
HAL Id: hal-04685438
https://hal.science/hal-04685438v1

Submitted on 6 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Processor Security: Detecting Microarchitectural
Attacks via Count-Min Sketches

Kerem Arikan, Alessandro Palumbo, Luca Cassano, Pedro Reviriego,
Salvatore Pontarelli, Giuseppe Bianchi, Oguz Ergin, Marco Ottavi

To cite this version:
Kerem Arikan, Alessandro Palumbo, Luca Cassano, Pedro Reviriego, Salvatore Pontarelli, et al..
Processor Security: Detecting Microarchitectural Attacks via Count-Min Sketches. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, 2022, 30, pp.938 - 951. �10.1109/tvlsi.2022.3171810�.
�hal-04685438�

https://hal.science/hal-04685438v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

1

Processor Security: Detecting Microarchitectural
Attacks via Count-Min Sketches

Kerem Arıkan, Alessandro Palumbo, Luca Cassano, Member, IEEE, Pedro Reviriego, Senior Member, IEEE
Salvatore Pontarelli, Giuseppe Bianchi, Oğuz Ergin, Marco Ottavi, Senior Member, IEEE

Abstract—The continuous quest for performance pushed pro-
cessors to incorporate elements like multiple cores, caches,
acceleration units or speculative execution that make systems
very complex. On the other hand, these features often expose
unexpected vulnerabilities that pose new challenges. For exam-
ple, the timing differences introduced by caches or speculative
execution can be exploited to leak information or detect activity
patterns. Protecting embedded systems from existing attacks
is extremely challenging and it is made even harder by the
continuous rise of new microarchitectural attacks (e.g., the
Spectre and Orchestration attacks). In this paper we present
a new approach, based on Count-min Sketches for detecting
microarchitectural attacks in the microprocessors featured by
embedded systems. The idea is to add to the system a security
checking module (without modifying the microprocessor under
protection) in charge of observing the fetched instructions and
identifying and signaling possible suspicious activities without
interfering with the nominal activity of the system. The proposed
approach can be programmed at design-time (and reprogrammed
after deployment) in order to always keep updated the list of
the attacks the checker is able to identify. We integrated the
proposed approach in a large RISC-V core and we proved
its effectiveness in detecting several versions of the Spectre,
Orchestration, Rowhammer and Flush+Reload attacks. In its
best configuration, the proposed approach has been able to
detect 100% of the attacks, with no false alarms and introducing
about 10% area overhead, about 4% power increase and without
working frequency reduction.

Index Terms—Embedded Systems, Hardware Security, Mi-
croarchitectural Attacks, Microprocessors, RISC-V.

Kerem Arıkan is with the Department of Electrical and Electronic Engi-
neering and Oğuz Ergin is with the Department of Computer Engineering,
TOBB University of Economics and Technology, Ankara, Turkey Email:
karikan@etu.edu.tr, oergin@etu.edu.tr

Alessandro Palumbo is with Dipartimento di Elettronica, Ingegneria
dell’Informazione, Università degli Studi di Roma Tor Vergata, Italy. Email:
alessandro.palumbo@uniroma2.it

Giuseppe Bianchi is with CNIT (Consorzio Nazionale Iteruniversi-
tario per le Telecomunicazioni), Dipartimento di Elettronica, Ingegneria
dell’Informazione, Università degli Studi di Roma Tor Vergata, Italy. Email:
giuseppe.bianchi@uniroma2.it”

Luca Cassano is with the Dipartimento di Elettronica, Informazione e
Bioingegneria, Politecnico di Milano, Italy. Email: luca.cassano@polimi.it

Pedro Reviriego is with the Departamento de Ingenierı́a Telemática,
Universidad Carlos III de Madrid, Leganés 28911, Madrid, Spain. Email:
revirieg@it.uc3m.es

Salvatore Pontarelli is with the Dipartimento di Informatica, Università di
Roma La Sapienza, Italy. Email: salvatore.pontarelli@uniroma1.it

Marco Ottavi is with Università degli Studi di Roma Tor Vergata,
Italy and also with the University of Twente, The Netherlands. Email:
m.ottavi@utwente.nl

Kerem Arıkan and Alessandro Palumbo contributed equally to this
manuscript; therefore, they have to be considered both as first author.

I. INTRODUCTION

Security requirements are nowadays vital in a huge range
of digital systems, such as Internet-of-Things/Edge Comput-
ing [1], Industry 4.0 [2] or automotive [3]. Traditional security
properties, e.g., confidentiality, integrity, non-repudiation, are
achieved through strong cryptographic algorithms. Although
mathematically speaking, such algorithms are robust, their im-
plementations may suffer from security flaws. In recent years,
several cryptographic hardware accelerators demonstrated to
be prone to a number of attacks, among which Side-Channel
Analysis (SCA) [4]. As a result, the deployed systems may
be vulnerable although featuring security-dedicated modules.
SCA exploits unintended information leakage by analysing
timing information, power consumption, thermal footprint or
electromagnetic emanation of computing systems while exe-
cuting security primitives to extract information about the pro-
cessed data and then use them to infer sensitive information,
e.g., secret keys or messages. Such attacks generally require
the attacker to have physical access to the attacked system.
Moreover, the attacker needs invasive equipment in order for
the attack to be put in place [4].

In the last years, a new family of SCA attacks has been
demonstrated to be effective on microprocessor-based sys-
tems, i.e., microarchitectural attacks [5]. These attacks do
not require physical access to the attacked system and only
rely on the observation of its timing behavior while running
sensitive applications. The basic idea behind microarchitec-
tural attacks is that since computer architectures are optimized
w.r.t. processing speed there is a strong correlation between
processed data, memory accesses, and execution times. As a
consequence, such correlation represents an exploitable side
channel in case the attacked process and the attacker one
share the same cache space [5]. As an example, a well-
known microarchitectural attack is Spectre [6], where the
attacker takes advantage of speculative execution to break
address space isolation without exploiting any software bug.
By exploiting Spectre an attacker allows his/her own program
to access the memory (and thus also secrets) of other programs
and of the operating system.

Several countermeasures against microarchitectural attacks
working at all the abstraction levels have been proposed in
the last few years [7]. Solutions specifically tailored to protect
AES implementations have been proposed in [8] and [9]: in [8]
bitslicing is exploited while in [9] the countermeasure relies on
vector permutation. Compile-time solutions based on control-
flow modifications have been proposed in [10], [11]; these

2

solutions have the huge drawback of significantly slowing
down programs’ executions. In [12] an operating system-
level countermeasure based on preventing cache sharing is
presented, while in [13], [14] periodic cache flushing is used;
again, the drawback is a significant slowdown of the system.
Finally, several architecture-level countermeasures based on
a modified use of the caches have been proposed. In [15],
[16] cache partitioning is exploited and finally, in [17] cache
accesses are randomized. Again, all these techniques signifi-
cantly slowdown the system due to the introduced modifica-
tions of the cache utilization.

In this paper we present a novel security checker for
microprocessor-based embedded systems aimed at detecting
the occurrence of microarchitectural attacks. The proposed
checker relies on the Count-min Sketch probabilistic data
structures [18]. The basic idea of our proposal is to add
to the systems under protection a security checking module
between the instruction memory and the fetch unit within the
microprocessor’s pipeline. Such checking module is in charge
of observing the fetched instructions and of identifying and
signaling possible suspicious activities without interfering with
the nominal activity of the microprocessor. On the one hand,
the hardware architecture of the checker (size of the Count-
min Sketch, memory occupation) is configured at design-time;
on the other hand, the list of the considered attack models can
be programmed at design-time by the designer and then repro-
grammed after deployment by the user in order to always keep
it updated. Indeed, our proposal relies on the identification of
pre-defined and reproducible set of suspicious instruction pat-
terns (and associated frequency within a given time window)
that are representative of specific microarchitectural attacks.
These instruction patterns, one for each attack of interest, are
carefully identified by the security engineer at design and then
used to program the security checker. Therefore, our proposal
is able to check several microarchitectural attacks in parallel
thus representing a flexible and scalable security solution. It
is worth mentioning that the proposed solution does not need
any modification of the microprocessor under protection. We
integrated the proposed approach in the large RSD core [19]
and we proved its effectiveness in detecting several versions
of the Spectre, Orchestration, Rowhammer and Flush+Reload
attacks. The solution demonstrated to be able to detect 100%
of the attacks in an small time window while causing an
extremely reduced (and configurable at design-time) amount of
false alarms and introducing about 10% area overhead, about
4% power increase and without working frequency reduction.

