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Constructible Canonical Form and High-gain Observer in Discrete Time
(Full Version)

Gia Quoc Bao Tran, Pauline Bernard, Vincent Andrieu, and Daniele Astolfi

Abstract— This work presents a triangular form that is shown
to be canonical for constructible discrete-time systems. For
this form, we propose an observer that resembles the well-
known high-gain observer in continuous time. This discrete-
time observer exhibits exponential stability if its dynamics
are picked sufficiently fast, as well as robustness against
disturbances and measurement noise. We also study how to
transform general discrete-time systems into this constructible
form, under constructibility and backward distinguishability,
and recover convergence in the given coordinates. Application
to an electrical machine with comparison to the discretized
version of the continuous-time high-gain observer illustrates
our methods.

I. INTRODUCTION

Observers are algorithms designed to estimate online a
system’s state from their known outputs and inputs [1].
From an application point of view, the implementation of
observers in discrete time may be computation-wise lighter
than in continuous time, especially when the system has
known inputs that we need to store. The existing literature
on discrete-time observers includes:
• LMI-based approaches [2]: These assume the nonlinear

part of the dynamics is Lipschitz and require detectability
of the linear part. Moreover, they typically do not guaran-
tee the solvability of the LMIs;

• Kalman(-like) designs: Global results in the realm of
linear systems encompass the Kalman filter [3], [4], which
exploits uniform complete observability (UCO) and gives
asymptotic stability ”in the large” within both stochastic
and deterministic frameworks. Additionally, the Kalman-
like observer proposed in [5], also operating under UCO,
contributes to these results. However, when extended to
nonlinear systems via methods like the extended Kalman
filter/observer, the outcomes are constrained to be local,
assuming UCO holds only on the linearization of the
dynamics along the estimate [6]–[9];

• Local/linearization techniques: [10] builds an observer
using the m past outputs and necessitates the full rank of
the Jacobian of an observability map derived from future
outputs. The works [11]–[14] locally transform the system
into a linear observable form with linear output;
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• Dead-beat estimators: These rely on the left inversion of
the (forward) observability map, such as with Newton
algorithms [15], [16], providing instantaneous estimation
as soon as enough output information is gathered, but
lacking filtering effects against measurement noise;

• Moving horizon state estimators [17]–[21]: These min-
imize the estimation error with the observability map
made of the m current and future outputs (under in-
jectivity of this map with respect to the state m steps
ago and thus requiring observability instead of backward
distinguishability/constructibility). These exhibit robust-
ness against modeling uncertainties/numerical errors [22];

• Kravaris-Kazantzis/Luenberger (KKL) designs [23], [24]:
These propose transformations into some stable filter of
the output where an observer is trivial, and inverting these
to recover the estimate in the given coordinates, giving
us a global result together with robustness. These rely
on backward distinguishability, a fairly light condition.
The difficulty lies in the implementation where it is hard
to analytically compute these transformations, which is
addressed by neural network-based approximations [25].
In discrete time, the notions of observability [26], [27] and

constructibility [28], [29] (or reconstructibility in some liter-
ature [30]) differ mainly in the invertibility of the dynamics.
To be more precise, given a finite sequence of outputs (and
possibly known inputs), the former corresponds to uniquely
determining from these the initial state, and the latter typ-
ically means determining the final state. If we manage to
retrieve the initial state, we can always proceed with the
system’s dynamics to reach the final state, indicating that
observability classically implies constructibility. However,
when the dynamics lack invertibility, the initial state may not
be recoverable. It is crucial to emphasize that the observer
does not necessarily require this capability, as its primary
task is to estimate the current state. For linear systems, [31]
distinguishes these notions and proposes a constructible
canonical form with a linear output. For nonlinear sys-
tems, [28] introduced constructibility as a local property. The
recent work [29] proposes in the nonlinear setting a notion of
backward observability in the same spirit as constructibility
but written mainly in terms of the observation space of the
linearized systems (from a differential geometry point of
view). Surprisingly, so far the only observer design under
backward distinguishability or constructibility that we know
of is the KKL design [23], [24]. The dead-beat or moving-
horizon estimators [15]–[19] could work in this framework,
but they typically assume observability, which is stronger.

This work has three main contributions. First, it proposes



a nonlinear constructible canonical form for nonlinear time-
varying discrete-time systems, unlike [29] and [13, Section
4] where the forms are linear (modulo output injection). We
redefine constructibility as the ability to express the current
state as a function of a finite number of past outputs (and
known inputs) and show that this is necessary and sufficient
for a transformation into this canonical form. Second, we
present a form of a high-gain observer in discrete time,
where exponential stability and robustness can be achieved
by pushing faster the convergence rate. This differs from
those in [29] and [13, Section 4] where the observers are
linear modulo output injection. We highlight that very few
works in the literature propose global nonlinear discrete-
time observer designs that exhibit robustness with respect
to disturbances and measurement noise, e.g., [20], [21], [24].
Implementation-wise, this new design is more handy than the
KKL one, asking for the same or even lighter observability
conditions, and does not necessarily require invertibility of
the dynamics. Third, we link this new notion of constructibil-
ity with backward distinguishability to propose a transforma-
tion from a backward distinguishable system into a canonical
form, providing a constructive design framework for general
nonlinear systems. To illustrate our methods, we apply them
to a strategically discretized permanent magnet synchronous
motor (PMSM), comparing the proposed observer with a
naively discretized version of the continuous-time high-gain
observer, to show that it is better to directly design and then
implement the observer in discrete time, something we have
already seen in [24] for the KKL observer.

