
HAL Id: hal-04685483
https://hal.science/hal-04685483v1

Submitted on 3 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Lightweight Security Checking Module to Protect
Microprocessors against Hardware Trojan Horses

Alessandro Palumbo, Luca Cassano, Pedro Reviriego, Giuseppe Bianchi,
Marco Ottavi

To cite this version:
Alessandro Palumbo, Luca Cassano, Pedro Reviriego, Giuseppe Bianchi, Marco Ottavi. A Lightweight
Security Checking Module to Protect Microprocessors against Hardware Trojan Horses. 2021 IEEE
International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems, Oct
2021, Remote, France. �10.1109/dft52944.2021.9568291�. �hal-04685483�

https://hal.science/hal-04685483v1
https://hal.archives-ouvertes.fr

A Lightweight Security Checking Module to Protect
Microprocessors against Hardware Trojan Horses

Alessandro Palumboa, Luca Cassanob, Pedro Reviriegoc, Giuseppe Bianchia, Marco Ottavia
aUniversity of Rome Tor Vergata, Italy, bPolitecnico di Milano, Italy, cUniversidad Carlos III de Madrid, Spain,

a{name.surname}@uniroma2.it, bluca.cassano@polimi.it, crevirieg@it.uc3m.es

Abstract—It has been demonstrated that Software exploitable
Hardware Trojan Horses (HTHs) can be inserted in commercial
CPUs and memories. Such attacks allow malicious users to run
their own software or to gain unauthorized privileges over the
system. As a consequence, HTHs must nowadays be considered
a serious threat not only from academy but also from industry.
In this paper we present a security checking module meant to
be connected between the microprocessor and the instruction
memory in order to monitor the fetching activity with the aim
of detecting the activation of HTHs. In particular, we aim at
detecting those HTHs that alter the expected execution flow
by launching a malicious program. We integrated the proposed
security checking module within a case study system based on a
RISC-V microprocessor implemented on an FPGA and running a
set of software benchmarks. This experiment demonstrated that
our proposal is able to detect 100% of possible HTHs activations
with no false alarms. We measured a LUT overhead of 0.5%
and a FF overhead of 0.3%, with a 2.36% power consumption
increase and no working frequency reduction.

I. INTRODUCTION AND RELATED WORK

The dramatic complexity of modern integrated circuits (ICs)
and the continuous seek for low production cost and short
time-to-market, has led to a globalized design and fabrication
process [1]. More and more often the design of several hard-
ware modules is outsourced, third-party intellectual property
cores (3PIPs) are purchased, masks are also outsourced and
the final chip is fabricated by third party foundries [2]. Such
a globalization allows for a significant reduction of design
cost and time, at the cost of a significant loss of trust in the
delivered ICs [3].

It is all but impossible to ensure the trustworthiness of all
the entities involved in such a globalized supply chain. As a
consequence, the produced system is exposed to a number of
threats, among which overproduction [4], counterfeiting [5],
license violation and abuse [6] and Hardware Trojan Horses
(HTHs) insertion [7]. From a very high-level point of view,
a HTH is a very hard-to-detect modification of a design that
is meant to stay hidden most of the time, while in specific
(usually rare) conditions it alters the nominal behavior of the
system or it steals sensitive information. A produced system
may be infected by HTHs belonging to 3PIPs providers [8],
employees or malicious CAD tools [9] and mask providers
and silicon foundries [10].

In the past, HTHs have been considered an issue more by
academy than by industry because of the difficulty of insertion
in real-world circuits and the limited advantages the attacker

could count on. Nevertheless, in the last years it has been
demonstrated that complex software-exploitable HTHs can be
inserted in real-world commercial microprocessors. Thanks to
this class of more powerful HTHs, the attacker is able to
execute his/her own malicious software, to modify the running
software or to acquire root privileges [11]–[13]. Finally, in
2018, a HTH, called the Rosenbridge backdoor, has been
found in a commercial Via Technologies C3 processor [14].
The Rosenbridge backdoor could be activated via software and
allowed the attacker to enter in supervisor mode.

