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Is Your FPGA Bitstream Hardware Trojan-free?
Machine Learning Can Provide an Answer

Alessandro Palumbo1, Luca Cassano2, Bruno Luzzi1, José Alberto Hernández3, Pedro Reviriego3, Giuseppe Bianchi1, Marco
Ottavi1,4

Abstract

Software exploitable Hardware Trojan Horses (HTHs) inserted into commercial CPUs allow the attacker to run his/her own software or to gain
unauthorized privileges. Recently a novel menace raised: HTHs inserted by CAD tools. A consequence of such scenario is that HTHs must
be considered a serious threat not only by academy but also by industry. In this paper we try to answer to the following question: can Machine
Learning (ML) help designers of microprocessor softcores implemented onto SRAM-based FPGAs at detecting HTHs introduced by the employed
CAD tool during the generation of the bitstream? We present a comparative analysis of the ability of several ML models at detecting the presence
of HTHs in the bitstream by exploiting a previously performed characterization of the microprocessor softcore and an associated ML training.
An experimental analysis has been carried out targeting the IBEX RISC-V microprocessor running a set of benchmark programs. A detailed
comparison of multiple ML models is conducted, showing that many of them achieve accuracy above 98%, and κ values above 0.97. By identifying
the most effective ML models and the best features to be employed, this paper lays the foundation for the integration of a ML-based bitstream
verification flow.
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1. Introduction and Related Work

In past years, Hardware Trojan Horses (HTHs) were exclu-
sively considered an academic issue because of the difficulty of
insertion in real-world circuits and the limited advantages that
the attacker could count on. Nevertheless, it has recently been
demonstrated that complex and dangerous software-exploitable
HTHs can be inserted in real-world commercial microproces-
sors. This class of more powerful HTHs, allows the attacker
to execute his/her own malicious software, to modify the run-
ning software or to acquire root privileges [1, 2, 3]. Finally,
in 2018, a HTH, called the Rosenbridge backdoor, has been
found in a commercial Via Technologies C3 processor [4, 5].
The Rosenbridge backdoor could be activated via software and
allowed the attacker to enter in supervisor mode. Given these
premises, HTHs must nowadays be considered an issue not only
by academy but also by industry.

Recently, a new security-related menace raised: HTHs in-
troduced in the designed circuit by the employed CAD tool [6,
7]. In [8, 9] the don’t cares of the design are exploited to insert
HTHs both in the RTL code or gate-level netlist. In [10] a black-
hat high-level synthesis tool has been presented: starting from
a high-level specification, i.e., a C/C++/SystemC, of the de-
sired functionality the tool produces an HTH-infested hardware
implementation of the corresponding IP core. The authors also
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demonstrated that several types of HTHs could be introduced in
the produced IP core: HTHs downgrading performance, chang-
ing the implemented functionality and draining the battery of
the system. Finally, in [11] the authors demonstrate that all
electronic CAD tools, i.e., high-level synthesis, logic synthesis,
physical design, verification, test, and post-silicon validation,
are potential threat vectors to different degrees. Similar con-
siderations can also be made when looking at the FPGA sce-
nario instead of the ASIC one. It has indeed been demonstrated
that CAD tools may represent a serious threat for the security
and trust of FPGA-based systems [12, 13, 14]. In particular,
it has been demonstrated that malicious CAD tools may tamper
the produced bitstream before FPGA configuration to introduce
HTHs in the system [15, 16]. Given this discussion, it is cru-
cial to provide designers with effective tools to detect malicious
modifications introduced in the system by the employed CAD
tool before sending the design to the foundry (in the case of an
ASIC design) or before integrating it in the final system (in the
case of an FPGA-based design).

