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Abstract—Wireless channel charting is a self-supervised ma-
chine learning approach designed to capture and leverage the
statistical properties of wireless propagation. By applying dimen-
sionality reduction to channel state information, channel charting
establishes a low-dimensional representation of the channel state,
which is akin to a pseudo-location of the users within the prop-
agation environment. Conversely to multipoint channel charting,
which considers efficient ways of fusing the features acquired
by multiple access points, we introduce in this work the multi-
site channel charting problem whereby multiple base stations
generate their own channel charts, while their coverage areas
partially overlap. We introduce several methods to align the latent
spaces at each base station into a common latent space, effectively
performing the fusion of multiple channel charts. We benchmark
the proposed approaches and compare their performance in
terms of the classical dimensionality reduction metrics using
measured data, as well as their degree of distributedness.

I. INTRODUCTION

Current and emerging generations of radio access tech-
nologies such as 5G and Wi-Fi increasingly depend on high-
dimensional Channel State Information (CSI) for their oper-
ation. Although it is clear that numerous powerful statistical
and learning methods could leverage the information geometry
contained in CSI distributions, these approaches are hindered
by the fact that the high dimension and high sampling rate
of CSI makes its storage and further algorithmic processing
by resource-constrained baseband processing systems imprac-
tical. A pioneering approach to alleviate this issue is channel
charting (CC) [1]. It leverages the latent physical and geo-
metrical information embedded in the CSI to extract a lower-
dimensional representation, which is easier to exploit. CC can
be seen as a building box for a number of applications ranging
from radio resource and beam management to geofencing
and digital twins [2], with a primary use case being the
improvement of location-based applications.

CC methods typically involve two main steps: CSI feature
extraction and the subsequent dimensionality reduction (DR)
of the obtained features. While the first CC methods focused
on non-parametric DR techniques such as Sammon’s map-
ping and principal component analysis (PCA) [1], parametric
approaches such as fully-connected (FC) auto-encoders [1],
[3], siamese [4], [5] and triplet [6] architectures were also
considered, for their ability to easily handle the out-of-sample
problem.

This work was supported by ANR (grant no. ANR-23-CHR4-0001-01)
under the CHIST-ERA project CHASER (CHIST-ERA-22-WAI-01), and by
Horizon Europe SNS project INSTINCT (grant no. 101139161).

Different works have tried to harness the information from
different base stations (BS) to enhance the quality of CC [7],
[8], [9], [10]. In these works however, although the dataset
is distributed, the objective is to train a single model. To our
knowledge, only one work [11] has attempted to work with
multi-site radio channel maps by extracting separate maps for
different BS in a federated manner; in this set-up however, all
models operate on the same task. Conversely, in the present
paper, we consider multiple channel charting tasks, with linked
tasks due to the partial overlap between the respective BS
coverage areas. This scenario arises when a mobile terminal
may communicate with multiple BSs; as a result, the terminal
may have a pseudo position in the respective charts of several
BSs. Intuitively, this means that the resulting channel charts
should also partially overlap. In this scenario, it is necessary
to align the latent spaces of the different BSs and to construct
an unified channel chart.

This task can be performed through manifold alignment
(MA), which seeks to establish relationships between different
datasets, with the ultimate goal of projecting samples into
a shared embedding space. Supervised (with known sample
correspondance) [12] and unsupervised versions of MA [13]
have been proposed based on matching the respective man-
ifold Laplacians. [14] proposed to perform MA through a
Wasserstein-Procrustes formulation. Optimal transport (OT)
can perform MA when a model or function is trained to convert
one distribution into another, as implicitly done in [15], [16]
in the multi-modality case.

Our main contribution consists in a novel MA-based frame-
work for multi-point channel charting, with the aim of aligning
the charts of different BSs, thus facilitating the process of
multi-site wireless channel charting. Specifically, we use OT
to align each individual channel chart with respect to a
geometrical map for each BS, enabling a direct combination
of the BSs charts to create an unified chart.

