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Microstructural brain assessment 
in late‑life depression 
and apathy using diffusion MRI 
multi‑compartments models 
and tractometry
Renaud Hédouin 1, Jean‑Charles Roy 1,2,3, Thomas Desmidt 4,5,6, Gabriel Robert 1,2,3 & 
Julie Coloigner 1*

Late‑life depression (LLD) is both common and disabling and doubles the risk of dementia 
onset. Apathy might constitute an additional risk of cognitive decline but clear understanding 
of its pathophysiology is lacking. While white matter (WM) alterations have been assessed using 
diffusion tensor imaging (DTI), this model cannot accurately represent WM microstructure. We 
hypothesized that a more complex multi‑compartment model would provide new biomarkers of LLD 
and apathy. Fifty‑six individuals (LLD n = 35, 26 females, 75.2 ± 6.4 years, apathy evaluation scale 
scores (41.8 ± 8.7) and Healthy controls, n = 21, 16 females, 74.7 ± 5.2 years) were included. In this 
article, a tract‑based approach was conducted to investigate novel diffusion model biomarkers of LLD 
and apathy by interpolating microstructural metrics directly along the fiber bundle. We performed 
multivariate statistical analysis, combined with principal component analysis for dimensional data 
reduction. We then tested the utility of our framework by demonstrating classically reported from 
the literature modifications in LDD while reporting new results of biological‑basis of apathy in LLD. 
Finally, we aimed to investigate the relationship between apathy and microstructure in different 
fiber bundles. Our study suggests that new fiber bundles, such as the striato‑premotor tracts, may be 
involved in LLD and apathy, which bring new light of apathy mechanisms in major depression. We also 
identified statistical changes in diffusion MRI metrics in 5 different tracts, previously reported in major 
cognitive disorders dementia, suggesting that these alterations among these tracts are both involved 
in motivation and cognition and might explain how apathy is a prodromal phase of degenerative 
disorders.
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Late-life depression (LLD) affects 7% of the population aged over 60  years1 and the number of cases of LLD 
is likely to increase given the demographic outlook. This is of concern given that LLD is an independent risk 
factor for  mortality2, a modifiable risk factor for  dementia3, and significantly associated with antidepressant 
resistance and  suicide4. However, the pathophysiology of LLD is plural and involves inflammatory, degenerative 
and vascular  processes5, thereby increasing clinical heterogeneity and the need for a better understanding of its 
mechanisms. Among LLD heterogeneity, apathy is  common6, increases LLD burden and is a well-established 
additional risk factor for cognitive decline among mild cognitive impairment and the general  population7, but 
the underlying mechanisms for this additional risk of cognitive decline remain unknown. Recently, systemic 
inflammation was associated with apathy across deep white matter lesions in the elderly, suggesting that apathy 
would be the behavioral output of central  inflammation8. In vivo diffusion magnetic resonance imaging (dMRI) 
is sensitive to central inflammation and, combined with appropriate models, may provide proxy biomarkers of 
inflammatory processes in the  brain9–11.
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In addition to providing information about the structural geometry of the brain, dMRI can also provide 
microstructural metrics of brain tissues using tissue-specific biophysical models, such as fractional anisotropy 
(FA). The well-known diffusion tensor imaging (DTI) model is one of the simplest ways to represent anisotropic 
diffusion, it is also the most widely used in clinical applications and has contributed to a better understanding 
of the clinical heterogeneity of major  depression12. However, the simplicity of DTI has its limitations. In crossed 
fibers, fiber dispersion, or areas with different tissues such as extra-axonal or free water, DTI cannot correctly 
represent the underlying  microstructure13. These limitations have led to the development of more complex 
microstructural diffusion models such as Multi-Compartment Models (MCMs), Neurite Orientation Dispersion 
and Density Imaging (NODDI)14 or Composite Hindered and Restricted Model of Diffusion (CHARMED) and 
its extension  AxCaliber15, which estimate specific properties directly from dMRI images. These approaches are 
used to disentangle the complex signal by considering multiple isotropic and anisotropic compartments, each 
compartment representing a specific diffusion in cerebrospinal fluid (CSF), glial cells or axon  bundles16. The 
various three-compartment biophysical models differ in the representation used to describe the tissue-specific 
signal and the assumptions made about the model parameters. Promising studies have shown that MCMs appear 
to provide microstructural metrics with greater specificity and sensitivity to tissue properties than those obtained 
with conventional DTI. Indeed, subtle changes in tissue microstructure have been found in patients suffering 
from psychiatric disorders using an  MCM17.

Recent advances in diffusion models and tractography methods have led to the development of a new 
framework, called tractometry, for better assessment of WM microstructure. Specific fiber bundles can be 
reconstructed via tractography from diffusion models, and then the dMRI-derived measures are projected along 
the WM  tracts18,19. Analysis of these bundle profiles can provide a more specific and localized investigation than 
looking at a region of interest or tract-averaged measures. Briefly, along-fiber approaches generate a bundle profile 
for each fiber, map the DTI metrics onto a centroid line, and then perform statistical analysis of the DTI metrics 
at multiple points along the centroid line to identify specific locations where the DTI metrics are  different19.
This can be used to study normal brain development and to characterize areas of the brain in different brain 
 conditions20. As described previously, MCMs provide sensitive and specific metrics for certain microstructural 
properties. Recently, some studies have proposed to analyze each of the multiple tissue microstructural measures 
derived from these models independently using univariate  analysis18,21.

However, this individual analysis does not take advantage of the complementary nature of each MCM metric 
and only provides partial information about the microstructural properties of white matter. Here, we propose 
to take advantage of MCMs, tractometry and multivariate statistics to better characterize inflammation in LLD 
and apathy severity.

To summarize, diffusion studies so far suffer from a lack of specificity, either in terms of microstructural 
properties (a unique anisotropic compartment) or spatial localization of group differences, and considering 
only one diffusion metric alone might reduce the chances of finding group differences, as diffusion metrics are 
complementary to each other. To circumvent these limitations, we adopted a stepwise approach: 1/ Compute 
MCM to better estimate diffusion metrics across the brain, 2/ Derive latent diffusion measures using PCA at 
each bundle to capture the complementary nature of the diffusion metrics without losing power, 3/ Project these 
latent diffusion metrics onto a centroïd line sampled at 100 locations for spatial specificity, and 4/ Use multivariate 
statistical tests (Hotelling and linear regression) to increase statistical power given the complementary 
information carried by each of the latent diffusion components. We applied this framework to identify the 
classic changes in LDD, compared with a group of healthy controls (HC) and to investigate apathy low-grade 
inflammation cerebral basis to get insight into this particular risk of cognitive decline.

