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The control of real-time systems often requires taking into account simultaneous access in 
true parallelism to shared resources. This is particularly the case for multicore execution 
platforms. Timed automata or time Petri nets do not capture these features directly. We 
first define High-level Colored Time Petri Net (HCTPN) that extends time Petri Nets with 
color and high-level functionality encompassing both timed multi-enableness of 
transitions and sequential pseudo code. We then extend HCTPN with stopwatches to 
allow the modeling of preemptive scheduling, which is an important feature in the real-
time context. We prove that the reachability problem is decidable for HCTPN but is 
undecidable for HCTPN with stopwatches, and we propose an abstraction of the state 
space for these models. We apply this approach to model a preemptive multi-core real-
time application that uses a spinlock mechanism in order to check all possible execution 
paths, interleaving of service calls, and preemptive scheduling. 

Keywords: Multi-core execution; High-level Colored Time Petri Nets with 

stopwatches; Model-checking  

 
Introduction  

Real-time systems are now present in various contexts and applications in our everyday 
lives. A real-time system interacts with a complex external environment and should meet 
deadlines, guarantee timing constraints, and consider the correctness of the computation. 
These systems have evolved and need to use increasingly complex hardware and software 
architectures to achieve the required level of performance. In addition, the	demand	for	
high-performance	computing	among	applications	has	led	to	a	rise	in	the	usage	of	multi-core	
chips.	 

Implementing multi-core real-time systems requires concurrent access in true 
parallelism to shared resources. The design of such a system must also be predictable, i.e., 
its behavior must be expected concerning the time requirements. It is required to 
implement all of the desired functionalities and validate both functional and temporal 
accuracy. In order to increase confidence and prevent unexpected behavior, system 
verification is essential. 

Formal approaches ensure system confidence, and the emergence of new software 
tools has led to their usability. Model-checking (Clarke et al., 2018) is one of the most 
popular families of formal methods. This technique effectively deals with concurrency 
and interaction between parallel processes, which are the significant sources of error in 



the systems. It relies on the algorithmic exploration of the system model’s whole state 
space to verify the correctness of properties on the entire execution path. 

Petri nets, known as a place/transition model, can simulate concurrency. For the 
lack of data structures, Petri nets are unsuitable for modeling systems where data affects 
the system’s behavior. High-level Petri nets (Hillah et al., 2006) have been proposed for 
modeling scientific problems with complex structures allowing the description of both 
system data and control. The term High-level Petri net is then used for many Petri nets 
(Kindler and Petrucci, 2009) such as Predicate/Transition Nets, colored Petri nets, or 
hierarchical Petri nets. However, the common point is that they allow the manipulation of 
different types of expressions that use state variables. Input arcs are labeled with boolean 
expressions specifying conditions (guards or gates) that can also be associated with 
transitions. Arc annotations are expressions that can be associated with output arc. They 
can be viewed as computing systems that operate on shared data. 

Scientific contribution. We have mainly three challenges in reasoning about the 
behavior of concurrent real-time systems: i) The real-time system is susceptible to a 
variety of stimuli, in particular, real-time stimuli, such as periodic interruptions generated 
by timers; ii) Applications and code blocks can be executed concurrently on several cores, 
and iii) Some parts of the code can be executed simultaneously by several cores. 

Our work leads us to two main contributions to achieving the presented 
objectives. We first define High-level Colored Time Petri Net (HCTPN) that extends time 
Petri Nets with color and high-level functionality encompassing both timed multi-
enableness of transitions and sequential pseudo code. We then extend HCTPN with 
stopwatches to allow the modeling of preemptive scheduling, which is an important 
feature in the real-time context. We prove that the reachability problem is decidable for 
HCTPN but is undecidable for HCTPN with stopwatches, and we propose an abstraction 
of the state space for these models. 

We then use the High-Level Colored Time Petri Nets with stopwatches to model a 
preemptive concurrent real-time application case study. For its verification, we use formal 
methods, particularly the model-checking technique. We rely on the ROMÉO model-
checker tool, improved to support this extended formalism, and available under a free 
license (Lime et al. (2009)). 

Paper outline. The paper is structured as follows. Section 2 presents some related 
works. Sections 3 and 4 define the High-Level Colored Time Petri Nets (HCTPN) with 
stopwatches. Section 5 studies reachability problem for HCTPN and HCTPN with 
stopwatch, presents decidability and undecidability results and propose a state space 
symbolic abstraction. Section 6 deals with the well-known Path finder mono-core 
scheduling problem and section 7 describes a case study of a dual-core concurrent 
preemptive application built with the HCTPN formalism and its verification using the 
ROMÉO model-checker tool. Section 8 concludes the paper. 

Related works on timed models 

Time-based models allow the modeling and verification of real-time applications by 
considering task execution times and synchronization mechanisms. We consider here the 
time extension of finite timed automata and time Petri nets. 

Timed automata. Timed automata (Alur and Dill, 1994) extend finite automata 
with clocks to consider time. The values of the clocks increase during the execution of 
timed automata and can be associated with constraints called invariants (Henzinger et al., 
1994). The clocks can be reset to 0 as part of the transition update when the latter is fired. 

Petri nets and time Petri nets have two main temporal extensions. Time Petri 
nets (Merlin and Farber, 1976) where each transition is associated with a time interval 
that specifies the possible firing dates. Timed Petri Nets (Ramchandani, 1974) is a 



temporal extension where minimum (or exact) durations represent time. Time can be 
associated with transitions (T-time), places (P-time), and arcs (A-time). Boyer et al. 
compare the expressiveness of these three models in (Boyer and Roux, 2008). T-time 
Petri nets are the most widely used in real-time systems (Berthomieu and Diaz, 1991) and 
are those extended in this work. 

Timed model with stopwatches. Timed models can be extended with 
stopwatches instead of clocks to model the temporal interruption of actions and 
subsequent resumption. Several extensions of these models have been proposed to 
express the suspension and resumption of actions by adding the stopwatch notion. Timed 
automata are extended with stopwatches by (Cassez and Larsen, 2000). For Time Petri 
Nets (TPN), several extensions have been proposed to model preemptive real-time tasks: 
Scheduling-TPN (Roux and Déplanche, 2002; Lime and Roux, 2003), Preemptive-TPN 
(Bucci et al., 2004), and Time Petri nets with inhibitor hyperarcs (IHTPN) (Roux and 
Lime, 2004). 

All these models allow the modeling of preemptive scheduling. Time Petri nets 
are well adapted for modeling concurrent real-time systems, but face the problem of 
modeling true concurrency for simultaneous access to resources such as those 
encountered in the multi-core context. 

In the following, we give the informal definitions of Petri net formalism with its 
different extensions (time, color, high-level, and stopwatches). 

Informal presentation 

Petri nets 

Petri nets are a mathematical formalism and one of the many modeling languages used to 
describe distributed concurrent systems. A Petri net is a directed bipartite graph whose 
vertices are places and transitions. A place can contain any number of tokens. A marking 
M	of a Petri Net is a vector representing the number of tokens of each place. A transition 
is enabled (it may fire) in M	if there are enough tokens in its input places for the 
consumption to be possible. Firing a transition from a marking M	consumes tokens from 
each of its input places and produces tokens in each of its output places. 