Solutions where, like in the current paper, probabilistic data
structures are used for hardware security purposes have been
proposed in [20], [21]. In both papers the considered attacks
were hardware Trojan horses modifying the fetching activity
of the system and infesting the main memory (in [20]) and
the microprocessor (in [21]). The solutions proposed in those
papers are much simpler than the one here proposed: indeed,
in [20], [21] the checker only verified if the fetched instruc-
tions belonged to the legitimate program or not while the
security checker proposed in the current paper identifies com-
plex instruction patterns (and associated fetching frequency)
belonging to the considered microarchitectural attacks. By

summarizing, the novelties and advantages of the proposed
approach w.r.t. existing solutions are:

• the generality w.r.t. the specific microprocessor and fea-
tures, e.g., speculative and out-of-order execution;

• the ability of protecting the system irrespective of the
executed application, i.e., it is not a protection mechanism
specific for cryptography;

• the programmability (and re-programmability) that makes
the solution effective for a vast range of attacks;

• the limited and configurable false positive rate as well as
the reduced detection time;

• the transparency w.r.t. the nominal microprocessor func-
tionality, i.e., no performance overhead is introduced; and

• the reduced area, power and working frequency overhead.
The paper is organized as follows: in Section II, we provide

a general background; Section III presents the proposed solu-
tion and the design flow used for configuration and program-
ming; in Section IV, we report the results of an experimental
evaluation; Section V discusses the security-related advantages
and limitations of the proposed checker; Section VI presents
the related work and finally, Section VII concludes the paper.

II. BACKGROUND

In this section microarchitectural attacks are reviewed and
analyzed to find the existing common aspects and the Count-
Min sketch probabilistic data structures are presented.

A. Microarchitectural Attacks

Multiple classifications have been proposed for microarchi-
tectural attacks [7], [22]; two main families exist:
Time-driven, where the attacker measures the execution time

of the executed operations to extract sensitive information [23],
[24]. The rationale behind these attacks is that the execution
time varies with the execution paths or cache hits/misses,
which is often strongly related to the processed information.
Therefore, the attacker can extract secret information, e.g.,
encryption keys, by controlling the content of the shared cache
and measuring the running time of the victim program. How-
ever, as the time-driven attacks measure the whole execution
time, they suffer from the noise introduced by the operating
system and network. Thus, a large number of samples are
needed for a statistical evaluation to extract secret information.
The main advantage of these attacks is the wide applicability
which only requires execution time measurement.
Access-driven, where the attacker monitors whether a specific
component in the architecture is used or not. The monitored
components may be the data cache [25], the instruction cache
[26], and the branch prediction cache [27]. The information
related to the use of these components is inferred by measuring
the time required to access them. If a cache entry has been
accessed by the victim program, the attacker program would
observe a cache hit, otherwise a cache miss.

The key difference between time-driven and access-driven
attacks is that in the former case, the attacker measures the
victim process’ whole execution time, while in the latter
case, the attacker measures the execution time of a specific
operation. This gives access-driven attacks higher fidelity.

3

1 l i x1 , %p r o t e c t e d a d d r #load protected addr in x1
2 l i x2 , %a c c e s s i b l e a d d r #load accessible addr in x2
3 a d d i x2 , x2 , %t e s t v a l u e #add test value to x2
4 sw x3 , 0 (x2) #store x3 in the address pointed by x2
5 lw x4 , 0 (x1) #load in x4 from the address pointed by x1
6 lw x5 , 0 (x4) #load in x5 from the address pointed by x4

Fig. 1. A code snippet representing an orchestration attack

1 lw x1 , 0 (x2) #load in x1 from the address pointed by x2
2 b l t x1 , x3 , end #loop branch that induces transient instructions
3 s l l i x4 , x1 , 2 #logical left shift for offset
4 add x5 , x6 , x4 #add x6 and x4 and store it in x5
5 lw x7 , 0 (x5) #load in x7 from the address pointed by x5

Fig. 2. A code snippet representing the Spectre attack

1) Orchestration Attacks: Orchestration attacks [28] exploit
the cache design choices used to manage Read-After-Write
(RAW) hazards. This hazard can occur when two sequential
instructions have a data dependency, and the former instruction
makes a write request and the latter does a read request at the
same address. To avoid this hazard, the pipeline is stalled. It
must be noticed that current cache designs trigger the pipeline
stall of possible RAW hazards if the write and read request
share the same cache line, even if they are not accessing to
the same address. A simple example of orchestration attack
is reported in the code snippet in Figure 1. The snippet tries
to create intentional RAW hazards to leak the content of the
data stored in a protected address. Lines 1 and 2 are the
initialization instructions. x1 holds the protected address that
represents the goal of the attack. x2 holds the test address.
We assume that x1 is not accessible by the attacker, while
x2 is accessible. The attacker tries to guess the value of x1
by iteratively increasing the content of x2 by a ”test value”
and by executing the subsequent instructions. In line 4, the
test value is used as a memory address. Note that, since x2 is
accessible, this instruction does not cause an exception. This
instruction represents the first instruction of the intentional
RAW hazard. In line 5, the protected data stored in x2 is used
as a memory address. Since in a pipelined system, the executed
instructions do not trigger a memory boundary exception on
the core until the writeback stage, we can use the content
of x2 as a memory address unless the data to be written
into x4 is fetched. In the time interval before the exception
raising, the CPU executes line 6, which corresponds to the
second instruction of the intentional RAW hazard. Now, if the
address x2 and the address x4 (i.e. the content of x2 that
we are trying to discover) have the same higher bits they
point to the same cache line, thus triggering the pipeline stall
delaying the execution of the snippet. Instead, if x2 and x4
have different higher bits values, the execution will be faster.
After the attacker discovered the higher bits stored in x2, it
will use a trial and error routine to guess the lower bits.

2) Spectre: The Spectre attack [6] has the same target of
the Orchestration Attack, i.e. try to discover the secret data
stored in an address. The difference is that in the Spectre
attack the attacker takes advantage of speculative execution
employed by modern processors instead of the cache RAW
hazards. In particular, Spectre exploits misspeculation, which

is achieved by ”training” the branch prediction mechanism
by conditioning the victim branch with an index comparison
with the size of an accessible array. Running a code where
there is a branch that is always taken will sooner or later
induce the predictor to mark the victim branch as strongly
taken. After looping through an accessible array, at the last
iteration of the loop the attacker tries to access to the protected
address. Due to the intentional misspeculation activated by
the loop, the code actually executes the read request. The
data fetched by the missprediction will be removed from the
CPU registers when the system detects the not allowed access.
However the data are kept in the cache hierarchy since all
current CPU microarchitectures do not revert the effect in the
caches due to the execution of miss-predicted instructions. So,
the attacker can deposit into the cache the secret stored in a
protected address and exploits timing information to discover
it. In particular, as in the previous case, the attacker will use
the secret (or a part of it) as a memory address and will insert
this address in the cache. After will check which addresses
are in the cache checking the cache access latency. The attack
is exemplified in the code snippet reported in Figure 2.

To elaborate on the reported code snippet, we can inspect
the sequence at lines 3-5 as the miss-speculated region. The
branch that is going to be miss-predicted is at line 2 where the
branch statement resides. As the first step, the attacker has to
run the loop many times to misdirect the branch predictor to
bias the predictor. Before the branch instruction at line 2, the
attacker uses the test data at line 1 as register x2. The address
pointed by x2 is read and stored in the cache hierarchy. After
multiple consecutive executions, blt is going to be predicted
as strongly not taken and will not jump to the end tag at
line 6. Thus the miss-speculated region is executed and the
data is stored in the cache. Now, the attacker can retrieve
the data stored in the cache using common side channel time
instructions (not depicted in the snippet). The time to access
to x5 can be used to indicate if x5 has the same MSBs of x2.

3) Rowhammer: This is an exploit that takes advantage of a
technological characteristic of DRAM memories as well as of
a well-know side effect related to these memories. The tech-
nological characteristic consists in the need for periodically
refreshing the content of all the memory cells because of the
natural discharge of the employed capacitors and in the need
for re-writing the content of the memory cells after any read
and write operation because these operations cause a discharge
of the accessed cells. The side effect of the DRAM technology
is that contiguous memory cells electrically interact between
themselves causing a charge leak. This unintended charge
transfer may cause an unwanted change of the content of
memory rows that are nearby the accessed row, but that were
not actually addressed in the original memory access, also
known as disturbance error [29]. Such disturbance error may
be exploited by an attacker to circumvent memory protection
and isolation: indeed, disturbance error may represent an un-
wanted “short-circuit” that the attacker may exploit. Extremely
frequent accesses to a DRAM row may induce faster discharge
in the capacitors belonging to the adjacent rows, which are
called the victim rows. Therefore, the content of memory rows
that should not be accessible to the attacker may be modified

4

1 mov (x1) , %x0 #read from address pointed by x1
2 mov (x2) , %x3 #read from address pointed by x2
3 c f l u s h (x1) #flushing x1
4 c f l u s h (x2) #flushing x2

Fig. 3. A code snippet representing the Rowhammer attack

by accessing memory rows that belong to the memory space
of the attacker. By exploiting this mechanism the attacker may
gain unrestricted access to the entire memory space of a system
or gain unauthorized privileges.

The code snippet reported in Figure 3 represents the basic
Rowhammer attack: we assume the case where the content of
x1 and x2 are two memory addresses mapped in different
memory rows but in the same memory bank. The code moves
values (x0 and x3) into these addresses and it then flushes
the memory locations. By iteratively accessing and flushing
(hammering) those memory lines the attacker will be able to
modify the content of the adjacent lines.

