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Abstract

The growing focus on reducing energy consumption, particularly in electric vehicles with limited autonomy, has prompted inno-
vative solutions. In this context, we propose a real-time flap-based control system aimed at improving aerodynamic drag in real
driving conditions. Employing a Recursive Subspace based Predictive Control approach, we conducted wind tunnel tests on a
representative model vehicle at reduced scale equipped with flaps. Comprehensive assessments using pressure measurements and
Particle Image Velocimetry were undertaken to evaluate the control efficiency. Static and dynamic perturbation tests were con-
ducted, revealing the system’s effectiveness in both scenarios. The closed-loop controlled system demonstrated a substantial gain,
achieving a 5% base pressure recovery.

Keywords: aerodynamics, adaptive flow control, drag reduction, recursive subspace based predictive control, experiments, road
vehicles

1. Introduction

Worldwide, vehicle manufacturers put increasing emphasis
on the reduction of their vehicles environmental footprint as
well as the reduction of energy consumption. Their goal is to
produce affordable, reliable, and environmentally friendly vehi-
cles while simultaneously reducing the total cost of ownership
for their customers. The aerodynamic performance of vehicles
plays a crucial role in achieving these objectives, as there is a
strong correlation between aerodynamic drag and energy con-
sumption. At highway speeds, approximately 70% of the en-
ergy losses can be attributed to aerodynamic forces (Kadijk and
Ligterink 23, Hucho and Sovran 19) and these losses are known
to increase as the cube of the velocity.

For a given vehicle project, reducing the aerodynamic drag
is therefore a key objective of car manufacturers. This op-
timization process is conducted by combining computational
fluid dynamics and expensive wind tunnel tests at real scale.
All these steps however only correspond to approximations of
the real driving performance of the vehicles because they are
conducted in steady state situations. In real-life scenarios, be-
cause of the variety of operating conditions that any vehicle has
to face over its life-cycle, the vehicle is subject to a continuous
inputs from the natural wind and the wake of other vehicles. A
lot of studies have been devoted to characterizing the effects of
changes in the surrounding environments (Cooper and Watkins
11, Watkins and Cooper 38, Schröck et al. 32, Garcia de la Cruz
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et al. 12). Using quasi-steady solution, a wind averaged drag
coefficient can be defined using representative wind-speed dis-
tributions (Howell et al. 17). This wind averaged drag coef-
ficient is significantly higher than the basic drag coefficient at
zero yaw. As stressed by these authors, reducing the sensitiv-
ity of the aerodynamic loads to the natural wind is therefore
a critical issue for aerodynamic development engineers. Start-
ing from these considerations, the objective of this research is
therefore, for varying upstream flow conditions, to use active
flow control in order to maintain the drag performance at zero
yaw angle. More specifically, in this work the primary focus
is on the control of the wake, as it has a predominant role in
contributing to the overall pressure drag.

Numerous studies, not detailed here for brevity, demonstrate
that the major contributor to the increase of the pressure drag for
varying upstream flow conditions is the large scale near wake
region developing at the back of the vehicle. For perturbed up-
stream conditions, this near wake looses its average symmetry,
which results in an increase of base drag (see Haffner et al. 16
for a recent review). For small deviations from the reference
situation, passive or active actuation can be designed to com-
pensate these asymmetries of the near wake, either by impos-
ing local flow deviations using tapers or flaps – a strategy called
“pressure control” – or by modifying the turbulent properties of
the unsteady shear layers surrounding the near wake – a strategy
called “turbulence control”. For example, for small yaw angles
representative of real driving conditions, for steady situations,
mechanical flaps (Urquhart et al. 35, Urquhart and Sebben 34)),
tapers (Varney et al. 36, Perry et al. 31)) or even high frequency
pulsed jets (Li et al. 25) have been shown to be effective in
cancelling yaw induced asymmetries of the large recirculating
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region, leading to a significant decrease of drag. It therefore
seems a natural idea to configure an adaptative system with the
ability to adapt to any given real-world yaw condition. This
is the objective of the present research making use of actuated
flaps along the edges of the base of the vehicle.

This study is performed using an academic, but representa-
tive, model at reduced scale called “Windsor model” (see Pavia
et al. 30 and references therein) used in numerous experimen-
tal and CFD studies. An accompanying on-road test campaign
was also carried by the authors in windy conditions captur-
ing time-dependent data for resultant air-speed, yaw angle, and
base pressure distribution using car-mounted instrumentation.
Usual probability density functions (pdf) of yaw angles (β) were
obtained with typically −5◦ ≤ β ≤ 5◦ for 95% of the time
(Cembalo 8), which confirms the results of previous research
works (Carlino et al. 6, Garcia de la Cruz et al. 12, Stoll and
Wiedemann 33, Yamashita et al. 39). The important message
from these campaigns is that large scale vertical or horizontal
motions of the near wake are indeed detected and are main con-
tributors to the variance of the base pressure fluctuation. Inter-
estingly, low frequency global wake motions have a major con-
tribution in real situations, which makes it interesting to search
for quasi-steady active control solution because the time scale
of the external forcing of the wake by the slow external pertur-
bations is then much larger than the advective time scale driv-
ing unsteady aerodynamic responses. To provide a quantitative
analysis, we introduce the dimensionless frequency known as
the Strouhal number (S t), defined as S t = H f /V . This dimen-
sionless number compares the wake motion frequency to the
advective time scale H/V , where H and V represent the height
of the base and velocity of the vehicle, respectively. For the
road tests conducted on a Stellantis vehicle, 49 unsteady pres-
sure sensors were installed on the base, allowing simultaneous
data acquisition. Focusing on the asymmetry of the wake, a
Proper Orthogonal Decomposition (Berkooz et al. 4) of the on-
road pressure data reveals that the two dominant modes corre-
spond to respectively vertical and horizontal large scale wake
asymmetry, collectively contributing to over 60% of the total
variance. Further spectral analysis of the random coefficients
associated with these two modes indicates that low frequencies
(typically S t ≤ 10−1) contribute more than 60% of the vari-
ance induced by these large-scale asymmetries (Cembalo et al.
9, Cembalo 8). Given these findings, our approach in this study
is to explore a quasi-steady control methodology.

In light of these objectives, we propose an investigation into
an active solution that revolves around controlling four rigid
flaps positioned at the base of the academic model. By employ-
ing the flaps, we can manipulate the wake orientation to control
the pressure distribution at the base of the model. Addition-
ally, by reducing the actuation frequency —since the goal is to
compensate for quasi-static perturbations due to environmental
changes— we can significantly decrease the energy required to
control the system.