High-level Petri nets 

Petri nets can be classified into two classes: ordinary Petri nets and high–level Petri nets. 
High-level Petri nets (Hillah et al. (2006)) are proposed for modeling scientific problems 
with complex structures and manipulating different types of expressions made up of 
variables and written in terms of a predefined syntax. In high-level nets, each token can 
carry complex information which, e. g., may describe the entire state of a process or a 
database and handle different expressions and data structures. 

The precondition (guard) and postcondition (update) over a set of variables (X) are 
associated with transitions. A transition is enabled (it may fire) if there are enough tokens 
in its input places and if the guard is true. When the transition fires, the corresponding 
updates are executed, modifying the values of the variables. The variables take their 
values in a finite state (such as bounded integer or enumerated type...), guards are boolean 
expressions over X, and updates can be described as a sequence of imperative code 
expressed in a programming language but whose execution is atomic from the transition 
firing point of view. 



Colored Petri nets 

The colored extension of Petri nets allows the distinction between tokens. 
Although the set X of High-level Petri nets presented in the previous paragraph 

can be of arbitrarily complex type, places in colored Petri nets contain tokens of one type. 
This type noted C is called the color set of the place. 

An arc from a place to a transition (PT) specifies the color(s) that enabled the 
transition, and its firing will consume it. An arc from a transition to a place (TP) specifies 
the token color produced in that place by the firing of the transition. A particular color 
called any indicates in a PT arc that any color enabled the transition, and in a TP arc that 
the color consumed in the input place will be the one produced in the output place. 

A marking M of a colored Petri Net represents not only the number of tokens in 
each place but also their respective colors. That is represented either by a multiset or by a 
matrix. 

Time Petri Nets 

Time Petri nets (TPN) extend Petri nets with temporal intervals (such as [α,β] or [α,+∞[) 
associated with transitions, specifying firing delay ranges for each transition. Assuming 
transition t became last enabled at time d and the endpoints of its firing interval are α and 
β, then t cannot fire earlier than d + α and must fire no later than d + β unless disabled by 
the firing of another transition. Firing a transition takes no time. 

To describe the semantics of TPN, we usually consider that a clock is associated 
with each transition. This clock is set to zero when the transition is newly enabled, and 
the transition fires when the value of the clock is in the firing interval. 

Colored Time Petri Nets 

For real parallelism or with interleaving semantics of timed systems, the notion of 
multiple enableness is needed. It refers to the fact that a transition is enabled at least twice 
in the same state, which implies a dynamic number of timers. Multiple enableness in time 
Petri nets is a natural way for modeling paradigms like multiple servers and multiple 
instances of codes (Boyer and Diaz (2001)). 

For Colored Time Petri Nets, multiple enableness occurs when several 
combinations of colors enable a transition at a given time. In this case, there can be at 
most one clock per color and per transition. 

Time Petri Nets with stopwatches 

Time Petri nets with stopwatches extend TPN by replacing clocks by stopwatches. The 
time derivative of the stopwatch of a transition is in the set of rates {0,1} and is given by 
a function from Markings. Hence the time associated with a transition can be suspended 
and later resumed at the same point. Moreover, transition with a 0 time derivative cannot 
fire. 

Since the clocks are replaced by stopwatches, in the case of Colored Time Petri 
Nets with stopwatches, there is at most one stopwatch per color and per transition. 



Formal definition 

No Petri net model encompasses both temporal aspects (timed transitions), preemptive 
scheduling (stopwatches), code handling (high-level functionalities) and true concurrency 
modelling (multiple enableness of transitions).  

The introduction of color in time Petri nets leads to multiple enableness of 
transitions and then allows the modeling of multiple servers and multiple instances of 
codes. We then propose a Petri Nets model which encompasses both colors, high-level 
functionalities and stopwatches. We now give the formal definition.  

High-level Colored Time Petri Net 

Notations The sets ℕ, ℚ≥0, and ℝ≥0 are, respectively, the sets of natural, non-negative 
rational, and non-negative real numbers. An interval I of ℝ≥0  is a ℚ-interval iff its left 
endpoint ↑I belongs to ℚ≥0 and its right endpoint I↓ belongs to ℚ≥0 ∪{∞}. We denote by 
ℐ(ℚ≥0) the set of ℚ-intervals of ℝ≥0. 

BA stands for the set of mappings from A to B. If A is finite and |A| = n, an element 
of BA is also a vector in Bn. The usual operators +,−,< and = are used on vectors of An with 
A = ℕ,ℚ,ℝ and are the point-wise extensions of their counterparts in A. 

Definition and semantics  

Colored Petri nets allow tokens to have a data value called the token color. In the 
applications we are considering, the color of a token actually represents the processor on 
which the code is executed. We therefore consider token of integer type that designates 
the processor number. Moreover, we add a special color called any to specify that any 
color can be used for enabling and firing a transition.  

We consider a set C of colors. An arc is either associated with a color of C or can 
take on the particular color called any. For the firing of a transition, all its arcs associated 
with the any color must match to instantiate any at the same color taken from C.  

If several values of any allow its enabling, the transition is multi-enabled, and in 
this case, several clocks (one per color) are associated with the transition, allowing 
several firing dates depending on the enabling date and the time interval.  

The formal definition is as follows. 
Definition 1 (High-level Colored Time Petri Net). A High-level Colored Time Petri Net 
(HCTPN) is a tuple ' = (P,T,X,C,pre,post,(m0,x0),guard,update,I) where 

• P is a finite non-empty set of places, 
• T is a finite set of transitions such that T ∩ P = ∅, 
• X is a finite set of variables taking their value in the finite set ) (such as bounded 

integer), 
• C is a finite set of colors and Cany = C ∪ {any} where any is a variable that can be 

instantiated to any value of C, 
• pre : P × T → ℕCany is the backward incidence mapping, 
• post : P × T → ℕCany is the forward incidence mapping, 
• guard : T ×X ×P ×C• → {true,false} is the guard function with C• = C ∪{•} where 

• denotes the fact that no color is specified, 
• update : T × X × P × C• → )X × ℕP×C is the update function, 
• (m0,x0) ∈ ℕP×C × )X → is the initial values m0 of the marking and x0 of the 

variables, 



• I : T → ℐ(ℚ≥0) is the static firing interval function. 

Discrete behavior: For a marking m ∈	ℕP×C, m(p) is a vector in ℕC, and m(p)[c]	
represents the number of tokens of color c	∈	C in place p	∈	P. A valuation of the set of 
variables X	is noted x ∈ )X. (m,x) is a discrete state of HCTPN. 
Enabling a transition: Informally, an arc is associated either with a color c ∈ C or with a 
particular color called any. To enable transition t, a place p with an arc from p to t must 
have enough tokens with the arc’s color. Moreover, all the arcs of t associated with any 
must agree on the color given to any. Therefore, we forbid an arc to be associated with 
both any and a color c ∈ C. 

An arc pre(p,t) ∈ ℕCany is a vector such that pre(p,t)[c] is the number of tokens of 
color c ∈ C in place p needed to enable the transition t and pre(p,t)[any] > 0 represents 
the fact that any color can enable the transition. Let +!"#  ∈ T the set of transitions that can 
be enabled by any color: i.e. +!"#  = {t ∈ T,∃p ∈ P, s.t. pre(p,t)[any] > 0 }. Moreover, we 
define the set +!"#$$$$$$ = +\+!"#. 