Several techniques for HTHs detection before system de-
ployment have been proposed in the last two decades. These are
generally circuit-level techniques that aim at detecting HTHs
at design time via logic testing [17], formal property verifica-
tion [18], side-channel analysis [19], structural and behavioral
analysis [20, 21] and machine learning [22, 23]. On the other
hand, since HTHs are extremely stealthy by nature and since
modern integrated circuits own a huge amount of resources among
which a HTH can be hidden, it is extremely hard to detect
HTHs before the system has been deployed. Therefore, a new
paradigm raised, the so called Design for Trust, where the inter-
est is on system-level techniques that allow to obtain a trusted
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system built with untrusted components [24, 25, 26]. A sim-
ilar paradigm has been proposed in [27, 28] where the focus
is on microprocessor-based systems and the goal is to enable
a trusted software execution on an untrusted CPU. All these
works address the problem of detecting HTHs introduced ei-
ther by the vendor of the purchased IP cores or by the silicon
foundry. On the other hand, the problem of detecting HTHs in-
troduced by an untrusted CAD tool in a trusted IP core, i.e., de-
signed in-house or purchased from a trusted IP provider, has not
been thoroughly explored yet. Most of the existing wok focused
on the analysis of the vulnerability of finite state machines ei-
ther through automatic test pattern generation, as in [29], of for-
mal property verification, as in [30]. Recently, a new paradigm,
dubbed Security Rule Checking, has been proposed to drive
the implementation and the adoption of CAD tools specifically
meant to support the verification of the trustworthiness and se-
curity of systems throughout the whole design process [31]. In
the very same paper the authors claimed the urgent need for
tools able to implement such new paradigm. The work most
similar to ours is the one proposed in [32] where reverse en-
gineering of the generated configuration bitstream is exploited
to extract the layout actually implemented onto the FPGA de-
vice. Such "real" (possibly infected) layout is then compared
with the "ideal" layout coming from the design phases to find
differences, and thus, to signal the presence of a HTH. The big
difference between our approach and the one in [32] is that we
exploit machine learning to identify these differences while the
one in [32] relies on a deep knowledge of the FPGA architec-
ture and bitstream details.

In this paper we pose the following question: is Machine
Learning (ML) effective and efficient in detecting HTHs intro-
duced in the generated bitstream by the employed CAD tool
when designing microprocessor softcores meant to be imple-
mented onto SRAM-based FPGAs? To answer this question we
performed a comparative analysis of the ability of several ML
models in detecting the presence of HTHs in the bitstream by
exploiting a previously performed characterization of the target
microprocessor softcore and associated ML training. Five ML
models have been considered in our analysis, namely Logis-
tic Regression, Decision Tree, Support Vector Machines, Ran-
dom Forest and Gradient Boosting Machine. Looking at the
attack, we considered four HTH models: a HTH that alters the
clock signal arriving in the infected microprocessor, a HTH that
modifies the critical path of the infected microprocessor and
two HTHs that interfere with the fetching activity by modify-
ing the fetched instruction and the accessed instruction mem-
ory address, respectively. In particular, the ML models are
here trained and then employed to observe and analyse not only
generic circuit-level features, e.g., number of logic gates, work-
ing frequency, as generally done by ML-based HTH detection
methodologies, but also microprocessor-specific microarchitec-
tural features, e.g., the fetching activity, the content of the per-
formance counters. The experimental analysis has been carried
considering an IBEX microprocessor, which is a low-power
version of the well-known RISC-V architecture, running a set
of benchmark programs. A detailed comparison of multiple ML
models is conducted, showing that many of them achieve accu-

racy values above 98% in the test set, and κ values above 0.97
both in the case where the injected HTH has been triggered dur-
ing simulation and in the case where it remains untriggered.

Extensive work has been conducted on the use of ML in
identifying software malware, like studies in [33, 34, 35] where
different ML models are used to identify Android Malware and
also to separate truly dangerous malware (i.e. Trojans, etc) from
soft adware which only seek to show ads to the users. At the
same time, there also is a vast literature about the application of
ML models to detect HTHs, as it is demonstrated by a number
of recently published surveys on the topic [36, 37, 38]. All these
works agree in highlighting the following research directions
that have not been taken into account yet:

• Exploring the application of ML to detect HTHs at higher
abstraction level than only the chip-level;

• Facing the threat represented by HTHs introduced in all
the design phases by the employed CAD tool; indeed,
most existing works focus on HTHs introduced either by
IP providers or silicon foundries;

• Analysing the applicability of ML models for HTH de-
tection on real-world complex microprocessors running
a given program.

To the best of our knowledge, the current paper is the first com-
parative study of the ability of several ML models specifically
designed, implemented, trained and evaluated to detect HTHs
introduced in the generated bitstream by the employed CAD
tool when designing microprocessor softcores meant to be then
implemented onto SRAM-based FPGAs.

The remainder of this paper is organized as follows: Sec-
tion 2 first presents the considered threat model and then briefly
overviews the five ML models considered in our comparison;
Section 3 depicts the envisioned verification flow in which ML
could help in detecting HTHs introduced in bitstreams while
Section 4 presents and discusses the results from the proposed
experimental comparison; Section 5 concludes the paper.

2. Background

We here present some background on Hardware Trojan Horses
(HTHs) and the considered threat models and we then overview
the five ML models considered in our comparison.

2.1. Hardware Trojan Horses

As it has been previously discussed, a Hardware Trojan
Horse (HTH) is a very hard-to-detect modification of a system
i) that keeps silent most of the time, and becomes active under
specific rare conditions, altering the nominal behavior of the
system, o ii) that is always active and covertly steals sensitive
information processed by the system. According to the taxon-
omy presented in [39], HTHs may be classified based on their
triggering mechanism, payload and insertion phase.

