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Abstract—Localizing multiple synchronous brain current
sources from ElectroEncephaloGraphy (EEG) recordings is a
challenging problem in presurgical evaluation of certain diseases
such as drug resistant epilespy. In this paper, we propose a
novel MUSIC-like (MUltiple SIgnal Classification) EEG source
imaging method, named SOS-MUSIC. The latter minimizes the
MUSIC metric as well as promoting Sparsity Of active Sources
(SOS) to enhance performance. Indeed, by this way SOS-MUSIC
helps to deal with synchronous (i.e. totally correlated) brain
current sources, unlike classical approaches. This is illustrated
through realistic computer simulations in the context of epilepsy
by analyzing two challenging situations (low signal-to-noise ratios
or correlated brain sources).

Index Terms—EEG source imaging, MUSIC, sparsity, syn-
chronous sources.

I. INTRODUCTION

ElectroEncephaloGraphy (EEG) is used to measure the
electric potential differences generated by neuronal activity at
the surface of the head. It can be utilized for the localization
and reconstruction of brain current sources, well-known as
the EEG Source Imaging (ESI) problem [1], [2]. ESI is
increasingly used in the clinic. For instance, performing ESI
of interictal and ictal epileptic activity has become an useful
diagnostic tool in presurgical epilepsy evaluation [3].

Two categories of ESI methods have been developed [4]:
parametric versus non-parametric methods. The first category
approach considers that few isolated dipoles represent the brain
current sources of interest. For non-parametric approaches,
also referred to as distributed sources methods, each brain
current source of interest is characterized by a large number of
dipoles, which are distributed in the brain volume or cortical
surface. In the latter context, ESI requires supplementary
assumptions to solve the underlying ill-posed inverse problem
[5], [6].

One of the most famous non-parametric methods is
the weighted Minimum Norm Estimate (wMNE) based on
Tikhonov regularization [7]. Sparse priors were also used
leading to probabilistic techniques [8] and deterministic ones
such as the well-known Minimum current estimate (MCE)
[9]. Regarding the parametric methods, they can be classified
into three types: dipole fitting approaches [10], beamforming

techniques [11] and subspace methods such as the Multiple
Signal Classification (MUSIC) algorithm [12]. MUSIC-like
techniques compute a noise subspace from the recorded EEG
data, which is orthogonal to the signal subspace spanned by
the leadfield vectors of the brain current sources of interest.
Several variants aiming at improving the performance of the
original MUSIC method have been proposed such as the
Recursive MUSIC (R-MUSIC) algorithm [13], fourth order
MUSIC-like methods (4-MUSIC) [14], and higher order se-
quential MUSIC-like techniques (2q-RapMUSIC and 2q-D-
MUSIC) [15]. However, despite of their great interests, these
methods give a poor performance when trying to localize
synchronous (i.e. totally correlated) brain current sources.

In order to overcome this drawback, in this paper we pro-
pose the SOS-MUSIC method, which minimizes the MUSIC
metric while promoting Sparsity Of the active Sources (SOS).
Due to the use of the L1 norm, the underlying cost function
is non-differentiable. Then, the ISTA proximal algorithm is
implemented to minimize it. The computation of an optimal
stepsize is provided in order to accelerate its convergence.
Finally, we analyse the performance of SOS-MUSIC com-
pared with MUSIC, 4-MUSIC and MCE through computer
simulations in the context of epilepsy.

The formulation of the ESI problem and some assumptions
are given in Section II. Then, the SOS-MUSIC method is
presented in Section III. Performance results obtained from
computer simulations are provided in Section IV. Eventually
a conclusion and some perspectives are given in Section V.

II. ASSUMPTIONS AND PROBLEM FORMULATION

We assume that T independent realizations of an N -
dimensional random vector x are observed, leading to the
recorded EEG data matrix X of size (N × T ). By solving
the forward problem [16], we have:

x = G(Θ)s =

P∑
p=1

g(θp) sp (1)

where s is a P -dimensional random vector, which realizations
are the time courses of P current dipoles lining the brain
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surface. The (N×P ) matrix G(Θ) = [g(θ1), · · · , g(θP )] is the
so-called leadfield matrix, which characterizes the propagation
of the cortical electric field towards the scalp electrodes. Given
a head model and a source space, G(Θ) can be computed
by solving numerically Poisson’s equation [16] by means of
the Boundary Element Method (BEM) [17]. Without loss of
generality, the N -dimensional random vector x is assumed to
be zero mean. By assuming that few isolated dipoles represent
the brain current sources of interest, the model (1) can be
rewritten as follows:

x =

P (e)∑
p=1

g(θσ(p)) sσ(p) +

P∑
p=P (e)+1

g(θσ(p)) sσ(p) (2)