Notations: Let R (resp., N) denote the set of real numbers
(resp., natural numbers, i.e., {0, 1, 2, . . .}), and N≥m =
{m,m + 1, . . .} for some m ∈ N. Let Rm×n be the set
of real (m × n)-dimensional matrices. Denote S + c as the
set of points that lie within a distance less than or equal to
c > 0 from a point in the set S. For a sequence (xk)k∈N of
vectors in Rm indexed by the discrete time k ∈ N, xk is the
vector at time k, while xi,k denotes its ith component at time
k. The vector norm is denoted as | · |. Let Id be the identity
map. For two functions f and g, f ◦ g is their composition,
namely for all x in the domain of g, g(x) is in the domain
of f and (f ◦ g)(x) = f(g(x)).

II. ON NOTION OF CONSTRUCTIBILITY

In this section, we introduce and analyze the notion
of constructibility of nonlinear (time-varying) discrete-time
systems. Consider systems of the form

xk+1 = fk(xk, yk), yk = hk(xk), (1)

where xk ∈ Rnx and yk ∈ Rny are the state and the
measured output at discrete time k ∈ N; fk : Rnx × Rny →
Rnx and hk : Rnx → Rny are the dynamics and output
maps. The time dependence of fk and hk may capture their
dependence on inputs uk, seen as known functions of time.

A. Constructibility and Constructible Canonical Form

This work is based on the following definition.

Definition 1. System (1) is constructible (or in some litera-
ture, reconstructible) of order m if there exist m ∈ N and a
map sequence (Ψk)k∈N≥m

such that for all solutions k 7→ xk

to system (1), we have

xk = Ψk(yk−1, . . . , yk−m), k ∈ N≥m. (2)

In the linear context, this property is known to be weaker
than observability when the dynamics are not invertible [31].
Observability would instead require xk to be a function of the
future outputs (or xk−m as a function of (yk−1, . . . , yk−m)
in (2)), which is easily checked with the Kalman criterion
but is not necessary for observer design. In the nonlinear
context, constructibility notions are studied in [29], but from
the local point of view of differential geometry, and in [28,
Proposition 1] as a local property. It is also related to
the notion of backward distinguishability exploited in KKL
designs [23], [24] (see Definition 2 below). Otherwise, in
general, observability notions are used instead, by exploiting
the “observability map” gathering the outputs as a function
of the initial state (instead of final), as reviewed in Section I.

Remark 1. Note that, in Definition 1, if we write instead
xk = Ψ′

k(yk, . . . , yk−(m−1)) for all k ∈ N≥m−1 (as in [28]),
it is implied that (2) holds with Ψk = fk−1 ◦ Ψ′

k−1. The
converse is true if each fk is invertible. Also, observability,
i.e., xk = ϕk(yk, yk+1, . . . , yk+(m−1)) for all k ∈ N, implies
constructibility. Indeed, we have for all k ∈ N≥m,

xk = Fk(xk−m) = (Fk◦ϕk−m)(yk−m, yk−(m−1), . . . , yk−1),

where Fk = (fk−1 ◦ fk−2 ◦ . . . ◦ fk−m).

Lemma 1 below shows that the constructibility of sys-
tem (1) is necessary and sufficient for it to be transformed
into what we call a constructible canonical form (4).

Lemma 1. The following statements are equivalent:
1) System (1) is constructible of order m;
2) There exist map sequences (Tk)k∈N≥m

, (φi,k)k∈N with
i ∈ {1, 2, . . . ,m}, and (γk)k∈N≥m

such that for all
solutions k 7→ xk to system (1), we have

xk = Tk(zk), k ∈ N≥m, (3)

with k 7→ zk solution for all k ∈ N≥m to the dynamics

z1,k+1 = φ1,k(yk)
z2,k+1 = φ2,k(z1,k, yk)

. . .
zi,k+1 = φi,k(z1,k, . . . , zi−1,k, yk)

. . .
zm,k+1 = φm,k(z1,k, . . . , zm−1,k, yk),

(4a)

with the measured output

yk = γk(zk). (4b)