The rest of the paper is structured as follows. Section II
details the proposed approach for multi-site CC through latent
space alignment. Section III outlines our experimental setup,
while in Section IV we present and discuss the results of our
experimental validation. Finally, in Section V we conclude and
present the guidelines for our future work.

II. PROPOSED METHOD

We now introduce the considered multi-site CC scenario.
For the sake of simplicity, we consider a set-up with two BS,



Fig. 1: Problem summary: Two base stations BS1 and BS2,
with overlapping geometric coverage maps G1 and G2, and
ambient CSI spaces C1 and C2, respectively. Ambient spaces
are divided into subsets containing samples from geometric
positions shared by both stations (S1 and S2), and those
containing samples unique to each base station (U1 and U2).
C1 and C2 undergo separate DR through functions f1 and f2,
yielding CCs f1(C1) and f2(C2). MA is performed through
transformations g1 and g2 which are applied to the respective
CCs, yielding a final CC for each base station, embedded in
a common unified channel chart g1(f1(C1)) ∪ g2(f2(C2)).

depicted in Fig. 1; this can be straightforwardly generalized
to an arbitrary number of sites. Let G1 ⊂ R2 and G2 ⊂ R2

denote the respective geometrical coverage maps of the two
base stations BS1 and BS2, such that G1∩G2 ̸= ∅. We denote
as Ci ⊂ Rmi the CSI acquisition ambient spaces of BSi. Note
that C1 and C2 are not embedded in a common space (and in
general, m1 ̸= m2); this accounts for the case where BS1

and BS2 operate on different bands (e.g. sub-6GHz massive
MIMO and mmWave).

For all i ∈ {1, 2}, denote as Si = {x ∈ Ci/px ∈ G1 ∩ G2}
the CSI from BSi that are in the shared area G1 ∩ G2 where
px is the position of sample x. At last, for all i ∈ {1, 2},
denote as Ui = Ci \ Si the CSI from BSi that are not in the
shared area, and P = {(u,v) ∈ S1 × S2/tu = tv} the set
of CSI from the different BS generated by the same user at
the same moment tu = tv . Our goal is to learn a CC function
for each base station such that ∀(u, v) ∈ P, h1(u) = h2(v),
where hi : Rmi → R2 is the CC function of BSi. In the next
section, we detail how OT can be used to achieve this goal.

A. Optimal Transport Preliminaries

The main idea of OT is to optimize a transportation plan T
which transports the mass from one source distribution σ to a
target distribution τ while minimizing the overall transporta-
tion cost. For simplicity, while Fig. 1 illustrates continuous
distributions, the rest of the exposition focuses on discrete
distributions; CSI sample distributions are naturally discrete,
while geographical position distribution can be approximated
by discrete distributions since they have low dimension.

In the discrete case, we represent each distribution based
on the source and target input data X = {x1, ..., xN}
and Y = {y1, ..., yM}, and their weights or masses s =
[s1, ..., sN ]T ∈ [0, 1]N and t = [t1, ..., tM ]T ∈ [0, 1]M :

(1) σ =

N∑
i=1

si · δxi
τ =

M∑
j=1

ti · δyi
(2)

where δa is the Dirac function at point a, and
∑N

i=1 si = 1

and
∑M

j=1 ti = 1.
A common approach to perform OT is to solve the following

regularized optimization problem:

LOT (D, s, t) = min
T∈U(s,t)

< T,D >F +ϵ ·H(T) (3)

where < ·, · >F is the Frobenius inner product, D ∈ RN×M
+

is a distance matrix where the element Dij corresponds
to the distance between sample xi ∈ X and sample
yj ∈ Y , ϵ is a hyper-parameter, H is the entropy, and
U(s, t) =

{
T ∈ RN×M

+ |T · 1M = s,TT · 1N = t
}

for
mass preservation. Thanks to the entropic regularization,
(3) can be efficiently solved using the Sinkhorn algorithm
[17]. For the rest of the paper we assume s and t uniform
(si = 1

N , ti =
1
M ∀i), and denote LOT (D, s, t) = LOT (D).