where P (e) and σ denote the number of epileptic brain
current sources and a permutation of the set {1, 2, · · · , P},
respectively. The permutation is used to reorder epileptic
sources in the first P (e) indices. In practice, the P −P (e) non-
epileptic brain current sources, named background sources, are
considered as a noise, hence the following model:

x = G(Θ(e)) s(e) + n (3)

where G(Θ(e)) = [g(θσ(1)), · · · , g(θσ(P (e)))], s(e) =

[sσ(1), · · · , sσ(P (e))] and n stand for the (N × P (e)) full
column rank static mixing matrix, the P (e)-dimensional ran-
dom vector of the epileptic sources and the N -dimensional
background noise random vector statistically independent of
the epileptic sources, respectively. For the sake of convenience,
the matrices G(Θ) and G(Θ(e)) will be denoted by G and
G(e), respectively, in the sequel.

III. THE SOS-MUSIC METHOD

This section recalls the principle of MUSIC which requires
that the number P (e) of epileptic sources is strictly lower
than the number N of electrodes. In practice, this number of
targeted sources is determined using model selection informed
by theorical criteria. Wax and Kailath were the first to address
this problem by minimizing the AIC and MDL criteria [18].
Next the SOS-MUSIC method is presented in detail.

A. The MUSIC metric

MUSIC, as all the subspace approaches, consists in ex-
ploiting the orthogonality between a noise subspace En of
dimension N − P (e) derived from some statistics of the data
and the P (e)-dimensional signal subspace Es = span(G(e))
spanned by the column vectors of G(e). As a consequence,
the Euclidean inner product of each column vector of G(e)

and any vector of En is equal to zero. Thus the following
MUSIC metric can be easily derived by i) computing the
Euclidean inner product of one leadfield vector g of G and
N −P (e) basis vectors em of En, ii) summing the squares of
these N −P (e) Euclidean inner products and iii) normalizing
the latter sum:

Υ(g) =

∑N−P (e)

m=1 (⟨g, em⟩)2∑P (e)

i=1 (gi)
2

=
||gTEn||22
||g||22

=
gTEnE

T

n g

gTg

(4)

with En = [e1, · · · , eN−P (e) ]. In practice, the basis vectors
em of En = span(En) are computed as the eigenvectors
associated with the N − P (e) lowest eigenvalues of the
covariance matrix Rx of x. The leadfield vectors of the P (e)

epileptic sources are thus identified by scanning each column
vector g of the leadfield matrix G and by keeping those which
correspond to global minimizers of Υ (4).

B. The SOS-MUSIC approach

In this section, we present the SOS-MUSIC method based
on i) the MUSIC metric defined in (4) and ii) a sparsity
constraint on active sources, which avoids the time-consuming
scanning procedure of MUSIC and allows for an efficient
localization of synchronous epileptic sources.

As explained above, function Υ (4) has at least P (e) global
minimizers given by the leadfield vectors of the P (e) epilep-
tic sources. But more generally, since the signal subspace
Es = span(G(e)) and the noise subspace En are orthogonal
complements of RN , the nonnegative MUSIC metric Υ is zero
if and only if its argument is a linear combination z(e) ∈ RN

of column vectors of matrix G(e). It is noteworthy that such a
vector z(e) can be decomposed as Gv(e) where v(e) ∈ RP is
a sparse vector whose non-zero components select and weight
the column vectors of G corresponding to column vectors
of G(e). Then, finding such a P (e)-sparse vector v(e), will
allow us to find the leadfield vectors of the P (e) epileptic
sources. Consequently, the ESI problem can be refmormulated
as the following global minimization over the set of P (e)-
sparse vectors:

min
v∈RP

Υ(Gv) + λ||v||1 (5)

An appropriate selection of the penalty parameter λ will
enforce the P (e)-sparsity of the solution. For solving (5),
we decided to use the Iterative Soft Thresholding Algorithm
(ISTA) [19]. This efficient optimization algorithm allows for
the minimization of non-differentiable cost functions involving
the L1 norm, especially for solving large-scale problems.
Using ISTA, the update rule of v is given by:

v(k+1) = Sλt(k)(v(k) − t(k)∇Υ(Gv(k))) (6)

where t(k) is an appropriate stepsize and τα : RD → R is the
shrinkage operator defined by Sα(v)i = (|vi| − α)+sgn(vi),
say the proximal operator of the L1 norm. The gradient of
function Υ with respect to v is given by:

∇Υ(Gv) =
2

(vTGTGv)
[(GTEnE

T

nGv)−Υ(Gv)(GTGv)]