Methods
Participants
Forty-six elderly participants were recruited from the French old-age psychiatry centers of Rennes, France (13 
healthy subjects and 25 LLD patients) and Tours, France (12 healthy subjects and 13 LLD patients) between 
October 2019 and December 2022. After exclusion of some subjects, mainly due to image quality, a total of 21 
HC and 35 patients were available for analysis. The criteria for inclusion in the study were: age over 60 years 
with a major depressive episode assessed with the DSM-5 criteria and the Mini International Neuropsychiatric 
Interview. Inclusion was assessed during an interview conducted by a trained geriatric psychiatrist. The non-
inclusion criteria were: major cognitive disorders according to DSM-5 criteria and a Mattis Dementia Rating 
Scale (DRS) score < 125 , cerebral diseases (multiple sclerosis, stroke, Parkinson’s disease, traumatic brain injury), 
high suicidality defined as a Clinical Global Impression Suicide Scale > 4 , legal guardianship, incarceration; and 
MRI contraindication (such as pacemakers, pumps, metallic intra-ocular foreign bodies). The socio-demographic 
data of the subjects are presented in Table 1. The study was approved by the relevant institutional review board 
(ID-RCB 2018-AO2643-52, NCT03807167).

Subjects were given a full description of the study and their written informed consent was obtained. The 
study was approved by an ethics committee (ID-RCB 2018-AO2643-52) and is registered at http:// www. clini 
caltr ial. gov (NCT03807167).

Clinical assessment
Aside from categorical criteria, the severity of symptoms was assessed with the Montgomery and Åsberg 
Depression Rating Scale (MADRS)22 and the apathy evaluation scale (AES). The AES is an hetero-questionnaire 
that has been validated in depression and other degenerative  disorders23. We have gained experience using this 
tool over the years to assess apathy in Parkinson’s disease and major  depression24,25.

http://www.clinicaltrial.gov
http://www.clinicaltrial.gov
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Cognitive performance was assessed using the Trail Making Test (TMT), with TMT-A measuring processing 
speed and TMT B-A cognitive flexibility and the Stroop test interference score was calculated to estimate 
cognitive  control26. Language was assessed with semantic and phonemic verbal  fluencies27.

MRI acquisitions
At both sites, all participants underwent MRI in a 3T whole-body Siemens MR scanner (Magnetom Prisma, 
VE11C, Erlangen, Germany) with a 64-channel head coil. A whole brain T1-weighted MPRAGE image was 
acquired with repetition time (TR) = 1.9 s, echo time (TE) = 2.26 ms, inversion time (TI) = 900ms, flip angle 
= 9◦ , 1mm isotropic, field-of-view (FOV) = 256× 256 mm2 , 176 slabs. The multi-shell dMRI data were gathered 
with a CUbe and SPhere (CUSP)28 sequence acquired on 72 slices using an interleaved slice acquisition, with 
the following parameters: slice thickness of 2 mm, in-plane resolution = 2 mm × 2 mm, an acquisition matrix 
of 110× 110 , TR/TE = 5216/54.40 ms, flip angle 90◦ , pixel bandwidth 1698 Hz and an imaging frequency of 
123, 25 MHz. The CUSP acquisition time was 6.42 min. An additional b0 volume with reversed phase encoding 
direction volume was also acquired with the same acquisition parameter for the distortion artifact correction. 
The specificity of this sequence lies in its 60 gradients that are placed on a sphere and a cube (i.e. with multiple 
gradient b-values ranging from 1000 to 3000 s mm−1 ). The goal of this particular gradient structure is to reduce 
the acquisition time compared to a regular multi-shell sequence while maintaining the quality of the resulting 
diffusion  model28. Moreover, the second interest of the CUSP sequence is in terms of image quality because the 
time echo of this diffusion sequence is less affected by high b-values, improving the signal-to-noise of the images.

Image preprocessing
Diffusion MRI sequence artifacts were removed using the Anima toolbox by performing the following step: (a) 
Eddy current correction and motion correction: it is performed by registering each sub-volume of the CUSP data 
linearly then non-linearly to the first sub-volume. Each non-linear transformation is computed only in the phase 
encoding direction; (b) Distortion correction: It is designed to register two b0 images acquired with two opposite 
phase encoding directions, using a block-matching  correction29. The transformation is applied to all dMRI 
volumes to obtain the unwrapped volume; (c) denoising: This method is based on a 3D-optimized blockwise 
version of the nonlocal (NL)-means filter, which uses the redundancy of information to remove the  noise30; (d) 
mask extraction: Skull stripping was performed on the MPRAGE image using an atlas registration-based method. 
Then, a rigid transformation was computed between the structural image and the subject’s dMRI volume. After 

Table 1.  Demographic and clinical data for LLD and HC groups. All results are given as mean ± and standard 
deviation (std) and the range for LLD and HC. AES Apathy Evaluation Scale, MADRS Montgomery-Asberg 
Depression Rating Scale, DRS Mattis Dementia Rating Scale, TMT Trail Making Test, TMT B-A difference in 
scores between versions B and A of the Trail Making test, t Student’s t statistics, U Mann–Whitney U statistics, 
χ2 Chi-squared statistics.

LLD n = 35 HC n = 21 Statistics p-value

Age (years)
75.22 ± 6.4 74.76 ± 5.25 t = 0.30 p = 0.76

60–91 64–84

Education (years)
11.16 ± 3.78 11.12 ± 3.60 t = 0.05 p = 0.96

5–19 4–17

Gender (male:female) 9:26 5:16 χ2 = 0.03 p = 0.87

Duration of depression (months) 23.68 ± 20.68

0–60

MADRS
26.46 ± 4.80

17–36

AES
41.78 ± 8.71

27–61

DRS
133.30 ± 6.74

119–144

TMT A
52.97 ± 27.97 39.42 ± 18.86 U = 687 p = 0.004

10–172 26–111

TMT B-A
89.97 ± 59.52 77.92 ± 45.44 U = 484 p = 0.37

0–295 28–198

Stroop test − 80.71 ± 62 − 56.16 ± 37.42 U = 250 p = 0.009

Interference score − 400 to − 7 − 189 to − 18

Verbal fluencies 25.91 ± 9.18 27.58 ± 6.11 t = − 0.85 p = 0.36

Semantic 11–47 17–43

Verbal fluencies 18.58 ± 7.23 20.11 ± 5.89 t = 0.92 p = 0.40

Phonemic 3–37 8–31
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assessing the quality of the dMRI data, in terms of artifacts, a visual inspection of the data was performed after 
each pre-processing step. We assessed the quality of motion correction, distortion correction and skull-stripping.