B. Latent space alignment

This section presents different MA approaches for latent
space alignment. They differ mainly in the type of information
they use. Note that although the following formulations are
based on triplet network architectures, our approach is versatile
and not constrained by it.

1) No alignment: This approach consists of training h1

and h2 independently, using C1 and C2, respectively. For i ∈
{1, 2}, hi is given by argminh LT (h; Ci) where i ∈ {1, 2},
LT (h, Ci) =

∑
x,xp,xn∈Ci

LT (x, xp, xn;h) with LT is the
triplet loss function depending on an input sample x, two
associated positive and negative samples xp and xn, and a
function h. LT is defined as follows:

LT (x, xp, xn;h) = max(0, ||h(x)− h(xp)||2
−||h(x)− h(xn)||2 +M)

(4)

where M is a margin hyper-parameter. As commonly done
in CC, we choose the positive and negative samples based on
their temporal proximity to the reference sample [6]: positive if
the temporal proximity is smaller than Tc = 5 s, and negative
if it is above Tc.

2) Cell alignment: This approach consists of training h1

and h2 independently, using C1 and C2. For all i ∈ {1, 2} we
decompose hi into hi = gi ◦ fi, where fi : Rmi → R2 is a
function allowing to obtain a preliminary CC, and gi : R2 →
R2 is a transformation model aligning the preliminary CC to
Gi and defined for all x ∈ R2, gi(x) = (Mix+ bi)⊘ ai with
Mi ∈ R2×2, bi ∈ R2 and ai ∈ R2 being learnable parameters.
We have for all i ∈ {1, 2}:

fi, gi = argmin
f,g

αi · LT (f ; Ci) + βi · LCell
OT (g, f) (5)

This function corresponds to an affine transformation. Although it is
possible to include the ai term within Mi and bi, the over-parameterized
formulation used here is more amenable to gradient-based optimization and
enhances the robustness of the method.



where αi and βi are a hyperparameters for the triplet and OT
loss functions for BSi, LCell

OT (g, f) = LOT (D(Ci,Gi; f, g))
and D(Ci,Gi; f, g) is a distance matrix where for all i ∈
{1, 2}, k ∈ [1, |Ci|], l ∈ [1, |Gi|]:

D(Ci,Gi; f, g)kl =
1

2
· ||g(f((Ci)k))− (Gi)l||22

3) Cell alignment with independent OT: We can also per-
form the previous implicit alignment in two sequential steps
for each BS (with αi = 1 and βi = 1), similarly to [16]:
first learn the CC function fi of the BS, then learn the
transformation gi (with a fixed fi).

4) Cell topology alignment: This approach consists of
training h1 = g1 ◦ f1 and h2 : g2 ◦ f2 jointly and using one
single transform model g = g1 = g2 to align the CC of both
base stations with respect to their geometrical maps:

f1, f2, g = argmin
f1,f2,g

2∑
i=1

αi · LT (fi; Ci)

+ βi · (LOT (D(Ui,Gi \ G1 ∩ G2; fi, g))

+ LOT (D(Si,G1 ∩ G2; fi, g)))
(6)

where αi and βi are hyperparameters controlling the ge-
ometry preservation (triplet loss term), and the alignment (OT
loss) for BSi.