A number of techniques to detect HTHs before system
deployment have been proposed. They are generally circuit-
level techniques that aim at detecting HTHs at design time
via logic testing [15], formal property verification [16], side-
channel analysis [17], structural and behavioral analysis [18],
[19]. On the other hand, given the extreme stealthy nature of
HTHs and the huge amount of resources available in a modern
integrated circuits among which a HTH can be hidden, it is
extremely hard to detect HTHs before the system has been
deployed. There is therefore a growing interest in system-level
techniques that allow to obtain a trusted system built with
untrusted components [20]–[22]. A similar paradigm has been
proposed in [23], [24] where the focus is on microprocessor-
based systems and the goal is to enable a trusted software
execution on an untrusted CPU. Finally, very recently also
HTHs in memories have been studied [25]. At the same time,
few work has been devoted to design methodologies to protect
a microprocessor from HTHs inserted in memory chip [26].

In this paper we propose a system-level solution for pro-
tecting microprocessor-based systems against HTHs. More in
details, we integrate a security checker between the micro-
processor under protection and the instruction memory. Such
security checker is programmed while installing a program
in the instruction memory of the system. In particular, the
checker stores information about the instructions that compose
the program and the memory locations in which the program
is installed. Then, at runtime, the checker is in charge of
monitoring the fetching activity of the microprocessor to
check whether the right instructions are being loaded and
from the right memory locations. In this way, our checker
is able to detect the runtime activation of HTHs infesting
the microprocessor itself, the instruction memory or the bus
and aiming at forcing the microprocessor to run a malicious
program by fetching unauthorized instructions or by reading
unauthorized memory locations. It is worth mentioning that the978-1-6654-1609-2/21/$31.00 ©2021 IEEE

20
21

 IE
EE

 In
te

rn
at

io
na

l S
ym

po
siu

m
 o

n
De

fe
ct

 a
nd

 F
au

lt
To

le
ra

nc
e

in
 V

LS
I a

nd
 N

an
ot

ec
hn

ol
og

y
Sy

st
em

s (
DF

T)
 |

 9
78

-1
-6

65
4-

16
09

-2
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

 D
O

I:
10

.1
10

9/
DF

T5
29

44
.2

02
1.

95
68

29
1

Authorized licensed use limited to: Universita degli Studi di Roma Tor Vergata. Downloaded on September 03,2024 at 12:55:36 UTC from IEEE Xplore. Restrictions apply.

proposed solution is completely transparent w.r.t. the normal
functioning of the system. Indeed, the runtime monitoring is
performed without any interruption of the code execution.

We integrated the proposed security checking module within
a case study system based on a RISC-V microprocessor
implemented on an FPGA and running a set of software
benchmarks. This experiment demonstrated that our proposal
is able to detect 100% of possible HTHs activations with
no false alarms. We measured a LUT overhead of about
0.5% and a FF overhead of about 0.3%, with a 2.36% power
consumption increase and no working frequency reduction.

The works related to our proposal are the system-level
design-for-trust methodologies proposed in [23], [24], [26].
Unlike in our proposal, in [23], [24] the microprocessor is
assumed to be untrusted and the memory to be trusted. In [23]
the protection unit checks whether the opcode of the executed
instructions and the associated control signals are legal or not
and whether the number of clock cycles employed to execute
an instruction is the expected one. In [24] the protection unit
checks whether the microprocessor is still alive and whether
it is running in the right privilege mode. Both solutions do not
take into account those HTHs that change the functionality of
the system by making the CPU run normal instructions without
changing privilege mode. In other words, none of these works
checks whether the microprocessor is executing an unwanted
software and whether it is accessing illegal memory locations
(as we do in the current paper). Finally, the work we consider
the most similar to our proposal is the one in [26]: in this paper
a checker to detect the activation of HTHs infesting the main
memory has been proposed by the same authors of the current
paper. The solution relied on a Bloom filter thus exposing
a probabilistic behaviour. As it will be demonstrated in the
experimental section, the checker proposed in the current paper
outperforms the one in [26] both in terms of accuracy (w.r.t.
both detection capability and false alarm rate) and overhead.