Diffusion model
In MCMs, the diffusion signal is modeled as the sum of the contributions from different compartments. Each 
of them represents a specific tissue (e.g., cerebrospinal fluid, glial cells, or axons in a specific direction) with a 
specific diffusion property. Water diffusion within spherical structures, such as specific glial cells or neuronal 
cell bodies, and free water diffusion, such as cerebrospinal fluid, could be expressed as isotropic compartments. 
The intra-axonal and extra-axonal space, corresponding to the complex environment composed of glial cells 
and extracellular molecules, could be represented as anisotropic compartments. The water diffusion probability 
density function (PDF) is then expressed as the sum of the isotropic and anisotropic compartments:

where pi and qj are the diffusion PDFs of respectively the i-th isotropic compartment, and the j-th anisotropic 
compartment of the model. The parameters, αi and βj , are the compartment weights of the model and sum up 
to 1. Assuming Gaussian compartmental diffusion, the most complete microstructure mapping is given by the 
multi-tensor model (MTM)31 where each anisotropic compartment is characterized by its diffusion tensor. 
Contrary to the classical NODDI model, in order to address the crossing fiber, a MTM with several anisotropic 
zeppelin compartments (i.e a tensor whose last 2 eigenvalues are equal) is performed, to account for multiple 
fiber bundles with different directions in the same voxel. Some brain areas are better explained by different 
numbers of anisotropic compartments: no anisotropic compartment for the CSF, one anisotropic compartment 
for the corpus callosum, and two or three anisotropic compartments in complex crossing fiber areas contrary to 
classical MCMs where this number is fixed. A method has been proposed to detect the region of crossing fibers 
based on the planar index (the difference of the last two eigenvalues of the tensor)18, but by construction, it has 
been designed to detect an area of 2 crossing fibers and not optimal for 3 crossing fibers. To detect the optimal 
number of anisotropic compartments from 0 to 3 for each voxel individually, we performed an automatic pipeline 
using model averaging  theory32. A representation of the number of anisotropic compartments, each of them 
corresponding to a fiber population is shown in the next section. After testing a MCM with different isotropic 
compartments, we only included a free water compartment, based on the model estimation error. In this study, 
even with very high-quality data, this model is too complex to allow a stable resolution with two isotropic water 
compartments. To summarize, for each voxel, our model includes one isotropic compartment (free water) and 
k anisotropic zeppelin compartments whose number (from 0 to 3) is fixed by the automatic pipeline described 
previously.

The estimation of the MTM is based on a comprehensive maximum likelihood  framework31 that jointly 
features estimators of compartment proportions and diffusion-related parameters. In addition, to ensure a 
smoother MTM, a prior on the parameters was defined to estimate the model in a reasonable time ( ≈ 2h 
per subject with 8 cores), using the BOBYQA optimizer. From the MCM proposed in this paper, several 
microstructure metrics can be calculated among which the weight of the free water compartment FW. The other 
metrics are derived individually for each k-ith anisotropic compartment of the voxel ( FAk , mean diffusivity MDk , 
axial diffusivity ADk and radial diffusivity RDk ) and then average to give a scalar measure (FA, MD, AD and RD).

Tractometry
In parallel, automatic WM tract segmentation was performed for each subject using the openly available TractSeg 
 tool33, which is based on a fully convolutional neural network that directly segments WM tract infields of fiber 
orientation distribution function (fODF) peaks and was pretrained on high-quality dMRI data acquired for 
the Human Connectome Project. TractSeg was run on the preprocessed dMRI data after rigid alignment in the 
Montreal Neurological Institute (MNI) template space. This process was applied to our dataset resulting in 72 
bundles for each subject. Based on the previous studies focusing on LLD or  apathy34,35, only 29 bundles of interest 
were selected and classified into five groups:

• Commissural pathways: Corpus callosum (Rostrum (CC_1), Genu (CC_2), Posterior midbody (CC_5), 
Isthmus (CC_6), Splenium (CC_7)))

• Association pathways: Cingulum (CG), Superior longitudinal fascicle (in 3 parts: SLF_ I, SLF_II, SLF_III), 
Inferior longitudinal fascicle (ILF)

• Projection pathways: Corticospinal tract (CST), Uncinate fascicle (UF), Fronto-pontine tract (FPT)
• Thalamic pathways: Anterior Thalamic Radiation (ATR), Superior Thalamic Radiation (STR), Thalamo-

premotor (T PREM)
• Striatal pathways: Striato-premotor (ST PREM)

Then, for each bundle of a given subject, a centroid line was computed as the mean streamline of the path using 
the minimum-distance-flipped  metric36 and then resampled to s = 100 equidistant segments. Each voxel is 
weighted by its relative geodesic distance to the nearest centroid point so that spurious streamlines far from 
the centroid do not affect the  result20. Each microstructure value, corresponding to the average of the different 
anisotropic compartments of each vertex was then projected on the centroid line, using a cKDTree  algorithm37. 
A bundle profile containing 5 averaged MCM-derived microstructure metrics FW, FA, MD, AD and RD over the 

(1)P (x) =

M∑

i=1

αipi(x)+

N∑

j=1

βjqj(x)
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different anisotropic compartments was then generated for each tract. This protocol has the advantage of being 
applied directly in the subject’s space, taking into account the entire white matter bundle, and being adaptable 
to any individual variations such as brain size.

Statistics along the fiber
For a given tract, the dataset corresponds to a 3D matrix of size 56× 100× 5 , the 3 dimensions being respectively 
the 56 subjects, the 100 points along the tract and the 5 MCM-derived microstructure measures: FW, FA, MD, 
AD and RD.