Proof. First, if 1) holds, then by Definition 1, there exists
(Ψk)k∈N≥m

and we define for all k ∈ N≥m the maps Tk =



Ψk and γk = hk ◦ Tk, and for all k ∈ N the maps φi,k,
i ∈ {1, 2, . . . ,m} as

φ1,k = Id,

φ2,k(z1, y) = z1,

φ3,k(z1, z2, y) = z2,

. . .

which means 1) implies 2). On the other hand, if 2)
holds, then because we have for all k ∈ N≥m,
z1,k = φ1,k−1(yk−1), z2,k = φ2,k−1(z1,k−1, yk−1) =
φ2,k−1(φ1,k−2(yk−2), yk−1), and so on, we have for all
k ∈ N≥m,

xk = Tk(zk)
= Tk(φ1,k−1(yk−1), φ2,k−1(φ1,k−2(yk−2), yk−1), . . .),

which is a function of only (yk−1, . . . , yk−m) and that
corresponds to Ψk in Definition 1, so 2) implies 1).

The following examples suggest that we can rely on
constructibility to transform the system into the constructible
canonical form (4).

Example 1. Consider the system in [29, Section I]:x1,k+1 = uk

x2,k+1 = x3,k

x3,k+1 = x1,k + x2,kuk

yk = x3,k, (5)

where uk is some known input. This system is not observable
(see in [29, Example 1]), but it is constructible because xk

for all k ∈ N≥3 can be expressed as function of the past yk
and uk. We see that xk = (z2,k, z1,k, z3,k), where zk follows
dynamics of the form (4):z1,k+1 = yk

z2,k+1 = uk

z3,k+1 = z1,kuk + z2,k

yk = z3,k. (6)

Example 2. Consider the following system that is inspired
from [29, Example 3], with dynamics and output:

x1,k+1 = x1,kx
2
2,k + x3,kuk

x2,k+1 = x2
3,ku

2
k

x3,k+1 = x1,k

yk = x1,k + uk, (7)

where uk is some known input. This system is not observable
(see in [29, Example 3] for similar reasoning), but it is
constructible. We see that xk = (z3,k, z2,k, z1,k), where zk
follows dynamics of the form (4):

z1,k+1 = yk − uk

z2,k+1 = z21,ku
2
k

z3,k+1 = (yk − uk)z
2
2,k + z1,kuk

yk = z3,k + uk. (8)

However, such transformations are situational since it is
not clear how they can be obtained from constructibility.
We then propose in the next part a constructive way, when
possible, to find this transformation from the system’s maps.

B. Transformation into a Constructible Canonical Form

We introduce the following definition.

Definition 2. System (1) is backward distinguishable of
order m if there exists m ∈ N and a sequence of maps
(Obw

k )k∈N≥m
with

Obw
k (x) = (h−1,k(x), h−2,k(x), . . . , h−m,k(x)), (9a)

such that for all k ∈ N≥m,

h−i,k(xk) = yk−i, ∀i ∈ {1, 2, . . . ,m}, (9b)

along any solution k 7→ xk to system (1), and (Obw
k )k∈N≥m

is injective.

Remark 2. Definition 2 is the constructibility counterpart
of the observability condition assumed in [15], [16], [26],
[27]. It does not require the maps fk to be invertible. If fk
is independent of yk and each map fk is invertible with the
corresponding inverse function f−1

k defined on Rnx , we can
define (Obw

k )k∈N≥m
from these inverses as in [23], [24], as

Obw
k (x) =


(hk−1 ◦ f−1

k−1)(x)
. . .
(hk−i ◦ f−1

k−i ◦ . . . ◦ f
−1
k−1)(x)

. . .
(hk−m ◦ f−1

k−m ◦ f−1
k−(m−1) ◦ . . . ◦ f

−1
k−1)(x)

 .

(10)

Lemma 2. If system (1) is backward distinguishable of order
m, then the variable zk = Obw

k (xk) ∈ Rnz where nz =
mny , along the solutions k 7→ xk to system (1), for all
k ∈ N≥m, is solution to the dynamics

z1,k+1 = yk
z2,k+1 = z1,k

. . .
zi,k+1 = zi−1,k

. . .
zm,k+1 = zm−1,k,

(11a)

with the measured output

yk = hk(Obw,−1
k (zk)), (11b)

where Obw,−1
k is the left inverse of Obw

k on Rnx . Moreover,

xk = Obw,−1
k (zk), ∀k ∈ N≥m. (12)

Proof. First, by definition of h−1,k, along the solutions
k 7→ xk to system (1), we have for all k ∈ N≥m, z1,k+1 =
h−1,k+1(xk+1) = yk. Then, for each i ∈ {2, 3, . . . ,m}, by
definition of h−i,k, along the solutions k 7→ xk to system (1),
we have for all k ∈ N≥m

zi,k+1 = h−i,k+1(xk+1) = hk−(i−1)(xk−(i−1))

= h−(i−1),k(xk) = zi−1,k,

concluding the proof.