The remainder of this paper is organized as follows: Sec-
tion II presents the models of HTHs that are targeted by
our proposal; Section III presents the proposed methodology,
discussing the details of the checker on which it relies;
Section IV highlights results from a case study application
of the proposed solution to a RISC-V based system running
a set of benchmark programs, while Section V presents the
security analysis; Section VI concludes the paper.

II. THE CONSIDERED THREAT MODEL

In this work we consider HTHs that aim at changing the
functionality of the system by forcing the CPU to execute
an unwanted program. Therefore, our main target are those
HTHs infesting the fetching unit of the core. Indeed, for
a HTH infesting the fetching unit it would be enough to
force the program counter to point to an instruction memory
location where the malicious program has been loaded. For
the same reason, target HTHs may be those infesting the
instruction memory and the system bus of the system. Indeed,
also these HTHs may alter the pointed instruction memory
location, thus allowing to launch a malicious program. We do

Figure 1: The proposed protection architecture

Figure 2: The structure of the proposed Security Checker

not make any assumption on the triggering mechanism of the
infesting HTH. We assume that, when injecting the HTH at
design- or fabrication-time, the attacker knows all the details
of the hardware platform he/she is attacking. Moreover, we
assume that the attacker has an idea about which operating
system and programs will be executed but, on the other hand,
he/she cannot have all the details about software versions and
implementations. From the HTH insertion point of view, since
the proposed detection methodology works at runtime, it is
able to detect HTHs that have been inserted during any stage of
the design process and by any actors taking part in the design
and supply chain of the system. By summarizing, possible
attack scenarios considered by our solution are:

• A HTH in the microprocessor that alters the content of
the program counter;

• A HTH in the instruction bus that modifies the memory
address required for instruction fetch;

• A HTH in the instruction memory that forces the memory
to access an incorrect location;

Finally, it is worth mentioning that denial-of-service and
information stealing HTHs, on the other hand, fall outside the
scope of this paper.

III. THE PROPOSED SECURITY CHECKER

We propose the architecture depicted in Figure 1 where a
Security Checker (SC) is inserted between the microprocessor
and the instruction memory to protect the system against HTHs
that try to force the execution of malicious programs. More
in details, the SC is configured during the installation of the

Authorized licensed use limited to: Universita degli Studi di Roma Tor Vergata. Downloaded on September 03,2024 at 12:55:36 UTC from IEEE Xplore. Restrictions apply.

(a) Writing the first program instruction (b) Writing the second program instruction

Figure 3: Configuring the Security Checker during program installation into the instruction memory

Figure 4: Querying the Security Checker during program
execution

program(s) that the system will execute, then, at runtime, the
SC monitors the fetching activity of the microprocessor with
the aim of detecting and signalling the activation of a HTH. On
the other hand, the management of the warning, e.g., a non-
maskable interrupt, by the overlying operating system does not
fall into the scope of this work.

During each program installation, i.e., while the program
is loaded in the instruction memory, the proposed security
architecture will work in configure mode. In this working
mode the SC is configured with the instructions that compose
the program and with the instruction memory addresses in
which each instruction is loaded. On the other hand, at
runtime, while the program(s) is/are running, the security
architecture will work in query mode. In this working mode,
after every instruction read from the memory location re-
quired by the microprocessor, and based on the previously
configured information, the SC checks the accessed instruction
memory address and the fetched instruction. In particular,
the SC checks whether the accessed address is legal, i.e., it

belongs to the memory space of the program under execution,
and whether the fetched instruction is exactly the one that
was loaded in that specific memory address during program
installation.

As we will experimentally demonstrate, the proposed SC
module achieves extremely high detection accuracy with a
very limited overhead in terms of area occupation, power
consumption and working frequency reduction.