Although each of these metrics represents different WM microstructural phenomena, a single model with 
all diffusion metrics could not be employed as microstructure values were partially correlated. A correlation 
analysis between the 5 microstructure metrics was performed to remove measures with correlation scores higher 
than 0.8 and to avoid instability in the statistical  analysis38. To reduce possible redundancy and to explore the 
complementarity of each measure, a PCA was performed on each bundle profile. We selected the number of 
principal components (PCs) (L) that generated a cumulative explained variance of 80%. Then, a multivariate 
group analysis was performed between the HC and LLD groups, point by point along each bundle. We conducted 
a two-sample Hotelling’s T2, which is a generalization of the Student’s t-statistic used in multivariate hypothesis 
testing, between the L PCs of the two groups. Prior to this analysis, the influence of covariates (age, sex and 
center) was removed by performing a linear regression. Cohen’s d effect sizes were calculated from the group 
comparison analysis. Using the same framework, we also tested the correlation between the AES score and the 
PCs along the tracts within the LLD group, using a linear model with age, sex and center as covariates. And we 
also reported the r score for indexing the effect size. For both analyses, all the results were corrected for multiple 
comparisons with a non-parametric permutation  approach39. The data were permuted by shuffling the subjects’ 
labels and then calculating differences in the metric between the permuted groups for each permutation. This 
process was repeated 10.000 times, and the distribution of differences under the null hypothesis was constructed 
based on the permuted data. For each bundle, the family-wise error rate (FWE) corrected cluster size is reported, 
which means that significant clusters of this size or larger exceed the multiple comparison threshold and do not 
require further adjustment of the p-value.

Results
Demographics and clinical measures
Demographic and clinical variables of the LLD and HC groups are summarized in Table 1. The LLD participants 
had similar abilities in cognitive flexibility (TMT B-A) and verbal fluency as HC ( p > 0.1 ), but had slower speed 
processing on the TMT-A ( p = 0.004 ) and were more sensitive to interference on the Stroop test ( p = 0.009 ). 
This is expected since speed processing and cognitive control is known to be impaired in  LLD40. Both groups 
were similar in terms of age, gender and years of education ( p > 0.1).

The MCM
Figure 1 displays the average model of the HC group, using the averaging and interpolation framework proposed 
 in41. The number of fascicles was fixed equal to 3 to obtain the same number of anisotropic compartments, 

Figure 1.  Representation of the MCM model. MCM model for one subject in (A) the corpus callosum with 
only one direction, (B) in a CSF area with isotropic diffusion and in (C) a crossing fiber region near the centrum 
semiovale.



6

Vol:.(1234567890)

Scientific Reports |        (2024) 14:18193  | https://doi.org/10.1038/s41598-024-67535-3

www.nature.com/scientificreports/

necessary for averaging. However, for the rest of the analyses, the number of anisotropic compartments was 
computed automatically. As expected, we observed areas with no anisotropic compartment such as in the 
CSF, areas with only one direction such as in corpus callosum and areas with 2 or 3 different directions near 
the centrum semiovale (see Fig. 1). This area is a major challenge for diffusion models because three major 
pathways (CC, CST and Arcuate Fasciculus) are crossing almost orthogonally in the most ventral part. An 
average of 2.59± 0.45 anisotropic compartments for each voxel was calculated in the HC group (see Fig. 2). 
More specifically, in the linear part of the CST, an average number of anisotropic compartments equal to 1.2 
was estimated in the HC group. Based on the tractometry procedure, the bundles can be reconstructed if they 
reach a sufficient number of points. Here the 29 bundles were successfully reconstructed in all subjects as well 
as the projection of the MCM metrics.

The microstructure metrics and the reduction of dimension
As explained in the section Methods, 5 MCM-derived metrics were projected into the center line of the bundles 
(see Fig. 3 for the ATR _left). We performed a cross-correlation analysis between the different measures on the 
29 bundles. Figure 4 displays the correlation and standard deviation measures averaged over the 29 bundles. The 
average FA over the anisotropic compartments (from 0 to 3) is strongly correlated to the average RD ( r = −0.80 ). 
However, as different numbers of anisotropic compartments are included in the diffusion model, we found a 
lower similarity between the other metrics calculated on the anisotropic compartments as well as with the free 
water. As displayed in Fig. 3, for ATR left, we observed along the fiber bundle specific and uncorrelated patterns 
for each microstructure metric.

In the analysis including the LLD and HC, PCA results show that 80% of the variability in the data is 
accounted for 20 bundles by the first two PCs and 9 by only one PC. For example, for the ATR left (see Fig. 3), 
the first PC explains 70.8% of the variance and is composed of FA and FW contributing for the first metric 
negatively (72%) and the second positively (68%). The second PC represents 22% of the variance of the data, 
with a large contribution of the FA and the MD. The first PC describes neuroinflammation and the second one 
probes the tissue complexity.

Modifications of the microstructure metrics along the fiber bundle
Differences between LLD group and HC group
To investigate potential differences between the LLD and HC groups, we first compared the PCs of the 2 groups 
along the 29 bundles, using a Hotelling’s T2 test. Among these 29 bundles, 6 showed significant differences 

Figure 2.  Number of anisotropic compartments. Representation of the average number of anisotropic 
compartments in the MCM model for the HC group.

Figure 3.  MCM microstructure parameters. Overview of the 5 microstructure measures of the ATR left bundle: 
FA, FW, MD, AD, RD. Microstructure values are projected onto a central line divided into 100 segments.
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between the two groups, as presented in Fig. 5. Areas highlighted in red correspond to those identified in the 
analysis. We found an increase of the PC1 in ATR left and SLF_ I right in the LLD group compared to HC group. 
Concerning the other fiber bundles, CC_1 , SLF_III right, ST_PREM left and UF left, two PCs are included in 
the analysis. A significant increase in PC1 was found in the LLD group compared with the HC group for each 
of them, while the behavior of the PC2 depends of the bundle (CC_1 , SLF_III right, UF left increase in the 
LLD group, ST_PREM left decreases in the LLD group). We reported a large effect size with Cohen’s d measure 
around 1.

Correlation between microstructural metrics and apathy
We report the correlation analysis between the AES score and the PCs for the 29 bundles, as described in the 
section Methods. The results are presented in Fig. 6. Over the 29 bundles, 5 reached the significant bundle size 
which varied from 6 to 15 depending on the bundle: CC_ 1, CC_ 2, CST right, SLF_III left and ST_PREM left. A 

Figure 4.  Correlation between the microstructure metrics. Average on the left and standard deviation on the 
right over the 29 bundles.