A HTH may be triggered:
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• internally by logical signals (or sequences of logical sig-
nals, in case of sequential HTHs) or by physical quanti-
ties, e.g., internal temperature or voltage, or by a hidden
ad-hoc configured counter (the so-called time bombs);

• externally by either received messages or commands, or
by physical interactions, e.g., again the external temper-
ature or voltage; and

• always-on, i.e., HTHs that become active as soon as the
system is turned on.

Under the point of view of the payload, i.e., their effect on
the infested system, HTHs may be classified in:

• Change functionality HTHs that alter the nominal func-
tionality of the infected system, e.g., make the system
execute a malicious code;

• Information stealing HTHs that steal secret information
from the system either through the available communi-
cation interfaces, e.g., by sending unauthorized messages
to the attacker, or through covert side-channels, e.g., tem-
perature or magnetic field; and

• Denial-of-service HTHs that stop the functioning of the
system, e.g., by introducing nop instructions, by draining
the system’s batteries, by jamming the communication
interfaces, by altering the timing behaviour.

Finally, looking at the insertion, HTHs may be inserted by
IP providers in the purchased 3PIPs, by rogue designers and by
the employed CAD tools possibly in every stage of the design
flow and by the foundry during chip fabrication.

2.1.1. The Considered Threat Model
For the comparative analysis proposed in this paper we con-

sidered HTHs injected by the employed CAD tool when trans-
lating the final design files of microprocessor softcores meant
to be implemented onto SRAM-based FPGA devices into the
configuration bitstream. Therefore, the here considered source
of attack is the CAD tool generating the bitstream, while all
other tools are considered to be trusted or verifiable. We be-
lieve that this is a reasonable assumption: indeed, the generated
bitstream is the most hard-to-verify output among all the inter-
mediate outputs of the FPGA-based design flow and thus the
most suitable for the insertion of a HTH. Indeed, all the inter-
mediate outputs of the FPGA-based design flow can be verified
via formal equivalence checking and formal property verifica-
tion, logic testing, design-rule checking and simulation. On
the other hand, the same verification activities are much harder
when dealing with the final configuration bitstream, since they
would require strong reverse engineering capabilities, which
are not always available in a design team. Indeed, as it has
been discussed in [40], although reverse engineering the struc-
ture of the logic netlist, i.e., retrieving the number of LUTs and
FFs employed in the design, is "quite simple", understanding
the content of the LUTs and the structure of the routing, i.e., the
actual functionality implemented in the device, is a much harder

task. Therefore, we argue that applying equivalence checking
at the bitstream may be unfeasible.

When looking at the specific HTH models, we considered
the following ones (that have been originally presented in the
Trust-Hub repository [41]):

• Clk_Mod, that is a HTH able to slow down the micro-
processor’s clock thus impacting on programs’ through-
put. By following the previous classification, this HTH is
denial-of-service and it may be either triggered or always-
on, depending on the configuration.

• Critical, that is a HTH that inserts additional combi-
national logic in a path of the circuit. If inserted on the
critical path of the circuit, this HTH has an impact on
its timing behaviour, and thus, possibly, on performance.
This HTH is denial-of-service and always-on.

• MitM, that is a HTH that emulates a malicious man in the
middle between the microprocessor and the instruction
memory. Indeed, this HTH interferes with the fetching
activity of the microprocessor by modifying the fetched
instructions, thus forcing the execution of a malicious
program. This HTH is triggered and changes function-
ality.

• Fetch, that is a HTH that interferes with the fetching
activity of the microprocessor by altering the instruction
memory address from which instructions are loaded, thus
again, forcing the execution of a malicious program. Also
this HTH is triggered and changes functionality.

2.2. The Considered Machine Learning models
There exists a large number of supervised ML classification

algorithms in the literature, both linear and non-linear, that can
be directly applied to the HTH detection problem. Following
the no-free lunch (NFL) theorem, there is no single algorithm
suitable for all problems, so a wide number of them must be
tested and adjusted using cross-validation techniques with grid-
search for fine hyper-parameter tuning, as explained in [42, 43].
For our experimental comparison we considered the following
well-know machine learning models5:

• Logistic Regression, which is a fast, simple, linear re-
gression model. Although these advantages, logistic re-
gression often shows underfitting since it cannot capture
non-linear data patterns. Still, logistic regression pro-
vides a performance baseline for comparison and a hint
about which features in the considered dataset are most
relevant in the classification task.