This property is used in Section IV to design an ob-
server for a discretized PMSM. The form (11), obtained



through backward distinguishability, is a particular case of
the form (4) and was also obtained under constructibility
in the proof of Lemma 1. The difference is that in (9), the
past outputs are expressed as an injective function of xk

(and thus zk is a function of xk in system (11) and vice-
versa), while in (2), xk is directly written as a function of
the past outputs (and thus we only have xk as a function of zk
in system (4)). In other words, backward distinguishability
is sufficient, but not necessary, for constructibility. This is
illustrated in Example 3.

Example 3. Consider the system with dynamics and output

xk+1 = x2
k, yk = xk. (13)

We have xk = y2k−1 for all k ∈ N≥1 so that this system is
constructible. However, given a current state xk at a time
k ∈ N≥1, there exist two corresponding past outputs yk−1

and −yk−1, so that we cannot write the map (9) and this
system is therefore not backward distinguishable.

III. OBSERVER FOR A CONSTRUCTIBLE FORM

A. Observer Design

Consider a system in the constructible canonical form (4)
where zk ∈ Rnz is the state, and yk is the measured output
in Rny . For system (4), we propose the following observer:

ẑ1,k+1 = φ̄1,k(yk) + θmc1(yk − γ̄k(ẑk))
ẑ2,k+1 = φ̄2,k(ẑ1,k, yk) + θm−1c2(yk − γ̄k(ẑk))

. . .
ẑi,k+1 = φ̄i,k(ẑ1,k, . . . , ẑi−1,k, yk)

+ θm−i+1ci(yk − γ̄k(ẑk))
. . .

ẑm,k+1 = φ̄m,k(ẑ1,k, . . . , ẑm−1,k, yk)
+ θcm(yk − γ̄k(ẑk)),

(14)

where ci ∈ R, i ∈ {1, 2, . . . ,m} and θ ∈ [0, 1] are design
parameters to be selected, which may be 0, and the maps
φ̄i,k, i ∈ {2, 3, . . . ,m} and γ̄k are such that Item (A1.2) of
Assumption 1 below holds.

Assumption 1. Assume that:
(A1.1) There exist sets Z0 ⊂ Rnz , Y ⊂ Rny , W ⊂ Rnz , and

Z ⊂ Rnz such that the solutions k 7→ zk to system (4)
of interest are initialized in Z0, have outputs yk ∈ Y
and possibly disturbance wk ∈ W for all k ∈ N,
remain in Z for all k ∈ N;

(A1.2) The maps φi,k, φ̄i,k, i ∈ {1, 2, . . . ,m} and γk, γ̄k
are such that there exist Lz,i, Ly,i > 0 (for each
i ∈ {1, 2, . . . ,m}) and Lγ > 0 such that for all
(zk, ẑk, k, yk, vk) ∈ Z × Rnz × N× Y × Rny ,

|φi,k(zk, yk)− φ̄i,k(ẑk, yk + vk)|
≤ Lz,i|zk − ẑk|+ Ly,i|vk|,

|γk(zk)− γ̄k(ẑk)| ≤ Lγ |zk − ẑk|.

Remark 3. In the case where φi,k (resp., γk) is globally
Lipschitz with respect to zk (uniformly in k ∈ N), we can
take φ̄i,k = φi,k (resp., γ̄k = γk). In another case where
the set Z is compact and the map φi,k is locally Lipschitz

with respect to zk, uniformly in k ∈ N and yk ∈ Y (resp.,
the map γk is locally Lipschitz with respect to zk, uniformly
in k ∈ N), we take φ̄i,k (resp., γ̄k) as a bounded map that
coincides with φi,k (resp., γk) for all zk ∈ Z + c, for some
c > 0. This way, Item (A1.2) of Assumption 1 is satisfied.

Because system (4) is constructible for all k ∈ N≥m, we
can neglect the correction terms in observer (14), i.e., pick
θ = 0 for an instantaneous convergence after m time steps.
But the price to pay is the absence of filtering effects against
disturbances and noise. On the other hand, the observer
structure (14) somehow resembles the famous high-gain
design in continuous time, the difference being that (i) the
triangularity constraint is lower diagonal, (ii) all the maps
may be nonlinear, and (iii) there are no constraints on the
choice of the scalars ci.

Remark 4. Further generalizations of system (4) and cor-
respondingly observer (14) can be realized:
• The correction term in observer (14) can be replaced by
Υk(yk)− Ῡk(γ̄k(ẑk)) with Υk any function that is locally
Lipschitz in yk ∈ Y , uniformly in k ∈ N, and Ῡk a globally
Lipschitz map;

• Dependence on the history of some inputs k 7→ uk and
k 7→ yk on a window can be considered through

ūk+1 = Auūk +Buuk, ȳk+1 = Ay ȳk +Byyk,

for some matrices (Au, Bu, Ay, By) of appropriate dimen-
sions. The Lipschitzness of the maps as in Item (A1.2) of
Assumption 1 must then be uniform in these.