4) Flush+Reload: This attack takes advantage of the fact
that it is possible to know which operations the microprocessor
is carrying out and which data it is processing by knowing
the execution time of the instructions the microprocessor is
executing [30]. As an example, in the RSA cryptographic
algorithm sequences of square-reduce-multiply-reduce opera-
tions (dubbed SRMR-SEQs, that take a long time) indicate
a encrypted bit while sequences of square-reduce operations
(dubbed SR-SEQs, that take a shorter time) indicate a plain
text bit. The Flush+Reload attacks consists of the phases:
i) a memory line is flushed from the cache by the attacker,
ii) the attacker waits a given time to allow the victim program
to access the memory line, and iii) the attacker reloads the
memory line and he/she measures the time required to load
it. If during phase two, the victim program did not access the
previously flushed memory line, the reload operation at phase
three will take a long time due to the fact that the data should
be loaded from the main memory. At the opposite, the reload
operation will take short in case the victim program accessed
the memory line during phase two. As an example, in case
the victim program is running RSA, the wait time at phase
two may be set to the time required to execute a SR-SEQs.
If at phase three the attacker discovers that the reloaded data
come from the cache, he/she may infer that the processed data
was a chunk of plain-text, while if he/she discovers that the
data come from the memory (because the reload came before
SRMR-SEQs could be completed), the attacker may infer that
the victim program was processing a chunk of encrypted data.
More details about Flush+Reload may be found in [31].

B. Common Features of the considered Attack Models
We identified the following common aspects among the

above analysed attacks and based on these we then defined
the working principles of the proposed methodology.
Quick Repetitive Patterns: All the previously presented
attacks rely on the repetition of instruction patterns. Such
repetitions are required to be back to back. So the defender
can inspect the set instructions’ signature and decide whether
something dangerous is happening. As an example, the or-
chestration attack relies on RAW hazards that exploit the data

transaction’s latency to avoid boundary exceptions. So the
instructions belonging to the attack have to be sequentially
executed within a small time interval to prevent a segmentation
fault or a boundary trap. Similar considerations can be drawn
for Spectre. Indeed, in both attacks the access to the secret
content must be followed by transient instructions. In case of
an Orchestration Attack, the transient instructions are the ones
that are executed by the induced RAW hazard; in case of a
Spectre Attack, the transient instructions are the ones executed
speculatively to avoid trapping before fetch.
Critical Instructions: Although different implementations of
the same attack may exist there are specific instructions that
are essential for the attacker to find the protected data. Such
key instructions cannot be replaced. Therefore, these are the
instructions that any attack implementation must contain (and
execute in a specific order) to actually carry out the attack
itself; in other words, they represent a attack signature (that
a security checker may exploit to identify the attack). As
an example, the code snippet in Figure 2 reports the critical
instructions for the Spectre attack: additional instructions to
obfuscate the attack or to output intermediate data may be
added, but the critical instructions must be present in the attack
in that specific order.
Register Patterns: In order for an instruction sequence to be
considered as suspicious it is not sufficient that critical in-
structions are included in the sequence. Indeed, it is necessary
that the instructions in the sequence are arranged in specific
patterns in terms of the executed instructions themselves but
also in terms of the involved registers in order the sequence
to be an effective attack. As an example, let consider the code
snippet in Figure 1: the fact that the source and destination
registers of the addi instruction at line 3 are the same (x2
in the specific case) and that the very same register is used
as the source register of the sw instruction at the subsequent
line, as well as the fact that the destination register of the lw
instruction at line 5 (x4 in the specific case) is the same as
the source register of subsequent lw instruction makes this
code snippet an Orchestration attack. On the other hand, if
the instruction sequence would have been the same but, for
example, the addi would have wrote data in xu but the
subsequent sw would have read data from x3, the code snippet
would not have represented an Orchestration attack.

C. Count-Min Sketch
A count–min sketch (CMS) is a probabilistic data structure

used to estimate the occurrence frequencies of a stream of
events belonging to different types [18]. CMSs use hash
functions to map events to frequencies, but unlike hash tables,
they use only sub-linear space, at the cost of overcounting
some events due to collisions. The goal of a CMS is to receive
a stream of events, one at a time, and to estimate the frequency
of the different types of events in the stream. At any time, a
CMS can be queried for the frequency of a particular event
type x from a universe of event types U . The CMS will return
an estimate of this frequency that is within a certain distance
from the exact frequency, with a certain probability.

A CMS is generally composed of k arrays each with
m counters which are initialized to zero. Moreover, a hash

5

function is associated to each of the k arrays. This means that a
CMS has a constant size regardless of the number of elements
in the sets it measures. A given element x is associated to k
counters, one per array; in particular, for each specific array i,
the counter to which x is associated is identified by the value of
the hash function hi(x) (being hi the hash function associated
to the itharray). In other words, for each array of counters in
a CMS, the output value of the hash function associated to the
array is used as an address to identify the right counter to be
accessed. It is worth mentioning that, for the sake of spatial
efficiency, more than one element may be associated with the
same counter. CMSs support two operations: Update(x)
and Estimate(x). The Update(x) operation accesses
all the counters associated with x and increments them. The
Estimate(x) operation provides the CMS estimation of the
frequency of x. Such estimation is calculated by reading the k
counters associated with x and returning the minimum value.
Therefore, by construction, the CMS estimation is always
equal to or larger than the real frequency of x. The equality
occurs when at least one of the k counters associated with x is
not associated with other elements than x. Otherwise, if for any
given counter ki associated with x, at least another element
y exist such that y is also associated with ki (the so-called
hash collision), the estimate will be larger than the actual
number of times that x has appeared. In other words, this
means that a CMS can either correctly predict (true positive
and true negative conditions) or raise false alarms (false
positive condition). On the other hand, it is impossible by
construction that a CMS falls into a false negative condition.
It is worth noting that the larger k and m (and thus, the
larger the employed memory) the smaller the probability of
overestimating when querying the CMS.

III. THE PROPOSED SECURITY SOLUTION

We propose a novel approach to detect and signal the oc-
currence of microarchitectural side channel attacks (MSCAs)
into microprocessor-based embedded systems. The proposed
solution does not require any modification to the micropro-
cessor under protection. Moreover, since it works directly at
the circuit-level, the proposed solution does not need either
a multicore architecture or multithreading support from the
operating system (like several solutions based on machine
learning do). Therefore, we argue that our solution may be
suitable both for high performance computing and for low-end
embedded systems. Finally, we point out that the management
of the warning signal produced after the detection of an attack
does not fall into the scope of this work.

Our solution (depicted in Figure 4) relies on the insertion
of a Security Checker (SC) on the instruction bus, between
the instruction memory and the microprocessor. Therefore, the
SC is able to observe all the fetching activity performed by
the microprocessor. Solely based on the observation of the
fetched instructions and of the frequency with which they
are fetched the SC determines whether an attack is going
on or not. In other words, the proposed SC raises an alarm
as soon as it recognizes the critical instructions composing
the signature of an attack among the fetched instructions.

Fig. 4. The architecture of the secured system including the proposed checker.

On the other hand, no instruction execution is performed by
the SC. More in details, the SC module works on a time-
window base: within a time window (whose duration can be
programmed by the user) the SC observes and keeps track of
all the instructions fetched by the microprocessor. Moreover,
thanks to a Count-Min Sketch, the SC is able to estimate the
occurrence frequency of a set of instruction sequences. When
the programmed time-window expires the checker analyses the
previously recorded fetching activity and compares it with a set
of attack models that have been previously programmed by the
user1. As it will be presented in the next subsection, an attack
model is described within the proposed technique in terms of a
pattern of instructions that have to be fetched and a frequency
threshold; this threshold describes the minimum number of
times the pattern has to be fetched in order to be considered
suspicious. In case at least one of the MSCA attack models
matches the fetching activity, i.e., the fetched instructions are
the same as in the attack model and they have been fetched
more than the programmed threshold, a warning is signalled.
Finally, it has to be mentioned that all the data used to program
the SC, i.e., the duration of the time window and the attack
models to be checked, come from a host PC through an AXI
bus, as represented by the red arrow in Figure 4.

The proposed SC module has a very limited overhead in
terms of area occupation, power consumption and working
frequency reduction. Moreover, thanks to its programmability,
it is possible to always keep updated the list of MSCA attacks
detected by the proposed solution. Finally, please note that,
since it is placed between the core and the instruction memory,
thus solely observing the fetched instructions, the proposed
security checker can be employed irrespective of the specific
microprocessor features, e.g., out-of-order or speculative exe-
cution. In the remainder of this section we describe in details
the architecture of the SC module and we then present the
design flow that a user has to follow to properly instantiate
and configure a SC within the actual system under protection.

A. The security checker architecture

The heart of the proposed security architecture is repre-
sented by the Security Checker (SC), that, as we previously

1It is worth mentioning here that the programmed attack models come from
a previous security analysis that falls outside the scope of this work.

6

Fig. 5. The internal structure of the proposed security checker.

mentioned, works on a time-window base (a high-level repre-
sentation of the SC is depicted in Figure 5). Before running
the system (or during system reconfiguration) the SC receives
the Programming Data which are stored in the Attack Model
Description Module (AMDM). During the working time win-
dow, while the monitored microprocessor is running, the SC
reads every fetched instruction: this information is analysed by
the Checking Module (CM), which is in charge of monitoring
the patterns of fetched instructions. The CM reads the attack
models programmed by the user in the AMDM and it tries
to match them with the instructions actually fetched by the
monitored microprocessor. Whenever at least one instruction
pattern matching is found the CM updates the Count-Min
Sketch Module (CMSM) to log the occurrence frequencies of
the matched instruction patterns. When a timer within the
AMDM expires (the duration of this timer can be programmed
by the user), the CMSM is inspected. If suspicious instruction
patterns have been fetched with a suspiciously high frequency
(exceeding the programmed threshold) a warning is signalled.
At the end of these operations, irrespective of an attack
detection, the CMSM is reset and the next time-window starts.