A. The Security Checker architecture

The architecture of the proposed Security Checker (SC) is
depicted in Figure 2. The SC takes in input a memory address,
an instruction and the CONFIGURE/QUERY signal (that spec-
ifies whether the SC is working in configure or in query mode)
and produces as output a warning. When working in configure
mode, both the address and the instruction come from the user
space that is installing a program in the instruction memory of
the system; on the other hand, when working in query mode,
the address comes from the core while the instruction comes
from the instruction memory. A combination of address and
instruction (that will be presented in the next subsection) is
then used, both when configuring and when querying the SC,
to address a number of bit arrays within the SC. We refer
to k as the number of bit arrays in the SC and we call it the
fragmentation factor. The content of these k bit arrays is set at
configuration time to keep track of all the address-instruction
pairs legal for the program that is going to be installed. At
query time the content of these bit arrays is read to check
whether the current address-instruction pair is legal or not. As
it can be noticed from Figure 2 a warning is raised if at least
one of the accessed bit array locations is set to 0 and if the
SC is working in query mode.

B. The Security Checker configuration and usage

As we previously said, the SC takes in input an address and
an instruction. Such two input data are combined within the
SC and then fragmented into a number of data chunks (DATA0

Authorized licensed use limited to: Universita degli Studi di Roma Tor Vergata. Downloaded on September 03,2024 at 12:55:36 UTC from IEEE Xplore. Restrictions apply.

up to DATAk in Figure 2). In particular, being n the size in
bit of addresses and instructions in the considered architecture,
DATA0 is composed of the first n/k bits of the address paired
with the first n/k bits of the instruction, DATA1 is composed
of the second n/k bits of the address paired with the second
n/k bits of the instruction and so on. The produced bit groups
are then decoded and used to access specific locations of a
number of bit arrays.

When working in configure mode, both the address and
the instruction come from the user space that is installing
the program in the instruction memory of the system. After
pairing the address and the instruction and producing the k
data chunks such chunks are used as memory addresses to
access the corresponding bit arrays. In particular, a 1 is written
in each bit array location addressed by the corresponding
chunk to teach to the SC that the specific address-instruction
pair is legal for the program.

Figure 3 depicts an example configuration procedure for
two consecutive example instructions in a system having 32
bit long addresses and instructions and where the SC has
a fragmentation factor of 4. It is worth observing that for
different address-instruction pairs one or more data chunks
may point to the same location of the corresponding bit array.
This is the case of the first data chunk in the example that
points to the middle bit in both Subfigure 3a and 3b. This
does not represent a problem, i.e., does not lead to false alarms
(as we will experimentally demonstrate in the next section),
as those are triggered when no address-instruction pair in the
program maps to the positions selected.

When working in query mode, the address comes from the
core and, after reading the instruction memory, the address
come from the instruction memory itself. The k data chunks
are generated exactly as previously described but in this phase
the content of the bit arrays is read. As soon as at least one of
the read values is 0, the SC raises an alarm. Figure 4 depicts an
example query procedure for an example address in a system
having 32 bit long addresses and instructions and where the
SC has a fragmentation factor of 4.

IV. EXPERIMENTAL RESULTS

A. Experimental setup

For our experimental campaign we considered the
PULPINO architecture which is an ultra-low-power 32 bit
processing platform mainly targeted to Internet of Things
applications [27]. We considered the RI5CY [28] version of
PULPINO, which is a small 4-stage RISC-V core. When
synthesized on a Xilinx Artix XC7A35T, RI5CY requires
15097 LUTs and 9881 FFs and it works at about 50MHz with
a total power consumption of 127mW (21mW dynamic power
consumption on average), as reported in [29]. Finally, we
considered a set of benchmark programs (reported in Table I
together with the number of assembly instructions) varying
from simple sorting algorithms to the more complex Sudoku
Solver and Motion Detection.

When designing the checker we started with a fragmentation
factor k of 1, that makes the checker require a 264 bits memory,

Table I: The considered benchmark programs

Benchmark #Instructions
Binary Search (BinS) 215
Matrix Multiplication (MM) 216
Bubble Sort (BubS) 268
Quick Sort (QS) 1023
Sudoku Solver (SS) 475
Motion Detection (MD) 934

Table II: FP and FN rates when the HTH modifies the accessed
instruction memory location