Figure 5.  Comparison between the HC group and the LLD group. Top row: For each group, the lines represent 
the average and standard deviation of the PC1 and/or PC2 and the gray bar shows the − log10 (p-values) . A part 
of the fiber is considered significant, highlighted with red dots when the p-value is lower than the alpha value 
( 5% ) along a minimum cluster size which is estimated individually with the permutation test for each fiber. The 
PC is represented by the blue (PC1) and green (PC2) lines for the HC group and by the orange (PC1) and red 
(PC2) lines for the LLD group. Bottom row: Illustration of the 6 bundles corresponding to a HC subject. The red 
parts correspond to the significant areas of the bundles.
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negative correlation is reported between the PCs and the apathy scores for the 5 bundles. A medium effect size 
was reported for 4 out of 5 bundles based on the r scores.

Discussion
In this study, we combined multiple advances in diffusion imaging to better characterize microstructure in LLD 
and to better characterize apathy in LLD. Instead of averaging measurements over the entire fiber, we opted for 
a local approach by slicing the fiber bundle into subsections to obtain finer regions of interest. As explained  in42, 
tissue properties may vary systematically along each tract for several reasons: different populations of axons enter 
and exit the tract, and disease can strike at local positions within the tract. Hence quantifying and understanding 
diffusion measures along each fiber bundle may provide new insights into brain-behavior associations that are 
not apparent from average measures of that tract. Finally, the tract-based approach has the advantage of being 
carried out directly in the subject space thereby reducing biases associated with nonlinear registration, required 
when using a voxel-based approach.

In this study, we also performed a MCM, to derive more interpretable measures of WM integrity and 
inflammation in LLD that could not be obtained with a classical DTI model. Indeed, the DTI model cannot 
correctly represent complex brain areas such as crossing fibers, unlike an MCM estimated with multiple 
anisotropic compartments. In fact, all diffusion models that do not include multiple anisotropic compartments, 
including more complex models such as CHARMED or NODDI, cannot correctly represent a crossing fiber by 
their very construction. As shown in Fig. 1, our model with multiple anisotropic compartments (from 0 to 3) 
can robustly estimate crossing fibers near the central oval, like the SLF, and we can accurately probe the tissue 
microstructure in this pathway.

Several studies have assessed the potential advantages of MCMs over DTI in predicting age and/or cognitive 
 performance43–45. Results from these studies have suggested that metrics derived from multi-compartment 
models may be more sensitive predictors of age and/or cognitive performance in older  adults43,44,46. Notably, 
most studies have focused on WM across the brain and/or explored individual WM tracts that form parts of 
multiple cognitive  networks43,45,47.

In addition to more accurate ROI detection, MCMs also offer improved microstructural interpretation. 
When an increase in the free water compartment is observed in one group relative to another, this offers a 
more comprehensive understanding of the underlying microstructure, such as the presence of inflammation, 
rather than merely detecting a change in FA in the DTI model, the interpretation of which is more susceptible 
to question. It is important to note that DTI FA is not specific to microstructure. A decrease could be related to 
edema, axonal injury, or demyelination.

Figure 6.  Apathy relationship captures by the PC1 and PC2 over 5 bundles. Top line: The lines represent the 
average and standard deviation of PC1 (blue) and PC2 (orange) and the gray bar shows the − log10 (p-values) ). 
The significant fiber areas estimated in the correlation analysis using PCs are highlighted with red dots. Bottom 
row: Illustration of the 5 bundles corresponding to a HC subject. The red parts correspond to the significant 
areas of the bundles.
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A comprehensive representation of the brain microstructure is not homogeneous, depending on the brain 
areas considered. It is reasonable to assume that the CC, which has a single, highly dense fiber bundle, can be 
adequately represented by a single anisotropic compartment. However, a more complex crossing fiber area would 
require the inclusion of several anisotropic compartments to ensure accurate representation. To address this, we 
employed a tool that automatically estimates the optimal number of anisotropic compartments using modularity 
clustering. In addition to optimally estimated numbers of anisotropic compartments, we also estimated free water 
in our sample. Several studies have shown that the use of a free water compartment gives a better biophysical 
model for detecting microstructure changes in various brain diseases such as Parkinson’s disease, schizophrenia 
or traumatic brain  injury48,49. Indeed, the FW measure quantifies the relative fraction of freely diffusing water 
in the extracellular space, which serves as a proxy for chronic low-grade central inflammation. The latter plays 
a central role in the neuropathogenesis of a broad spectrum of neurological and psychiatric diseases, including 
LLD and  apathy50. As demonstrated in our study, the PC1, which is predominantly composed of the free water 
compartment (i.e., inflammation), exhibited a general increase for the ATR left, CC_ 1, SLF_ I right, SLF_III right, 
ST_PREM left and UF left bundles in the LLD group when compared to HC. This finding aligns with previous 
hypotheses of increased low-grade inflammation in  LLD51.

Recently, some tractometry studies have explored the potential benefits of microstructural measures provided 
by MCMs along the  fibers18,21. Mishra et al. proposed tract-specific FA (TSFA), corrected for the effects of 
crossing-fiber geometry using a MCM model. A weighted FA of the fitted two tensors was projected in the center 
line. Results of this approach suggest the potential of conducting tract analysis using MCM metrics. We suggested 
a similar approach while capitalizing on diffusion metrics and improving statistical power using multivariate 
statistics. Here, we used a PCA analysis that removes data redundancies while reducing dimensionality. Thus, for 
each fiber, at least 80% of the variability is explained by the first two PCs. In high-dimensional spaces, a common 
problem with PCA is that the interpretation of the resulting components can be challenging. Here, with only 5 
dimensions, it is easier to identify an important contributor and thus bring more interpretability to the results. 
Indeed, the PC1 was composed of measures sensitive to axonal integrity (i.e., FA) and axonal neuroinflammation 
(i.e., FW), while the PC2 is a combination of FA and MD, both sensitive to tissue complexity, as reported  in52. 
Note however, that all of these metrics are sensitive to the effects of neuroinflammation and other microstructural 
properties.