By summarizing, the possible conditions of the micropro-
cessor’s fetching activity that may be verified by the checker
at the end of a time window are:

• No suspicious instruction pattern has been fetched, thus,
no warning is signalled,

• At least a suspicious instruction pattern has been fetched
but none exceeds the programmed threshold, thus again,
no warning is signalled, and

• At least a suspicious instruction pattern has been fetched
and at least one of them exceeds the programmed thresh-
old, thus a warning is signalled.

In the remainder of this subsection we describe in details the
structure and functioning of the modules composing the SC.

1) The Attack Model Description Module architecture: The
Attack Model Description Module (AMDM) is the brain of the
SC since it is in charge of storing the attack description models
specified by the user. The AMDM is depicted in Figure 6: it

Fig. 6. The architecture of the Attack Model Description Module.

is a table containing the description of the attack models the
user wants to take into account plus a programmable timer. It
is worth mentioning that the content of the attack description
table (which is actually a memory) and the duration of the
timer’s countdown are the sole components of the proposed
architecture that need to be programmed by the user (through
an AXI bus connected to a host PC, as previously mentioned).

The timer determines the duration of the time window
during which the fetching activity of the microprocessor is
monitored. When the timer expires, the CM is triggered. More-
over, the timer is in charge of switching the operating mode
of the CMSM between Update and Estimate through
the u/e signal. While the time window countdown is on,
u/e keeps the CMSM into Update mode, so that it can
monitor the fetched instruction sequences; when the timer
expires and the CM is triggered, u/e switches the CMSM
into the Estimate mode, so that it can interact with the
CM. When the CM ends its activity, the timer is reset so that
a new countdown can start and the CMSM is again switched
into the Update mode.

The main component of the AMDM is the table (a memory)
where the attack description data programmed by the user are
stored. This table stores the attack patterns which represent
signatures of the attacks the user wants to keep into account.
In our model an attack pattern is composed of a pattern ID and
a set of prototype instructions characteristic of the attack itself.
In turn, a prototype instruction is described by an opcode, a
set of labels that represent the destination and source registers
and a frequency threshold. As an example, let us consider the
following prototype instruction:

addi x x - 10

Where addi is, of course, the opcode, the first x is the
label for the destination register, the second x is the label
for the first source register, the - means that no second
source register is expected and 10 is an example frequency.
This example prototype instruction allows us to specify that
suspicious instructions are addi with the same register as
destination and first source, without second source register and
executed at least ten times within a single time window. On the

7

TABLE I
ATTACK MODEL DESCRIPTION FOR THE ORCH. AND SPECTRE ATTACKS

Pattern Opcode Dest Source1 Source2 FreqThr

1

addi A A -

10sw B A -
lw D C -
lw E D -

2

ld A B -

8
blt A C
sll D A Y
add E F D
ld G E -

other hand, addi instructions having different destination and
source registers, specifying also the second source register or
being executed less than ten times within a single time window
would not be considered as suspicious. It should be noted
that an attack pattern keeps into account only the instructions
that are actually of interest for the attack itself and the order
in which they have to be executed, leaving out all other
instructions. In this way, provided the availability of an attack
pattern, our checker is able to detect the activation of the attack
irrespective of possible attack camouflaging techniques that
the attacker could deploy, i.e., adding harmless instructions
between attack instructions.

As a complete and real attack model description, let us refer
to Table I, where both the previously discussed Orchestration
attack (first block of rows) and Spectre attack (second block
of rows) are modelled. Referring to the Orchestration attack
reported in Figure 1, the attack description states that the pat-
tern (whose instructions have all ID 1 and frequency threshold
10) is composed of an addi (instruction 1) having the same
register as both destination and source register; then, the result
of the addi is stored through an sw (instruction 2); finally two
consecutive lw instructions are executed (instructions 3 and
4) where the source register of the second lw is actually the
same register as the destination register of the first lw2. To be
considered suspicious, these instructions have to be executed
in the specified order (either one after the other or interleaved
with other non suspicious instructions) at least ten times each
in the same time window. Similar considerations can be drawn
for Spectre described in the remaining rows of the table.

2) The Count Min Sketch Module architecture: The Count-
Min Sketch Module (CMSM) is the eye of the SC, since it is
in charge of monitoring the activity of the microprocessor.
The architecture of the CMSM is depicted in Figure 7.
As it has been previously mentioned, the CMSM has two
modes of operations: Update and Estimate. The CMSM
is in Update mode during the time window, while it is in
Estimate mode when the time window expires and the CM
is triggered. The working mode of the CMSM is determined
by the update/estimate input signal which is indeed
generated by the same timer that triggers the CM.

The core of the CMSM are k hash functions each used to
generate the addresses to access the corresponding k array of
counters. Each array features m counters. When in Update

2Note that the two initial li instructions in the code snippet in Figure 1 are
merely initialization instructions and they are not iteratively executed during
the attack. For this reason we are not considering them in the attack model.

Fig. 7. The architecture of the Count-Min Sketch module.

Fig. 8. The architecture of the Checking module.

mode the CMSM receives the instructions fetched by the
microprocessor and (after calculating the counter addresses
through the hash functions) the corresponding counters are
incremented. In other words, when in Update the CMSM
monitors the fetching activity of the microprocessor and keeps
track of the occurring frequency of each instruction. On the
other hand, when in Estimate mode, the CMSM does not
monitor the fetching activity of the microprocessor any more
but it replies to frequency requests coming from the CM. In
this functioning mode the CMSM receives an instruction from
the CM, it calculates the k hash values associated with the in-
struction and reads the corresponding counters’ values. These
k values are analysed by the CMS Analyzer that identifies the
minimum value and returns it to the CM. In other words, when
in Estimate mode the CMSM is used by the CM to estimate
the occurring frequency of previously identified suspicious
instructions. Finally, when the CM ends its analysis, before
returning in Update mode the CMSM is reset so that all the
counters restart from zero in the subsequent monitoring time
window. It is here worth mentioning that when the CMSM
is in the Update mode it works transparently in parallel
with the protected core, without interfering with the fetching
activity. When the CMSM is in the Estimate mode it
completes its activity within one clock cycle; therefore it does
not interfere either with the protected microprocessor or with
the subsequent Update phase. Indeed, as it will be discussed
in the experimental section, the proposed security checker has
no impact on system performance.

8

3) The Checking Module architecture: The Checking Mod-
ule (CM) is the arm of the SC since it is in charge of
detecting suspicious activity of the microprocessor and, if
necessary, raising warnings. The architecture of the CM is
depicted in Figure 8. It is composed of: the Activity Monitor
Module (AMM), the Pattern Matching Module (PMM) and
the Frequency Analysis Module (FAM). The AMM is always
active to receive the instructions fetched by the microprocessor
and to translate them in the corresponding prototype instruc-
tions (as described above). When a time window expires,
the PMM is triggered: it loads the fetching activity of the
microprocessor during the last time window from the AMM
and the programmed attack models from the AMDM. Now
the PMM can check whether the patterns of the attack models
programmed by the user occurred in the fetching activity
that the microprocessor performed in the last time window.
In case at least one instructions pattern is matched, the
FAM is activated to check whether the suspicious instructions
identified by the PMM have been executed more than the
specified frequency threshold. Therefore, the FAM interacts
with the CMSM by asking to estimate the frequency of a set
of instructions (the ones identified by the PMM) and by getting
back such frequency values. In case the frequency values of
all the instruction prototypes of at least one of the patterns
matched by the PMM are detected to exceed the threshold by
the FAM, the FAM itself raises a warning. After this check,
whether the warning has been raised or not, the FAM resets
both the trigger within the AMDM and the CMSM so that a
new monitoring time window can start.

B. The security checker design flow

It is worth pointing out here that, by relying on the Count-
min Sketch data structure our solution ensures a 100% de-
tection probability of the programmed attacks (no false nega-
tives). On the other hand, a theoretically possible vulnerability
of our approach is related to a Denial-of-Service attack. More
in details, an attacker could enforce the proposed checker to
signal non existing attack occurrences (false positives), thus
making the system continuously fail. Indeed, the attacker could
make the CPU execute an instruction sequence belonging to
an attack for at least once, thus not exceeding the frequency
threshold but still making the CM triggering the CMSM. Then,
the attacker could forge specific instruction sequences that
cause hash collisions inducing the CMSM to increase the
counters associated with the real attack sequence. If such hash
collisions can be induced a number of times sufficient to cause
a threshold violation the CMSM will signal a false positive.