Theorem 1 shows exponential stability of the estimation
error with an arbitrarily fast rate (by pushing θ smaller).

Theorem 1. Under Assumption 1, for any choice of ci, i ∈
{1, 2, . . . ,m}, there exists θ⋆ > 0 such that any solution
k 7→ zk to system (4) initialized in Z0 with yk ∈ Y for
all k ∈ N and any solution k 7→ ẑk to observer (14) with
0 < θ < 1, initialized in Rnz and fed with yk in (4b), verify:

|zk − ẑk| ≤
1

θm−1

(
θ

θ⋆

)k

|z0 − ẑ0|, ∀k ∈ N. (15)

Proof. Along the solutions k 7→ zk to system (4) initialized
in Z0 with yk ∈ Y for all k ∈ N and the solutions k 7→ ẑk
to observer (14) initialized in Rnz and fed with yk in (4b),
the estimation error z̃k := zk − ẑk verifies

z̃1,k+1 = − θmc1(γk(zk)− γ̄k(ẑk))
z̃2,k+1 = ∆φ2,k(z1,k, ẑ1,k, yk)

− θm−1c2(γk(zk)− γ̄k(ẑk))
. . .

z̃i,k+1 = ∆φi,k(z1,k, ẑ1,k, . . . , zi−1,k, ẑi−1,k, yk)
− θm−i+1ci(γk(zk)− γ̄k(ẑk))

. . .
z̃m,k+1 = ∆φm,k(z1,k, ẑ1,k, . . . , zm−1,k, ẑm−1,k, yk)

− θcm(γk(zk)− γ̄k(ẑk)),
(16a)



where for each i ∈ {2, 3 . . . ,m},

∆φi,k(z1,k, ẑ1,k, . . . , zi−1,k, ẑi−1,k, yk) =

φi,k(z1,k, . . . , zi−1,k, yk)− φ̄i,k(ẑ1,k, . . . , ẑi−1,k, yk).
(16b)

Define the re-scaled estimation error εk where

ε1,k = z̃1,k, . . . , εi,k = θi−1z̃i,k, . . . , εm,k = θm−1z̃m,k.

We then obtain, since 0 < θ < 1,

|εk| ≤ |z̃k|, |z̃k| ≤
1

θm−1
|εk|, ∀k ∈ N. (17)

Along the solutions to system (4) and observer (14), εk
verifies

ε1,k+1 = − θmc1(γk(zk)− γ̄k(ẑk))
ε2,k+1 = θ∆φ2,k(z1,k, ẑ1,k, yk)

− θmc2(γk(zk)− γ̄k(ẑk))
. . .

εi,k+1 = θi−1∆φi,k(z1,k, ẑ1,k, . . . , zi−1,k, ẑi−1,k, yk)
− θmci(γk(zk)− γ̄k(ẑk))

. . .
εm,k+1 = θm−1∆φm,k(z1,k, ẑ1,k, . . . , zm−1,k, ẑm−1,k, yk)

− θmcm(γk(zk)− γ̄k(ẑk)).
(18)

Thanks to Item (A1.2) of Assumption 1, there exists cN > 0
such that for each i ∈ {2, 3, . . . ,m}, for all (zk, ẑk, k, yk) ∈
Z × Rnz × N× Y ,

θi−1|∆φi,k(z1,k, ẑ1,k, . . . , zi−1,k, ẑi−1,k, yk)|

≤ θi−1Lz,i

i−1∑
j=1

|zj,k − ẑj,k| ≤ θi−1Lz,i
1

θi−2

i−1∑
j=1

|εj,k|

≤ θi−1Lz,i
1

θi−2
cN |εk| ≤ θ max

i∈{2,3,...,m}
Lz,icN |εk|,

and for any i ∈ {1, 2, . . . ,m} and (zk, ẑk, k) ∈ Z×Rnz×N,

θm|ci||γk(zk)− γ̄k(ẑk)| ≤ θm|ci|Lγ |zk − ẑk|

≤ θm max
i∈{1,2,...,m}

|ci|Lγ
1

θm−1
|εk| ≤ θ max

i∈{1,2,...,m}
|ci|Lγ |εk|.

It follows that there exists c > 0 independent of θ such that

|εk+1| ≤ θc|εk|. (19)

So, we have |εk| ≤ (θc)k|ε0| for all k ∈ N. Taking θ⋆ = 1
c ,

we have for all k ∈ N, |εk| ≤
(

θ
θ⋆

)k |ε0|. We obtain that
|z̃k| ≤ 1

θm−1 |εk| ≤ 1
θm−1

(
θ
θ⋆

)k |ε0| ≤ 1
θm−1

(
θ
θ⋆

)k |z̃0| for
all k ∈ N, concluding the proof.

Remark 5. Notice that, unlike the continuous-time high-gain
observer, this observer is arbitrarily fast only after m steps.
A special case of our observer has already been proposed
in [29, Section V.A] and [13, Section 4]. Here, we try to be
as general as possible by allowing zi,k+1 to depend on not
only zi−1,k but also the whole (z1,k, . . . , zi−1,k), and the
output yk to be nonlinear in zk.