• Decision Tree, that classifies instances of a problem by
sorting them based on the values of a set of features.
Nodes in a DT represent features, while branches rep-
resent values that the associated features may assume.

5A detailed presentation of all the considered machine learning models can
be found in Kotsiantis et al. [44].
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Figure 1: The flow for the definition and training of the classifier.

Leaves represent the result of the classification. Instances
of the problem are classified starting from the root and
traversing it based on the actual values of the features.
Examples of tree algorithms include ID3, C4.5 or C5.0
algorithms.

• Random Forest, which combine a number of decision
trees to build an ensemble classifier that outperforms in-
dividual decision trees by always selecting the class iden-
tified by the majority of the trees in the considered forest.

• Support Vector Machines, which represent the instances
of a dataset as points of an n-dimensional space. An SVM
is an ML technique based on the identification of one or
more hyperplanes (based on the number of classes of the
problem) used to isolate the classes the elements of the
available training set belong to. In particular, an SVM
identifies the hyperplanes having the largest margin, i.e.,
the distance between the hyperplane and the closest in-
stance of every class, to minimize the classification error.

• Gradient Boosting Machine, which, like random for-
est, exploit an ensemble of prediction models, typically
decision tree, to produce a majority-based classification.
GBM are specially suitable for classification problems
suffering class imbalance, as it is the case of the HTH
dataset of this work.

3. Proposal: a Hardware Trojan Horse Detection Flow

In this section we briefly depict the envisioned flow for
HTH-aware bitstream verification that would benefit from the
availability of effective ad hoc designed and trained ML-based
models. Nevertheless, we point out that the focus of the cur-
rent paper is on demonstrating the feasibility of detecting HTHs

Figure 2: The flow for the bitstream verification.

introduced in the bitstream of microprocessor softcores by ob-
serving a set of circuit-level and runtime features through a ML
model. Moreover, we are interested in a thorough experimental
comparison among the considered ML models in order to iden-
tify the most suitable for the targeted problem. On the other
hand, the implementation of the verification flow itself falls out-
side the scope of this paper.

The envisioned verification flow is meant to be a design-
time flow, to be executed before deploying the microproces-
sor softcore under analysis in the final system. The idea is
that, since, as discussed before, the bitstream generation tool is
considered untrsuted, the generated bitstream needs to be veri-
fied against the output of the previous steps of the design flow
(which are considered either trusted or verifiable). To do so we
exploit trusted simulations at the logic netlist-level and at the
post-place&route-level to extract a number of features, e.g., the
number of executed Load instruction or the average power con-
sumption. These features are in turn used to train a ML-based
classifier. This ML-based classifier is finally used to verify the
behaviour of the real system when the (possibly infected) bit-
stream is downloaded onto the considered FPGA device. In-
deed, in this final verification phase the ML-based classifier is
fed with features coming from the execution of the real system
configured onto the target FPGA. The flow would be divided
in two parts to be executed one after each other: the classifier
definition flow and the bitstream verification flow. The first part
of the flow would allow the designer to extract circuit-level and
runtime features and to effectively train the ML-based classi-
fier. The second part of the flow would be the one actually in
charge of verifying whether the produced bitstream (and thus
the obtained microprocessor) is HTH-free and can be deployed
in the final system, or not. In the following we present some
details about the two sub-flows.

3.1. The classifier definition flow

Figure 1 depicts the flow that would be required to define
and train the ML-based classifier that would then be used to
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verify the bitstream. The left-side of the flow is the standard
FPGA-based design flow. The two intermediate artifacts of the
logic synthesis and place&route phases, namely the logic netlist
and the post place&route netlist, would be exploited in two sim-
ulation processes: a high-level simulation and a low-level sim-
ulation where the microprocessor logic and post place&route
netlists are simulated together with the considered software bench-
mark(s). The high-level simulation allows to extract runtime
features like statistics on the executed instructions and the num-
ber of clock cycles required to complete a given instruction as
well as details related to the logic netlist, such as the number
of LUTs and FFs. We employed the Verilator simulation envi-
ronment [45] to extract the runtime features while the synthesis
tool integrated into the Vivado design suite [46] has been used
to extract the netlist-level details. On the other hand, the low-
level simulation allows to extract fine-grained circuit-level fea-
tures like details about the power consumption and the timing
of the circuit. In particular, we exploited the Switching Ac-
tivity Interchange Format provided by the Vivado suite to ex-
tract detailed and accurate power and temperature analysis with
high level of confidence; the timing-related information are ex-
tracted by Vivado when synthesizing and after the place&route
phase; All these extracted features as well as the adopted ma-
chine learning model and the considered HTH models are then
fed into the training algorithm to actually train the ML-based
classifier.