5) Cell topology alignment with independent OT: Similar
to Cell alignment with independent OT, we can perform
this approach in two sequential steps: first learn the CC of
each BS through fi = argminf LT (f ; Ci), then learn the
transformations g1 = g2 for both BS with f1 and f2 fixed
(with αi = 1 and βi = 1):

g1 = g2 = argmin
g

2∑
i=1

LOT (D(Ui,Gi \ G1 ∩ G2; fi, g)

+ LOT (D(Si,G1 ∩ G2; fi, g)))

(7)

6) Joint Sample and Cell alignment: This approach consists
of training h1 and h2 jointly and learning one transformation
model per BS as in Sec. II-B2 to align the CC of both base
stations with respect to their geometrical maps. In addition, to
promote proximity among the representations of correspond-
ing samples from different BS in the shared coverage area
within the final common CC, we minimize their difference,
yielding:

argmin
f1,f2,g1,g2

2∑
i=1

αi · LT (fi; Ci) + βi · LCell
OT (gi, fi)

+ γ · LS1↔S2
(f1, g1, f2, g2)

(8)

where LS1↔S2(f1, g1, f2, g2) =
∑

(u,v)∈P ||g1(f1(u)) −
g2(f2(v))||22 and αi, βi, γ are hyperparameters controlling
the geometry preservation (triplet loss term LT ) for BSi,
the alignment (OT loss LOT ) for BSi, and the pairwise
correspondence (LS1↔S2

) respectively.
7) Sample alignment: This method is similar to the

previous one, except that we set β1 = β2 = 0. As a result,
this approach ignores geometric map data and relies solely
on associating two samples from different base stations, both

TABLE I: Number of samples per DICHASUS dataset, and
per zone. Ui denotes the unique acquisition zones of BSi,
while Si represents the shared coverage areas.

Dataset |S1| |U1| |S2| |U2|

cf-02 7 334 6 631 7 334 4 551
cf-03 7 405 11 638 7 405 4 435

Fig. 2: Indoor DICHASUS dataset split into two virtual
base stations, BS1 and BS2: BS1 includes AP1 and AP2

(leftmost), and BS2 includes AP3 and AP4 (bottom).

generated by the same user at the same location, hence only
P is assumed to be known.

III. EXPERIMENTAL SETUP

We evaluate the different methods using DICHASUS [18]
datasets: cf-02 for training and cf-03 for testing. These datasets
were obtained in an indoor industrial setup. A robot with an
omnidirectional antenna moved in an L-shaped area, trans-
mitting pilots to four access points (AP) with 8 antennas
each. We create two virtual BSs by combining the two left
and the two bottom APs (see Fig. 2). Overlapping coverage
is simulated using data masking. The system uses OFDM
with 1024 subcarriers over 50 MHz bandwidth at 1.272 GHz
center frequency. At last, the data were pre-processed using
the pipeline described in [1] and the final count of CSI samples
per dataset and BS is detailed in table I.

A. Experiments

We trained a FC network using methods outlined in Sec. II.
As a reference, we also trained a centralized single triplet
model using all samples for both base stations; we will refer to
this model as Centralized Model. The NN architecture closely
resembles the one from [6], with a slight modification: the
number of output features in each FC layer was halved. All
the models were trained during 30 epochs with batches of
size 1024. Other hyperparameters are indicated in Table II.
All experiments were run 5 times, and the results averaged.

Owing to the lack of geometrical coverage information in
the dataset, we generated G1 and G2 by computing the α-
concave hull (with α = 1), denoted as Hα, of the ground truth



TABLE II: Hyperparameters used for the different methods.
lr corresponds to the learning rate of f1 and f2, and lrOT

corresponds to the one of g, g1, g2.

Method lr lrOT α1 α2 β1 β2 γ

Centralized Model 0.05 - - - - -
No Alignment 0.1 - - - - - -
Cell Alignment 0.1 0.001 1 1 0.001 10 -
Cell Alignment 0.1 0.1 1 1 1 1 -Independent OT
Cell Topology 0.1 0.01 0.001 0.001 0.01 0.01 -Alignment
Cell Topology

0.1 0.01 1 1 1 1 -Alignment
Independent OT

Joint Sample and 0.05 0.05 0.01 0.01 0.1 0.1 0.1Cell Alignment
Sample Alignment 0.05 0.05 0.1 0.1 0 0 0.01