Bench. Our proposal Proposal in [26]
FP FN FP FN

BinS 0% 0% 0% 0.523%
MM 0% 0% 0% 0.520%
BubS 0% 0% 0% 0.572%
QS 0% 0% 0% 0.607%
SD 0% 0% 0% 0.249%
MD 0% 0% 0% 0.912%
AVG 0% 0% 0% 0.663%

which is of course totally unfeasible. For the same reason,
also a checker with a k = 2 (that would require two 232

bits memories) can be considered unfeasible for an embedded
system. Solutions having k = 8 or greater (eight 28, sixteen 24

bits memories and so on) achieved extremely poor accuracy
and, for this reason, we do not even report the numbers in the
paper (we will only draw some considerations at the end of
this section). Therefore, the only feasible checker configura-
tion that provides acceptable accuracy (whose results will be
presented in the remainder of this section) is the one having
k = 4, thus requiring four 216 bits memories. After having
identified the target checker configuration, we integrated the
checker in the considered processing architecture as described
in the previous section.

First of all we aimed at assessing the effectiveness of the
proposed checker in detecting the activation of HTHs and
not in raising false alarms when no HTH activated. In the
remainder of this section we will refer as false negatives
(FNs) to those cases where the HTH activated but our checker
did not detect it; similarly, we will refer as false positives
(FPs) to those cases where no HTH activated but our checker
raised a false alarm. We emulated the activation of a HTH
belonging to the previously presented models by modifying at
a random time the instruction memory address from which
the microprocessor fetches an instruction. In particular, in
order to emulate a HTH that makes the microprocessor run
a malicious program, we force the selected memory address
to be outside the memory space of the legal program. We
simulated 10,000 randomly generated HTH activation cases
and we measured the FN rate as the number of runs in which
the checker did not raise an alarm over the total number of
runs. Similarly, we simulated 10,000 runs in which no HTH
activated and we measured the FP rate as the number of runs
in which the checker raised an alarm over the total number
of runs. Results from this experiment are reported in Table II,
where we compare our proposal with the one in [26]. First of

Authorized licensed use limited to: Universita degli Studi di Roma Tor Vergata. Downloaded on September 03,2024 at 12:55:36 UTC from IEEE Xplore. Restrictions apply.

Table III: Resource occupation and working frequency of our proposal and of the one in [26]

Bench. Our proposal Proposal in [26]
#LUTs #FFs BRAM size Freq. (MHz) #LUTs #FFs BRAM size Freq. (MHz)

BinS 75 (0.49%) 31 (0.31%) 208 Kbit 275 MHz 880 (5.83%) 84 (0.85%) 32 KBit 112 MHz
MM 75 (0.49%) 31 (0.31%) 208 Kbit 275 MHz 880 (5.83%) 84 (0.85%) 32 KBit 112 MHz
BubS 75 (0.49%) 31 (0.31%) 208 Kbit 275 MHz 880 (5.83%) 84 (0.85%) 32 KBit 112 MHz
QS 75 (0.49%) 31 (0.31%) 208 Kbit 275 MHz 880 (5.83%) 84 (0.85%) 32 KBit 112 MHz
SS 75 (0.49%) 31 (0.31%) 208 Kbit 275 MHz 1539 (10.19%) 89 (0.90%) 64 KBit 106 MHz
MD 75 (0.49%) 31 (0.31%) 208 Kbit 275 MHz 1539 (10.19%) 89 (0.90%) 64 KBit 106 MHz

all, it is worth mentioning that our proposal always exposes
both 0% FP and FN rates; on the other hand, the proposal
in [26] (which is based on Bloom filters) guarantees 0% FP
rate but a not null (but configurable) FN rate. As a final
effectiveness experiment, we wanted to analyse the scalability
of the proposed solution w.r.t. the size of the program under
execution. To do so, we repeated the same experiment with
a program counting 10,000 instructions (one order magnitude
larger the the previously considered benchmarks). The result
of this experiment has been again 0% FP and 0% FN rates,
thus demonstrating that the chosen checker configuration is
optimal also for larger programs. On the other hand, one
could think that the chosen checker configuration could be
overdimensioned for small programs. Therefore, we repeated
the previous experiment with a program counting only 50
instructions and with a checker having eight 28 bits memories
(k = 8). Under this configuration, the proposed checker
achieved 0% FP and 12.97% FN rates, while the checker with
four 216 bits memories (k = 4) achieved again 0% FP and 0%
FN rates. This experiment allowed us to argue that (k = 4) is
the optimal configuration also for small programs.