Wind tunnel investigations have demonstrated that the aero-
dynamic drag of a vehicle is significantly influenced by the fluc-
tuating upstream flow conditions. Nevertheless, due to practi-
cal constraints in industrial settings, accurately measuring these

upstream flow conditions is not feasible on each vehicle while
driving on the road. From a control perspective, this implies
that the upstream flow conditions are treated as an unknown
disturbance influencing the dynamics of the system. Due to the
inherent complexity of the Navier-Stokes equations, establish-
ing a input/output dynamic model for the system grounded in
physical laws becomes unfeasible. Henceforth, our proposal
involves the online identification of a black-box discrete-time
Linear Time-Varying model derived from experimental data. In
addressing both the constraints imposed by flap angle satura-
tion and the absence of state measurements, we developed a
Recursive Subspace-based Predictive Control approach. In the
closed-loop system, input/output data are intricately correlated
with noise, and we propose an unbiased recursive estimator to
mitigate these challenges. This approach ensures that the pro-
posed solution remains economically viable, aligning with the
industrial feasibility criteria. The latter offers the advantage of
recursive estimation, allowing the control system to continu-
ously update and refine its model based on real-time measure-
ments. This adaptive capability enhances the robustness and ac-
curacy of the control process, ensuring consistent performance
over time and maximizing the drag reduction over the wide
range of operating conditions.

The paper is organized as follows: Section 2 provides an
introduction of the notations and definitions employed in this
study. In Section 3, we delve into the system description, cov-
ering experimental setup, equipment, instrumentation and the
test environment. Section 4 introduces the control law, delin-
eating design principles and algorithms. Moving on to Section
5, we present experimental results and conduct a performance
analysis of the control law. Within this section, we discuss the
selection of control objectives and evaluate the implemented
control law’s performance. The work concludes with a con-
cise summary in which key findings are highlighted for their
significance in achieving the research objectives. Additionally,
potential avenues for future investigation are proposed.

2. Notations and definitions

This section presents the notations and useful definitions
used in the paper.

Let N and R be the sets of positive integers and real num-
bers, respectively. N∗ denotes the set of positive non-zero in-
tegers. The set of real column vectors of dimension n ∈ N∗ is
denoted by Rn and the set of real matrices of n ∈ N∗ rows and
m ∈ N∗ columns is denoted by Rn×m. For a vector x(k) ∈ Rnx ,
∆x(k) = x(k) − x(k − 1). (x(i))k+ℓ−1

i=k denotes the time sequence
x(k), . . . , x(k + ℓ − 1). Given a rectangular matrix M ∈ Rn×m,
its transpose is denoted by M⊤ ∈ Rm×n, M(i) ∈ R1×m represents
its ith row. The Moore-Penrose pseudo inverse of a rectangular
matrix M is denoted by M†. For any vector x(k) ∈ Rnx , with
k ∈ N, the finite vector over a specific window of size ℓ steps
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(ℓ ∈ N∗) starting from a specified instant k ∈ N is denoted as

Xk,ℓ,1 =


x(k)

x(k + 1)
...

x(k + ℓ − 1)

 ∈ Rnxℓ. (1)

Accordingly, the block Hankel matrix containing the available
data starting from instant k ∈ N distributed over ℓ ∈ N∗ rows
and M ∈ N∗ columns is denoted as

Xk,ℓ,M =
[
Xk,ℓ,1 Xk+1,ℓ,1 · · · Xk+M−1,ℓ,1

]
∈ Rnxℓ×M . (2)

The norm of the vector ||Xk,ℓ,1||
2
Q denotes the quadratic form

X⊤k,ℓ,1QXk,ℓ,1 where Q ∈ Rnxℓ×nxℓ is a symmetric definite posi-
tive matrix. The following matrices are defined by

Sℓ,n =


In×n On×n . . . . . .
In×n In×n On×n . . .
...

...
. . .

...
In×n In×n In×n In×n

 ∈ Rℓn×ℓn, (3)

1ℓ,n =


In×n
...

In×n

 ∈ Rℓn×n. (4)

Let us consider the state representation of a discrete time LTI
system

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k) + Du(k)

where x ∈ Rnx is the state vector, u ∈ Rnu is the input and
y ∈ Rny is the output. Using the state-space matrices A ∈ Rnx×nx ,
B ∈ Rnx×nu , C ∈ Rny×nx and D ∈ Rny×nu and an integer ℓ > 0, the
controlability matrix is defined as

Kℓ(A, B) =
[
Aℓ−1B · · · AB B

]
∈ Rnx×ℓnu , (5)

the observability matrix is given by

Γℓ(A,C) =



C
CA
CA2

...
CAℓ−1


∈ Rℓny×nx , (6)

and the block-Toeplitz matrix Hℓ(A, B,C, D) ∈ Rℓny×ℓnu is de-
fined as follows

Hℓ(A, B,C, D) =


D 0 . . . 0

CB D . . . 0
...

. . .
. . .

...
CAℓ−2B . . . CB D

 . (7)

Let us consider two matrices A1 ∈ Rn × m and B1 ∈ Rp×q, the
kroneker product A1 ⊗ B1 is defined as

A1 ⊗ B1 =


a11B1 . . . a1mB1
...

...
an1B1 . . . anmB1

 ∈ Rnp×mq.

3. System description and modeling

This section begins with an exposition of the system descrip-
tion, followed by a detailed overview of the experimental setup.

3.1. System description
The system under study is a well-known academic body re-

ferred to as Windsor body (Good and Garry 15, Pavia et al.
30). A back side view is showed in Figure 1. The system is
sketched in Figure 2. The active control strategy presented here
has been first tested on the same model without wheels. We
only present here the case with wheels, which corresponds to
the higher complexity case. Pressure taps are installed on the
body as well as four rigid flaps at the base. The presence of the
wheels introduces underflow perturbations, disrupting the flow
and creating a momentum deficit in the wake. This deficit fos-
ters interactions between the wheels and the surrounding air-
flow, significantly impacting the overall aerodynamic perfor-
mance of the vehicle. This phenomenon is known as wheel-
wake interaction and has been extensively addressed by Bao
et al. 3. The characteristic lengths of our model are detailed in
the Table 1.

Figure 1: Windsor body equipped with the four actuated flaps on the rear.

In Figure 3, the system is presented from both lateral-back
(left-hand side) and back views. The origin O (in green) of the
coordinate system (x, y, z) is located at the center of the body’s
base, with x, y and z defined, respectively, along the stream-
wise, span-wise and floor-normal directions. In the lateral-back
view, the focus is on the four rigid flaps and their displacement
angle θi. In what follows, indices 1, 2, 3 and 4 correspond
respectively to the left, right, top and bottom flap. These latter
serve as the system inputs u and have the capability to move
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Parameter Symbol Value Unit

Height H 0.289 m
Width W 0.389 m

Base Surface S b 0.112 m2

Length L 1.037 m
Ground Clearance G 0.05 m

Wheel width w 0.055 m
Wheel diameter Dw 0.150 m

Flap Length δ 0.05 m
Flap Amplitude θ ±7 degrees

Table 1: Parameters of the model under study.

z
y
O

δ

δ(a)

(b)

O

Figure 2: System under study. (a) Some views of the model under study. (b)
Field of view of the PIV measurements. Adapted from Bao 2.

inward (θi > 0) or outward (θi < 0) with an angular velocity of
∼ 10 deg/s. They can oscillate within a maximum amplitude
of ±7◦. Shifting to the back view, attention is drawn to the four
pressure taps pi, i = 1, . . . , 4 (highlighted in red) that play a
crucial role in computing the system outputs y. The position of
these pressure taps, dy ≃ 0.47 W and dz ≃ 0.44 H, has been
chosen since it gives a precise information about the large scale
properties of the base pressure spatial distribution at the scale
of the body (Khan et al. 24, Fan et al. 13, Bonnavion et al. 5).