B. Robustness of the Observer

Consider system (4) with disturbance wk ∈ Rnz

z1,k+1 = φ1,k(yk) + w1,k

z2,k+1 = φ2,k(z1,k, yk) + w2,k

. . .
zi,k+1 = φi,k(z1,k, . . . , zi−1,k, yk) + wi,k

. . .
zm,k+1 = φm,k(z1,k, . . . , zm−1,k, yk) + wm,k,

(20a)

and measurement noise vk ∈ Rny added to the output

yk + vk. (20b)

The disturbance wi,k could also model the non-Lipschitzness
of φi,k. Theorem 2 shows the robustness of observer (14).

Theorem 2. Under Assumption 1, for any choice of ci, i ∈
{1, 2, . . . ,m}, there exists θ⋆ > 0 such that any solution k 7→
zk to system (20) initialized in Z0 with yk ∈ Y and wk ∈ W
for all k ∈ N and any solution k 7→ ẑk to observer (14) with
0 < θ < 1, initialized in Rnz and fed with yk + vk in (20b),
verify for each i ∈ {1, 2, . . . ,m}, for all k ∈ N, and for all
j ∈ {0, 1, . . . , k − 1}:

|zi,k − ẑi,k| ≤
1

θi−1

(
θ

θ⋆

)k

|z0 − z̃0|

+

k−1∑
j=0

(
θ

θ⋆

)k−1−j m∑
q=1

θq−i|wq,j |

+

k−1∑
j=0

(
θ

θ⋆

)k−1−j m∑
q=1

(θq−iLy,q + θm−i+1|cq|)|vj |. (21)

From Theorem 2, we see that with 0 < θ < min{1, θ⋆}:
• The estimation error is robustly stable with respect to

disturbance and noise, in the sense of [32, Definition
2.3], which differs from the classical input-to-state stability
in [33] by the exponentially penalization of the past values
of (wk, vk) thanks to the forgetting factor

(
θ
θ⋆

)k−1−j
;

• Similarly to the high-gain design in continuous time (see
e.g., [34]), the effects of wq,j (past disturbance on line q)
on z̃i,k (current estimation error on line i) can either be
magnified or reduced depending on q against i, because of
the coefficient θq−i. Note that, however, the impact of the
disturbance on the last line (wm,j) can only be reduced (for
θ sufficiently small) on the lines i < m, which does not
give practical convergence, contrary to continuous time;

• In the proof of Theorem 2, it is not evident that we can
attenuate the disturbance and noise by choosing the ci in
observer (14) because this proof is done conservatively for
the general case of nonlinear maps φi,k. However, for the
specific form (11) which is widely used in moving horizon
schemes, by picking c1 < 0 and ci = 0 for i ̸= 0, we get
a penalization factor in front of the noise.

Proof. Along the solutions k 7→ zk to system (20) initialized
in Z0 with yk ∈ Y and wk ∈ W for all k ∈ N and the



solutions k 7→ ẑk to observer (14) fed with yk + vk in (20b)
instead of yk, the ith line of dynamics (18) now becomes

εi,k+1 = θi−1(φi,k(z1,k, . . . , zi−1,k, yk) + wi,k

− φ̄i,k(ẑ1,k, . . . , ẑi−1,k, yk + vk))

− θmci(γk(zk) + vk − γ̄k(ẑk)). (22)

Based on the proof of Theorem 1, thanks to Item (A1.2)
of Assumption 1, there exists cN > 0 such that for each
i ∈ {1, 2, . . . ,m}, for all (zk, ẑk, k, yk, wk, vk) ∈ Z×Rnz ×
N× Y ×W × Rny ,

θi−1|φi,k(z1,k, . . . , zi−1,k, yk) + wi,k

− φ̄i,k(ẑ1,k, . . . , ẑi−1,k, yk + vk)|
≤ θLz,icN |εk|+ θi−1|wi,k|+ θi−1Ly,i|vk|,

and similarly, for each i ∈ {1, 2, . . . ,m}, for all
(zk, ẑk, k, vk) ∈ Z × Rnz × N× Rny ,

θm|ci||γk(zk) + vk − γ̄k(ẑk)| ≤ θ|ci|Lγ |εk|+ θm|ci||vk|.

Then, we have

|εi,k+1| ≤ θ(Lz,icN + |ci|Lγ)|εk|+ θi−1|wi,k|
+ (θi−1Ly,i + θm|ci|)|vk|.

And (19) becomes

|εk+1| ≤ θ

m∑
i=1

(Lz,icN + |ci|Lγ)|εk|+
m∑
i=1

θi−1|wi,k|

+

m∑
i=1

(θi−1Ly,i + θm|ci|)|vk|.