We then evaluated the overhead introduced by the proposed
checker in terms of used resources, working frequency and
power consumption increase when targeting an FPGA imple-
mentation. Table III reports the number of LUTs and FFs and
the amount of BRAM bits required by our proposal and by the
proposal in [26] as well as the maximum working frequency
that would be imposed by the presence of the checkers in
the system. First of all, it may be noticed that the overhead
introduced by our checker is independent of the executed pro-
gram, while when considering the Bloom filter-based checker
in [26], the larger the program, the larger the checker itself. It
is worth noting that while the overhead in terms of additional
FFs is very similar between the two solutions (still lower in
the current one), the overhead in terms of additional LUTs is
negligible in our solution while it reaches about 10% in [26].
On the other hand, our solution requires much more BRAMs
than the one in [26]. Looking at the working frequency over-
head, since the considered microprocessor works at 50 MHz,
neither our solution nor the one in [26] have an impact. Finally,
concerning the power consumption overhead, the considered
microprocessor protected with the proposed checker has a
total power consumption of 130 mW (25 mW dynamic power
consumption) thus, we introduce a 2.36% power consumption
increase, which we believe is totally acceptable. No power
consumption data was reported in [26].

Table IV: FP and FN rates when the HTH modifies the fetched
instruction

Bench. Accuracy
FP FN

BinS 0% 2.25%
MM 0% 0.40%
BubS 0% 3.01%
QS 0% 3.91%
SD 0% 0.72%
MD 0% 2.83%
AVG 0% 2.18%

V. SECURITY ANALYSIS

The presented experimental results demonstrate that the
proposed security checker allows to detect 100% of the
runtime activations of HTHs that try to force the CPU to
execute malicious programs installed in instruction memory
locations outside the memory space of the running program.
Furthermore, as demonstrated by the reported experiments, the
proposed checker never incurs in false alarms. It is worth men-
tioning that, as it has already been discussed, the effectiveness
of the proposed solution is independent of the triggering mech-
anism of the HTH, i.e., combinationally/sequentially triggered,
externally activated, time-bombs and always-on, and of the
design stage during which the HTH has been inserted.

A hypothetical threat for our protection system would be
a HTH in the microprocessor, instruction bus or instruction
memory that does not modify the requested instruction mem-
ory location but that alters the fetched instruction after reading
the correct memory location. In this scenario, in order to be
able to force the microprocessor to run a malicious program,
the HTH should be able to modify the fetched instruction of
a number of consecutive fetch operations (as many as the
number of instructions composing the malicious program).
Of course, such malicious instructions should be either hard-
coded in the HTH itself or accessible from specific memory
locations by the HTH. We believe that such attack is much
harder to be implemented than a HTH that modifies the content
of the program counter, and thus, it represents a minor threat.
Nevertheless, we analysed the effectiveness of our proposal
in detecting this kind of attack. In particular, we ran 10,000
times each benchmark program and in each run we emulated
the activation of this kind of HTH by leaving unaltered the
requested instruction memory address and by substituting the
fetched instruction with a random instruction after having
accessed the instruction memory itself. Results from this

Authorized licensed use limited to: Universita degli Studi di Roma Tor Vergata. Downloaded on September 03,2024 at 12:55:36 UTC from IEEE Xplore. Restrictions apply.

analysis are reported in Table IV. As it can be observed, our
checker never raises false alarms while, on average, 2.18%
of the HTH activations are not detected. Given the previously
discussed difficulty in deploying such attack, we believe that
the achieved results can be considered reasonable.

On the other hand, the proposed solution could be defeated
by denial-of-service HTHs that modify the execution flow
of the legal program. We identified two possible scenarios:
i) HTHs that halt the system by maliciously making the
CPU fetch always the same legal instruction (or sequence of
legal instructions) from memory locations belonging to the
authorized program; and ii) HTHs that halt the system by
making it crash by fetching a legal instruction from a memory
locations belonging to the authorized program but at the wrong
time or in the wrong order, e.g., fetching a jump instruction too
early during the execution flow. These attack conditions (that,
as discussed in the threat model fall outside the scope of our
solution) cannot be detected by the proposed security checker
but they can be managed by providing the system with ad-hoc
dimensioned watchdogs. Further, by exploiting watchdogs that
monitor the fetching activity of the processor, the proposed
methodology could detect denial-of-service HTHs that freeze
the CPU. Finally, HTHs that steal information by sending
it through covert side-channel are still able to defeat the
proposed solution.