A transition t ∈ T is said to be enabled by a given marking m ∈ ℕP×C in two cases 
depending on whether t ∈ +!"#  or not: 

• if t ∈ +!"#, and ∀p ∈ P and ∀c ∈ C, m(p)[c] ≥ pre(p,t)[c]. We denote en(m,t) ∈ 
{true,false}, the true value of this condition. 

• if t ∈ +!"#, and ∃ca ∈ C such that ∀p ∈ P, m(p)[ca] ≥ pre(p,t)[any] and ∀c ∈ C \ 
{ca}, m(p)[c] ≥ pre(p,t)[c]. The corresponding set of color ca is noted 
colorSetany(m,t) ⊆ C 

Finally, a transition t ∈ T is said to be enabled by a given marking m ∈ ℕP×C and a 
valuation x ∈ )X if en(m,t) = true and either colorSetany(m,t) = ∅ and guard(m,t,x,•) = true 
or ∃ca ∈ colorSetany(m,t) ≠ ∅ and guard(m,t,x,ca) = true . 

We illustrate the enabling condition with two examples with two colors                
C	=	{blue,red}.	For the HCTPN given in Figure 1.a, the transition T1	∈	+!"#$$$$$$. 

We have pre(+%) =
4%
4&
4'
4(

567 89:6 ;<=

>

0 1 0
1 0 0
0 1 0
0 0 0

A.	The initial marking is	D) =
4%
4&
4'
4(

567 89:6

>

1 1
1 0
0 1
0 0

A	

that enables the transition T1 and en(m0,T1) = true. 

 

Figure 1. Enabling transition. 

Now we consider the HCTPN given in Figure 1.b with the same initial marking m0 but 
where the transition T1 ∈ Tany since at least one arc (here two) is associated with the color 
any. 

P1 P2 P3

T1

[2, 3]

blue red
blue

•• • •
P1 P2 P3

T1

[2, 3]

P4

any any
blue

•• • •

P4P4

anyblue

1.a: T1 2 Tany 1.b: T1 2 Tany



We have pre(+%) =
4%
4&
4'
4(

567 89:6 ;<=

>

0 0 1
0 0 1
0 1 0
0 0 0

A. The transition is enabled only if any 

takes the red value then colorSetany(m0,T1) = {red}. If place P2 had two tokens with one 
token per color, then the transition would be multi-enabled by the two colors leading to 
colorSetany(m0,T1) = {blue,red}. 
The firing of a transition. An arc post(p,t) ∈ ℕCany is a vector such that post(p,t)[c] is the 
number of tokens of color c ∈ C produced in place p by the firing of the transition t, and 
post(p,t)[any] gives the number of tokens produced in p with the color c ∈ 
colorSetany(m,t) used for the enabling and then for the firing of t. 

Firing an enabled transition t ∈ +!"#$$$$$$  from (m,x) such that en(m,t) = true and 
guard(m,t,x,•) = true leads to a new marking m′ defined by ∀c ∈ C,∀p ∈ P, m′(p)[c] = 
m(p)[c] − pre(p,t)[c] + post(p,t)[c] and a new valuation x′ = update(m,t,x,•). This new 
marking is denoted m′ = firing(m,t,•) where • denotes the fact that no any color has to be 
instantiated for this firing. 

We denote by newen((m,x),t,c) the set of transitions that are newly enabled by the 
firing of t from (m,x) with the color c (c = • if t ∈ +!"#$$$$$$). 

Let us go back to the HCTPN of Figure 1.a, the firing of T1 ∈ +!"#$$$$$$ from m0 leads 

to the marking D% =
4%
4&
4'
4(

567 89:6

>

1 0
0 0
0 0
0 1

A. It is noted D)
(+%,•)
E⎯⎯GD%. 

Let us now consider the HCTPN of Figure 1.b, the firing of T1 ∈ Tany is possible 

only for any = red and leads to the marking  D& =
4%
4&
4'
4(

567 89:6

>

0 1
0 0
0 0
1 0

A. It is noted  

D)
(+%,/01)
E⎯⎯⎯⎯GD&. 

If place P2 had two tokens with one blue and one red color, T1 is multi-enabled, 
and the firing of T1 ∈ Tany is possible for any = red or any = blue. For any = blue, it leads 

to the following marking D' from this new initial marking D’) =
4%
4&
4'
4(

567 89:6

>

1 1
1 1
0 1
0 0

A

(+%,2340)
E⎯⎯⎯⎯⎯GD' =	

4%
4&
4'
4(

567 89:6

>

1 0
1 0
0 0
0 1

A. 

High-level functionalities: We now illustrate the high-level functionalities. In the Figures, 
the guards are in brown, and the updates are in purple. 



The model in Figure 2 is an HCTPN with a set of three colors C = 
{blue,red,black}. Several combinations of color usage, on guards and in updates, via the 
$any variable are presented1. 

 

Figure 2. High-level manipulation of variables. 

Transition T1 ∈ Tany since at least one arc is associated with the color any. A firing of this 
transition produces a blue token in P3 and produce a token in P2 with the color ($any) 
used for the firing. Moreover, the value of $any is used in the precondition 
(guard) and the postcondition (update). Hence transition T1 is not enabled by blue token 
because of the guard $any ≥ 1. Moreover, the firing of T1 leads to the execution of the 
update cpt[$any]=f($any,cpt). Then the transition T1 will be fired twice respectively with 
a red and a black tokens leading to a marking with a red and a black tokens in P2 and 2 
blue tokens in P3. It remains a blue token in P1 and the final value of cpt is 
{2,4,4}. 

Time behavior: For any t ∈ Tany, v(t,c) is the valuation of the clock associated with t and 
the color c ∈ C. i.e., it is the time elapsed since the transition t has been newly enabled by 
m with c ∈ colorSetany(m,t). For other transitions t ∈ Tany, v(t,•) is the valuation of the 
clock associated with t. 

0I is the initial valuation with ∀t ∈ T, ∀c ∈ C ∪ {•}, 0I (t,c) = 0. 
As an example, if we keep only the useful clocks, the initial valuation of the 

HCTPN of Figure 1 is J) = +%
• 567 89:6
(0 								 								) for Figure 1.a, J) =

+%
• 567 89:6

(						 		0		 			0							) for Figure 1.b, and J) = +%
• 567 89;LM
(0 								 										) for Figure 2. 

A state of the net '	is a tuple ((D, N), J)	in 	ℕ5×7 × )8 × ℝ9)
+×7 , where: D	is a 

marking, N	is a variable valuation and J	is a valuation of the clocks. 

Definition 2. (Semantics of a HCTPN). The semantics of a HCTPN is a timed transition 
system (Q,Q0,→) where: 

 
1 In the example in this section and in the examples that follow we present models designed with 

the tool Roméo. In this tool, $any	is used instead of any	in guards and updates for syntactic 

reasons but both have the same meaning. 