Take θ⋆ = 1∑m
i=1 Lz,icN+|ci|Lγ

. It then follows that for all
k ∈ N≥0,

|εk| ≤
(

θ

θ⋆

)k

|ε0|+
k−1∑
j=0

(
θ

θ⋆

)k−1−j m∑
i=1

θi−1|wi,j |

+

k−1∑
j=0

(
θ

θ⋆

)k−1−j m∑
i=1

(θi−1Ly,i + θm|ci|)|vj |.

Note that |εi,k| ≤ |εk| for all k ∈ N, so we obtain the same
results for |εi,k|. Finally, realizing that zi,k− ẑi,k = 1

θi−1 εi,k,
we get (21).

C. Asymptotic Convergence in the Original x-Coordinates

In Section II, we have seen that constructible systems (1)
can be linked to the constructible form (4) via some map (3),
at least after m discrete steps. Then, an observer (14) can
be designed, and we now study conditions to recover the
asymptotic convergence in the x-coordinates. For this, the
following assumption is made.

Assumption 2. There exist a closed set Z and m ∈ N such
that system (1) is constructible of order m, with k 7→ zk
in Lemma 2 such that zk ∈ Z for all k ∈ N, and with
(Tk)k∈N≥m

uniformly continuous on Z for all k ∈ N≥m.

More precisely, there exists a class-K function ρ such that
for all (za, zb) ∈ Z × Z and for all k ∈ N≥m,

|Tk(za)− Tk(zb)| ≤ ρ(|za − zb|). (23)

Remark 6. Assumption 2 is satisfied if either:
• System (1) is uniformly constructible of order m, i.e., the

map sequence (Ψk)k∈N≥m
in (2) is uniformly continuous;

• Or system (1) has solutions remaining in X and is uni-
formly backward distinguishable of order m on X , i.e., the
map sequence (Obw

k )k∈N≥m
in (9) is uniformly injective on

X for all k ∈ N≥m. More precisely, there exists a class-K
function ρ such that |Obw

k (xa)−Obw
k (xb)| ≥ ρ(|xa −xb|)

for all (xa, xb) ∈ X × X and for all k ∈ N≥m.
In these cases, we have nz = mny .

The asymptotic convergence is then recovered in the x-
coordinates as follows.

Lemma 3. Under Assumption 2, any solution k 7→ xk to
system (1) and any solution k 7→ ẑk to observer (14) with
0 < θ < min{1, θ⋆} fed with yk in (1) verify limk→+∞ |xk−
x̂k| = 0, where x̂k = T̄k(ẑk), with k ∈ N≥m, and (T̄k)k∈N≥m

is a sequence of extensions of (Tk)k∈N≥m
that is uniformly

continuous on Rnz .

Note that a uniformly continuous extension of Tk from
Z to Rnz , with the same modulus of continuity for all k ∈
N≥m, always exists thanks to (23) and [35].

Combining the ingredients in Lemma 2, Theorem 1, and
Lemma 3, we arrive at a constructive observer design for gen-
eral nonlinear systems of the form (1), under constructibility
or backward distinguishability.

IV. APPLICATION TO AN ELECTRICAL MACHINE

Consider a permanent magnet synchronous motor
(PMSM) with model [36]

ẋ = u−Ri, y = |x− Li|2 − Φ2 = 0, (24)

where x ∈ R2 is the electromagnetic flux (in Vs); the
voltages u (in V) and currents i (in A) are inputs in R2; the
resistance R = 1.45 (Ω), the inductance L = 0.0121 (H),
and the flux Φ = 0.1994 (Vs) are constant parameters. Here,
the value of y is always zero. Let us next build and compare
for system (24) two observers: one designed in continuous
time and then discretized; the other one designed in discrete
time, on a discretized model of (24).

A. Euler Discretization of a Continuous-time Observer

It is known from [36] that the function consisting of
(y, ẏ, ÿ) is uniformly Lipschitz injective if the motor speed
is uniformly bounded away from zero. Exploiting this, we
perform the uniformly injective transformation

z1 = y = |x− Li|2 − Φ2, (25a)

z2 = ẏ = 2η⊤(x− Li), (25b)

z3 = ÿ = 2η̇⊤(x− Li) + 2η⊤η, (25c)



where η = u − Ri + L di
dt . A high-gain observer for

system (24) would be of the form
˙̂z1 = ẑ2 + ℓk1(Φ

2 − |x̂− Li|2)
˙̂z2 = ẑ3 + ℓ2k2(Φ

2 − |x̂− Li|2)
˙̂z3 = 2η̈⊤(ϕ(ẑ)− Li) + 2η̇⊤

(
u−Ri− L di

dt

)
+ 4η̇⊤η + ℓ3k3(Φ

2 − |x̂− Li|2)
:= ϕ3(ẑ) + ℓ3k3(Φ

2 − |x̂− Li|2),

(26a)

with the output
x̂ = ϕ(ẑ), (26b)

where ϕ is a globally Lipschitz left inverse of (25), which
depends on u, i, and their derivatives (which may introduce
noise); (k1, k2, k3) and ℓ are observer parameters, with ℓ > 0
having to be pushed large enough. However, only a sampled
version of the voltage and current is available and limited
computations are possible, both at the fixed PWM rate. We
thus have to implement a discrete-time observer. In general,
we do not have clear ideas about how observer (26) should be
discretized. So, we use a naive Euler discretization scheme
with a given sampling period τ > 0, giving usẑ1,k+1 = ẑ1,k + τ(ẑ2,k + ℓk1(Φ