3.2. The bitstream verification flow

Figure 2 depicts the flow that would be required to actually
verify whether the produced bitstream is HTH-free or not. By
following the standard FPGA design flow, the post place&route
netlist is translated into a bitstream that is finally loaded onto
the configuration memory of the target SRAM-based FPGA
device. At this point, the very same software benchmark(s)
previously used in the high- and low-level simulations can be
actually executed on the configured microprocessor. This step
allows to collect circuit-level and runtime features related to the
real configured microprocessor softcore.

More in details, it is worh mentioning that all the high-level
features that we consider fall in the category of the hardware
performance counters; therefore, they are already made avail-
able by the microprocessor either through generic interfaces,
e.g., AXI, UART, I2C, or through dedicated debugging inter-
faces. Indeed, every modern microprocessor provides a given
number of registers dedicated to the storage of a set of previ-
ously defined and configured hardware performance counters.
As a consequence, no additional hardware shall be included in
the design.

The timing information of the real prototype implemented
onto the FPGA can be retrieved by exploiting an external clock
generator. We provide the circuit with a clock signal with an
increasing frequency: as soon as we observe the first failure of
the system, we can infer that the timing of the critical path has
been violated.

In order to measure the amount of logic resources employed
by the circuit under analysis after having been configured onto

the FPGA reverse engineering methodologies like the one pro-
posed in [40] may be employed. Indeed, such methodologies
allow for a rough estimation of the number of LUTs and FFs
although not being able to provide all the details related to the
functionality implemented by the analysed bitstream.

Finally, The bitstream verification flow exploits the Xilinx
XADC Wizard v3.1 LogiCORE monitor to measure the tem-
perature of the circuit under analysis after having configured
the desired bitstream onto the target FPGA device. Essentially
temperature estimations are collected as follows:

1. Turn-on the board,

2. Wait for 30 minutes,

3. Configure the bitstream of the circuit under analysis,

4. Leave the system reset low (reset active low) for one min-
utes and then start the execution of the desired program,

5. Collect temperature data samples,

6. Turn-off the board and wait 30 minutes before restarting
the process for another program.

The 30 minutes waiting time are needed because we noticed
that there was some noise on the temperature measurements
due the power supply fluctuations just after powering on the
board. On the other hand, after after about 30 minutes we saw
the temperature increase due to power supply fluctuations be-
comes negligible.

Finally, it is important to note that the features used in the
proposed methodology can be increased adding new features or
reduced if extracting the information for some of the features is
too costly but the overall approach would still be applicable.

It is worth noting that, of course, the features collected dur-
ing this verification phase are the same as the ones collected
during the training phase. Finally, based on these collected fea-
tures and on the previously performed training, the previously
trained ML-based classifier is asked to decide whether these
features belong to a HTH-free bitstream, or not. Therefore, by
implementing and exploiting such verification flow it would be
possible to prevent the deployment of possibly malicious bit-
streams.

4. Experimental Comparison

We here describe the considered experimental setup for the
presented experimental comparison in terms of considered tar-
get microprocessor, FPGA device and prototyping of the previ-
ously depicted verification flow, considered features and adopted
quality metrics and we then report and discuss the obtained re-
sults.

4.1. Experimental Setup

The processor selected for our experimental campaign is
the lightweight IBEX core [47] which is a 32-bit, low-power,
in-order, two stage pipelined RISC-V core often employed in
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Table 1: The considered benchmarks.

Benchmark Description
Coremark CPU performance benchmark
Median Median image filter
Multiply Numbers multiplication
Rsort Sorting algorithm
Towers Solver for the tower puzzle

Table 2: The set of considered features.

Feature Description
Benchmark Program under execution
Cycles # clock cycles to execute the program
InstrRet # instructions retired in the program
LSUs # waiting cycles to access data memory
FetchWait # waiting cycles before instruction fetch
Load # load instructions
Store # store instructions
Jump # jump instructions
CondBr # conditional branches
TakCBran # taken conditional branches
CompIns # compressed
MulWait # cycles for mul. completion
DivdWait # cycles for div. completion
LUTs # Look Up Tables
FFs # Flip Flops
AvgDynPow Avg. dyn. power consumption
AvgPower Avg. total power consumption
Timing Worst negative slack
Temperature Temperature trend

IoT systems. The synthesis and the implementation of the con-
sidered microprocessor have been performed on Vivado target-
ing a Xilinx XC7Z020 1CLG484C Zynq-7000 FPGA. The ob-
tained core counted 4591 LUTs, 3619 FFs, 256 BRAM cells
and worked at 125MHz. Moreover, since the presented analy-
sis has to be conducted while the microprocessor is executing a
program, we considered the benchmarks described in Table 1.