P1

$any � 1
T1

[8, 8]
cpt[$any]=f($any,cpt)

P2

P3

any

any
blue

•••

typedef color {blue = 0, red = 1, black = 2};
int [3] cpt = {2,2,5};

int f(int firedColor , int[3] c) {
if (firedColor == red) {

return c[firedColor ]*2;
}
else if {

return c[firedColor] -1 ;
}

}



• Q ⊆ ℕ5×7 × )8 × ℝ9)
+×7   

• Q0 = ((m0,x0),0I) 
• → ∈ Q × ((T × C ∪ {•}) ∪ ℝ9)) × Q consists of two types of transitions: 

o discrete transitions (firing t from ((m,x),v)) iff: 

§ ((D, N), J)
(:∈+!"#$$$$$$,•)
E⎯⎯⎯⎯⎯⎯G ((D’, N’), J’)	with 

• en(m,t) = true and v(t) ∈ I(t), 
•  m′ = firing(m,t,•)  

§ ((D, N), J)
(:∈+!"#,<)
E⎯⎯⎯⎯⎯⎯G ((D’, N’), J’) with 

• c ∈ colorSetany(m,t) and v(t,c) ∈ I(t), 
• m′ = firing(m,t,c) 

§ guard(t,x) = true and x′ = update(t,x) 
§ ∀t' ∈ Tany s.t. en(m′,t′) = true 

• J′(Q′,•) = J(Q′,•)	RS	Q′ ∉	 newen((D, N), Q,•), 
• J′(Q′,•) = 0 otherwise. 

§ ∀t′ ∈ Tany and ∀c ∈ colorSetany(m′,t′) 
• J′(Q′, L) = J(Q′, L)	RS	Q′ ∉ newen((D, N), Q, L), 
• J′(Q′, L) = 0 otherwise. 

o time transitions: ((D, N), J)
1∈ℝ%&
E⎯⎯⎯G ((D, N), J’) iff : 

§ ∀Q ∈ +!"#$$$$$$ s.t. en(D, Q) = Q5:6, 
• J′(Q,•) ≤ V(Q) ↓ 
• J′(Q,•) = J(Q,•) + 7 

§ ∀Q ∈ +!"# and ∀L ∈ colorSetany(D, Q), 
• J′(Q, L) ≤ V(Q) ↓ 
• J′(Q, L) = J(Q, L) + 7 

We now illustrate the main features of HCTPN in an example. The guards are in 
brown in the Figures and the update in purple. 

Examples of HCTPN  

We give three examples. The first two examples illustrate the high-level functionalities, 
and the third illustrates the notion of color and multi-enableness. 
Example 1: Let’s go back to the HCTPN given in Figure 2. The	initial	marking	D) =

4%
4&
4'

89:6 567 89;LM

Y
1 1 1
0 0 0
0 0 0

Z	enables the transition T1. The valuations of the clocks are given by 

the matrix such that the initial valuation is  J) = +%
• 89:6 					567 	89;LM
(					 	 0 0					). Since 

the set of variables is X = {cpt}, we note a state [ = (D, L\Q, J). 
The initial state is q0 = (m0,{2,2,5},v0). The transition T1 is enabled twice and can 

fire after elapsing 8 time units for both enabling. After 8 time units T1 fires with either the 
red or the black colors and then can fire again with the other one. Assume that we first 
fire with the red color, the corresponding run is as follows: 

]D), {2,2,5},
• 89:6 567 89;LM

( 0 0)
b

>
→ ]D), {2,2,5},

• 89:6 567 89;LM
( 8 8)

b
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A
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4'

89:6 567 black

Y
1 0 0
0 1 1
2 0 0

Z, {2,4,4},
• 89:6 567 89;LM
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Example 2: The HCTPN given in Figure 3 illustrates time behavior and high-level 
manipulation of variables. This HCTPN has only one color and a single variable cpt, and 
is part of a larger HCTPN. We assume that g() returns an integer between 1 and 10, 
handled by the other part of the net. 

 

Figure 3. HCTPN illustrating high-level manipulation of variables. 

A marking is written by the matrix (|P|,|C|). Since there is only one color, the marking is a 

vector and the initial marking is then D) =
4%
4&
4'
Y
1
0
0
Z and enables the transition T1. The 

valuations of the clocks are given by the matrix (here a vector) such that the initial 

valuation is J) =
+%
+&
+'
Y
0
0
0
Z. Since the set of variables is X	=	{cpt}, we note a state s	=	

(m,cpt,v). The initial state is q0	=	(m0,0,v0). The transition T1	can fire after elapsing 5	time 
units. We now consider the run where the function g() called by the update of the firing of 
T1	returned the value 7. Then the transition’s guard T2	is false, and the transition T3	is 
enabled. We assume that the transition T3	took 4.6	time units for this run. The firing of the 
transition T3	executes the corresponding update and calls the function f	that returns 13. 
The corresponding run is as follows: 

kY
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0
0
Z , 0, Y

0
0
0
Zl
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→kY

1
0
0
Z , 0, Y

5
0
0
Zl

(+',•)
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0
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Zl
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EG kY

0
1
0
Z , 7, Y

0
0
4.6
Zl

(+(,•)
E⎯⎯G kY

0
0
1
Z , 13, Y

0
0
0
Zl 

Example 3: The model given in Figure 4 is a HCTPN with a set of two colors C = 
{red,blue}. Several combinations of color usage, on guards and in updates, via the $any 
variable are presented. 

P1

T1

[5, 7]
cpt = g()

P2
cpt <= 5

T2

[2, 3]
cpt = 0

cpt > 5
T3

[4, 6]
cpt = f(cpt)

P3

•
int cpt =0;

int f(int x) {
return 2*x-1;

}



 

Figure 4. HCTPN model illustrating colored multi-enableness 

In the sequel a marking is written by the matrix (|P|,|C|). The initial marking is then D) =

4%
4&
4'
6<7

567 89:6

>

1 0
1 0
0 1
0 0

A and enables the transitions T1, T2 and T3. The variable cpt of the model is 

an array indexed by the color. Its initial value is N) = L\Q	567 89:6
( 2 1) . The valuations of 

the clocks are given by the matrix such that the initial valuation is J) =

+%
+&
+'

•	 	567 	89:6

Y
	 0 0
0 	 	
0 	 	

Z (We omit the insignificant values). We note a state s	=	(m,x,v). The 

initial state is q0 = (m0,x0,v0). Since the time intervals are points, we have an unique run: 
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P1

T1

[8, 8]
cpt[$any]==2

cpt[$any]=f($any,cpt)

end

T2

[5, 5]

P2

blue

red

•

•

P3•

T3

[6, 6]
cpt[1]=2

blue

typedef color {red = 0, blue = 1};
int [2] cpt = {2, 1};

int f(int color , int[2] c) {
if (color == blue) {

return c[color] + 1;
}
else if (color == red) {

return c[color] * 2;
}

}
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The time elapses from the initial marking until reaching date 5. T2	is fired, and a 
blue token is dropped in the place P1. The clock of T1	associated with the red color has 
reached the value 5. The clock of T1	associated with the blue color cannot start yet 
because the guard is false for this color. At date 6, T3	is fired, causing a change in the 
variable cpt that makes the guard of T1	true for the blue color. The clock associated with 
the blue color for T1	can therefore start. Both colors enable the transition T1, and the 
corresponding clocks give the time from the two enabling. After two more time units, T1	
is fired for the red color; at this moment, the clock of T1	for the blue color has reached 2. 
Finally, after 6-time units, T1	is fired for the blue color, ending the run. 