VI. CONCLUSION

We presented a security checking module to protect
microprocessor-based systems against those hardware Trojan
horses that try to force the system to run a malicious program.
We integrated the proposed solution within a case study system
based on a RISC-V processor implemented on an FPGA
device and running a set of software benchmarks. Our proposal
was able to detect 100% of possible HTHs activations with
no false alarms. We measured a LUT overhead of about
0.5% and a FF overhead of about 0.3%, with a 2.36% power
consumption increase and no working frequency reduction.

REFERENCES

[1] DIGITIMES, “Trends in the global IC design service market.”
http://www.digitimes.com/news/a20120313RS400.html?chid=2.

[2] M. Rostami, F. Koushanfar, J. Rajendran, and R. Karri, “Hardware
security: Threat models and metrics,” in Proc. Int. Conf. Computer-Aided
Design, pp. 819–823, 2013.

[3] Mohammad Tehranipoor and Cliff Wang, Introduction to Hardware
Security and Trust. Springer-Verlag New York, 2012.

[4] U. Guin, Z. Zhou, and A. Singh, “A novel design-for-security (dfs)
architecture to prevent unauthorized ic overproduction,” in 2017 IEEE
35th VLSI Test Symposium (VTS), pp. 1–6, 2017.

[5] U. Guin, K. Huang, D. DiMase, J. M. Carulli, M. Tehranipoor, and
Y. Makris, “Counterfeit integrated circuits: A rising threat in the global
semiconductor supply chain,” Proc. IEEE, vol. 102, no. 8, pp. 1207–
1228, 2014.

[6] A. P. Donlin, P. Sundararajan, and B. J. New, “Method and system for
secure exchange of ip cores,” Aug. 2010. US Patent 7,788,502.

[7] M. Tehranipoor and F. Koushanfar, “A survey of hardware trojan
taxonomy and detection,” IEEE Design & Test of Computers, vol. 27,
no. 1, 2010.

[8] X. Zhang and M. Tehranipoor, “Case study: Detecting hardware Trojans
in third-party digital IP cores,” in Proc. Hardware-Oriented Security and
Trust, pp. 67–70, 2011.

[9] J. A. Roy, F. Koushanfar, and I. L. Markov, “Extended abstract: Circuit
cad tools as a security threat,” in 2008 IEEE International Workshop on
Hardware-Oriented Security and Trust, 2008.

[10] G. T. Becker, F. Regazzoni, C. Paar, and W. P. Burleson, “Stealthy
dopant-level hardware trojans,” in Cryptographic Hardware and Em-
bedded Systems, 2013.

[11] Y. Jin, M. Maniatakos, and Y. Makris, “Exposing vulnerabilities of
untrusted computing platforms,” in Proc. Int. Conf. Computer Design,
pp. 131–134, 2012.

[12] N. G. Tsoutsos and M. Maniatakos, “Fabrication attacks: Zero-overhead
malicious modifications enabling modern microprocessor privilege es-
calation,” IEEE Trans. Emerging Topics in Computing, vol. 2, no. 1,
pp. 81–93, 2014.

[13] X. Wang, T. Mal-Sarkar, A. Krishna, S. Narasimhan, and S. Bhunia,
“Software exploitable hardware trojans in embedded processor,” in 2012
IEEE International Symposium on Defect and Fault Tolerance in VLSI
and Nanotechnology Systems (DFT), pp. 55–58, IEEE, 2012.

[14] https://github.com/xoreaxeaxeax/rosenbridge.
[15] X. Chuan, Y. Yan, and Y. Zhang, “An efficient triggering method of

hardware Trojan in AES cryptographic circuit,” in Proc. Int. Conf.
Integrated Circuits and Microsystems, pp. 91–95, 2017.

