table IV: Resource occupation and working frequency of our proposal and of the one in [19]

Bench. Proposed solution Solution in [20] Solution in [19]
#LUTs #FFs #BRAM F. (MHz) #LUTs #FFs #BRAM F. (MHz) #LUTs #FFs BRAM F. (MHz)

BinS 82 (0.53%) 31 (0.31%) 8.5 275 MHz 75 (0.49%) 31 (0.31%) 8 275 MHz 880 (5.43%) 84 (0.84%) 1 112 MHz
MM 82 (0.53%) 31 (0.31%) 8.5 275 MHz 75 (0.49%) 31 (0.31%) 8 275 MHz 880 (5.43%) 84 (0.84%) 1 112 MHz
BubS 82 (0.53%) 31 (0.31%) 8.5 275 MHz 75 (0.49%) 31 (0.31%) 8 275 MHz 880 (5.43%) 84 (0.84%) 1 112 MHz
QS 82 (0.53%) 31 (0.31%) 8.5 275 MHz 75 (0.49%) 31 (0.31%) 8 275 MHz 880 (5.43%) 84 (0.84%) 1 112 MHz
SS 82 (0.53%) 31 (0.31%) 8.5 275 MHz 75 (0.49%) 31 (0.31%) 8 275 MHz 1539 (9.13%) 89 (0.89%) 1 106 MHz
MD 82 (0.53%) 31 (0.31%) 8.5 275 MHz 75 (0.49%) 31 (0.31%) 8 275 MHz 1539 (9.13%) 89 (0.89%) 1 106 MHz
CM 82 (0.53%) 31 (0.31%) 8.5 275 MHz 75 (0.49%) 31 (0.31%) 8 275 MHz - - - -
MED 82 (0.53%) 31 (0.31%) 8.5 275 MHz 75 (0.49%) 31 (0.31%) 8 275 MHz - - - -
TW 82 (0.53%) 31 (0.31%) 8.5 275 MHz 75 (0.49%) 31 (0.31%) 8 275 MHz - - - -
RS 82 (0.53%) 31 (0.31%) 9.5 275 MHz 75 (0.49%) 31 (0.31%) 8 275 MHz - - - -

the same legal instruction (or sequence of legal instructions)
from legal memory locations; and ii) HTHs that halt the system
by making it crash by fetching a legal instruction from a
memory locations belonging to the authorized program but
at the wrong time or in the wrong order, e.g., fetching a
jump instruction too early during the execution flow. These
attack conditions (that, as discussed in the threat model fall
outside the scope of our solution) cannot be detected by
the proposed security checker but they can be managed by
providing the system with ad-hoc dimensioned watchdogs.
Further, by exploiting watchdogs that monitor the fetching
activity of the processor, the proposed methodology could
detect denial-of-service HTHs that freeze the CPU. Finally,
HTHs that steal information by sending it through covert side-
channel are still able to defeat the proposed solution.

VI. CONCLUSIONS

We presented a security architecture to protect
microprocessor-based systems against hardware Trojan
horses that try to force the execution of a malicious program.
We integrated our proposal within a system featuring a
RISC-V processor implemented on an FPGA device and
running a set of software benchmarks. Our proposal was able
to detect about 100% of possible HTHs activations with no
false alarms. We measured a LUT and FF overhead of about
1% (with 8.5 up to 9.5 BRAMs required), a 2.51% power
consumption increase and no working frequency reduction.

VII. ACKNOWLEDGMENT

This work has been supported by the ITACA project (grant
no. PDC2022-133888-I00) funded by the Spanish Agencia
Estatal de Investigacion (AEI) 10.13039/501100011033.

REFERENCES

[1] DIGITIMES, “Trends in the global IC design service market.”
http://www.digitimes.com/news/a20120313RS400.html?chid=2.

[2] M. Rostami, F. Koushanfar, J. Rajendran, and R. Karri, “Hardware
security: Threat models and metrics,” in Proc. Int. Conf. Computer-Aided
Design, pp. 819–823, 2013.

[3] Mohammad Tehranipoor and Cliff Wang, Introduction to Hardware
Security and Trust. Springer-Verlag New York, 2012.

[4] M. Tehranipoor and F. Koushanfar, “A survey of hardware trojan
taxonomy and detection,” IEEE Design & Test of Computers, vol. 27,
no. 1, 2010.

[5] Y. Jin, M. Maniatakos, and Y. Makris, “Exposing vulnerabilities of
untrusted computing platforms,” in Proc. Int. Conf. Computer Design,
pp. 131–134, 2012.

[6] N. G. Tsoutsos and M. Maniatakos, “Fabrication attacks: Zero-overhead
malicious modifications enabling modern microprocessor privilege es-
calation,” IEEE Trans. Emerging Topics in Computing, vol. 2, no. 1,
pp. 81–93, 2014.