The previously depicted bitstream verification flow has been
implemented using the open-source R programming language
and then connected with the standard FPGA design flow imple-
mented by the Vivado environment. In particular, we exploited
the ML-specific libraries which are available in the R, namely
randomForest for the Random Forest, kernlab for Support
Vector Machine, C50 for Decision Tree, glmnet for Logistic
Regression, gbm for Gradient Boosting Machine and caret
and mlbench for models cross-validation and benchmarking.

The features considered in the proposed experimental com-
parison are the ones reported in Table 2. As it has previously
been discussed, it can be noticed that a number of features are
related to the high-level simulation (the top part of the table)
and other features are related to the low-level simulation (the
ones reported in the bottom of the table). All the considered
features are numerical except for the benchmark name, which
is a string. We believe that this large set of features is actually

able to capture all the circuit- and program-level information
that may allow to distinguish between a genuine core running a
given program and an infected one.

The dataset used for training and testing the considered ma-
chine learning models has been built as follows. We synthe-
sized the considered microprocessor (without any HTH injec-
tion) by following four different optimization strategies, i.e., by
changing the optimization parameters offered by the synthesis
tool. Then, we ran the previously mentioned high- and low-
level simulations of these four genuine microprocessor versions
while running the five considered benchmark programs. This
first set of simulations allowed us to extract the previously dis-
cussed features for the HTH-free versions of the microproces-
sor, thus obtaining data for 20 good samples. Then, we injected
the previously presented HTH models6 into the four versions
of the considered microprocessor; in particular, for each of the
four considered HTH model we derived four different imple-
mentations, thus obtaining a total number of 16 infected micro-
processors. Then again, we extracted the considered features
by running the high- and low-level simulations of these micro-
processors while executing the five considered benchmark pro-
grams in two distinct conditions: one where the injected HTH
was not triggered and one where it was triggered, thus obtaining
data for 160 infected samples (80 samples for each condition).
It is worth mentioning here that all the low-level features have
been extracted through a number of experiments on a real proto-
type of the microprocessor downloaded onto a Xilinx XC7Z020
1CLG484C Zynq-7000 FPGA board. Finally, in order to ob-
tain more balanced datasets, we employed the DMwR library im-
plementation of the synthetic minority over-sampling technique
(SMOTE) [48] to oversample by 3x the good class to count on
more non-trojaned circuits. Therefore, overall the proposed ex-
perimental comparison has been conducted on two almost bal-
anced sets of 140 (60 good plus 80 infected) data samples
each, namely the triggered and the untriggered datasets.

Finally, the full dataset has been split into a train and a
test set, by following the classical 65/35% and 80/20% parti-
tion rule. The training set is further split into proper train and
validation sets to optimize each model’s hyper-parameters fol-
lowing a Leave-One-Out Cross-Validation (LOOCV) strategy.
In LOOCV, N data-samples that belong to the train set (i.e. 65
or 80 samples), are split into N − 1 for training and only 1 for
testing, repeating the N samples and taking the performance
average for the N cases. This procedure, although computa-
tionally expensive, is repeated for a combination of 20 hyper-
parameters, just to select the best ML model for each type (LR,
DT, RF, SVM, GBM); this is often referred to as grid-search
cross-validation, as specified in [42]. The optimal model is then
applied to the test dataset for the final evaluation.

6As its has been previously discussed, we took into account all the avail-
able microprocessor-specific HTH models coming from the Trust-Hub reposi-
tory [41]: these HTHs are all "change-functionality". On the other hand, our
methodology does not rely on the observation of the implemented functional-
ity, but on a number of low- and high-level features. Therefore, we argue that
our methodology would allow to detect also denial-of-service and information-
stealing HTHs as long as they have an impact on the employed high-level and/or
low-level features.
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Figure 3: Correlation between features

Concerning the performed evaluation, Accuracy, Sensitiv-
ity (also called Recall or True Positive Rate), Specificity (also
called True Negative Rate) and Precision have been considered
as quality metrics. For the reader’s convenience, we here report
how the considered quality metrics can be calculated:

Accuracy =
T P + T N

T P + FP + FN + T N
(1)

S ensitivity =
T P

T P + FN
(2)

S peci f icity =
T N

FP + T N
(3)

Precision =
T P

T P + FP
(4)

where TP, TN, FP, FN represent the True Positives, True Neg-
atives, False Positives and False Negatives, respectively, being
HTH-infested circuits the positive class. Furthermore, we con-
sidered the Cohen’s Kappa coefficient (κ), that can be calculated
as follows:

κ =
O − E
1 − E

(5)

where O represents the Observed accuracy and E the Expected
accuracy, i.e. the accuracy provided by a dummy classifier that
always selects the majority class. The difference between the
Observed and Expected Accuracy is reflected by the Kappa co-
efficient showing the benefits of the ML model with respect to a
random classifier. Typically, κ values above 0.6 reflect substan-
tial agreement between observed and expected accuracy, while
values above 0.8 represent nearly perfect agreement [49].