Fortunately, given a specific setting of the checker in terms
of number of hash functions k and number of counters per hash
function m, the worst case false positive rate can be calculated
at design time. More in details, provided the number I of
instructions executed within a time window and the threshold
t representing the number of times an instruction pattern has to
be executed within a time window to be considered suspicious
it is possible to calculate the values for k and m so to get a
desired worst case false positive probability FPp. In other
words, it is always possible to identify values for k and m

0
20 1000

20

40

900

N
u

m
b

e
r

o
f

c
o

u
n

te
rs

 (
m

)

60

40

80

800

100

Threshold (t)
Instruction count (I)

60 700
80 600

500100

Fig. 9. Correlation among m, I and t.

to find an acceptable trade-off between security and cost.
Indeed, the larger k and m the smaller the false positive
rate (thus making denial of service attacks hard) but also the
larger the area occupation. I could be chosen as the minimum
amount of instructions the attacker needs to execute in order to
effectively carry out the attack. By having in mind the working
frequency of the considered microprocessor and the calculated
I , the designer can also identify the best duration for the time
window. Finally, the threshold t should be identified as the
minimum number of times the attack code should be executed
in order for the attack to be successful. On the other hand, we
point out that in the current work I and t are considered as
parameters coming from the security analyst that also provided
the attack models fed in the proposed checker.

For our design flow we borrow the point query approxi-
mation presented in [18]. The probability that the difference
between a value estimated by a CMS and the corresponding
expected value is larger than (e · I)/m is always smaller than
FPp = e−k. In our case the maximum error for the CMS not
to cause a false positive is t, therefore:

e · I
m

= t (1)

and, by inverting the formula:

m =
e · I
t

(2)

Therefore it is possible to calculate the value of m as a
function of I and t. Figure 9 reports the values of m for
I from 500 up to 1000 and t ranging from 20 up to 100.

Furthermore, provided that the value of m has been set for
the worst case value, the false positive probability would be
FPp = e−k. We can invert this formula and calculate:

k = ⌈ln 1

FPp
⌉ (3)

Therefore, it is possible to calculate the value of k as a function
of the desired worst case false positive probability. Figure 10
correlates the values of k and those of FPp. It is possible to

9

1 2 3 4 5 6

Number of hash functions (k)

10-3

10-2

10-1

100
F

a
ls

e
 p

o
s
it
iv

e
 p

ro
b
a
b
ili

ty
 (

F
P

p
)

Fig. 10. Correlation between k and FPp

notice that for k = 4 the false positive probability already falls
below 10−1 and for k = 6 below 10−2. It has to be pointed
out that these values are worst case calculations that can be
used by the designer in the very first phases of the design flow
for a preliminary dimensioning of the proposed checker; the
real FPp values will be discussed in the next section.

IV. EXPERIMENTAL RESULTS

A. Experimental setup

For our experimental campaign we used the RSD core [19]
which is a 32-bit, speculative out-of-order, super-scalar, two-
fetch front-end and five-issue back-end pipelines RISC-V core
with 16KByte Instruction cache developed at the University
of Tokyo3. The synthesis and the implementation of the
considered microprocessor have been performed on Vivado
targeting a Virtex7 xc7z020clg484-1 FPGA. The obtained
core counted 18334 LUTs, 10885 FFs, 4512 LUTRAM cells
and 17 BRAM cells and worked at 57MHz with an estimated
power consumption of about 0.926W.

In order to assess both effectiveness and efficiency of our
solution we considered several implementations of the checker.
In particular, we tried the number of hash functions k ranging
from 1 up to 6 and for every value of k we considered values
32, 64 and 128 for m (the number of counters associated with
each hash function). I has been fixed to 1000, t to 100 and
the size of the counters has been fixed to 8 bits.

We considered three versions of the Spectre, Orchestra-
tion, Rowhammer and Flush+Reload attacks, respectively, as
case studies; Table II reports the total number of executed
instructions, and the detail about the number of executed load,
store, branches and Finally, the same information is reported in
Table III for the four software benchmark that we considered
as case the study programs being executed under attack.

3It is worth mentioning that in this paper we considered the RSD out-
of-order core since it represents a quite complex and large case study; on
the other hand, our approach could be applied to smaller and simpler in-order
cores since it is independent of the execution order of the fetched instructions.

TABLE II
THE CONSIDERED ATTACKS

Attack Instr. Loads Stores Branches Jumps
OrcV1 143363 32345 32004 18495 3552
OrcV2 141705 33057 36000 17010 3272
OrcV3 141537 33905 39723 15894 3052
SpectreV1 139454 72 46213 46195 98
SpectreV2 139452 72 46286 46196 90
SpectreV3 139195 80 46127 46075 100
RowHammerV1 126933 42962 42962 21481 3
RowHammerV2 128565 42838 42838 21419 3
RowHammerV3 128193 42714 42714 21357 3
Flush+ReloadV1 283673 39941 58991 98870 6711
Flush+ReloadV2 283732 39943 58993 98896 6711
Flush+ReloadV3 285365 39944 58994 98875 6711

TABLE III
THE CONSIDERED BENCHMARKS PROGRAMS

Benchmark Instr. Loads Stores Branches Jumps
Coremark 412286 75002 25518 81799 32209
Rsort 297714 37900 28682 10787 4617
Towers 9638 2449 2412 303 912
Median 7388 1995 402 2075 665

B. Effectiveness analysis

As a first experiment we aimed at assessing the capability
of the proposed checker in detecting the occurrence of the
considered attacks. For each of the considered checker’s
configurations and for each of the attacks we ran 100 random
simulations of each of the four benchmark programs where an
attack was activated. In each simulation we randomly chose
the attack starting time and the program input. The result of
this first set of experiments has been that independent of the
specific configuration, the proposed checker is always able to
detect the activation of an attack as soon as the timer within
the Attack Model Description Module triggers the activation
of the checker and to properly raise an alarm. This result
should not surprise if we take into account that, as previously
discussed, a CMS may either correctly predict (true positive
and true negative) or raise false alarms (false positive), while it
cannot fall into a false negative condition by construction. The
average number of instructions that the attacker program was
able to execute before being detected was 517 for Spectre, 527
for the Orchestration attack, 901 for Rowhammer and 999 for
Flush+Reload, which is about 0.3% of the instruction count for
Orchestration, Spectre and Flush+Reload and about 0.7% for
Rowhammer (see the first column of Table II). Therefore, our
solution is not only very effective in detecting the activation
of an attack, but also very fast.

A second set of experiments aimed at measuring the amount
of false positives raised by the checker in the various consid-
ered configurations. Indeed, as we have previously discussed,
an attacker could aim at deploying a denial-of-service attack
by inducing the checker at raising a huge number of false
alarms, thus preventing the system to carry out its legitimate
tasks. For this analysis we performed a set of experiments
similar to the previous one but instead of deploying the full
attacks, i.e., executing the attack code more than t times, we
executed it only a few times (less than the programmed thresh-

10

TABLE IV
SYNTHESIS RESULTS: RESOURCE OCCUPATION, POWER CONSUMPTION AND WORKING FREQUENCY

#Checker configuration #LUTs #LUTRAMs #FFs #BRAMs Power Consumption Working Frequency
0 18334 4512 10885 17 0.926 W 57 MHz
1-32 18980 (+3.52%) 4520 (+0.18%) 11518 (+5.82%) 17 0.960 W (+3.67%) 57 MHz
1-64 18981 (+3.53%) 4520 (+0.18%) 11518 (+5.82%) 17 0.960 W (+3.67%) 57 MHz
1-128 18975 (+3.50%) 4512 11510 (+5.74%) 17.5 (+2.94%) 0.960 W (+3.67%) 57 MHz
2-32 19024 (+3.76%) 4528 (+0.35%) 11535 (+5.97%) 17 0.961 W (+3.78%) 57 MHz
2-64 19034 (+3.82%) 4528 (+0.35%) 11535 (+5.97%) 17 0.961 W (+3.78%) 57 MHz
2-128 19024 (+3.76%) 4512 11519 (+5.82%) 18 (+5.88%) 0.964 W (+4.10%) 57 MHz
3-32 19058 (+3.95%) 4536 (+0.53%) 11552 (+6.13%) 17 0.962 W (+3.89%) 57 MHz
3-64 19063 (+3.98%) 4536 (+0.53%) 11552 (+6.13%) 17 0.962 W (+3.89%) 57 MHz
3-128 19049 (+3.90%) 4512 11528 (+5.91%) 18.5 (+8.82%) 0.965 W (+4.21%) 57 MHz
4-32 19082 (+4.08%) 4544 (+0.71%) 11569 (+6.28%) 17 0.962 W (+3.89%) 57 MHz
4-64 19092 (+4.13%) 4544 (+0.71%) 11569 (+6.28%) 17 0.962 W (+3.89%) 57 MHz
4-128 19066 (+3.99%) 4512 11537 (+5.99%) 19 (+11.76%) 0.967 W (+4.43%) 57 MHz
5-32 19114 (+4.25%) 4552 (+0.89%) 11586 (+6.44%) 17 0.963 W (+4.00%) 57 MHz
5-64 19124 (+4.31%) 4552 (+0.89%) 11586 (+6.44%) 17 0.963 W (+4.00%) 57 MHz
5-128 19090 (+4.12%) 4512 11546 (+6.07%) 19.5 (+14.71%) 0.969 W (+4.64%) 57 MHz
6-32 19198 (+4.71%) 4566 (+1.20%) 11591 (+6.49%) 17 0.965 W (+4.21%) 57 MHz
6-64 19208 (+4.77%) 4566 (+1.20%) 11591 (+6.49%) 17 0.965 W (+4.21%) 57 MHz
6-128 19116 (+4.27%) 4512 11555 (+6.16%) 20 (+17.65%) 0.971 W (+4.86%) 57 MHz