As reported in previous  studies53 using DTI model, we found alterations in UF, anterior parts of CC, ATR, 
SLF and striato-premotor fasciculus in LLD compared to HC group, confirming previous diffusion MRI studies 
in  LLD54. The anterior CC plays a central role in depression  pathogenesis55 and is associated with many clinical 
features of LLD such as depression duration, cognitive symptoms or recurrence of depressive  episodes56. 
Regarding the SLF, our results confirm findings reported in  LLD56. Because the SLF is a key actor in complex 
motor planning, the modifications observed in the SLF may underlie the dysexecutive syndrome found in 
 LLD51. The UF is also a crucial region implicated in depression, with lesions linked to diminished activity in 
regions involved in emotion regulation in  LLD57. The difference in the neuroinflammation component value 
between LLD and HC in the ATR and projection fiber confirms previous results reporting an association 
between these tracts and serum inflammation in major depressive  disorder58. Prefrontal corticostriatal loops 
are known to be involved in goal-oriented behavior, mediating motor behavior such as planning, learning and 
motor  execution59. Interestingly, we found inflammation in the same regions associated with apathy severity 
namely the anterior CC, the SLF and the striato-premotor areas. This suggests that neuroinflammation in these 
tracts is associated with depression-induced apathy by disruption of processes related to cognitive control of 
behaviour and emotions. The association between apathy and inflammation in the CST suggests that impaired 
behaviour execution, independent of depression severity, might be involved in apathy in LLD. Lesions of the 
striato-premotor fasciculus have been reported in apathy in neurodegenerative  disorders35, which may be more 
sensitively detected with multi-compartments modeling. Indeed, estimation of FW has provided sensitive FA 
measures at an early stage of Alzheimer’s and small-vessel  diseases60, highly associated with inflammatory marker 
and cognitive score in regions such as the  cingulum10. Thus, our findings suggest evidence of early inflammation 
in LLD-related apathy, in the same regions as in predementia-states, which might explain in part the known 
association between apathy and subsequent cognitive  decline7.

This study uses tools that have limitations due to their complexity. As mentioned before, the choice of the 
multi-tensor model specification is a compromise between a more complex model and a more robust estimation. 
Several complex models could be tested such as DDI, CHARMED or NODDI. However, fitting the MCM 
parameter requires multi-shell dMRI data with at least one shell per anisotropic  compartment61. With higher 
data quality, such as the DWI acquisition from the Human Connectome Project, we could probably relax some 
of the constraints on the model and perform MCM models with more compartments. In the future, we could 
explore automatic estimation of the number of compartments in MCM. One option would be to use histological 
data samples to train a deep learning network and later apply it to real data to obtain a more accurate estimate.

As a voxel could have a different number of anisotropic compartments between subjects, we averaged the 
microstructural metrics of anisotropic compartments. The microstructural metrics estimated by the proposed 
method are more accurate than the classical ones proposed by a DTI model. For example, in crossing fiber areas, 
the FA estimated by DTI is underestimated in comparison with our average value over the 2 or 3 anisotropic 
compartments. However, this method aggregates the measurement of several compartments whereas it might 
be interesting to consider them individually. Albeit challenging, in the near future, we aim at matching the fiber 
orientation of the anisotropic compartments.

While TractSeg is a powerful tool to estimate accurately fiber bundles, choosing the best method to project 
the diffusion metrics along the centroid line is not trivial and might impact the overall results. Moreover, 
using a single center line could not be accurate, especially in the fiber bundles containing different streamline 
clusters, each with different orientations. As suggested in a recent  study19, considering the entire fiber bundles 
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segmentation as the shape, instead of their center lines could be more efficient. In the future, the robustness 
of the entire pipeline will also be tested on a larger cohort of individuals suffering from depression. Another 
limitation of the study is the absence of consideration of white matter hyperintensities which might have 
impacted the results as previously  reported62. Future studies addressing this issue may be insightful to better 
model structural modifications of white matter in LLD. Having these limitations in mind while interpreting our 
results, our results suggest that improved estimation of diffusion metrics combined with multivariate statistics 
increase inflammatory-related LLD, especially towards reduced goal-oriented behaviors, opening the door to 
new cognitive decline biomarkers.

Conclusion
Here, we interpolated microstructural metrics derived from a more complex MCM along the fiber bundles and 
performed multivariate statistics of microstructural metrics between LLD and healthy volunteers. This method 
enabled us to detect localized modifications of white matter microstructure associated with apathy in LLD and 
previously reported in dementia. We found microstructural change within the UF, anterior parts of CC, ATR, and 
SLF, demonstrating the utility of our method for the identification of early biomarkers of dementia. In addition, 
we also found significant modifications among the striato-premotor tract, which has not been described so far 
in the LLD literature and which is also known to be associated with major cognitive disorders. By doing so, we 
suggest new mechanistic perspectives to explain the increased risk of showing cognitive decline when suffering 
from LLD, especially with severe apathy.

Data availability
The code for processing the diffusion data is available on Anima https:// github. com/ Inria- Empenn/ Anima- 
Public. Raw MRI data cannot be shared due to data protection. Analyzed data are available on request from 
Julie Coloigner.

Received: 19 February 2024; Accepted: 12 July 2024

References
 1. World Health Organization. Depression and Other Common Mental Disorders: Global Health Estimates, Tech. Rep. (World Health 

Organization, 2017).
 2. Wei, J., Lu, Y., Li, K., Goodman, M. & Xu, H. The associations of late-life depression with all-cause and cardiovascular mortality: 

The NHANES 2005–2014. J. Affect. Disord. 300, 189–194 (2022).
 3. Kim, D. et al. Depression and increased risk of Alzheimer’s dementia: Longitudinal analyses of modifiable risk and sex-related 

factors. Am. J. Geriatr. Psychiatry 29, 917–926 (2021).
 4. Alexopoulos, G. S. Depression in the elderly. Lancet 365, 1961–1970 (2005).
 5. Byers, A. L. & Yaffe, K. Depression and risk of developing dementia. Nat. Rev. Neurol. 7, 323–331 (2011).
 6. Yuen, G. S. et al. Apathy in late-life depression: Common, persistent, and disabling. Am. J. Geriatr. Psychiatry 23, 488–494 (2015).
 7. van Dalen, J. W. et al. Association of apathy with risk of incident dementia: A systematic review and meta-analysis. JAMA Psychiatry 

75, 1012–1021 (2018).
 8. Yao, H. et al. Low-grade inflammation is associated with apathy indirectly via deep white matter lesions in community-dwelling 

older adults: The Sefuri study. Int. J. Mol. Sci. 20, 1905 (2019).
 9. Garcia-Hernandez, R. et al. Mapping microglia and astrocyte activation in vivo using diffusion MRI. Sci. Adv. 8, eabq2923 (2022).
 10. Nakaya, M. et al. Free water derived by multi-shell diffusion MRI reflects tau/neuroinflammatory pathology in Alzheimer’s disease. 