[7] X. Wang, T. Mal-Sarkar, A. Krishna, S. Narasimhan, and S. Bhunia,
“Software exploitable hardware trojans in embedded processor,” in 2012
IEEE International Symposium on Defect and Fault Tolerance in VLSI
and Nanotechnology Systems (DFT), pp. 55–58, IEEE, 2012.

[8] C. Domas, “Hardware backdoors in x86 cpus.” https://i.blackhat.com/us-
18/Thu-August-9/us-18-Domas-God-Mode-Unlocked-Hardware-
Backdoors-In-x86-CPUs-wp.pdf, 2018.

[9] X. Chuan, Y. Yan, and Y. Zhang, “An efficient triggering method of
hardware Trojan in AES cryptographic circuit,” in Proc. Int. Conf.
Integrated Circuits and Microsystems, pp. 91–95, 2017.

[10] J. Zhang, F. Yuan, L. Wei, Y. Liu, and Q. Xu, “Veritrust: Verification
for hardware trust,” IEEE Trans. Computer-Aided Design of Integrated
Circuits and Systems, vol. 34, no. 7, pp. 1148–1161, 2015.

[11] Y. Liu, Y. Zhao, J. He, A. Liu, and R. Xin, “Scca: Side-channel
correlation analysis for detecting hardware trojan,” in Proc. Int. Conf.
Anti-counterfeiting, Security, and Identification, pp. 196–200, 2017.

[12] H. Salmani and M. Tehranipoor, “Analyzing circuit vulnerability to
hardware trojan insertion at the behavioral level,” in Proc. Int. Symp.
Defect and Fault Tolerance in VLSI and Nanotechnology Systems,
pp. 190–195, 2013.

[13] H. Salmani and M. Tehranipoor, “Layout-aware switching activity local-
ization to enhance hardware trojan detection,” IEEE Trans. Information
Forensics and Security, vol. 7, no. 1, pp. 76–87, 2012.

[14] A. Palumbo, L. Cassano, B. Luzzi, J. A. Hernández, P. Reviriego,
G. Bianchi, and M. Ottavi, “Is your fpga bitstream hardware trojan-
free? machine learning can provide an answer,” Journal of Systems
Architecture, vol. 128, p. 102543, 2022.

[15] D. Šišejković, F. Merchant, R. Leupers, G. Ascheid, and S. Kegreiss,
“Control-lock: Securing processor cores against software-controlled
hardware trojans,” in Proceedings of the 2019 on Great Lakes Sym-
posium on VLSI, GLSVLSI ’19, pp. 27–32, 2019.

[16] A. Basak, S. Bhunia, T. Tkacik, and S. Ray, “Security assurance
for system-on-chip designs with untrusted ips,” IEEE Transactions on
Information Forensics and Security, vol. 12, no. 7, pp. 1515–1528, 2017.

[17] J. Dubeuf, D. Hély, and R. Karri, “Run-time detection of hardware
trojans: The processor protection unit,” in 2013 18th IEEE European
Test Symposium (ETS), pp. 1–6, 2013.

[18] G. Bloom, B. Narahari, and R. Simha, “Os support for detecting trojan
circuit attacks,” in 2009 IEEE International Workshop on Hardware-
Oriented Security and Trust, pp. 100–103, 2009.

[19] A. Bolat, L. Cassano, P. Reviriego, O. Ergin, and M. Ottavi, “A micro-
processor protection architecture against hardware trojans in memories,”
in 2020 15th Design Technology of Integrated Systems in Nanoscale Era
(DTIS), pp. 1–6, 2020.

[20] A. Palumbo, L. Cassano, P. Reviriego, G. Bianchi, and M. Ottavi, “A
lightweight security checking module to protect microprocessors against
hardware trojan horses,” in 2021 IEEE International Symposium on
Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT),
pp. 1–6, 2021.

[21] M. Gautschi, P. D. Schiavone, A. Traber, I. Loi, A. Pullini, D. Rossi,
E. Flamand, F. K. Gürkaynak, and L. Benini, “Near-threshold risc-
v core with dsp extensions for scalable iot endpoint devices,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 25,
pp. 2700–2713, Oct 2017.

[22] A. Traber, F. Zaruba, S. Stucki, A. Pullini, G. Haugou, E. Flamand, F. K.
Gurkaynak, and L. Benini, “Pulpino: A small single-core risc-v soc,” in
3rd RISCV Workshop, 2016.

[23] R. Höller, D. Haselberger, D. Ballek, P. Rössler, M. Krapfenbauer,
and M. Linauer, “Open-source risc-v processor ip cores for fpgas —
overview and evaluation,” in 2019 8th Mediterranean Conference on
Embedded Computing (MECO), pp. 1–6, June 2019.

Authorized licensed use limited to: Universita degli Studi di Roma Tor Vergata. Downloaded on September 03,2024 at 12:59:01 UTC from IEEE Xplore.  Restrictions apply. 