(1, 3
2)

(1, 6
4)

(1, 1
28)

(2, 3
2)

(2, 6
4)

(2, 1
28)

(3, 3
2)

(3, 6
4)

(3, 1
28)

(4, 3
2)

Security Checker Configuration

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
v
g
.
F

a
ls

e
 P

o
s
it
iv

e
 P

ro
b
a
b
ili

ty

k = 1

k = 2

k = 3

k = 4

rsort

coremark

towers

median

Fig. 11. Average False Positive Probability (FPp) when attacking several
configurations of the SC with the Orchestration Attack

old). In this way we emulated an attacker that wakes up the
Checking Module (by executing at least once the attack code)
and that then tries to cheat on the Count-Min Sketch Module
by causing hash collisions. The resulting false positive rates for
the considered checker’s configurations when considering the
Orchestration, Spectre, Rowhammer and Flush+Reload attacks
are shown in Figures 11, 12, 13 and 14, respectively. As it
can be observed from the shown figures the false positive
rate, except for k = 1 and k = 2, is always extremely low
and in most cases it is zero4. More important, such real false
positive rates are always below the worst case values (that
are represented in the figures by the black horizontal lines5)
calculated by following the design procedure described before,
thus also validating that design flow. As a final note, we point

4Note that SC configuration from <4, 64> up to <6, 128>are not reported
in the figures for the sake of space and readability considering that in all
benchmarks and checker’s configurations the false positive rate is 0%.

5Note that labels referring to k = 5 and k = 6 are not reported on the
lines in the graphs for the sake of space and readability.

(1, 3
2)

(1, 6
4)

(1, 1
28)

(2, 3
2)

(2, 6
4)

(2, 1
28)

(3, 3
2)

(3, 6
4)

(3, 1
28)

(4, 3
2)

Security Checker Configuration

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
v
g
.
F

a
ls

e
 P

o
s
it
iv

e
 P

ro
b
a
b
ili

ty

k = 1

k = 2

k = 3

k = 4

rsort

coremark

towers

median

Fig. 12. Average False Positive Probability (FPp) when attacking several
configurations of the SC with the Spectre Attack

out that the checker produces an answer (being it a warning
or not) within one clock cycle, therefore it does not interfere
with the protected microprocessor activity.

C. Efficiency analysis

In order to measure the overhead introduced by the proposed
checker we synthesized the unprotected core and the same core
protected with the previously described checker configurations
on a Virtex7 FPGA. Table IV reports the results of these
experiments. For every configuration the table reports the
used LUTs, LUTRAMs, FFs and BRAMs, the total power
consumption and the working frequency. The first row of the
table reports these values for the unprotected core and then
the remaining rows report the absolute values and the increase
w.r.t. the unprotected core for each of the considered <k, m>
checker’s configuration tuples. As it can be observed from the
table, the LUTs overhead ranges from about 3.50% and 4.71%
and a slightly larger overhead can be observed in terms of FFs.

11

(1, 3
2)

(1, 6
4)

(1, 1
28)

(2, 3
2)

(2, 6
4)

(2, 1
28)

(3, 3
2)

(3, 6
4)

(3, 1
28)

(4, 3
2)

Security Checker Configuration

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
A

v
g
.
F

a
ls

e
 P

o
s
it
iv

e
 P

ro
b
a

b
ili

ty
k = 1

k = 2

k = 3

k = 4

rsort

coremark

towers

median

Fig. 13. Average False Positive Probability (FPp) when attacking several
configurations of the SC with the Rowhammer Attack

(1, 3
2)

(1, 6
4)

(1, 1
28)

(2, 3
2)

(2, 6
4)

(2, 1
28)

(3, 3
2)

(3, 6
4)

(3, 1
28)

(4, 3
2)

Security Checker Configuration

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
v
g
.
F

a
ls

e
 P

o
s
it
iv

e
 P

ro
b
a
b
ili

ty

k = 1

k = 2

k = 3

k = 4

rsort

coremark

towers

median

Fig. 14. Average False Positive Probability (FPp) when attacking several
configurations of the SC with the Flush+Reload Attack

It is to be noted that the reported overhead values do not take
into account instruction and data memories. Indeed, in the
scenario where the protected core is integrated into a system-
on-chip with memory cores, the introduced overhead would
of course be much smaller. The power consumption increase
(based on Vivado estimations) ranges from 3.67% up to 4.86%,
which is totally acceptable if we consider that the checker is
able to protect the microprocessor from microarchitectural and
denial-of-service attacks exposing a configurable small amount
of false positives. Finally, no working frequency reduction is
caused by the proposed checker.

The <3, 64> checker configuration could be considered
as a reference for the target microprocessor, attacks and
benchmark programs, since it exposes approximately 0% false
positive rate for both orchestration and spectre attacks. This
configuration introduces about 10% area overhead (LUTs plus
FFs plus LUTRAMs), employs one additional BRAM w.r.t.
the unprotected core and adds about 4% power consumption

TABLE V
COMPARISON BETWEEN OUR SOLUTION AND RECENT WORKS

Our [32] [33] [34] [35]
Detection 100% 99% 100% 100% 100%
Area 10% NA NA 25% 8%
Power 4% NA 28% 41% NA
Slowndown 0% 21% 1% 15% 4%

with no performance overhead. We also analysed the overhead
of the proposed security solution in a 7nm library ASIC
implementation working at 200 MHz: in this case the area
overhead on the synthesized circuit has been about 18%
with about 23% power consumption overhead and, again,
no working frequency reduction. Of course these overhead
values may be further reduced by finely optimizing the ASIC
implementation (out of the scope of this paper).

D. Comparison

Finally we compared the the best configuration for the
proposed solution, i.e., the one having a <3, 64> checker
configuration, with four recent related works, namely InvisiS-
pec [32], Jintide [33], Trust Guard [34] and Cyclone [35].
The summary of this analysis is reported in Table V, where
the detection capability is reported for each solution as well
as the area and power overhead and the introduced slowdown.
Area and power overhead for InvisiSpec and power overhead
for Cyclone are not reported because the authors conducted
only a GEM5 simulation without providing any hardware
implementation; on the other hand, the area overhead for
Jintide is not provided because this is a system-level solution
that requires a dedicated machine to be run, i.e., it is not an
architecture-level solution.

From the numbers in the table it clearly appears that all the
considered solutions are actually able to detect about 100% of
the attacks but with significantly larger overheads that the ones
introduced by the methodology proposed in this paper either in
one or even in more than one of the three considered metrics.
Only Cyclone introduces a slightly smaller area overhead w.r.t.
our solution. Indeed, our solutions demonstrated to be the most
lightweight in terms of area and power consumption increase
and system slowdown while having 100% attack detection.

V. SECURITY ANALYSIS

The checking module presented in this paper is able to
detect the activation of every microarchitectural attack having
a specific fingerprint in terms of a recognizable pattern of
instructions that has to be executed n times in order for the
attack to be effective. A corner case that the checker is also
able to manage is that of attacks where the instructions pattern
has to be executed just once (it is sufficient to set the threshold
t = 1). On the other hand, the proposed checker is not able
to detect attacks working below the microarchitectural level,
e.g., gate-level, RTL-level.

We want also to point out that, being our proposal a detec-
tion technique, our checker is able to signal the occurrence of
an attack but it is not able either to prevent it or to react/recover

12

from its effects. We envision two possible scenarios, namely
a, stealing one and a interference one, based on the goal
of the attacker and the effect of the deployed attack on the
system. In the stealing scenario the attacker aims at stealing
a secret information, e.g., an encryption/decryption key, from
the system. In the interference scenario the attacker aims at
either halting the functioning of the system or at modifying its
behaviour, e.g., gaining unauthorized privileges or executing
unexpected programs. In both scenarios, after our checker
raises a warning and before a recovery activity is carried out,
the attacker has a not null time in which he/she can exploit
the effect of the attack. To restore the security of the system it
could be necessary to change the encryption/decryption keys,
in the case of the stealing scenario or to restart the system
in the case of the interference scenario. Again, we point out
that the reaction activity carried out after attack detection falls
outside of the scope of this paper.

It should also be noted that our approach may be prone
to Denial-of-Service attacks. Indeed, an attacker that wants
to make unavailable the CPU protected by our method could
enforce the proposed checker to signal non existing attack
occurrences by exploiting the not null false positive rate of
the adopted Count-Min Sketch architecture. However, as it has
been discussed in the paper, the adopted configuration of the
security checker can be defined based on the required worst
case false positive rate, thus allowing to dramatically reduce
the risk of Denial-of-Service attacks. Finally, if such denial-
of-service attack represents a particularly severe concern, the
designer can select one of the larger checker’s configurations
that bring the false positive rate to zero.

Finally, it should be noticed that the programming data
stored in the AMDM is vital for the correct functioning of
the proposed solution. If the attacker is able to modify such
data, the entire protection mechanism would fail. Nevertheless,
since our security proposal focuses on MSCAs (that are able
at stealing secret information from the system but not at
altering/modifying its functioning/configuration) we argue that
such programming data tampering attack falls outside the
scope of the paper.

VI. RELATED WORK

Several countermeasures against microarchitectural attacks
have been proposed in the last few years [7].