[16] J. Zhang, F. Yuan, L. Wei, Y. Liu, and Q. Xu, “Veritrust: Verification
for hardware trust,” IEEE Trans. Computer-Aided Design of Integrated
Circuits and Systems, vol. 34, no. 7, pp. 1148–1161, 2015.

[17] Y. Liu, Y. Zhao, J. He, A. Liu, and R. Xin, “Scca: Side-channel
correlation analysis for detecting hardware trojan,” in Proc. Int. Conf.
Anti-counterfeiting, Security, and Identification, pp. 196–200, 2017.

[18] H. Salmani and M. Tehranipoor, “Analyzing circuit vulnerability to
hardware trojan insertion at the behavioral level,” in Proc. Int. Symp.
Defect and Fault Tolerance in VLSI and Nanotechnology Systems,
pp. 190–195, 2013.

[19] H. Salmani and M. Tehranipoor, “Layout-aware switching activity local-
ization to enhance hardware trojan detection,” IEEE Trans. Information
Forensics and Security, vol. 7, no. 1, pp. 76–87, 2012.

[20] D. Šišejković, F. Merchant, R. Leupers, G. Ascheid, and S. Kegreiss,
“Control-lock: Securing processor cores against software-controlled
hardware trojans,” in Proceedings of the 2019 on Great Lakes Sym-
posium on VLSI, GLSVLSI ’19, pp. 27–32, 2019.

[21] D. M. Shila, V. Venugopalan, and C. D. Patterson, “Fides: Enhancing
trust in reconfigurable based hardware systems,” in 2015 IEEE High
Performance Extreme Computing Conference (HPEC), pp. 1–7, 2015.

[22] A. Basak, S. Bhunia, T. Tkacik, and S. Ray, “Security assurance
for system-on-chip designs with untrusted ips,” IEEE Transactions on
Information Forensics and Security, vol. 12, no. 7, pp. 1515–1528, 2017.

[23] J. Dubeuf, D. Hély, and R. Karri, “Run-time detection of hardware
trojans: The processor protection unit,” in 2013 18th IEEE European
Test Symposium (ETS), pp. 1–6, 2013.

[24] G. Bloom, B. Narahari, and R. Simha, “Os support for detecting trojan
circuit attacks,” in 2009 IEEE International Workshop on Hardware-
Oriented Security and Trust, pp. 100–103, 2009.

[25] T. Hoque, X. Wang, A. Basak, R. Karam, and S. Bhunia, “Hardware
trojan attacks in embedded memory,” in 2018 IEEE 36th VLSI Test
Symposium (VTS), pp. 1–6, April 2018.

[26] A. Bolat, L. Cassano, P. Reviriego, O. Ergin, and M. Ottavi, “A micro-
processor protection architecture against hardware trojans in memories,”
in 2020 15th Design Technology of Integrated Systems in Nanoscale Era
(DTIS), pp. 1–6, 2020.

[27] A. Traber, F. Zaruba, S. Stucki, A. Pullini, G. Haugou, E. Flamand, F. K.
Gurkaynak, and L. Benini, “Pulpino: A small single-core risc-v soc,” in
3rd RISCV Workshop, 2016.

[28] M. Gautschi, P. D. Schiavone, A. Traber, I. Loi, A. Pullini, D. Rossi,
E. Flamand, F. K. Gürkaynak, and L. Benini, “Near-threshold risc-
v core with dsp extensions for scalable iot endpoint devices,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 25,
pp. 2700–2713, Oct 2017.

[29] R. Höller, D. Haselberger, D. Ballek, P. Rössler, M. Krapfenbauer,
and M. Linauer, “Open-source risc-v processor ip cores for fpgas —
overview and evaluation,” in 2019 8th Mediterranean Conference on
Embedded Computing (MECO), pp. 1–6, June 2019.

Authorized licensed use limited to: Universita degli Studi di Roma Tor Vergata. Downloaded on September 03,2024 at 12:55:36 UTC from IEEE Xplore. Restrictions apply.

		2022-08-24T18:17:41-0400
	Preflight Ticket Signature