(7)
Now we propose to calculate the optimal stepsize t(k),

which minimizes Υ(v(k) − t∇Υ(Gv(k))) with respect to t.
Since the minimum value of Υ is equal to zero, it corresponds
also to the zero of the numerator of Υ. Note that the numerator
of Υ is nonnegative. Then, the zero of the numerator of Υ can
be computed by minimizing the numerator Υ, say by vanishing
the derivative of the numerator of Υ(v(k) − t∇Υ(Gv(k)))
with respect to t. It is noteworthy that the numerator of Υ is a
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Algorithm 1 The SOS-MUSIC algorithm

Input: P (e), tol, IterMax, X ∈ RN×T , G ∈ RN×P (e)

1: Orthogonalization from the singular value decomposition
of G: G̃ = Σ−1U TG and X̃ = Σ−1U TX from G =
UΣV T

2: Computation of R̂x̃ = (1/T )X̃X̃
T

, an estimate of Rx̃

3: Eigenvalue decomposition of R̂x̃

4: Estimation of the noise eigenmatrix En corresponding to
the eigenvectors related to the N−P (e) lowest eigenvalues
of R̂x̃

5: Computation of v(0) using a multi-initialisation procedure
6: for k = 1 : IterMax do
7: Compute the gradient ∇Υ according to eq. (7)
8: Compute t(k+1) according to eq. (8)
9: Compute v(k+1) according to eq. (6)

10: if Stopping criteria ≤ tol then
break

11: end if
12: end for
13: return The indexes of the P (e) largest components of

v(k+1)

second degree polynomial. This yields to the following update
rule of t:

t(k) =
∇Υ(Gv(k))TGTEnE

T

nGv(k)

∇Υ(Gv(k))
T

GEnEnΥν
TG∇Υ(Gv(k))

(8)

In the initial steps of the algorithm, we enhance the matrix
conditioning of G by multiplying it on the left by a matrix de-
rived from its singular value decomposition, thereby improving
the inverse problem resolution (see Algorithm 1). We propose
also to use a multi-initialization to compute the initial vector
v(0), to facilitate the guidance through a global minimum and
to avoid a local minimum due to the non-convexity of the
function Υ. It consists of computing 50 random vectors v(0)

and selecting the one which minimizes the MUSIC metric after
25 iterations. Besides, we stop ISTA either when the number
of iterations exceeds 1000 or when the relative difference of
the measure Υ(Gv) between two successive iterations exhibits
a value below a predefined threshold tol = 10−4. The main
steps of SOS-MUSIC are summarized in Algorithm 1.

IV. RESULTS

In this section, the performance of the SOS-MUSIC algo-
rithm is compared with that of two classical subspace methods,
namely 2-MUSIC [12] and 4-MUSIC [14], and with that
of the MCE technique [9]. Contrarily to 2-MUSIC, the 4-
MUSIC approach does not compute the noise subspace from
the covariance matrix. It derives it from the quadricovariance
matrix, which brings together the fourth order cumulants of
the data [20]. Regarding the MCE algorithm, it is a minimum
norm approach assuming the spatial sparsity of the sources of
interest.

Fig. 1. Localization error in mm for one surface epileptic source

A. Data and performance criteria

The four methods were evaluated on 257 channels EEG data
generated from a realistic model [21], which main features are
briefly summarized below. A three-shell realistic head model
was used including the brain, the skull and the scalp, whose
conductivity are 0.33 Ω−1m−1, 0.0082 Ω−1m−1 and 0.33
Ω−1m−1 respectively. The surfaces were extracted from the
segmentation of the grey-white matter interface from a patient
3D T1-weighted MRI using Brain Visa software [22]. The
source space consists of P = 8000 dipoles corresponding to
the triangles of the cortical surface mesh with orientations
perpendicular to the cortical surface. Each vertex of the mesh
has been associated with an elementary current dipole. Using
this realistic head model, the forward problem was solved
using the Boundary Element Method (BEM) [17] to calculate
the lead field matrix G of size (256 × 8000). The temporal
dynamics of the activity of each dipole, were simulated using
a computational neural mass model developed in our team
for several years [23]. The parameters of this model can
be adjusted to generate either background-like activity or
interictal spikes. Dipoles that do not related to epileptic sources
were attributed background activity with an amplitude that is
adjusted to the amplitude of the epileptic spikes according to
the given Signal-to-Noise Ratio (SNR) value.

All simulations are repeated for 10 Monte Carlo trials with
different spike-like signals, background activities and source
positions. The sources positions vary slightly, within 5mm
of distance around the first source. The data are previously
segmented around the spikes for reducing the noise. We keep
around 300 time samples, by selecting few samples around
all the observable epileptic spikes. The concatenation of these
spike-like segments is given as input to the three MUSIC-like
algorithms. When using these data in the MCE algorithm, the
spike-like segments are averaged: MCE is applied to a specific
time corresponding to the top of the averaged spike.