(GT) positions of the corresponding samples, followed by the
random uniform sampling of 1024 points within the obtained
1-concave hull. Note that while the ground truth positions were
used to generate the geometrical coverage maps, they are not
used during the training process.
B. Evaluation metrics

1) Alignment metrics: We propose to use different metrics
to evaluate CC alignment from both BS. First, if we denote
as IoU(A, B) the intersection over union of two polygons A
and B, we compute IoUC = IoU(H1(h1(S1)),H1(h2(S2)))
where higher values indicate a better overlap between com-
mon coverage areas. We also compute the mean over i of
1−IoUi = 1−IoU(H1(hi(Ui)),H1(hi(Si))), and we denote it
1− IoUBS, where higher values indicate less overlap between
the CC positions of CSI samples that are not acquired by
both BS and the ones that are. Second, we propose to use
the FOSCTTM metric, introduced in [14], representing the
fraction of samples closer than the true match.

2) Dimensionality reduction metrics: We employed trust-
worthiness (T) and Kruskal Stress (T) to assess the preser-
vation of the local structure of the ambient space. For more
details we refer the reader to [6]. For assessing the preservation
of the global structure, we employed the order 1 Wasserstein
distance (WD).

IV. RESULTS AND DISCUSSION

A. Multi-BS alignment

We first focus on assessing the capability of the different
studied methods to align channel charts across multiple BSs.
The results are detailed in Table III and illustrated in Fig. 3.

Observations reveal that Cell Topology Alignment emerges
as the most overall effective method for CC alignment: it
outperforms other methods significantly with lower variability.
Notably, its performance closely resembles that of the Cen-
tralized Model. The superiority of Cell Topology Alignment
comes from its explicit alignment of individual and shared
coverage areas with associated geometrical maps, unlike other
methods. Moreover, its outperformance over Joint Sample and
Cell Topology Alignment is due to the latter’s less refined
alignment across entire coverage areas rather than treating
them separately. This refinement is critical as uniform weights

assumed in the OT problem can lead to mismatches, empha-
sizing the significance of Cell Topology Alignment.

Furthermore, Joint Sample and Cell Alignment outperforms
Cell Topology Alignment in FOSCTTM. Yet, for localization
and distance measurement, the discontinuities between BS
coverage areas observed for Joint Sample and Cell Alignment
(Fig. 3) are problematic, unlike with Cell Topology Alignment
(smooth CC transitions are preferable to avoid abrupt user zone
changes). However, the observed enhancement in terms of
FOSCTTM with Joint Sample and Cell Alignment compared
to Cell Topology Alignment is noteworthy. In shared coverage
areas, each measurement has two representations (one per BS).
Thus, it is crucial for these CC coordinates to align closely.
The reduced FOSCTTM of Joint Sample and Cell Alignment
indicates that its aligned CC results in fewer false positives in
common areas. This means that for a given point in the shared
coverage area in the CC of one BS, there are fewer points from
the other BS closer to it than its true corresponding point,
compared to other methods.

Finally, despite No Alignment obtaining the CC of each BS
independently, it still shows noticeable alignment, occasionally
outperforming other methods relying on OT or distance min-
imization. This highlights Channel Charting’s inherent capa-
bility to map radio environments; shared coverage areas likely
have similar propagation environments, leading to similar CC.

(a) (b)

(c) (d)
Fig. 3: Combined best final channel charts for the top 4 best
performing methods over five repetitions (choice based on
IoUC). (a) Cell Topology Alignment, (b) Joint Sample and
Cell Alignment, (c) No Alignment, (d) Cell Alignment with
Independent OT.

B. Local and global structure of the charts

We analyze CCs’ local/global structure, crucial for certain
applications. Results can be found in Table III.

First, we observe that the best overall performing method
in terms of local structure preservation is Cell Topology
Alignment, with improvements of T and KS, often reducing
the variability. Its refined alignment process aligns unique
coverage zones with each other and common coverage areas



TABLE III: Alignment and dimensionality reduction results of the different compared approaches. Best results in bold, second-
best in italic. S1 ↔ S2 denotes the use of the sample-by-sample correspondence between the elements of S1 and S2.