Since most microarchitectural attacks are based on the
measurement of the variation of the execution time related
to the processed data a family of solutions, i.e., Constant-
time techniques, rely on making execution time constant
via bitslicing [8], [36] or vector permutation [9]. Although
being effective these methods suffer from being extremely
hard-to-implement and platform-dependent. Moreover, they
significantly slowdown the system.

Another family of countermeasures relies on compile-time
modifications of the control-flow of the program to be pro-
tected. In [10] a modified compiler has been proposed: it
is able to automatically identify and remove those control
flows that are highly dependent on the secret information.
The method proposed in [11] generates at compile-time a

number of equivalent but different execution paths that are
then randomly chosen at runtime. These solutions have limited
applicability and they significantly slow down execution.

A number of operating system-level solutions have also
been proposed. Osvik et al. in [37] suggested to hide timing
information by adding random delays or normalizing all
timings to a fixed value, while in [12] an operating system-
level countermeasure based on preventing cache sharing is
presented. Finally, in [13], [14] periodic cache flushing is
proposed to remove time variations that could be exploited by
the attacker. Although being effective, again, all these solutions
come at the cost of a high time overhead.

Several architecture-level solutions have been proposed
where cache coloring is exploited. More in details, cache is
divided into regions and data are mapped into a cache region
or another depending on the specific application. Percival [38]
suggested to avoid cache sharing or selectively evicting cache
based on thread. Page in [39] proposed cache partitioning
to block cache-based side- channel attacks while Wang and
Lee in [40] proposed the Partition Locked cache (PLcache)
to dynamically lock cache lines. Finally, Yan ed al. proposed
a strategy to defend against hardware speculation attacks in
multiprocessors by making speculation invisible in the data
cache hierarchy [41]. All these techniques either limited or
modified the use of caches, thus again introducing significant
execution time overhead.

Finally, a large number of techniques that exploit machine
learning, e.g., neural networks [42] and decision trees [43],
[44], and the observation of hardware performance counters
to detect microarchitectural attacks has been proposed in the
very last years [45]. All the techniques proposed in these
works achieve very high detection accuracy but they all work
at the software-level; indeed, they rely on a specific process to
execute the ML-based detection engine. Therefore, they either
require multithreading support from the operating system or
an additional (trusted and not attacked core) dedicated to the
execution of the detection engine. As a consequence, these
techniques can be applied to high performance computing
systems, to high-end servers but they are not suitable for
low-end systems, e.g., smart cards or automotive embedded
systems, where a single core is available and the operating
system is either not available or extremely simple.

VII. CONCLUSIONS

We have presented a methodology based on Count-Min
Sketches for protecting microprocessor-based embedded sys-
tems against microarchitectural attacks. We add a security
checking module in charge of observing the fetched instruc-
tions and of identifying and signaling possible suspicious
activity. All this is carried out without interfering with the
nominal activity of the microprocessor and without modifying
it. The proposed approach can be programmed at design-time
and then reprogrammed after deployment to always keep
updated the list of the attacks. We integrated the proposed
approach in a RSD RISC-V core and we proved its effective-
ness in detecting the Spectre, Orchestration, Rowhammer and
Flush+Reload attacks. In its best configuration, the proposed

13

approach has been able to detect 100% of the attacks within a
very short time window, with no false alarms and introducing
about 10% area overhead, about 4% power increase and
without working frequency reduction.

REFERENCES

[1] L. Wang and S. Köse, “When hardware security moves to the edge and
fog,” in 2018 IEEE 23rd International Conference on Digital Signal
Processing (DSP), 2018, pp. 1–5.

[2] S. R. Chhetri, S. Faezi, N. Rashid, and M. A. Al Faruque, “Manufac-
turing supply chain and product lifecycle security in the era of industry
4.0,” Journal of Hardware and Systems Security, vol. 2, no. 1, pp. 51–68,
2018.

[3] D. K. Oka, “Securing the automotive critical infrastructure,” in Cyber-
Physical Security. Springer, 2017, pp. 267–281.

[4] R. Spreitzer, V. Moonsamy, T. Korak, and S. Mangard, “Systematic
classification of side-channel attacks: A case study for mobile devices,”
IEEE Communications Surveys Tutorials, vol. 20, no. 1, pp. 465–488,
2018.

[5] A. P. Fournaris, L. Pocero Fraile, and O. Koufopavlou, “Exploiting
hardware vulnerabilities to attack embedded system devices: a survey
of potent microarchitectural attacks,” Electronics, vol. 6, no. 3, p. 52,
2017.

[6] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas,
M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz,
and Y. Yarom. (2018, Dec.) Spectre attacks: Exploiting speculative
execution. [Online]. Available: https://spectreattack.com/spectre.pdf

[7] Y. Lyu and P. Mishra, “A survey of side-channel attacks on caches and
countermeasures,” Journal of Hardware and Systems Security, vol. 2,
no. 1, pp. 33–50, 2018.

[8] E. Käsper and P. Schwabe, “Faster and timing-attack resistant aes-gcm,”
in International Workshop on Cryptographic Hardware and Embedded
Systems. Springer, 2009, pp. 1–17.

[9] M. Hamburg, “Accelerating aes with vector permute instructions,” in
International Workshop on Cryptographic Hardware and Embedded
Systems. Springer, 2009, pp. 18–32.

[10] B. Coppens, I. Verbauwhede, K. De Bosschere, and B. De Sutter,
“Practical mitigations for timing-based side-channel attacks on modern
x86 processors,” in 2009 30th IEEE Symposium on Security and Privacy.
IEEE, 2009, pp. 45–60.

[11] S. Crane, A. Homescu, S. Brunthaler, P. Larsen, and M. Franz, “Thwart-
ing cache side-channel attacks through dynamic software diversity.” in
NDSS, 2015, pp. 8–11.

[12] Z. Zhou, M. K. Reiter, and Y. Zhang, “A software approach to defeating
side channels in last-level caches,” in Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, 2016,
pp. 871–882.

[13] M. Godfrey and M. Zulkernine, “Preventing cache-based side-channel
attacks in a cloud environment,” IEEE transactions on cloud computing,
vol. 2, no. 4, pp. 395–408, 2014.

[14] Y. Zhang and M. K. Reiter, “Düppel: Retrofitting commodity operating
systems to mitigate cache side channels in the cloud,” in Proceedings
of the 2013 ACM SIGSAC conference on Computer & communications
security, 2013, pp. 827–838.

[15] T. Kim, M. Peinado, and G. Mainar-Ruiz, “{STEALTHMEM}: System-
level protection against cache-based side channel attacks in the cloud,”
in 21st {USENIX} Security Symposium ({USENIX} Security 12), 2012,
pp. 189–204.

[16] H. Raj, R. Nathuji, A. Singh, and P. England, “Resource management
for isolation enhanced cloud services,” in Proceedings of the 2009 ACM
workshop on Cloud computing security, 2009, pp. 77–84.

[17] J. Kong, O. Aciiçmez, J.-P. Seifert, and H. Zhou, “Hardware-software
integrated approaches to defend against software cache-based side
channel attacks,” in 2009 IEEE 15th international symposium on high
performance computer architecture. IEEE, 2009, pp. 393–404.

[18] G. Cormode and S. Muthukrishnan, “An improved data stream summary:
The count-min sketch and its applications,” Journal of Algorithms,
vol. 55, pp. 58–75, 04 2005.

[19] S. Mitsuno, J. Kadomoto, T. Koizumi, R. Shioya, H. Irie, and S. Sakai,
“A high-performance out-of-order soft processor without register renam-
ing,” in 2020 30th International Conference on Field-Programmable
Logic and Applications (FPL), 2020, pp. 73–78.

[20] A. Bolat, L. Cassano, P. Reviriego, O. Ergin, and M. Ottavi, “A micro-
processor protection architecture against hardware trojans in memories,”
in 2020 15th Design Technology of Integrated Systems in Nanoscale Era
(DTIS), 2020, pp. 1–6.

[21] A. Palumbo, L. Cassano, P. Reviriego, G. Bianchi, and M. Ottavi, “A
lightweight security checking module to protect microprocessors against
hardware trojan horses,” in 2021 IEEE International Symposium on
Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT),
2021.

[22] R. Spreitzer, V. Moonsamy, T. Korak, and S. Mangard, “Systematic
classification of side-channel attacks: A case study for mobile devices,”
IEEE Communications Surveys & Tutorials, vol. 20, no. 1, pp. 465–488,
2017.

[23] O. Acıiçmez, W. Schindler, and Ç. K. Koç, “Cache based remote timing
attack on the aes,” in Topics in Cryptology – CT-RSA 2007, M. Abe, Ed.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 271–286.

[24] M. Weiß, B. Heinz, and F. Stumpf, “A cache timing attack on aes in
virtualization environments,” in International Conference on Financial
Cryptography and Data Security. Springer, 2012, pp. 314–328.

[25] D. Gullasch, E. Bangerter, and S. Krenn, “Cache games–bringing access-
based cache attacks on aes to practice,” in 2011 IEEE Symposium on
Security and Privacy. IEEE, 2011, pp. 490–505.

[26] O. Aciiçmez, “Yet another microarchitectural attack: exploiting i-cache,”
in Proceedings of the 2007 ACM workshop on Computer security
architecture, 2007, pp. 11–18.