The body is fixed on a turntable to enable the alteration of
the velocity direction experienced by the car (Fig. 4). The yaw
angle β is considered positive in the direction of the arrow, i.e.,
the system nose pointing towards the right-hand side. The zero
yaw condition is measured at the beginning of each testing cam-
paign and it corresponds to the Windsor body’s symmetry plane
aligned with the flow’s direction.
A vertically moving upstream grid is used to induce underflow
perturbations. The grid measures 0.08 m in height and 1.5 m in
width. It is designed with a porosity of approximately 50%.
The latter allows for controlled perturbations in the flow while

θ < 0

θ > 0

dy

dz
z
y
O

3 4

1 2

Figure 3: Control system schematisation. In orange and green the four rigid
flaps, θ being the flap’s displacement. The red pressure taps are the ones used
for the system’s outputs

O

x
y

(a)

h
h

g
0

+

hg
0

x
z

O

(b)

Figure 4: Top and side views of the system under study. Perturbations schema-
tisation. (a) Yaw angle schematisation. (b) Underflow perturbation schematisa-
tion

minimizing excessive pressure loss in the downstream region
(based on Idelchik and Meury 20, Castelain et al. 7). The refer-
ence grid height, denoted as hg0 , is defined as the level at which
the top of the grid aligns with the symmetry plane of the raised
floor. The maximum grid height is hg = 100 mm while the min-
imum is hg = −200 mm. The latter being considered as the non
perturbed case in which we can retrieve the reference model
case (Bao et al. 3, Pavia et al. 30, Varney et al. 36)

3.2. Experiment setup

The experimental tests have been conducted in the S620 EN-
SMA closed-loop subsonic wind tunnel (Figure 5). The test
section dimensions are 2.4 m in height and 2.6 m in width,
with a length L = 5 m. The maximum wind speed achiev-
able in the test section is V = 60 m/s. The retained testing
speed is V∞ = 30 m/s which corresponds to a Reynolds num-
ber ReH = V∞H/ν ≃ 6.105 based on the model’s base height
(ν is the kinematic viscosity of air). This value is large enough
to provide all the relevant wake physics for this turbulent flow
because all boundary layers are triggered to turbulence and the
flow separates at the sharp trailing edges of the flaps surround-
ing the base. The grids, upstream of the test section, reduce the
turbulence intensity, which is of the order of 0.3 %, as well as
the spatial inhomogeneity that is lower than 0.5 %.
The test section is depicted in Figure 6. The flow character-
istics are measured via a Prandtl antennae and a temperature
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x
z

y

Figure 5: S620 Wind tunnel schematisation, adapted from Bao 2.

sensor. A raised floor is used to simulate the ground with the
aim to control the boundary layer characteristics upstream of
the model in unperturbed conditions. The boundary layer dis-
placement thickness is approximately 2% of the model ground
clearance (G). The dimensions of the floor are≃ 2.38 m in width
with a length of ≃ 3.5 m. The latter features a profiled leading
edge, a flat plate and a rear flap. The rear flap is used to regulate
the flow above and below the raised floor by varying the angle
α. Inside the flat plate there is a turntable, which allows to ro-
tate the model to simulate the yaw angle (β in Figure 4) with an
angular velocity of ∼ 2 deg/s. Upstream the raised floor, as dis-
cussed in section 3.1, a movable grid can be adjusted vertically
to introduce perturbations in the model underflow.

Turntable

x

z
y

O

Boundary layer tripping

α
Fairings

Prandtl antenna 

Temperature sensor

Figure 6: Test section and setup schematisation, adapted from Bao 2.

The analysis in our study concentrates on the so called base
pressure drag coefficient Cb, with particular emphasis on the
pressure data obtained from 25 pressure taps situated at the base
of the vehicle (see Eq. (9)). The data collected from these
pressure taps are used as a key source of information for our
analysis on the overall aerodynamic performance of the vehicle.
Furthermore, some Particle Image Velocimetry (PIV) measure-
ments are performed to validate the effectiveness of the flaps on
the vehicle’s wake. The time-averaged and long-timescale pres-
sure measurements are performed with two 64-channel ESP-
DTC pressure scanners which are linked to the pressure taps
via 1mm diameter vinyl tubes that measure 78cm in length. The

accuracy of the scanner stands in ±1.5Pa range and the acqui-
sition are conducted at a sampling rate of 100Hz. In order to
perform comparison between different tests we will rely on a
dimensionless parameter that is the pressure coefficient, which
is defined as:

Cpi =
pi − p∞

Q
, (8)

where pi is the static pressure measured on the ith pressure tap,
p∞ is the static pressure upstream measured with the Prandtl an-
tenna depicted in Figure 6 and Q = 1

2ρ∞V2
∞ corresponds to the

dynamic pressure with ρ∞ being the fluid mass density and V∞
being the free-stream velocity. According to the definition in
(8), the base pressure drag is quantified with the space averaged
base pressure coefficient:

Cb = −

∫
S b

Cp ds

S b
, (9)

where S b represent the model’s base surface.
Experiments conducted in the wind tunnel, with the flaps set

to a neutral position (zero angle), revealed a significant reliance
of horizontal and vertical pressure coefficient gradients on the
values of β and hg. Furthermore, we observed a direct correla-
tion between the average pressure coefficient at the rear of the
vehicle and these two variables. These observations enabled
the formulation of the output vector y, which is expressed as a
function of the four pressure coefficients obtained from the four
sensors located at the rear of the body. The first two compo-
nents of vector y represent the horizontal and vertical pressure
coefficients gradients, respectively. The third component pro-
vides a representation of the average pressure coefficient at the
rear of the body. The output vector y ∈ R3 is specified as

y =

Cp1 −Cp2 +Cp3 −Cp4

Cp1 +Cp2 −Cp3 −Cp4

Cp1 +Cp2 +Cp3 +Cp4

 .
Here Cpi , i = 1, . . . , 4 are computed from (8) using the four
pressure taps pi (see fig. 3).