Atomicity: An update can be described as a sequence of imperative code expressed in a 
programming language such as C. This code is evaluated sequentially w.r.t. the semantics 
of the C language; however, its execution is considered atomic from the HCTPN point of 
view. 

Hence, if x	and x′	are respectively the values of the variables before and after the 
execution of the code of an update of a transition t	from x, the firing of t	leads atomically 
to x′	=	update(t,x). 

High-level Colored Time Petri Net with stopwatches 

We now consider stopwatches instead of clocks. Hence, for Colored Time Petri Nets with 
stopwatches, there is at most one stopwatch per color and per transition. 

When using stopwatches with the HCTPN formalism, the temporal behavior 
differs and depends on the time derivative function J̇(Q,•) when transitions t ∈ +!"#$$$$$$  and 
J̇(Q, L) for t ∈+!"#. 

The time associated with a transition can be suspended and later resumed at the 
same point. Moreover, transition with a 0-time derivative cannot be fired. The time 
derivative of a stopwatch is in the rate set {0,1} and is given by a function from 
Markings. 

Definition 3 (High-level Colored Time Petri Net with stopwatches). 
A High-level Colored Time Petri Net with stopwatches is a tuple ' = 

(P,T,pre(.),post(.),m0,guard,update,I,v˙) where (P,T,pre(.),post(.),m0,guard,update,I) is 
defined in Definition 1 and J̇ : T × ℕP×C × )X → {0,1} is the time derivative function. 

Semantics 

For the discrete transition of the semantics, the only difference with HCTPN is that a 
transition cannot be fired if its time derivative is not 1. For the time transition, the value 
of a stopwatch evolves according to its derivative as follows.  

Definition 4 (Semantics of a HCTPN with stopwatches). The semantics of a HCTPN with 
stopwatches is a timed transition system (Q,	Q0,→)	where: 

• w ⊆ ℕ5×7 × )8 × ℝ9)
+×7  



• w) = ((D),N)), 0I) 
• →∈	Q	×	((T	×	C	∪	{•})	∪	ℝ≥0)	×	Q	consists of two types of transitions: 

o discrete transitions (firing t from ((m,x),v)), as presented in Definition 2 
with J̇(Q) = 1 

o time transitions: ((D, N), J)
1∈ℝ%&
E⎯⎯⎯G	((D, N), J′), iff 

§ ∀Q ∈ +!"#$$$$$$ s.t. 6<(D, Q) = Q5:6, 
• J′(Q,•) ≤ V(Q) ↓ 
• J′(Q,•) = J(Q,•) + 7 if J̇(Q,•) = 1 otherwise J′(Q,•) =

J(Q,•) 
§ ∀Q ∈ +!"#$$$$$$ s.t. 6<(D, Q) = S;9[6, 

• JC(Q,•) = 0 
§ ∀Q ∈ +!"# and ∀L ∈ colorSetany(m,t), 

• J′(Q, L) ≤ V(Q) ↓ 
• J′(Q, L) = J(Q, L) + 7 if J̇(Q, L) = 1 otherwise J′(Q, L) =

J(Q, L) 
§ ∀Q ∈ +!"# and ∀L ∉ colorSetany(m,t), 

• JC(Q, L) = 0 

We now illustrate the main features of HCTPN with stopwatches on an example. 

Example of HCTPN with stopwatches 

This example is the modeling of the preemptive scheduling of two tasks. The first task 
task1	is a periodic task running on core 0, assigned to blue color. The second task task2	is 
also periodic but is executed only 10	times on core 1, assigned to red color. The particular 
color any is used for enabling and firing all transitions. For the first two executions of 
task2, the priority of task1	is higher than task2	priority, after which it becomes the 
opposite. 

The model in Figure 5 is a HCTPN with stopwatches and has a single shared 
variable cpt	and two colors. The initial value of cpt	is zero. Only the transition T2	has a 
guard and an update that manipulate the cpt	variable. Hence the transition T2	is enabled if 
there is a token in its input place task2	and if cpt	<	10	modeling the fact that the task task2	
is executed only 10 times. The update that increments the value of cpt	is executed each 
time the transition T2	is fired. 

The scheduling is captured by the derivative function of the stopwatches 
associated with C1	and C2	whose values are given by a function called isRunning shown in 
Figure 5. 

In the sequel, a marking is written by the matrix m	=	(|P|,|C|). The initial marking 
enables the transitions T1	and T2. The valuations of the stopwatches are given by the 
matrix v	=	(|T|,|C|). Since all the transitions are in Tany, the bullet column of the 
stopwatch valuations is not used. We will therefore omit it in the states of this example in 
order to simplify the notation. 



 

Figure 5. HCTPN model with stopwatches of two-task scheduling. 

We note a state s	=	(m,cpt,v)	and the initial state is q0	=	(m0,0,v0), where:  
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>

0 1
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		•					 567 89:6

>

0 0 0
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0 0 0
0 0 0

A simply denoted J) =

+%
+&
y%
y&

567 89:6

>

0 0
0 0
0 0
0 0
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Assume that the execution times of the two tasks task1	and task2	are respectively 
5.3	and 2.4. It means that the transitions C1	and C2	fire when their stopwatches reach these 
values. Let us develop the corresponding run: 
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⎜
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In z%, we have J̇(y%, 89:6) = 1 then 

z%
@
→ z& =

⎝

⎜
⎛
>

0 1
1 0
0 1
0 0

A , 0,>

0 5
15 0
0 5
0 0

A

⎠

⎟
⎞ (+),/01)
E⎯⎯⎯⎯G z' =

⎝

⎜
⎛
>

0 1
1 0
0 1
1 0

A , 1,>

0 5
0 0
0 5
0 0

A

⎠

⎟
⎞

 

In q3, we have J̇(y%, 89:6) = 1 and J̇(y&, 567) = 0 meaning that task2 is preempted by 
task1. Then J(y&, 567)	will keep its value 0 until the firing of y% that will change 

Task1

T1

[10, 10]

Ready1

C1

[4, 6]

Task2

cpt < 10
T2

[15, 15]
cpt = cpt+ 1

Ready2

C2

[1, 3]

• •

v̇ = 1 v̇ = 1

v̇ = isRunning(task1) v̇ = isRunning(task2)

typedef enum {task1 ,task2} id;
int cpt = 0;

int isRunning(id task) {
if (task==task1) {

if ((m(Ready2 )==1) && (cpt >2)) return 0; else return 1;
} else if (task==task2) {

if ((m(Ready1 )==1) && (cpt <3)) return 0; else return 1;
}

}



J̇(y&, 567). 
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In q5, we have J̇(y&, 567) = 1 hence 
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For the sake of conciseness, we do not detail the following run from zD 
zD

&.'
EG
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It leads to a state q13 that have exactly the same marking and the same value of 
stopwatches than q3 but with cpt = 3. 
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 then we have J̇(y%, 89:6) = 0 and J̇(y&, 567) = 1 

meaning that the task task2 is not preempted by the task task1. Hence, we have: 
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Decidability, complexity and state space abstraction 

Let us recall that a High-level Colored Time Petri Net (HCTPN) is a tuple '	=	
(P,T,X,C,pre,post,(m0,x0),guard,update,I)	such that the set C	of colors is finite and X	is a 
finite set of variables taking their value in a finite set ). 