[27] O. Aciiçmez, Ç. K. Koç, and J.-P. Seifert, “On the power of simple
branch prediction analysis,” in Proceedings of the 2nd ACM symposium
on Information, computer and communications security, 2007, pp. 312–
320.

[28] M. R. Fadiheh, D. Stoffel, C. Barrett, S. Mitra, and W. Kunz. (2018,
Dec.) Processor hardware security vulnerabilities and their detection
by unique program execution checking. 1812.04975.pdf. [Online].
Available: https://arxiv.org/pdf/1812.04975.pdf

[29] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu, “Flipping bits in memory without accessing them:
An experimental study of dram disturbance errors,” in Proceeding of the
41st Annual International Symposium on Computer Architecuture, 2014,
p. 361–372.

[30] C. Shen, C. Chen, and J. Zhang, “Micro-architectural cache side-channel
attacks and countermeasures,” 12 2020.

[31] Y. Yarom and K. Falkner, “Flush+reload: a high resolution, low noise, l3
cache side-channel attack,” Cryptology ePrint Archive, Report 2013/448,
2013, https://ia.cr/2013/448.

[32] M. Yan, J. Choi, D. Skarlatos, A. Morrison, C. Fletcher, and J. Tor-
rellas, “Invisispec: Making speculative execution invisible in the cache
hierarchy,” in 2018 51st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 2018, pp. 428–441.

[33] J. Zhu, A. Luo, G. Li, B. Zhang, Y. Wang, G. Shan, Y. Li, J. Pan,
C. Deng, S. Yin, S. Wei, and L. Liu, “Jintide: Utilizing low-cost recon-
figurable external monitors to substantially enhance hardware security of
large-scale cpu clusters,” IEEE Journal of Solid-State Circuits, vol. 56,
no. 8, pp. 2585–2601, 2021.

[34] H. Zhang, S. Ghosh, J. Fix, S. Apostolakis, S. R. Beard, N. P. Nagendra,
T. Oh, and D. I. August, “Architectural support for containment-based
security,” in Proceedings of the Twenty-Fourth International Conference
on Architectural Support for Programming Languages and Operating
Systems, 2019, pp. 361–377.

[35] A. Harris, S. Wei, P. Sahu, P. Kumar, T. Austin, and M. Tiwari,
“Cyclone: Detecting contention-based cache information leaks through
cyclic interference,” 2019.

[36] M. Matsui and J. Nakajima, “On the power of bitslice implementation
on intel core2 processor,” in International Workshop on Cryptographic
Hardware and Embedded Systems. Springer, 2007, pp. 121–134.

[37] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and countermea-
sures: the case of aes,” in Cryptographers’ track at the RSA conference.
Springer, 2006, pp. 1–20.

[38] C. Percival, “Cache missing for fun and profit,” 2005.
[39] D. Page, “Partitioned cache architecture as a side-channel defence

mechanism,” 2005.
[40] Z. Wang and R. B. Lee, “New cache designs for thwarting software

cache-based side channel attacks,” in Proceedings of the 34th annual
international symposium on Computer architecture, 2007, pp. 494–505.

[41] M. Yan, J. Choi, D. Skarlatos, A. Morrison, C. Fletcher, and J. Tor-
rellas, “Invisispec: Making speculative execution invisible in the cache
hierarchy,” in 2018 51st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2018, pp. 428–441.

14

[42] M. Chiappetta, E. Savas, and C. Yilmaz, “Real time detection of
cache-based side-channel attacks using hardware performance counters,”
Applied Soft Computing, vol. 49, pp. 1162–1174, 2016.

[43] H. Wang, H. Sayadi, S. Rafatirad, A. Sasan, and H. Homayoun, “Scarf:
Detecting side-channel attacks at real-time using low-level hardware
features,” in 2020 IEEE 26th International Symposium on On-Line
Testing and Robust System Design (IOLTS), 2020, pp. 1–6.

[44] H. Wang, H. Sayadi, G. Kolhe, A. Sasan, S. Rafatirad, and H. Homay-
oun, “Phased-guard: Multi-phase machine learning framework for de-
tection and identification of zero-day microarchitectural side-channel
attacks,” in 2020 IEEE 38th International Conference on Computer
Design (ICCD), 2020, pp. 648–655.

[45] H. Wang, H. Sayadi, A. Sasan, S. Rafatirad, T. Mohsenin, and
H. Homayoun, “Comprehensive evaluation of machine learning coun-
termeasures for detecting microarchitectural side-channel attacks,” in
Proceedings of the 2020 on Great Lakes Symposium on VLSI, 2020.

Kerem Arıkan is an undergraduate Electrical and
Electronic Engineering student at TOBB Univer-
sity of Economics and Technology, Ankara, Turkey,
who is also minoring in Computer Engineering.
His current research is focused on Side Channel
Attack detection and mitigation techniques. He did
an internship at Kasırga Bilişim Elektronik Ltd. Şti.
located in TOBB ETÜ Research Center and an
internship at University of Rome Tor Vergata Italy
as a research assistant where he worked on fault
tolerance and probabilistic data structures.

Alessandro Palumbo is a PHD student of the
University of Rome Tor Vergata in Electronics Engi-
neering. He was a researcher assistant for the CNIT,
since April 2018 to October 2019. He partecipated
to two EU projects: SESAMO and 5G-PICTURE.
He took master’s degree in Electronics Engineer-
ing for Telecommunications and Multimedia at the
University of Tor Vergata. His research interests
include CPU microarchitectures, In particular: Ma-
chine Learning techniques and Probabilistic data
structures for attacks detection.

Luca Cassano is an Assistant Professor at Politec-
nico di Milano, Italy. He received the B.S., M.S.
and Ph.D. degrees in Computer Engineering from
the University of Pisa, Italy. His research activity
focuses on the definition of innovative techniques for
fault simulation, testing, untestability analysis, diag-
nosis, and verification of fault tolerant and secure
digital circuits and systems. With his Ph.D. thesis,
titled “Analysis and Test of the Effects of Single
Event Upsets Affecting the Configuration Memory
of SRAM-based FPGAs”, he won the European

semifinals of the 2014 TTTC’s E. J. McCluskey Doctoral Thesis Award.

Pedro Reviriego received the M.Sc. and Ph.D.
degrees in telecommunications engineering from
the Technical University of Madrid, Madrid, Spain.
From 1997 to 2000, he was an Engineer with Teldat,
Madrid, working on router implementation. In 2000,
he joined Massana to work on the development of
1000BASE-T transceivers. From 2004 to 2007, he
was a Distinguished Member of Technical Staff with
the LSI Corporation, working on the development
of Ethernet transceivers. From 2007 to 2018 he
was with Nebrija University. He is currently with

Universidad Carlos III de Madrid working on approximate data structures,
dependable and secure systems, and high speed packet processing.

Salvatore Pontarelli is Assistant Professor at De-
partment of Computer Science, Sapienza University
of Rome. He received a master degree in electronic
engineering at University of Bologna and the PhD
degree in Microelectronics and Telecommunications
from the University of Rome Tor Vergata. His
main research interests are the design of high-speed
hardware architectures for programmable network
devices, the implementation of hash based data
structures (Bloom filters, cuckoo Tables, etc.), and
network dataplane programmability. He participated

in research projects funded by public bodies (FP7, H2020) and private
companies, and he collaborated with various manifacturers of internet network
devices (Cisco and Mellanox Technologies).

Giuseppe Bianchi is Full Professor of Networking
at the University of Roma Tor Vergata. His research
activity includes wireless networks (an area where he
has carried out pioneering research work on WLAN
modelling and assessment), programmable network
systems, security monitoring and vulnerability as-
sessment, traffic modelling and control, and is doc-
umented in about 280 peer-reviewed international
journal and conference papers, accounting for more
than 20.000 citations. He has coordinated six large
scale EU projects, and has been (or still is) editor for

several journals in his field, including IEEE/ACM Trans. on Networking, IEEE
Trans. on Wireless Communications, IEEE Trans. on Network and Service
Management, and Elsevier Computer Communications.

Oğuz Ergin is a professor in the department of com-
puter engineering in TOBB University of Economics
and Technology, Ankara, Turkey. He received his
BS in electrical and electronics engineering from
Middle East Technical University, MS and PhD in
computer science from State University of New York
at Binghamton. He was a senior research scientiest
in Intel Barcelona Research Center prior to joining
TOBB ETÜ. He is currently leading a research group
in TOBB ETÜ working on energy-efficient, reliable
and high performance computer architectures.

15

Marco Ottavi (M’03–SM’10) is currently is an
Associate Professor at the University of Twente, in
the Netherlands and an Associate Professor at the
University of Rome Tor Vergata, in Italy. In 2009 he
received a prestigious “rientro dei cervelli” Fellow-
ship awarded by the Italian Ministry of University
and Research. Previously he was with AMD, Sandia
National Labs and with the ECE Department, North-
eastern University, Boston, MA, USA. His research
interests include design issues in nanotechnology for
emerging computing paradigms, computer architec-

ture for dependable systems, reliability modeling and fault-tolerant design
techniques. From 2011 to 2014, he was the Chair of COST Action IC1103
“Manufacturable and Dependable Multicore Architectures at Nanoscale.”