Concerning the velocity measurements behind the body, we
used a two dimensions - two components Particle Image Ve-
locimetry method (2D-2C PIV). In this respect, only one two-
dimensional field of view is considered as schematised in Fig-
ure 2(b). Particles, which have a diameter d ≃ 1 µm, are in-
jected in the flow, then they are enlightened with a laser and
a pair of images is taken with a camera in order to follow the
particle displacement and calculate the speed and direction of
the flow. In our specific case, the plane measures 2.6H and
1.7H, respectively in width and length. It coincides with the
horizontal symmetry plane (z/H = 0) and allows to compute
the stream-wise ux and horizontal uy velocity components. For
each test case we captured 1200 independent pair of images,
at a sample rate of 4Hz, which have been processed with an
interrogation window of 16 x 16 pixels and an overlap of 50%.

4. Control law definition

Experiments conducted in the wind tunnel revealed that, for
each specific value of the perturbation [β, hg]⊤, the system can
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be modeling by a discrete-time LTI model with a state realiza-
tion (A, B, C, D) that depends on the perturbation. On a vehi-
cle in a real-word environment, measuring the perturbation ne-
cessitates heavy and complex instrumentation, such as a multi-
hole probe, which is impractical for a production vehicle. This
finding reinforces the idea that, for control purposes, the sys-
tem can be more suitably represented by a Linear Time-Varying
(LTV) model, where variations are not known a priori. This
LTV system can then be controlled either through robust con-
trol, ensuring the stability of the closed-loop despite parametric
variations (Zhou and Doyle 40), or by employing an adaptive
control law in conjunction with a recursive estimator (Åström
and Wittenmark 1). In applications where parameter variations
are significant, the adaptive approach is often favored to alle-
viate the conservatism inherent in the robust approach. There-
fore, we address the control problem introduced previously by
considering the output regulation problem of a Linear Time-
Varying system. In order to reach this goal, we introduce an
adaptive subspace-based predictive control procedure.

4.1. Unbiased Adaptive Subspace-based Predictive Control
The concept behind predictive control is to compute, at each

time step, an optimal control sequence over a horizon ℓ that
minimizes a specific cost function while adhering to specific
constraints. Broadly speaking, by considering herein input sat-
urations as constraints only, we aim at determining the sequence
Uk,ℓ,1 that minimizes

arg min
Uk,ℓ,1

∥∥∥Ŷk,ℓ,1 − Yr

∥∥∥2
Q
+

∥∥∥Uk,ℓ,1
∥∥∥2
R
, (10a)

s.t. U(i)
k,ℓ,1 ∈U, i = 1, . . . , ℓ, (10b)

where, according to the notations introduced in Section 2,
Uk,ℓ,1 ∈ Rℓnu×1 and Ŷk,ℓ,1 ∈ Rℓny×1 denote vectors made by stack-
ing the input sequence (u(i))k+ℓ−1

i=k and the predicted output se-
quence (ŷ(i))k+ℓ−1

i=k , respectively whereas Yr ∈ Rℓny×1 stands for

Yr =


yr(k)
...

yr(k + ℓ − 1)

 . (11)

Yr is the reference trajectory over the prediction horizon. Q ∈
Rnyℓ×nyℓ and R ∈ Rnuℓ×nuℓ are user-defined output and input er-
ror penalizing positive definite matrices. They are tuned based
on a trade-off between the degree of importance of each of the
outputs and inputs terms. U is the polytope defining the appli-
cable lower and upper boundaries of the system input. In order
to determine the sequence Uk,ℓ,1 minimizing (10), it is crucial
to establish the set of equations relating Ŷk,ℓ,1 and Uk,ℓ,1. When
Linear Time Invariant systems are considered, several solutions
have been developed in the literature. Among the solutions ded-
icated to LTI systems, the behavior of which can be described
by the following innovation state space representation

x(k + 1) = Ax(k) + Bu(k) + Ke(k), (12a)
y(k) = Cx(k) + Du(k) + e(k), (12b)

where e(k) ∈ Rny is the innovation vector and K is the Kalman
gain, a specific attention is paid herein to the output predictors
generated via the subspace model learning solutions. As ex-
plained in (Overchee and Moor 29) and recalled in Appendix
A , assuming that

Assumption 1. The innovation sequence e(k) is an ergodic
zero-mean white noise sequence with covarianvce matrix Re,

Assumption 2. The pair (A,C) is observable and the pair
(A, [B, KR1/2

e ]) is reachable,

it can be straightforwardly shown that (see Appendix A)

Y f
i,ℓ,N̄

= Γℓ(A,C)KWp
i−ρ,ρ,N̄

+ Hℓ(A, B,C, D)U f
i,ℓ,N̄

+Hℓ(A, K,C, I)E f
i,ℓ,N̄
,

(13)

or, more compactly,

Y f
i,ℓ,N̄
= LwWp

i−ρ,ρ,N̄
+ LuU f

i,ℓ,N̄
+ LeE f

i,ℓ,N̄
, (14)

where the matrices Lw, Lu and Le are made of specific com-
binations of the state space matrices A, B, C, D and K, thus
are unknown a priori. Under open loop conditions, i.e., when
the noise sequence E f

i,ℓ,N̄
is uncorrelated with the both past and

future input and output data, the unknown matrices Lw and Lu

can be estimated accurately by minimizing the cost function

min
L

∥∥∥∥∥∥∥Y f
i,ℓ,N̄
− L

Wp
i−ρ,ρ,N̄

U f
i,ℓ,N̄


∥∥∥∥∥∥∥

2

F

, (15)

with L =
[
LW Lu

]
. Given these consistent estimates L̂w and

L̂u, Ŷk,ℓ,1 can be expressed as

Ŷk,ℓ,1 = L̂WWp
k−ρ,ρ,1 + L̂uU f

k,ℓ,1. (16)

Including (16) into (10) results in

arg min
U f

k,ℓ,1

∥∥∥∥L̂WWp
k−ρ,ρ,1 + L̂uU f

k,ℓ,1 − Yr

∥∥∥∥2

Q
+

∥∥∥∥U f
k,ℓ,1

∥∥∥∥2

R
(17a)

s.t. U f (i)
k,ℓ,1 ∈U, i = 1, . . . , ℓ. (17b)

The control law applied to the system is given by the first nu

rows of U f
k,ℓ,1, i.e. u(k). When data is acquired under closed

loop practical conditions, the noise sequence is correlated with
the output data, causing the former estimators L̂w and L̂u to be-
come biased. To address this issue, several solutions have been
proposed in the literature (Verhaegen and Verdult 37, Jansson
21, Chiuso 10). These include the introduction of an instrumen-
tal variable or the implementation of an initial step for innova-
tion estimation. In this paper, the latter approach is employed.
As suggested in (Mercere et al. 28), we can see that

Y f
i,1,N̄
= CKWp

i−ρ,ρ,N̄
+ DU f

i,1,N̄
+ E f

i,1,N̄
, (18)
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by just looking at the first ny rows of Eq. (14). Then, if D = 0
and with Assumption 1, we can prove that

lim
N̄→∞

1
N̄

E f
i,1,N̄

Wp⊤
i−ρ,ρ,N̄

= 0.