Method Gi G1 ∩ G2 G1 \ G2 G2 \ G1 S1 ↔ S2 IoUC ↑ 1− IoUBS ↑ FOSCTTM ↓ T ↑ KS ↓ WD ↓

Centralized Model × × × × × 76.42± 3.97 45.97± 2.97 34.15± 1.60 72.99± 0.85 0 .48 ± 0 .01 5.89± 3.12
No Alignment × × × × × 29.46± 16.49 43.82± 2.81 50.25± 3.55 74 .81 ± 4 .94 0.54± 0.02 5.23± 0.45
Cell Alignment ✓ × × × × 28.41± 12.30 36.89± 3.67 49.74± 3.02 72.51± 3.24 b0.55± 0.07 0.54± 0.13
Cell Alignment

✓ × × × × 22.18± 3.44 44.69± 2.36 51.09± 1.91 74.10± 1.33 0.58± 0.05 0 .47 ± 0 .07Independent OT
Cell Topology × ✓ ✓ ✓ × 71 .76 ± 10 .10 76.62± 6.05 49.68± 1.49 75.27± 1.21 0.46± 0.02 0.28± 0.09Alignment
Cell Topology

× ✓ ✓ ✓ × 29.34± 12.09 39.76± 2.32 48.50± 5.62 74.20± 2.06 0.53± 0.05 0.84± 0.34Alignment
Independent OT

Joint Sample and
✓ × × × ✓ 55.08± 14.40 74.16± 5.76 40 .23 ± 1 .70 74 .14 ± 1 .43 0.52± 0.02 0.986± 0.003Cell Alignment

Sample Alignment × × × × ✓ 11.62± 8.34 60.06± 8.32 49.95± 0.89 68.11± 3.28 0.69± 0.03 5.32± 0.15

accordingly, for each BS, enhancing T by minimizing the
occurrence of distant samples becoming neighbours in the final
CC. This also leads to a decrease in KS (distance preservation).
Evaluating local structure preservation metrics on the final
CC shows that samples from both BS1 and BS2 can be
neighbors, especially within common coverage areas, further
improving local structure preservation compared to individual
BS measurements.

Second, it is noteworthy that the Cell Topology Alignment
model stands out as the best one based on global structure
preservation. This superiority can be attributed to two main
factors. Firstly, methods that align CCs to geometric maps
have an inherent advantage because the Wasserstein Distance
is as an OT distance. This alignment to geometric maps has
practical benefits, such as enabling real coordinate localisation
and proximity detection of users. Secondly, Cell Topology
Alignment operate on zones instead of aligning each CC with
the entire geometric maps of their corresponding BS. This
approach effectively brings CC samples closer to their GT
positions, despite the uniform weights assumption.

Finally, it is important to note that we did not prioritise
hyperparameter optimisation, so there is potential for further
advances, especially if optimised individually for each BS.

V. CONCLUSION

In this work, we introduced a novel framework for multi-
point channel charting. Instead of fusing information from dif-
ferent BSs and focusing on a single task, we extract individual
CCs for each BS with partially overlapping coverage areas,
while aligning these common coverage areas within the CCs.
Within this framework, we proposed several methods to align
the CCs of different BSs, yielding promising results.

Finally, to further optimise the efficiency of these ap-
proaches, it would be beneficial to adapt the methods we
have introduced for training and use in a distributed manner.
Additionally, although our study focuses on the two BSs
scenario, it can be extended to more BSs. In this case, it
is important to note that the amount of information shared
between BSs increases with their number.
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“Absolute positioning with unsupervised multipoint channel charting for
5G networks,” in Proc. IEEE Vehicular Tech. Conference, Nov. 2020.

[11] P. Agostini, Z. Utkovski, and S. Stańczak, “Federated learning for
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