4.2. Experimental Results

As a first analysis, we assessed the correlation among the
considered features, along with the correlation with the target

Table 3: ML performance results for splits: 65/35% (top) and 80/20% (bottom)
when HTHs are triggered.

ML Model (65/35%) Acc. κ

Dummy Classifier 0.5700 0
LR with Regularization 0.9503 0.8971
SVM (Radial Basis Function) 0.9473 0.8898
DT (algorithm C5.0) 0.9834 0.9661
Random Forest 0.9894 0.9779
Gradient Boosting Machine 0.9894 0.9784

ML Model (80/20%) Acc. κ

Dummy Classifier 0.5700 0
LR with Regularization 0.9578 0.9124
SVM (Radial Basis Function) 0.9526 0.9016
DT (algorithm C5.0) 0.9907 0.9810
Random Forest 0.9947 0.9890
Gradient Boosting Machine 0.9934 0.9864

Table 4: ML performance results for splits: 65/35% (top) and 80/20% (bottom)
when HTHs are not triggered.

ML Model (65/35%) Acc. κ

Dummy Classifier 0.5700 0
LR with Regularization 0.9368 0.8671
SVM (Radial Basis Function) 0.9451 0.8850
DT (algorithm C5.0) 0.9864 0.9718
Random Forest 0.9872 0.9729
Gradient Boosting Machine 0.9887 0.9763

ML Model (80/20%) Acc. κ

Dummy Classifier 0.5700 0
LR with Regularization 0.9578 0.9119
SVM (Radial Basis Function) 0.9578 0.9122
DT (algorithm C5.0) 0.9894 0.9777
Random Forest 0.9921 0.9834
Gradient Boosting Machine 0.9960 0.9917

one that specifies whether the considered circuit is trojan-free
or trojaned, using the R function corrplot. The results of
this preliminary analysis are reported in Figure 3. As shown,
some features are highly correlated with the target label, e.g.,
avg_dyn_power, avg_power and temp, showing somehow that
these features may be relevant at the identification of hardware
Trojans. Moreover, the features that specify the benchmark
under execution also correlate (either positively or negatively)
with relevant features (mainly high-level features) in the iden-
tification of the Trojans. For example, benchmark_coremark
positively correlates with the number of clock cycles required to
complete the program and with the number of executed store in-
structions or benchmark_tower negatively correlates with the
number of conditional branches and the number of taken condi-
tional branches. Finally, several features correlate one to each
other: low-level with low-level features, e.g., avg_dyn_power
with timing, can be observed, as well as high-level with high-
level features, e.g., load with jump, and cross-correlation be-
longing to features from both groups, e.g., temp with load.

We then conducted the actual experimental campaign. As
a first step of our comparative analysis we trained and tested
all the previously presented ML models with the considered
datasets. Tables 3 and 4 show the accuracy and Kappa values
achieved during testing, for both 65/35% (top part of the table)
and 80/20% partitions (bottom part of the table) for the trig-
gered and untriggered dataset, respectively. It can be noticed
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(a) GBM

(b) C5.0

Figure 4: Variable importance

Table 5: Performance metrics of the classifiers on the 80/20 train/test split when
the HTHs are triggered.

Metric LR SVM C5.0 RF GBM
κ 0.9124 0.9016 0.9810 0.9890 0.9864
Sensitivity 0.9671 0.9523 0.9921 0.9945 0.9984
Specificity 0.9760 0.9687 0.9807 0.9932 0.9869
AUC-ROC 0.9919 0.9921 0.9956 0.9998 0.9986

Table 6: Performance metrics of the classifiers on the 80/20 train/test split when
the HTHs are not triggered.

Metric LR SVM C5.0 RF GBM
κ 0.9119 0.9122 0.9777 0.9834 0.9917
Sensitivity 0.9320 0.9406 0.9906 0.9898 0.9929
Specificity 0.9723 0.9651 0.9947 0.9963 0.9984
AUC-ROC 0.9904 0.9936 0.9975 0.9999 1.0000

that the expected accuracy E is 57%, since this is the result that
a dummy classifier would score by just assigning the majority
class to all data points (remark that the HTH class represents
57% of the dataset).