A state q	of the net '	is a tuple ((D, N), J) in ℕ5×7 × )8 × ℝ9)
+×7 , where: D	is 

a colored marking, N is a variable valuation, (D, N)	is the discrete part of the state and J	is 
a valuation of the clocks. The semantics of '	is (Q,Q0,→). 

We propose to extend the zone based graph of (Boucheneb, Gardey, and Roux 
(2009)) to HCTPN. Note that we can similarly extend the state class graph of 
(Berthomieu and Diaz (1991)). 

Symbolic state. For an arbitrary sequence of discrete transitions σ=	(ti,cj)...(tm,cn), let Cσ	
be the set of all states that can be reached by the sequence σ	from z): yE = {z ∈ w|z)
F:*,<+G
E⎯⎯G z%…

(:,,<")
E⎯⎯⎯G z}. All the states of yE  share the same marking m, the same variable 

values x and can therefore be written as a pair ((m,x),Z) where (m,x) is the common 
discrete state and Z is the union of the points (valuation of the clocks) allowing this 
sequence. Z is called a zone and can be written as a set of linear inequations. Hence yE  is 
called a symbolic state. 



We denote ≡, the relation between two zones when they represent the same set of 
values (independently of their syntactical representation). For Z and Z’, two systems of 
linear inequations over a set of variables ∆, we denote Z ≡ Z’ when they have equal 
solution sets over ∆. 

We denote ≅, the relation satisfied by two such sets of states when they have the 
same discrete part and the same firing domain. 

Definition 5. Let yE = ((D, N), �) and yEC = ((D′, N′), �′) be two sets of states, yE ≅ yEC 
iff D = D′, N = N′	;<7	� ≡ �′. 

In HCTPN, a transition can be multi-enabled a maximum of |C|	times at a given 
time. Hence D	is defined over |C|×|T|	variables. If yE ≅ yEC, any firing schedule firable 
from some state in Cσ	is firable from a state in yEC and conversely. As for classical Time 
Petri Nets, the symbolic states are the above sets Cσ	considered modulo ≅	equivalence. 

Definition 6. The zone based graph (ZBG) is defined by the set of symbolic states 
equipped with a transition relation: yE

:
→y′ iff yE.: ≅ y′. Hence the ZBG computes the 

smallest set y of symbolic states w.r.t. ≅. 

Theorem 5.1. The ZBG of an HCTPN is finite iff the net is bounded. Moreover, the ZBG 
is a complete and sound state space abstraction of the HCTPN. 
Proof. Let < = |y| + 1 and D = |+|. Given a symbolic state y = ((D, N), �), a point Ä =
ÅÄ(%,%), … , Ä(%,"), Ä(&,%), … , Ä(H,")Ç ∈ � where Ä(I,J) is the clock that refers to J(QI , LJ) with 
QI ∈ + and LJ ∈ y ∪ {•}. The zone may be described by linear inequations of the form 
Ä(I,J) ≤ M or Ä(I,J) − Ä(I,J) ≤ M′ where M ∈ ℕ and M′ ∈ ℤ. Hence, for HCTPN, as in 
(Boucheneb, Gardey, and Roux (2009)), zones can be symbolically abstracted using so-
called Difference Bound Matrix (DBM) over n	×	m	variables, and the number of DBM is 
finite2. Moreover, by assumption, the number of markings is bounded, and by definition, 
) is a finite set, then the number of discrete states ((D, N)) is also bounded. Hence the 
number of nodes of the SCG is bounded. The completeness and soundness of the ZBG 
directly come from (Boucheneb, Gardey, and Roux (2009)). 

Corollary 5.2. Reachability problem for bounded High-level Colored Time Petri Net is 
decidable. 

Proof. From theorem 5.1, zones can be symbolically abstracted using Difference Bound 
Matrix (DBM) which are computable finite abstractions leading to the ZBG. The ZBG 
preserves untimed language and reachability (Boucheneb, Gardey, and Roux, 2009) (as 
state class graph (Berthomieu and Diaz, 1991)), then the reachability problem is 
decidable. 

Implementation: The zone based graph as the state class graph algorithms for HCTPN are 
implemented in ROMÉO (Lime et al. (2009)). Temporal logics were introduced by Pnueli 
(Pnueli (1977)) as specification languages to express the behaviors of sequential and 
concurrent systems, and TCTL (Timed Computation Tree Logic), introduced in (Alur, 
Courcoubetis, and Dill (1993)), is a real-time extension of the branching-time temporal 
logic CTL (Computation Tree Logic). 

 
2 For static firing interval with infinite time upper bound, the abstraction may use a k-

approximation operator on zones to enforce the termination where k	is the largest constant of 

the model. 



We can prove, as in (Boucheneb, Gardey, and Roux (2009)) for bounded Time 
Petri Nets, that the theoretical complexity of TCTL model-checking (and then 
reachability problem) for bounded High-level Colored Time Petri Nets is PSPACE-
complete. However, as for Timed Automata and Time Petri Nets, no effective PSPACE 
algorithm exists in practice, and real implementations are with exponential algorithms. 

In practice, on-the-fly TCTL model-checking for bounded High-level Colored 
Time Petri Nets is proposed in the ROMÉO tool, 

Stopwatch setting: As shown in the previous section, HCTPN can be extended with 
stopwatches allowing the modeling of preemptive scheduling. Let us now consider 
HCTPN with stopwatches. 

Theorem 5.3. Reachability problem for bounded High-level Colored Time Petri Net with 
stopwatches is undecidable. 

Proof. Any stopwatch Petri Net (Berthomieu et al., 2007) can be trivially encoded by 
HCTPN with stopwatches with only one color. Reachability is undecidable for Stopwatch 
Petri Net (Berthomieu et al., 2007).  

In the stopwatch setting, the reachability problem is undecidable. The symbolic 
abstraction given in definition 6 with the zone based graph remains correct but can no 
longer be encoded by a DBM. The finiteness of the ZBG is no longer guaranteed, but the 
linear inequation set of a zone can be encoded by convex polyhedra, and the ZBG can be 
obtained (when finite) by a semi-algorithm. 

For HCTPN with stopwatches, polyhedral semi-algorithm extensions of the zone 
based graph and the state class graph are implemented in ROMÉO (Lime et al. (2009)) and 
converge for almost all practical cases. 

Path finder monocore scheduling example  

We propose to model the well-known pathfinder scheduling problem (Jones (1997)). 
Pathfinder’s Sojourner Rover rolled onto Mars’ surface on July 6, 1997. It used IBM’s 
RS6000 processor and Wind River vxWorks RTOS. VxWorks provides preemptive 
fixed-priority scheduling and tasks were executed as threads with priorities determined by 
their relative urgency. The system has a number of periodic tasks of varying priority such 
as the low priority. Atmospeheric Structure Instrument and Meteorology Task 
(ASI/MET). The period of the ASI/MET task is 5s and its execution time is dependent on 
the weather conditions and is therefore in a time interval between 50 and 75ms. The data 
from the lander must be transmitted via the 1553 bus to the radio in order to be 
transmitted to Earth. Moreover, the control signal from the CPU must be transmitted via 
the 1553 bus to the cruise part and the lander part. The management of 1553 bus is 
implemented as two critical tasks: bc_sched (bus scheduler task) and bc_dist (bus 
distribution task).  