It follows that the optimal prediction of Y f
i,1,N̄

in the least-
squares sense is given by

Ŷ f
i,1,N̄
= Y f

i,1,N̄

(
Wp

i−ρ,ρ,N̄

)†
Wp

i−ρ,ρ,N̄
. (19)

An optimal estimate, in the least squares sense, of E f
i,1,N̄

is ob-
tained as follows

Ê f
i,1,N̄
= Y f

i,1,N̄
− Ŷ f

i,1,N̄
. (20)

Once Ê f
i,1,N̄

is available, from Eq. (14), a linear predictor of

Y f
i,ℓ,N̄

is of the form

Ŷ f
i,ℓ,N̄
= L̂WWp

i−ρ,ρ,N̄
+ L̂uU f

i,ℓ,N̄
+ L̂eÊ f

i,ℓ,N̄
. (21)

The least squares prediction Ŷ f
i,ℓ,N̄

of Y f
i,ℓ,N̄

is now the solution
to:

min
L

∥∥∥∥∥∥∥∥∥∥Y f
i,ℓ,N̄
− L̂


Wp

i−ρ,ρ,N̄

U f
i,ℓ,N̄

Ê f
i,ℓ,N̄


∥∥∥∥∥∥∥∥∥∥

2

F

, (22)

where L̂ is now given by L̂ =
[
L̂W L̂u L̂e

]
. We now have a

method for estimating the matrices Lu and Lw in a closed loop
without bias. In the following section, we present the online
implementation of this method.

4.2. Recursive formulation
Despite the theoretical efficiency of the model learning solu-

tion introduced so far, its use on an embedded system can be
computationally cumbersome. To overcome this challenge, we
suggest implementing it online. To reach this goal, we refer to
the temporal ordering shown in Figure 7 and define three dis-
tinct discrete time intervals such as

T1 =
[
k − ρ − ℓ, . . . , k − ℓ − 1

]
,

T2 = [k − ℓ, . . . , k − 1] ,
T3 = [k, . . . , k + ℓ − 1] .

At time k, we have ℓ pairs of inputs/outputs denoted as Wp
k−ℓ,ℓ,1,

collected over the time interval T2.

Wp
k−ℓ,ℓ,1 =

[
Yk−ℓ,ℓ,1
Uk−ℓ,ℓ,1

]
. (23)

Equation (19) can be rewritten over T2 by considering only the
first column of the Hankel matrices:

Figure 7: Time ordering.

Ŷ f
k,1,1 = Y f

k,1,1

(
Wp

k−ℓ,ℓ,1

)†
Wp

k−ℓ,ℓ,1. (24)

The solution to Eq. (24) can be found using the recursive form
of the least-squares Algorithm 1, as outlined in the following
steps. When parameters change gradually over time, a common
method for adapting recursive linear least squares algorithms
to track these slow variations involves introducing a forgetting
factor. This approach works by reducing the weight of older
measurements, effectively allowing them to be discarded when
they no longer represent current conditions.

Algorithm 1 Recursive estimation of ŷ(k)
1: Choose Pe(0) and λe suitably
2: for k = ρ + ℓ + 1, · · · do
3: Measure y(k)
4: ξ(k − 1) =Wp⊤

k−ℓ,ℓ,1 Pe(k − 1)

5: Ze(k) =
(
λ−1

e + ξ(k − 1)Wp
k−ℓ,ℓ,1

)−1
ξ(k − 1)

6: Pe(k) = Pe(k − 1) − ξ(k − 1)⊤Ze(k)
7: Γe(k) = Γe(k − 1) +

(
y(k) − Γe(k − 1)Wp

k−ℓ,ℓ,1

)
Ze(k)

8: ŷ(k) = Γe(k)Wp
k−ℓ,ℓ,1

9: end for

Given an estimate of Ŷ f
k,1,1 = ŷ(k), we can determine the in-

novation ê(k) as follows

ê(k) = y(k) − ŷ(k). (25)

Then Ê f
k−ℓ,ℓ,1 is updated as follows

Ê f
k−ℓ+1,ℓ,1 =


ê(k − ℓ + 1)

...
ê(k)

 . (26)

Using Eq. (26), we can now update the estimates L̂w, L̂u and L̂e

over the time intervals T1 and T2. To proceed, let us focus on
the first column of Eq. (21)

Ŷ f
k−ℓ+1,ℓ,1 = L̂wWp

k−ρ−ℓ,ρ,1 + L̂uU f
k−ℓ,ℓ,1 + L̂eÊ f

k−ℓ+1,ℓ,1, (27)

and consider the stack of data

ξy(k) =



Wp
k−ρ−ℓ,ρ,1

U f
k−ℓ,ℓ,1

Ê f
k−ℓ+1,ℓ,1


.
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Eq. (27) can be rewritten as follows

Ŷ f
k−ℓ+1,ℓ,1 = L̂ξy(k), (28)

where L̂ =
[
L̂w L̂w L̂e

]
. The update of L̂w, L̂u and L̂e at

time k is provided by the recursive least squares algorithm 2
where

L̂W = L̂(:, 1 : (nu + ny)ρ),
L̂u = L̂(:, (nu + ny)ρ + 1 : (nu + ny)ρ + nuℓ),
L̂e = L̂(:, (nu + ny)ρ + nuℓ : end),

and λy a forgetting factor. We now have unbiased estimates L̂w

and L̂u which can be used to solve (17) over the time interval
T3. Indeed, over T3, the optimal prediction of Y f

k,ℓ,1 in the least-
squares sense is given by

Ŷ f
k,ℓ,1 = L̂wWp

k−ρ,ρ,1 + L̂uU f
k,ℓ,1, (29)

requiring only the estimates of the matrices Lw and Lu.