From the table it can be noticed that the best models are
C5.0, RF and GBM, which achieve accuracy values above 98%
in both triggered and untriggered scenarios. However, such re-
sults have to be compared against the dummy classifier which
is 57% accurate. Such comparison is provided by the κ pa-
rameter, which takes into account both the Observed and the
Expected accuracy values. In this case, the κ coefficient for the
three winning models is always above 0.97, which is a very
high value representing the actual effectiveness of the three ML
models identified as the best ones (the baseline κ provided by
the dummy classifier is zero).

The tables also reveal several interesting observations: first,
we can see that the considered ML models achieve very high
and comparable accuracy both in the case of triggered and un-
triggered HTHs. This is because many of the considered fea-
tures are only affected by the presence of the HTH and not by
its activation. Moreover, the three winning models are quite
robust in the sense that, after trained with only 65% datasam-
ples, they are still capable of extracting the patterns and produc-

ing good performance results (κ values above 0.97) in all cases.
When trained with some more data samples (80/20% case), the
accuracy and κ results are even improved, reaching nearly per-
fection at HTH classification (i.e. accuracy values of up to 99%
and κ about 0.98). We further deepened our analysis by looking
more in detail at the results achieved by the identified best ML
models. Tables 5 and 6 summarize the most widely used ML
performance metrics for the ML models in the triggered and
untriggered scenarios, respectively. As observed in the table,
the GBM model should be considered as the final winner as it
outperforms all others in most of the ML performance metrics.

As an additional analysis, we can further rank the consid-
ered features based on their importance for the employed ML
model. Indeed, by analyzing different metrics provided by the
ML model itself it is possible to identify which of the con-
sidered features contributed the most to the classification task
and model building. Thus, by selecting the most relevant fea-
tures the designer can optimize the employed ML model both
in terms of accuracy and efficiency. Both GBM and C5.0 mod-
els offer a methodology to rank the most relevant features, com-
puted as the amount that each attribute contributes to improving
some classification performance metric. The identified feature
ranking for GBM and C5.0 is shown in Figure 4. As shown,
Timing and AvgDynPow are the most relevant features, while
features like DvdWait and MulWait contribute very little to
model building. Concerning the C5.0 model, the model only
uses Timing, AvgDynPow, LUTs and AvgPow as critical fea-
tures, the other ones are not relevant at all (zero contribution).

Finally, in order to further motivate the need for ML mod-
els for the task of distinguishing among trojan-free and trojaned
circuits, in Figure 5 we show the dispersion diagrams of some
of the considered features, namely: Timing, Temperature,
LUTs, FFs. In the diagrams the green points represent the fea-
ture values for trojan-free circuits, while the red points are as-
sociated with the feature values for trojaned circuits. By look-
ing at all these diagrams it clearly appears how there is no sin-
gle feature where it is trivial to separate green points and red
ones. This appears even clearer when looking at the boxplots
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(a) Timing (b) Temperature

(c) LUTs (d) FFs

Figure 5: Dispersion diagrams for some of the considered features. Green: golden samples; Red: trojaned samples

reported in Figure 6 where the predictive power of the Timing,
Temperature, LUTs, FFs is graphically represented. Again,
it clearly appears how difficult would be to define a threshold
for perfect separation between classes. Indeed, in some cases
like LUT, the two classes seem to overlap, while in others like
AvgPower, there is a better separation between classes. These
considerations motivate both the need for finding and optimiz-
ing ML models which, after combining all the features, provide
a high-dimensional non-linear separation hyperplane for max-
imum classification accuracy between trojan-free and trojaned
circuits.

5. Conclusions and Future Work

We presented the first comparative analysis of the effective-
ness of several ML models in detecting the presence of HTHs
in the bitstream of microprocessor softcores meant to be im-
plemented onto SRAM-based FPGAs. A detailed feature im-
portance ranking has been discussed. The considered multi-
parametric approach led to promising results and confirms lit-
erature trend to prefer utilization of several observable features.
The exploitation of ML models confirms the generalisation po-
tential of the proposed approach. Indeed, many of the con-
sidered ML models achieve accuracy values above 98% in the
test set, and κ values above 0.97 both in the case where the
injected HTH has been triggered during simulation and in the

case where it remains untriggered. In the end, by identifying
the most effective ML models and the best features to be em-
ployed, this paper lays the foundation for the integration of a
ML-based bitstream verification flow.

Future work will be devoted to integrating process varia-
tion models into the proposed methodology in order to take
into account fluctuations of the low-level features, e.g., tem-
perature and average power consumption, between simulation
(when training the detection methodology) and the real FPGA
device (when verifying the downloaded bitstraem). Moreover,
we will analyse how the effect of faults would affect the ex-
tracted features and, as a consequence, the detection capability
of the proposed methodology.
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