The data structure of the pipe (memory) associated to the transmitted data is a 
shared resource protected by mutex. Hence the bc_dist (a higher priority task) and 
ASI/MET (a lower priority task) both share the data structure of the pipe.  We consider 
seven periodic tasks summarized in the following table:  

Table 1. Periodic tasks.	
    Shared ressource 

Task Priority Execution Time (ms) Period (ms) access 
bc_sched  7 25 125   



bc_dist 6 25 125 yes 
 Control  5 25 250 yes 
Radio  4 25 250   
Camera  3 25 250   

Measurement  2 50 5000 yes 
ASI/MET  1 [50,75] 5000 yes 

 
As the tasks are not independent (shared resources) and as the execution times are 

in intervals, the classical analytical schedulability methods are difficult to apply. We 
model the path finder task configuration in HCTPN (with one color since there is only 
one core) and use the Roméo tool to check the schedulability. All the tasks are modelled 
as the ASI/MET task shown in Figure 6. Tasks that do not access the shared resource 
have the same model without the arcs linking to the Shared Ressource place. The 
isRunning function is the classic scheduling function: it returns 1 if the task is the highest 
priority ready task and 0 otherwise. A task waiting for the non available resource is not 
considered ready.  

 

Figure 6: HCTPN model of ASI/MET task. 

The schedulability property is that for each task the sum of the tokens in the 
places Waiting	shared	ressource	and Running	must be at most 1. It is checked by the 
CTL formula AG(Waiting	shared	ressource	+	Running	≤	1). The model checker replies 
that this is not true and gives a counter example which shows that the ASI/MET	task can 
acquire the resource before the bc_dist	task wakes up. The latter then takes the processor 
and blocks while waiting for the resource. The ASI/MET	task then resumes its execution 
but is preempted by the Radio and Camera tasks with a higher priority than it but with a 
lower priority than the bc_dist	task, resulting in a deadline overrun. The problem appears 
when the ASI/MET	task has an execution time close to its maximum bound and is 
therefore a difficult phenomenon to observe in practice.  

Indeed, a few days after landing, the spacecraft began to undergo total system 
resets, each time resulting in data loss. The source of the problem was due to a priority 
inversion which caused a deadline-miss of a critical task (bc_dist), resulting in a 
spacecraft reset.  

Application 

The application chosen as an example is the modeling of the spinlocks mechanism 
present in the PowerPC MPC5643L dual-core microcontroller from NXP (Freescale 
Semiconductor (2013)) and used to build critical sections for parallel program executions. 
This mechanism is based on a hardware unit, the SEMA4 for Semaphore Unit. For the 

ASI/MET Task

Period
[5000, 5000]

Waiting shared ressource

Acquire the resource
[0, 0]

v̇ = isRunning(ASI/MET )
Shared Ressource

Running

Execution Time
[50, 75]

v̇ = isRunning(ASI/MET )

•

•

v̇ = 1



software, this unit is materialized as an array of 16 registers implementing 16 locks. The 
exclusive access to the bus regulates the concurrent accesses to one of these registers. If a 
register contains the value 0, the lock is available, and it is possible to write to it. If the 
value contained is different from 0, the lock is occupied, and it is only possible to write 
the value 0 to it, and writing any other value has no effect. Therefore, getting a lock 
consists in writing a value different from 0 and releasing it consists in writing 0. Thus, 
using this unit requires respect of a protocol, and an example of implementation is given 
on page 1322 of (Freescale Semiconductor (2013)). A simpler version is given by the 
algorithm 1. 

 

Algorithm 1 Lock acquisition protocol. gate is one of the hardware registers of the 

SEMA4 unit. 

 
cn ← core_number ▷ (1 ... N)  
do 

gate ← cn  
lock ← gate 

while lock ≠ cn 
 

Here, it is assumed that the waiting execution thread loops in active wait until 
acquiring the lock. The SEMA4 unit also proposes to notify the release of the lock by 
means of an interrupt. This allows the mechanism to be coupled to an operating system 
and to schedule tasks according to whether the lock is taken or not. For this example, the 
operating system offers the following features: 

• The scheduler has a fixed priority;  
• The tasks can be in the following states: 

(1) SUSPENDED, the task is not started; 
(2) READY, the task is ready to be executed and eligible by the scheduler;  
(3) RUNNING, the task is currently executing; 
(4) WAITING, the task is waiting. 

• The following services are available: 
(5) Activate() moves a task from SUSPENDED to READY; 
(6) Terminate() moves a task from RUNNING to SUSPENDED; 
(7) Wait() moves a task from RUNNING to WAITING; 
(8) UnWait() moves a task WAITING to RUNNING; 
All these services cause a rescheduling. These features are illustrated in the 

Figure 7. 
The combination of the SEMA4 unit with the operating system leads to defining a 

second algorithm for the lock acquisition protocol as shown in listing 2. In essence, it is a 
matter of calling the Wait service if the lock is not available, which will allow to schedule 
another task instead of doing an active wait. Moreover, the release of the lock leads to the 
sending of an interrupt and the interrupt handler has the role of calling UnWait() to put 
the task in the READY state. 

 
 



 

Figure 7: Possible states for a task and interaction with services. start and preempt are 

performed by the scheduler according to the changes of state of the other tasks. 

Algorithm 2. Lock acquisition protocol in combination with the operating system. 

gate is one of the hardware registers of the SEMA4 unit. 

cn ← core_number       ▷ (1 ... N)  
do  
      gate ← cn  
      lock ← gate  
      if lock ≠ cn then 
         Wait()  
      end if  
while lock  ≠  cn 

 

 

Modeling the operating system 

We consider that the operating system runs only on core 0 and that core 1 executes a 
single task program. The state of a task includes its priority and its state (SUSPENDED, 
READY, RUNNING or WAITING) and is represented by a structure. The state of the 
operating system is also represented by a structure: kern. It includes: 

• A table of tasks; 
• The id of the task currently running; 
• The id of the task in the WAITING state; 
• If an interrupt is pending; 
• A lock to have a critical section in the operating system. 

The listing 1 presents these structures. 

Listing 1 Data structures used for operating system status 

 

SUSPENDED

RUNNING READY

WAITING

Activate()

start

preempt

Terminate()

Wait() UnWait()

1 typedef struct {

2 int prio;

3 int state;

4 } TaskDescriptor;

5

6 typedef struct {

7 TaskDescriptor[TASK_COUNT] tasks;

8 int running;

9 int waiting;

10 int it_pending;

11 int locked;

12 } KernelState;



The services of the operating system are also modeled by functions that will be 
called in the updates on the transitions. As an example, the listing 2 presents the service 
Wait. After having verified that the caller is indeed the task being executed (line 3), the 
service preempts the task: it is removed from the running field (line 4), its state is 
changed to WAITING (line 5), it is placed in the waiting field (line 6) and then, finally, a 
rescheduling is performed (line 7). 