To evaluate the performance of the algorithms, we computed
the Euclidean distance between the estimate source position
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Fig. 2. CPU time in seconds for one surface epileptic source

Fig. 3. Localization error in mm for one deep epileptic source

(θ̂i), and the true position (θi):

dEuc
θi = ||θ̂i − θi||2 (9)

Moreover, for large scale problems, the computational effi-
ciency of the optimization algorithms used for minimization is
important. Thus, we also used the CPU time as performance
criterion to compare the fourth algorithms. It is noteworthy
that the median of the two previous performance criteria was
computed at the output of the four algorithms through two
different scenarios: i) one epileptic source with a varying
SNR value, and ii) two synchronous (i.e. totally correlated)
epileptic sources for an SNR value of −5 dB.

B. Influence of the SNR value on source localization

Since EEG data is usually noisy, an important issue of
source localization methods is their robustness with respect
to noise. The behaviour of the four algorithms was studied in
the presence of a unique epileptic source P (e) = 1 for an SNR
value ranging from −35 dB to 10 dB. The epileptic source is

Fig. 4. CPU time in seconds for one deep epileptic source

chosen by considering two different depths: a source localized
on the surface of the cortex and a deep source.

Figures 1 and 3 show the Euclidean distance-based error
(3) at the output of the four algorithms as a function of the
SNR, in the case of one surface source (see Fig. 1) and in the
case of one deep source (see Fig. 3). In both cases, it appears
that for SNR values above −5 dB, the localization of the
epileptic source is perfect (dEuc

θi
< 5 mm) for SOS-MUSIC, 2-

MUSIC and 4-MUSIC whereas MCE shows difficulty having
a correct source localization. For SNR values below −10 dB,
SOS-MUSIC appears to give a better location compared to the
three other methods, whatever the considered depth. In other
words, SOS-MUSIC seems to be more robust with respect
to the presence of noise than the three other techniques. For
very low SNR values (below −20 dB), for which the spike-like
activity is completely drowned out by noise, we can see that
all methods fail to localize the epileptic source. As described
above, another way to differentiate the four algorithms is to
compare their CPU times. Figures 2 and 4 display the CPU
time (in seconds) at the ouptut of the four algorithms as a
function of the SNR in the case of a surface source and a deep
source, respectively. The SOS-MUSIC method appears to be at
least two times faster than the MCE technique. Regarding the
classical MUSIC-like methods, they give lower CPU times.

C. Incluence of the signal correlation on source localization

The SOS-MUSIC was designed in order to improve the
source localization of synchronous (i.e. totally correlated
sources), while the classical MUSIC-like methods are known
to not be able to deal with such a practical case. Then, two
synchronous epileptic sources were considered on the cortical
surface (see Fig. 5). We fixed the SNR value to −5 dB.

Table I gives the sum of the two Euclidean distances and
the CPU time computed at the output of the four methods.
It clearly appears that 2-MUSIC, 4-MUSIC et MCE have
difficulty in localizing the two sources, whereas SOS-MUSIC
performs very well. As expected, the classical MUSIC-like
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(a) Frontal wiew of the brain (b) Top wiew of the brain

Fig. 5. Location of the two considered synchronous epileptic sources

methods suffer from the correlation between the two sources.
The SOS-MUSIC is more time-consuming than 2-MUSIC and
4-MUSIC while remaining cheaper than MCE.

TABLE I
LOCALIZATION ERROR AND CPU TIME IN THE PRESENCE OF TWO

SYNCHRONOUS EPILEPTIC SOURCES WITH AN SNR VALUE OF −5 DB

Methods Euclidean distance [mm] CPU Times [s]
2-MUSIC 80.68 1.8
4-MUSIC 71.2 231.7

MCE 72.7 2540
SOS-MUSIC 0 710.7

V. DISCUSSION & CONCLUSION

In this paper, we proposed a novel MUSIC-like algorithm
for brain current source localization, named the SOS-MUSIC
approach. The latter minimizes the second-order MUSIC
metric as well as promoting Sparsity Of the active Sources
to enhance performance. Indeed, by this way SOS-MUSIC
helps to deal with synchronous (i.e. totally correlated) brain
current sources and low signal-to-noise ratios, unlike classical
approaches, as demonstrated through realistic computer sim-
ulations. Although the SOS-MUSIC algorithm is more time-
comsuming than the 2-MUSIC and 4-MUSIC methods, the
results are more accurate. More complex simulation scenarios
and comparisons of our approach with other methods are
required to truly investigate this enhancement.

In this way, the next steps involve validating the developed
algorithm on real EEG data. Following this, future works will
consist in extending the SOS-MUSIC approach based on the
second order MUSIC metric to higher order statistics, making
it more robust with respect to the background noise, which is
assumed Gaussian.
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