Algorithm 2 Recursive estimation of L̂
1: Choose Py(0) and λy suitably
2: for k = ρ + ℓ + 1, · · · do
3: Estimate ê(k) from Alggorithm 1 and update ξy(k)

4: Zy(k) =
(
λ−1

y + ξ
⊤
y (k)Py(k − 1)ξy(k)

)−1
ξ⊤y (k)Py(k − 1)

5: Py(k) = Py(k − 1) − Py(k − 1)ξy(k)Zy(k)
6: L̂(k) = L̂(k − 1) +

(
Yk−ℓ+1,ℓ,1 − L̂(k − 1)ξy(k)

)
Zy(k)

7: end for

4.3. Explicit formulation of the controller
The command u(k), as the solution of optimization problem

(17), does not solve the regulation problem exactly in its cur-
rent form. Before providing an explicit form of the control, it is
necessary to incorporate integral action to achieve precise regu-
lation. Incorporating an integrator into the control loop enables
the precise tracking of an output reference with zero offset. To
introduce integral action into the predictive controller based on
subspace matrices, we adopt the approach outlined in Huang
and Kadali 18, Chapter 7.2.1, focusing on the subspace equa-
tion:

∆Ŷ f
k,ℓ,1 = L̂W∆Wp

k−ρ,ρ,1 + L̂u∆U f
k,ℓ,1. (30)

By performing a direct computation using Eq. (30), we arrive
at:

Ŷ f
k,ℓ,1 = Yk + L̂WI∆Wp

k−ρ,ρ,1 + L̂uI∆U f
k,ℓ,1, (31)

with L̂WI = Sℓ,ny L̂W , L̂uI = Sℓ,ny L̂u and Yk = 1ℓ,ny ⊗ y(k). In the
formulation of the optimization problem (17), we will used the
predictor (31) instead of (29). The formulation of Problem (17)
can now be articulated as

arg min
∆U f

k,ℓ,1

(
1
2
∆U f⊤

k,ℓ,1E∆U f
k,ℓ,1 + ∆U f⊤

k,ℓ,1F
)
, (32a)

s.t. M∆U f
k,ℓ,1 ≤ γ, (32b)

where

E = R + L̂⊤uI
QL̂uI ,

F = −L̂⊤uI
Q

(
Yr − L̂wI∆Wp

k−ρ,ρ,1 − Yk

)
,

M =

[
−Sℓ,nu

Sℓ,nu

]
,

γ =

[
1ℓ,ny ⊗ u(k − 1) − Umin

Umax − 1ℓ,ny ⊗ u(k − 1)

]
.

The necessary Kuhn-Tucker conditions for this optimization
problem are

E∆U f
k,ℓ,1 + F +

∑
i∈Wa

λ(i) M(i)⊤ = 0, (33a)

M(i)∆U f
k,ℓ,1 − γ

(i) = 0, i ∈Wa, (33b)

M(i)∆U f
k,ℓ,1 − γ

(i) ≤ 0, i <Wa, (33c)

λ(i) ≥ 0, i ∈Wa, (33d)

λ(i) = 0, i <Wa, (33e)

where λ ∈ R2ℓnu represents the vector of Lagrange multipliers
and Wa the index set of active constraints. If Wa were known,
it is well-known that the optimal solution would be given by

∆U f
k,ℓ,1 = −E−1

(
F + M⊤a λa

)
, (34)

where Ma (resp. λa) contains the rows of M (resp. λ) with in-
dices in Wa. The challenge lies in the impossibility of a priori
knowledge regarding the active or inactive status of constraints.
This gives rise to the well-known issue of determining online
the set of active constraints Wa. In the general case, solving
this problem is not straightforward. However, its complexity
can be mitigated when the constraints arise from saturations, as
in our case, because the active constraints are linearly indepen-
dent, and their number is less than or equal to the number of
decision variables. If we suppose that there exists an optimal
input sequence ∆U f

k,ℓ,1 such that M∆U f
k,ℓ,1 < γ, the problem

(32) is equivalent to

max
λ≥0

min
∆U f

k,ℓ,1

(
1
2
∆U f⊤

k,ℓ,1E∆U f
k,ℓ,1 + ∆U f⊤

k,ℓ,1F + λ⊤
(
M∆U f

k,ℓ,1 − γ
))
.

The minimization over U f
k,ℓ,1 is unconstrained and the solution

is given by

∆U f
k,ℓ,1 = −E−1

(
F + M⊤λ

)
, (35)

leading to the formulation of the dual problem

arg min
λ≥0

(
1
2
λ⊤Gλ + λ⊤Ω

)
, (36)

with G = ME−1 M⊤ and Ω = γ + ME−1F. It is important to
observe that λ(i) = 0 when the ith inequality is inactive. Problem
(36) is much easier to solve than the original problem (32). We
will use Hildreth’s quadratic programming algorithm to solve in
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real-time this problem (Luenberger 27). The main idea of this
algorithm is to solve (36) for each component of λ iteratively,
one component at a time. During iteration m, if the value of λ(i)

required to minimize the cost function is negative, λ(i) is set to
zero, and the algorithm proceeds to the next component λ(i+1).
We employ a partitioning approach to separate the active set
into two subsets: W+

a and W−
a . These subsets correspond to the

active constraints associated with Umax and Umin, respectively.
This results in the following partition

G =
[

Z −Z
−Z Z

]
, λ =

[
λ+

λ−

]
, ME−1 =

[
V
−V

]
,

γ =

[
γ+

γ−

]
, Ω =

[
Ω+

Ω−

]
,

with Z ∈ Rℓnu×ℓnu , V ∈ Rℓnu×ℓnu andΩ+ ∈ Rℓnu , Ω− ∈ Rℓnu . Here,
λ+ ∈ Rℓnu (resp. λ− ∈ Rℓnu ) represents the Lagrange multipliers
associated with Umax (resp. Umin). Problem (36) can now be
reformulated as:

arg min
λ≥0

(
1
2
(
λ+⊤Zλ+ + λ−⊤Zλ− − 2λ+⊤Zλ−

)
+ λ+⊤ (γ+ + VF) + λ−⊤ (γ− − VF)

)
.

(37)

With this formulation, Hildreth’s procedure is given in Algo-
rithm (3).

Algorithm 3 Hildreth’s algorithm
1: Choose maxIter and ϵ suitably
2: m = 1, w(1) = λ
3: while (m ≤ maxIter) OR (q > ϵ) do

4: w+(m+1)
i = − 1

zii

(
ω+i +

i−1∑
j=1

zi jw
+(m+1)
j +

n∑
j=i+1

zi jw
+(m)
j

−
n∑

j=1
zi jw

−(m)
j

)
5: w+(m+1)

i = max
(
0,w+(m+1)

i

)
6: if w+(m+1)

i = 0 then

7: w−(m+1)
i = − 1

zii

(
ω−i +

i−1∑
j=1

zi jw
−(m+1)
j +

n∑
j=i+1

zi jw
−(m)
j

)
8: w−(m+1)

i = max
(
0,w−(m+1)

i

)
9: else

10: w−(m+1)
i = 0

11: end if
12: w(m) =

[
w+(m)

w−(m)

]
, q =

∥∥∥w(m+1) − w(m)
∥∥∥

2, m = m + 1

13: end while
14: λ = w(m)

zi j is the i jth element of Z, ω+i (resp. ω−i ) is the ith element
of Ω+ (resp. Ω−) and n = ℓnu. The optimal control sequence is
then determined by Eq. (35), and the control applied to the sys-
tem corresponds to the first nu rows of the optimal sequence.
This algorithm, customized for handling input saturations, fa-
cilitates the explicit formulation of the control command. To
conclude this section, we summarize the control strategy in Al-
gorithm 4.