Listing 2 Wait service 

 

Modeling the spinlocks mechanism 

The modeling takes advantage of the possibilities of the HCTPN. The hardware part, 
which by virtue of the exclusive access to the bus allows operations that are intrinsically 
atomic, is modeled using functions. To simplify the presentation, only one register of the 
SEMA4 unit, g, is modeled but the model could just as well use an array to accurately 
model the hardware. The listing 3 shows this part of the model. g is defined as a structure 
comprising two members: (1) gate which is the state variable and (2) it which is used to 
memorize the fact that the release should cause an interrupt to be sent. gate is initialized 
to the UNLOCKED state, and it is initialized to NO_IT (line 10). g is accessible through 
three functions. lock (line 12) mimics the behavior of the hardware by only allowing 
writing to gate if its value is UNLOCKED. The core number corresponding to a color and a 
color among N being coded by an integer from 0 to N-1, a core locks by writing color	+	1	
in gate. unlock (line 18) simply writes the value UNLOCKED into gate. Finally, 
isLockedBy (line 22) returns 1 if core holds the lock and returns 0 otherwise. 

Each function of the software and each task is modeled by an HCTPN with 
stopwatches reproducing the control flow graph of the function and allowing to preempt 
the execution as shown in 4.2. Three HCTPNs model the functions GetSpinLock, 
GetSpinLockIT and RelSpinLock (see Figure 8. GetSpinLock corresponds to the algorithm 
1 and $any allows to represent on which core the function is executed. GetSpinLockIT 
corresponds to the algorithm 2. The call of a function modeled by a HCTPN is done by 
dropping a token of the core color in the initial place. Thus, “calling” the function 
GetSpinLock is performed by the update GetSpinLock[color ] = 1 on a transition of the 
HCTPN of the calling function. This is identical to drawing an arc of the corresponding 
color between the transition and the initial place of GetSpinLock. The function return 
requires a synchronization. This one is implemented by a variable of type array and of 
size equal to the number of colors and indexed by the color, i.e. the core on which the 
function call is made. We have therefore for our three function models the three variables 
endOfGSL, endOfGSLIT and endOfRSL, see listing 4. The locked field of kern is used to 
have a critical section between GetSpinLockIT and RelSpinLock and to prevent a situation 
where the spinlock would be released while in GetSpinLockIT the token would be in P3	
with the result that the interrupt would not be triggered. Finally, all transitions include a 
derivative function of the stopwatches: v˙	=	isRunning($any,caller). This function returns 
1 if the calling task (caller	is a variable that is assigned with the identifier of the calling 
task) is running and 0 otherwise. 

1 void Wait(int inCaller)

2 {

3 if (inCaller == kern.running) {

4 kern.running = NONE;

5 kern.tasks[inCaller ].state = WAITING;

6 kern.waiting = inCaller;

7 Schedule ();

8 }

9 }



 

Figure 8. The GetSpinLock, GetSpinLockIT and RelSpinLock function models 

Listing 3 Modeling of the SEMA4 hardware 

 

Listing 4 Synchronization variables for the function return 

GetSpinLock

T1

[1, 1]
v̇ = isRunning(caller)
lock($any, gate)

P1

T2

[1, 1]
v̇ = isRunning(caller)

isLockedBy($any, gate) == 0

T3

[1, 1]
v̇ = isRunning(caller)
isLockedBy($any, gate) == 1

endOfGSL[$any] = 1;

RelSpinLock

T4

[1, 1]
v̇ = isRunning(caller)
kern.locked == 0

unlock(gate);

P2

T5

[1, 1]
v̇ = isRunning(caller)
endOfRSL[$any] = 1;

GetSpinLockIT

T6

[1, 1]
v̇ = isRunning(caller)
kern.locked == 0

lock($any, gate)

kern.locked = 1;

P3T7

[1, 1]
v̇ = isRunning(caller)

isLockedBy($any, gate) == 0

Wait(caller);

gate.it = SEND IT;

kern.locked = 0;

T8

[1, 1]
v̇ = isRunning(caller)
isLockedBy($any, gate) == 1

kern.locked = 0;

endOfGSLIT[$any] = 1;

P4

T9

[1, 1]
v̇ = isRunning(caller)

1 typedef struct {

2 int gate;

3 int it;

4 } SEMA4Gate;

5

6 const int UNLOCKED = 0;

7 const int NO_IT = 0;

8 const int SEND_IT = 1;

9

10 SEMA4Gate gate = { UNLOCKED , NO_IT };

11

12 void lock(int core , int &ioGate) {

13 if (ioGate == UNLOCKED) {

14 ioGate = core + 1;

15 }

16 }

17

18 void unlock(int &ioGate) {

19 ioGate = UNLOCKED;

20 }

21

22 int isLockedBy(int core , int &inGate) {

23 if (inGate == core + 1) {

24 return 1;

25 } else {

26 return 0;

27 }

28 }



 
In RelSpinLock, calling the unlock function while a task is waiting for the spinlock 

triggers an interrupt by setting the it_pending field of the kern structure to 1. The interrupt 
handler, which runs on core 0, is then triggered. It acknowledges the interruption by 
resetting it_pending and calls UnWait() (see figure 9). As a result, the task τ0	is scheduled 
instead of τ1. 

 

Figure 9. The interrupt handler which is triggered when the spinlock is released with a 

task waiting for it. 

Verification of the system 

The spinlock model and operating system model are completed by an application model. 
Two tasks, τ0	and τ1, running on core 0 (red color) and τ2, running on core 1 (blue color), 
are modeled as shown in Figure 10. The task τ2, being alone on core 1, cannot be 
preempted. It is assigned the identifier −1	and isRunning	always returns 1	for a task with 
identifier −1. The task τ0	takes then releases the spinlock. Task τ2	has the possibility to 
take it, as τ0	does, or to reach the final state without taking the spinlock. If τ2	owns the 
spinlock when τ0	tries to take it, τ0	goes into the WAITING state and the operating system 
schedules τ1	instead.  

We want to check the following properties: 
• τ0	and τ2	cannot occupy simultaneously and respectively the places P12	and 

P22. It is checked by the CTL formula A□(¬(P12[0]	==	1∧P22[1]	==	1)). Here 
P12[0]	denotes the marking of P12	for the red color and P22[1]	denotes the 
marking of P22	for the blue color; 

• τ0, τ1	and τ2	all reach their final places. That is to say that the use of the 
spinlock did not cause any blocking and that the scheduling done by the 
operating system allowed τ0	and τ1	to run until the end. It is checked by 
A♢(P14[0]	==	1∧P24[1]	==	1∧P34[0]	==	1); 

• it happens τ0	reaches its final place while τ1	does not reach its final place yet. 
This is checked by the CTL formula E♢(P14[0]	==	1∧P34[0]	==	0). 

ROMÉO answers true for all these three CTL formula. 

1 int [2] endOfGSL = {0, 0};

2 int [2] endOfGSLIT = {0, 0};

3 int [2] endOfRSL = {0, 0};

IT handler
•

Th

[0, 0]
kern.it pending == 1
kern.it pending = 0;
unWait();



 

Figure 10. The tasks models 

Conclusion 

This paper has presented High-level Colored Time Petri Nets with stopwatches. This 
formalism allows to model multi-core complex systems allowing to preempt the 
execution, as shown in the case study. The high-level features allow the modeling of the 
software, the timed transitions model the execution times, the colors specify the hardware 
where the software is executed, and preemption is supported by means of stopwatches. A 
timed transition enabled by more than one color allows true concurrency modeling. The 
model-checking of this extended formalism is implemented in the ROMÉO tool. Future 
work will focus on using this formalism for the certification of an OSEK and AUTOSAR 
compliant embedded OS. 
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