2 − |x̂k − Lik|2))
ẑ2,k+1 = ẑ2,k + τ(ẑ3,k + ℓ2k2(Φ

2 − |x̂k − Lik|2))
ẑ3,k+1 = ẑ3,k + τ(ϕ3,k(ẑk) + ℓ3k3(Φ

2 − |x̂k − Lik|2)),
(27a)

with the output
x̂k = ϕk(ẑk). (27b)

The results in Figure 1 (with only x1, x2 being similar)
show an ineffective estimation performance, especially at
high speeds, due to the lack of precision of the observer
discretization, a phenomenon similar to [24, Section VI.B].
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Fig. 1. Estimation results of the high-gain observer designed in continuous
time then discretized (27), compared with the continuous-time trajectory.

B. Direct Design and Implementation in Discrete Time

We now propose to strategically discretize the PMSM
model first, and then design and implement the discrete-
time observer of this paper. For this, an appropriate method
to discretize system (24) taking into account its rotating
dynamics is [36]

xk+1 = xk + τΩk(uk −Rik) sinc(φk) =: xk + gk, (28a)

yk = |xk − Lik|2 − Φ2 = 0, (28b)

where Ωk =

(
cos(φk) − sin(φk)
sin(φk) cos(φk)

)
, and φk = ωkτ

2 where

ωk = sign((uk − uk−1)
⊤uk−1)

|uk − uk−1|
τ |uk|

(28c)

is an approximation of the rotation speed of the motor,
assuming that this speed does not vary too fast, and

sinc(x) =

{
sin(x)

x , x ̸= 0,

1, x = 0.
(28d)

This scheme takes into account the physics of the system and
so is much more precise compared to the general Euler one,
which would be just xk+1 = xk + τ(uk − Rik). Note that
system (28) does not follow a triangular form (4) because
x1,k+1 depends on x1,k, so we deploy the transformation in
Lemma 2. Based on the knowledge from continuous time
in (25), we conjecture in the same way as in [24] that the
maps (Obw

k )k∈N of order 3 should be uniformly Lipschitz
injective if the sampling period τ is sufficiently small. We
then perform the change of variables

z1,k = |xk − gk−1 − Lik−1|2 − Φ2, (29a)

z2,k = |xk − gk−2 − gk−1 − Lik−2|2 − Φ2, (29b)

z3,k = |xk − gk−3 − gk−2 − gk−1 − Lik−3|2 − Φ2, (29c)

with gk defined in (28), depending only on the inputs.
Then, we implement observer (14) and obtain the results in
Figure 2 with visibly better accuracy compared to Figure 1.
This recalls the lesson we have drawn in [24]—instead of
designing and then discretizing a continuous-time observer,
we should properly discretize the system based on its physics
and then build a discrete-time observer. Note that storing the
past samples of the inputs as done in this discrete-time design
is finite-dimensional and no derivatives need to be computed.

Unfortunately, with c1 = c2 = c3 = 1, we need to select
an exceedingly small value for θ (in particular, 7 · 10−5) to
make the observer work. This necessity arises from the large
Lipschitz constant of the inverse map of (29). The reason
behind this lies in the fact that with a low sampling rate
of τ = 10−3 (s), past outputs closely resemble each other,
resulting in a poorly conditioned transformation. This does
not allow us to explore the filtering properties of the observer
in this particular example. A way to improve this is to store
more past outputs, namely take more dimensions in zk like in
moving horizon estimators [20], [21]. Another way could be
to increase the sampling period to make the output different
enough, risking the deviation of the discretized model from
the real one and hence requiring an even more accurate
discretization scheme. An alternative design is the KKL
observer, which relies on a transformation that is capable
of keeping memories of all the past outputs and which was
shown to perform efficiently on this application in [24].
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Fig. 2. Estimation results of the high-gain observer designed and imple-
mented in discrete time (14), compared with the continuous-time trajectory.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a constructible canonical form
in discrete time and a corresponding high-gain observer.
This design exhibits robust exponential stability if the rate
is pushed fast enough. We also show how a system can be
transformed into a constructible form under constructibility
and backward distinguishability, and how convergence can be
recovered in the original coordinates. Application to a PMSM
and comparison with other designs illustrate our results.

Future work is to understand better the potential gain of
performance in terms of noise/disturbance attenuation and
figure out results relevant to the continuous-time high-gain
observer.
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