Algorithm 4 Recursive Subspace-based Predictive Control
Phase 1 – Before closing the control loop:

1: Choose Q, R, ρ, ℓ,U, and Yr suitably
2: Calculate an offline estimation L̂w and L̂u

Phase 2 – During the control loop:

3: for k = ρ + ℓ + 1, · · · do
4: Measure y(k)
5: Compute ŷ(k) using Algorithm 1
6: Compute ê(k) = y(k) − ŷ(k) and update Êk−ℓ,ℓ,1
7: Update estimates L̂w and L̂u using Algorithm 2
8: Update matrices E, F and vector γ
9: Compute Lagrange multipliers λ using Algorithm 3

10: Compute ∆U f
k,ℓ,1 using (35)

11: Apply the input u(k) = ∆U f
k,1,1 + u(k − 1) to the system

12: end for

5. Experimental results

In this section, we present experimental results obtained by
testing the proposed control strategy in the wind tunnel under
various upstream yaw angle perturbations. Initially, we out-
line the determination of the reference output. Subsequently,
we demonstrate the control system’s ability to track a given
set of outputs amidst perturbations. Furthermore, we establish
that when the outputs effectively track the reference, the mean
base pressure Cb remains constant for all considered values of
β. Additionally, we confirm that this result holds true even in
the presence of dynamic perturbations. Lastly, we demonstrate
the control efficacy in achieving more stringent set of objectives
under the same test conditions.

The control objective is to sustain a pressure distribution at
the rear of the windsor body that mirrors the distribution at zero
yaw angle (β). This applies across all β values within an in-
terval ranging from −5o to +5o. Figure 8 illustrates the time
averaged pressure distribution at the base the Windsor body at
β = 0. This distribution exhibits horizontal symmetry and ver-
tical asymmetry. The output reference Yr is established based
on this pressure distribution. This configuration is expected to
minimize drag variations with yaw angle.

Figure 9 displays the time averaged value of the base pres-
sure coefficient Cb as a function of the yaw angle, both with
and without control. The average is based on 180s, which corre-
sponds to 18750 convective times. The experiments were con-
ducted over extended periods, during which the yaw angle β
remained constant. It is important to specify that the sample
sizes for the past and future data are ρ = 30 and ℓ = 40 sam-
ples, respectively, with a sampling rate of 10 Hz.
The blue curve represents the case without control, showcas-
ing the well-known Windsor body behavior Cb − β. The orange
curve illustrates the outcomes of controlled flow, aligning with
the specified objective in terms of the base pressure coefficient.
Additionally, various wake states are presented. These clearly
demonstrate that, without control, the wake state significantly
depends on the yaw angle, displaying high asymmetry for small
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Figure 8: Pressure distribution at the rear of the Windsor body for β = 0. Red
points indicate the locations of pressure sensors utilized for control.

Figure 9: Mean value of the base pressure Cb versus β with (orange line) and
without (blue line) control. The standard deviation of Cb is about 2% of Cb in
all depicted cases.

yaw angles, such as β = ±3◦. Conversely, in the controlled case,
the mean wake state keeps its horizontal symmetry regardless
of the imposed yaw angle. It’s noteworthy that, in the controlled
results, beyond a yaw angle of β = ±3◦, the outcomes deviate
slightly from the objective. This is attributed to the flaps lacking
sufficient influence on the flow to achieve the specified objec-
tives. Particular attention is now given to the case β = −3◦.
In Figure 9 we display the averaged base pressure chart and in
Figure 10 we present the velocity fields measured using a PIV
technique.
The pressure chart and the corresponding Cb value (Figure 9)
show that the control objective are met. Moreover, the velocity
field (Figure 10) indicates a noticeable symmetrization of the
wake.

Moreover, we wanted to test the control law on the body un-
derlying dynamic perturbations. With the latter, we refers to
a perturbation that varies during the measurement. More pre-
cisely, in this test the yaw angle follows a sinusoidal law, de-
fined as y = 3sin( π100 t). Figure 11 depicts the response of Cb

to this sinusoidal variation in β with and without control. Both
curves have been obtained with a sliding average with a 3s win-
dow. The frequency of the perturbation is S t ≃ 10−3.

β = -3°

No Control

Control

Figure 10: PIV measurements for β = −3◦. Top: Uncontrolled scenario. Bot-
tom: Controlled scenario.

Figure 11: Mean base pressure Cb versus time in response to sinusoidal vari-
ations of β. The red line illustrates the variations of β, while the orange line
represents Cb with control, and the blue line depicts Cb without control.

Notably, the control effectiveness is consistently maintained.
The variability of Cb with respect to yaw angle is evident in
the uncontrolled scenario, as depicted by the blue curve, while
the trend stabilizes in the controlled scenario, represented by
the orange curve. This observed trend results in an average im-
provement of approximately ≃ 5%.

Another control objective, more stringent, has been tested
on this model vehicle. This objective now forces both vertical
and horizontal symmetry of the distribution, along with a higher
pressure level. Figure 12 illustrates the outcomes pertaining to
the new objective, corresponding to an output reference Yr2, in
contrast to the previously discussed output reference denoted as
Yr1.
The blue and orange curves mirror those presented in Figure
9, while the yellow curve reflects the results concerning the
new objective. The imposition of a higher pressure level shifts
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Figure 12: Mean value of the base pressure Cb versus β with and without con-
trol. Yr1 corresponds to the orange line, Yr2 corresponds to the yellow line and
No control corresponds to the blue line. The standard deviation of Cb is about
2% of Cb in all depicted cases.

the curve downwards, indicating a significantly higher average
gain. For |β| ≤ 2◦, the trend remains flat, whereas for |β| > 2◦,
some deviations from the pressure objective emerge. This in-
dicates that in more stringent scenarios, the flaps lack authority
over the wake at lower angles compared to the output reference
Yr1 .

Also in this scenario, the new set of objectives under dynamic
perturbations was tested. In what follows, the yaw angle under-
goes variations every 30 seconds. Figure 13 presents the base
pressure coefficient Cb obtained for step variations of β over
time, with and without control. Similarly to the sinusoidal vari-
ation, both curves have been obtained with a sliding average
with a 3s window.

Figure 13: Mean base pressure Cb versus time in response to step variations
of β. The red line illustrates step changes, while the orange line represents the
scenario with control, and the blue line depicts the scenario without control.

In the non-controlled scenario, Cb exhibits significant fluctua-
tions with β, whereas in the controlled scenario, it maintains a
nearly constant value even for β = ±3◦, consistent with the re-
sults concerning the sinusoidal yaw angle variation shown pre-
viously. The mean improvement in the controlled scenario is
approximately ≃ 7.5%.