Alzheimer’s Dement. Transl. Res. Clin. Interv. 8, e12356 (2022).
 11. Kim, E. et al. Mapping acute neuroinflammation in vivo with diffusion-MRI in rats given a systemic lipopolysaccharide challenge. 

Brain Behav. Immun. 113, 289–301 (2023).
 12. Coloigner, J. et al. White matter abnormalities in depression: A categorical and phenotypic diffusion MRI study. Neuroimage Clin. 

22, 101710 (2019).
 13. Park, H.-J. Quantification of white matter using diffusion-tensor imaging. Int. Rev. Neurobiol. 66, 167–212 (2005).
 14. Zhang, H., Schneider, T., Wheeler-Kingshott, C. A. & Alexander, D. C. NODDI: Practical in vivo neurite orientation dispersion 

and density imaging of the human brain. Neuroimage 61, 1000–1016 (2012).
 15. Assaf, Y., Blumenfeld-Katzir, T., Yovel, Y. & Basser, P. J. AxCaliber: A method for measuring axon diameter distribution from 

diffusion MRI. Magn. Reson. Med. 59, 1347–1354 (2008).
 16. Panagiotaki, E. et al. Compartment models of the diffusion MR signal in brain white matter: A taxonomy and comparison. 

Neuroimage 59, 2241–2254 (2012).
 17. Kraguljac, N. V., Guerreri, M., Strickland, M. J. & Zhang, H. Neurite orientation dispersion and density imaging (noddi) in 

psychiatric disorders—A systematic literature review and a technical note. Biological Psychiatry Global Open Science (2022).
 18. Mishra, V., Guo, X., Delgado, M. R. & Huang, H. Toward tract-specific fractional anisotropy (TSFA) at crossing-fiber regions with 

clinical diffusion MRI. Magn. Reson. Med. 74, 1768–1779 (2015).
 19. Cury, C., Batail, J.-M. & Coloigner, J. Shape-based bio-markers of white matter fiber-tracts associated with outcome in major 

depression disorder. In International Conference on Medical Image Computing and Computer-assisted Intervention (Springer, 2022).
 20. Cousineau, M. et al. A test-retest study on Parkinson’s PPMI dataset yields statistically significant white matter fascicles. NeuroImage 

Clin. 16, 222–233 (2017).
 21. Chandio, B. Q. et al. Bundle analytics, a computational framework for investigating the shapes and profiles of brain pathways across 

populations. Sci. Rep. 10, 1–18 (2020).
 22. Carmody, T. J. et al. The montgomery Äsberg and the Hamilton ratings of depression: A comparison of measures. Eur. 

Neuropsychopharmacol. 16, 601–611 (2006).
 23. Marin, R. S., Biedrzycki, R. C. & Firinciogullari, S. Reliability and validity of the apathy evaluation scale. Psychiatry Res. 38, 143–162 

(1991).
 24. Robert, G. et al. Apathy and impaired emotional facial recognition networks overlap in Parkinson’s disease: A pet study with 

conjunction analyses. J. Neurol. Neurosurg. Psychiatry 85, 1153–1158 (2014).
 25. Robert, G. et al. Multimodal brain imaging connectivity analyses of emotional and motivational deficits in depression among 

women. J. Psychiatry Neurosci. 46, E303–E312 (2021).
 26. Golden, C. J. A manual for the clinical and experimental use of the Stroop color and word test. Psychology 5 (1978).

https://github.com/Inria-Empenn/Anima-Public
https://github.com/Inria-Empenn/Anima-Public


11

Vol.:(0123456789)

Scientific Reports |        (2024) 14:18193  | https://doi.org/10.1038/s41598-024-67535-3

www.nature.com/scientificreports/

 27. Cardebat, D., Doyon, B., Puel, M., Goulet, P. & Joanette, Y. Formal and semantic lexical evocation in normal subjects. Performance 
and dynamics of production as a function of sex, age and educational level. Acta Neurol. Belg. 90, 207–217 (1990).

 28. Scherrer, B. & Warfield, S. K. Parametric representation of multiple white matter fascicles from cube and sphere diffusion MRI. 
PLoS One 7, e48232 (2012).

 29. Hedouin, R. et al. Block-matching distortion correction of echo-planar images with opposite phase encoding directions. IEEE 
Trans. Med. Imaging 36, 1106–1115 (2017).

 30. Wiest-Daesslé, N., Prima, S., Coupé, P., Morrissey, S. P. & Barillot, C. Rician noise removal by non-local means filtering for low 
signal-to-noise ratio MRI: Applications to DT-MRI. In International Conference on Medical Image Computing and Computer-assisted 
Intervention, 171–179 (Springer, 2008).

 31. Stamm, A., Commowick, O., Warfield, S. K. & Vantini, S. Comprehensive maximum likelihood estimation of diffusion compartment 
models towards reliable mapping of brain microstructure. In Medical Image Computing and Computer-Assisted Intervention-
MICCAI 2016, 622–630 (Springer, 2016).

 32. Stamm, A., Scherrer, B., Commowick, O., Barillot, C. & Warfield, S. K. Fast and robust detection of the optimal number of fascicles 
in diffusion images using model averaging theory. In ISMRM, 2629 (2014).

 33. Wasserthal, J., Neher, P. & Maier-Hein, K. H. Tractseg-fast and accurate white matter tract segmentation. NeuroImage 183, 239–253 
(2018).

 34. Kim, Y.-K. & Han, K.-M. Neural substrates for late-life depression: A selective review of structural neuroimaging studies. Prog. 
Neuro-Psychopharmacol. Biol. Psychiatry 104, 110010 (2021).

 35. Le Heron, C., Apps, M. & Husain, M. The anatomy of apathy: A neurocognitive framework for amotivated behaviour. 
Neuropsychologia 118, 54–67 (2018).

 36. Garyfallidis, E., Brett, M., Correia, M. M., Williams, G. B. & Nimmo-Smith, I. Quickbundles, a method for tractography 
simplification. Front. Neurosci. 6, 175 (2012).

 37. Wasserthal, J. et al. Multiparametric mapping of white matter microstructure in catatonia. Neuropsychopharmacology 45, 1750–1757 
(2020).

 38. Chamberland, M. et al. Dimensionality reduction of diffusion MRI measures for improved tractometry of the human brain. 
NeuroImage 200, 89–100 (2019).

 39. Nichols, T. E. & Holmes, A. P. Nonparametric permutation tests for functional neuroimaging: A primer with examples. Hum. Brain 
Mapp. 15, 1–25 (2002).

 40. Roy, J.-C. et al. Dynamics of cognitive action control in late-life depression during action selection. J. Psychiatr. Res. 143, 276–284 
(2021).

 41. Hédouin, R., Barillot, C. & Commowick, O. Interpolation and averaging of diffusion MRI multi-compartment models. IEEE Trans. 
Med. Imaging 40, 916–927 (2020).

 42. Yeatman, J. D., Dougherty, R. F., Myall, N. J., Wandell, B. A. & Feldman, H. M. Tract profiles of white matter properties: Automating 
fiber-tract quantification. PLoS One 7, e49790 (2012).

 43. Chad, J. A., Pasternak, O., Salat, D. H. & Chen, J. J. Re-examining age-related differences in white matter microstructure with 
free-water corrected diffusion tensor imaging. Neurobiol. Aging 71, 161–170 (2018).

 44. Maillard, P. et al. Cerebral white matter free water: A sensitive biomarker of cognition and function. Neurology 92, e2221–e2231 
(2019).

 45. Beck, D. et al. White matter microstructure across the adult lifespan: A mixed longitudinal and cross-sectional study using advanced 
diffusion models and brain-age prediction. NeuroImage 224, 117441 (2021).

 46. Merluzzi, A. P. et al. Age-dependent differences in brain tissue microstructure assessed with neurite orientation dispersion and 
density imaging. Neurobiol. Aging 43, 79–88 (2016).

 47. Cox, S. R. et al. Ageing and brain white matter structure in 3,513 UK biobank participants. Nat. Commun. 7, 13629 (2016).
 48. Carreira Figueiredo, I., Borgan, F., Pasternak, O., Turkheimer, F. E. & Howes, O. D. White-matter free-water diffusion MRI in 

schizophrenia: A systematic review and meta-analysis. Neuropsychopharmacology 47, 1413–1420 (2022).
 49. Ofori, E. et al. Increased free water in the substantia nigra of Parkinson’s disease: A single-site and multi-site study. Neurobiol. 

Aging 36, 1097–1104 (2015).
 50. Wood, H. Peripheral inflammation could be a prodromal indicator of dementia. Nat. Rev. Neurol. 14, 127–127 (2018).
 51. Alexopoulos, G. S. Mechanisms and treatment of late-life depression. Transl. Psychiatry 9, 188 (2019).
 52. Geeraert, B. L., Chamberland, M., Lebel, R. M. & Lebel, C. Multimodal principal component analysis to identify major features 

of white matter structure and links to reading. PLoS One 15, e0233244 (2020).
 53. He, X. et al. Association of white matter integrity with executive function and antidepressant treatment outcome in patients with 

late-life depression. Am. J. Geriatr. Psychiatry 29, 1188–1198 (2021).
 54. Emsell, L. et al. Corpus callosum macro and microstructure in late-life depression. J. Affect. Disord. 222, 63–70 (2017).
 55. Price, J. L. & Drevets, W. C. Neurocircuitry of mood disorders. Neuropsychopharmacology 35, 192–216 (2010).
 56. Van Velzen, L. S. et al. White matter disturbances in major depressive disorder: A coordinated analysis across 20 international 

cohorts in the enigma mdd working group. Mol. Psychiatry 25, 1511–1525 (2020).
 57. Xu, E. P., Nguyen, L., Leibenluft, E., Stange, J. P. & Linke, J. O. A meta-analysis on the uncinate fasciculus in depression. Psychol. 

Med. 53, 2721–2731 (2023).
 58. Green, C. et al. Structural brain correlates of serum and epigenetic markers of inflammation in major depressive disorder. Brain 

Behav. Immun. 92, 39–48 (2021).
 59. Haber, S. N. Corticostriatal circuitry. In Dialogues in Clinical Neuroscience (2022).
 60. Bergamino, M., Walsh, R. R. & Stokes, A. M. Free-water diffusion tensor imaging improves the accuracy and sensitivity of white 

matter analysis in Alzheimer’s disease. Sci. Rep. 11, 6990 (2021).
 61. Scherrer, B. & Warfield, S. K. Why multiple b-values are required for multi-tensor models. evaluation with a constrained log-

Euclidean model. In 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 1389–1392 (IEEE, 2010).
 62. Svärd, D. et al. The effect of white matter hyperintensities on statistical analysis of diffusion tensor imaging in cognitively healthy 

elderly and prodromal Alzheimer’s disease. PLoS One 12, e0185239 (2017).

Acknowledgements
This work was supported by Avenir Foundation, the Planiol Foundation, the Rennes University Hospital Comity 
of Clinical and Translational Research and the Institute of Clinical Neurosciences of Rennes.

Author contributions
R.H. analyzed the data, developed the hypotheses, performed all statistical analyses, and was the primary writer of 
the paper. J-C.R. collected the data, analyzed the results and wrote the paper. T.D. collected the data and reviewed 
the manuscript. G.R. collected the data, wrote the paper and was the primary investigator of the funded project. 
J.C. wrote the paper and supervised the research activity. All authors reviewed the manuscript.



12

Vol:.(1234567890)

Scientific Reports |        (2024) 14:18193  | https://doi.org/10.1038/s41598-024-67535-3

www.nature.com/scientificreports/

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to J.C.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give 
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and 
indicate if changes were made. The images or other third party material in this article are included in the article’s 
Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy 
of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2024

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Microstructural brain assessment in late-life depression and apathy using diffusion MRI multi-compartments models and tractometry
	Methods
	Participants
	Clinical assessment
	MRI acquisitions

	Image preprocessing
	Diffusion model
	Tractometry
	Statistics along the fiber

	Results
	Demographics and clinical measures
	The MCM
	The microstructure metrics and the reduction of dimension
	Modifications of the microstructure metrics along the fiber bundle
	Differences between LLD group and HC group
	Correlation between microstructural metrics and apathy


	Discussion
	Conclusion
	References
	Acknowledgements