In Figure 14, the control signals (depicted by the black
curves) applied to the flaps are shown alongside variations in
the yaw angle β, represented by the red curve. The correspond-
ing controlled outputs are illustrated in Figure 15, while the
same outputs without control are displayed in Figure 16. At
the beginning of the test, the lateral flaps (u1 and u2) oscillate
around the neutral position whereas the top/bottom ones (u3 and
u4) address the vertical asymmetry both being oriented down-
wards. At β = ±3◦ the top/bottom flaps are saturated and this
explains the limitations observed in Figure 12. On the other
hand, the lateral flaps don’t show a symmetric behaviour. In
fact both flaps’ angles are positive for β = −3◦ at t ∼ 130s
while u1 is positive and u2 is negative for β = +3◦ at t ∼ 220s.
This means that the instantaneous state of the flaps depend on
the previous history. As expected, in the controlled configura-
tion (Figure 15), the output trends remain consistent throughout
the test, whereas in the uncontrolled scenario (Figure 16), the
impact of the yaw angle becomes evident. This confirms what
has been shown in Figure 13.

Figure 14: Command signals for flap angles (depicted by the black curves)
respond to variations in β (illustrated by the red curve). We recall that u1, u2,
u3 and u4 correspond to the left, right, top and bottom flaps respectively.

Although the primary focus of the paper was not on optimiz-
ing the system energetically, we will give an overview of the
power dissipated by the system and we will make a comparison
with the dissipated aerodynamic power under some simplifying
assumptions. The power of the control system can be defined as
P = VI. V is the voltage of the power supply (here equal to 6
V). I is the intensity of the mean current, measured as I ≃ 0.2 A
during the experiments. The power dissipated by aerodynamic
drag at β = 0 reads Pa0 = V∞Fx0 = V∞

ρ
2 V2
∞S CD0. S is the

frontal area of the body. The value of the drag coefficient at
zero yaw is CD0 = 0, 26 for this body equipped with wheels.
For a variation of the base pressure coefficient δCb, neglecting
the contribution of the flaps as a first approximation, the drag
force variation is δFx ≈ H.W ρ

2 V2
∞δCb. Therefore, the relative

aerodynamic power saving is δPa/Pa0 = δFx/Fx0 ≈ δCb/CD0.
This has to be compared with the relative control system power
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Figure 15: The controlled outputs are represented by the black curves, while
the references are illustrated in red.

Figure 16: Output signals without control are depicted when the flap angles are
set at 0◦.

consumption P/Pa0. As a conservative estimate, for the si-
nusoı̈dal variation of β presented in figure 13, we have here
δPa/Pa0 ≈ 4% while P/Pa0 ≈ 0.3%. Aerodynamic power
savings are therefore very favourable for this model study. Of
course, a specific development and optimisation should be car-
ried out for each particular settings on scale one vehicles.

6. Conclusions

This study originated from the findings of prior road and
wind tunnel experiments using both full scale vehicles and aca-
demic models, revealing an increase in drag for real driving
conditions. We propose here an active solution for drag re-
duction consisting in controlling four rigid flaps positioned at
the base of the vehicle. By employing the flaps, our goal is
to manipulate the near wake orientation in order to maintain a

reference pressure distribution at the base of the model. More
precisely, the system output is based on four static pressure sen-
sors only, located on the base of the model, used to represent
a mean pressure level and the horizontal and vertical pressure
gradients. We use an instrumented Windsor body with wheels
equipped with four controlled flaps at the rear. Wind tunnel
tests are conducted to generate quasi-steady disturbances.

Our results demonstrate that this system can be effectively
modelled by a low-order LTV model, with parameters predom-
inantly varying based on the upstream flow properties. We de-
veloped an adaptive control law based on SPC. To address es-
timation bias resulting from correlation between input/output
data and noise in closed-loop, an unbiased recursive estima-
tor was designed to dynamically adjust model parameters on-
line. Subsequent closed-loop tests were carried out in the wind
tunnel, demonstrating the viability and effectiveness of our ap-
proach. Two control objectives were presented. One consists in
sustaining the basic pressure distribution at zero yaw. The other
one, more stringent, forces both vertical and horizontal symme-
try of the distribution, along with a higher pressure level. In
both cases, the control maintains efficiently the reference pres-
sure distribution for quasi-steady yaw angle variations repre-
sentative of real driving situations. Subsequent analysis con-
firms a notable decrease in the base pressure coefficient Cb and,
consequently, a reduction of the drag.

These promising outcomes validate the proof of concept, sig-
nifying a significant milestone. Nonetheless, substantial efforts
lie ahead before implementation in production cars becomes
feasible. The principal area for further improvement revolves
around the actuators. Integrating active flaps in vehicles is not
a practical solution. Conversely, exploring flexible tapers with
the capability to locally deform the bodywork appears feasible.
The efficacy of these actuators in precisely controlling the pres-
sure at the rear of vehicles having a more complex rear geome-
try is yet to be substantiated. This is the subject of an ongoing
research work.

Appendix A. Data equation

Regardless of the chosen state representation (12) or (A.1),
controlling the system using these equations requires real-time
estimation of matrices A, B, C and D, as well as the state vector
x(k). In (Favoreel et al. 14), an alternative method has been
proposed to express the output y as a function of the input u,
thereby eliminating the need to know the state x. For that, let
us consider the predictor form of a LTI system given as

x(k + 1) = Ãx(k) + B̃u(k) + Ky(k), (A.1a)
y(k) = Cx(k) + Du(k) + e(k), (A.1b)

with Ã = A− KC and B̃ = B− K D (Ljung 26). Using straight-
forward manipulations, the state can be expressed in terms of
past input-output data over ρ samples (Chiuso 10, Jansson and
Wahlberg 22)

x(i + ρ) = Ãρx(i) +KWi,ρ,1, (A.2)

12



where Wi,ρ,1 =

[
Ui,ρ,1
Yi,ρ,1

]
and K =

[
Kℓ(Ã, B̃) Kℓ(Ã, K)

]
. The

Kalman gain K is designed to ensure the stability of Ã. This im-
plies the existence of a finite integer ρ such that the Frobenius
norm of Ãρ converges to zero. Suppose we can conduct exper-
iments on the system to collect a sequence of N input/output
pairs. Consequently, employing the state approximation

x(i + ρ) ≈ KWi,ρ,1 (A.3)

the well-known data equation can be formulated from Eq. (12),
utilizing input-output data available from time instance i until
i + N − 1 (Overchee and Moor 29).

Y f
i,ℓ,N̄

= Γℓ(A,C)KWp
i−ρ,ρ,N̄

+ Hℓ(A, B,C, D)U f
i,ℓ,N̄

+Hℓ(A, K,C, I)E f
i,ℓ,N̄
,

(A.4)

where N̄ = N − ρ − ℓ + 1. If time step i represents the current
time step, this relationship establishes a connection between
past data, denoted by the index p, and future data, denoted by
the index f , without involving the state.
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