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A multislope MUSCL method for vectorial reconstructions

Arthur Tételina, Clément Le Touzea,∗

aDMPE, ONERA, Universite Paris Saclay, F-91123, Palaiseau, France

Abstract

Variables interpolation is one of the key concepts of MUSCL schemes. Originally developed for one-
dimensional frameworks, many improvements have been made over the last decades to extend these methods
to general unstructured multi-dimensional meshes. It results that scalar interpolation in a finite volume
cell-centered framework is already quite well understood. It is known that linear reconstructions have to be
limited in order to prevent non-physical oscillations of the solutions while ensuring a spatial second-order
accuracy for smooth solutions. This is done thanks to a limiting function which allows the reconstruction to
satisfy a monotonicity property, which then ensure the stability of the scheme. Nevertheless, some difficulties
arise when we try to extend this process to vectorial variables. Generally, vectorial reconstructions are done
componentwise, but this process reveals to be frame-dependent and leads to a loss of precision due to false
detection of extrema. In this paper, we present a new method dealing with vectorial reconstructions in a
multislope MUSCL context.

Keywords: Cell-Centered Finite-Volume Methods, Unstructured Meshes, Multislope MUSCL Schemes,
Vectorial Slope Limitation, Frame Invariance5

1. Introduction

In the context of the cell-centered finite volume method applied to hyperbolic systems of conservation
laws, it is usual to compute reconstructions of the variables in each control volume in order to improve
the spatial accuracy of the convective fluxes approximation. To achieve this goal, van Leer developped
at the end of the 70’s an approach widely known today as the MUSCL approach [1–5]. Despite its lower10

accuracy [6] compared to ENO/WENO [7, 8] or Galerkin methods [9, Chap. 2], this class of method is
very popular in industrial cell-centered CFD codes due to its higher efficiency. As it has been proved by
Godunov and Bohachevsky [10], there is no high-order accurate scheme being both linear and not generating
new extrema. To solve this issue, the idea of van Leer has been to introduce a limiting function whose aim
is to limit the gradient of the variable in order to ensure some monotonicity criterion for the reconstructed15

variable [11, 12]. For one-dimensional schemes, this monotonicity criterion is designed so that the scheme
satisfy a Total Variation Diminishing (TVD) property [13] which leads to the scheme stability. But for
meshes of dimension two or higher, it has been proved that the TVD property and high order accuracy in
space are incompatible [14]. Many studies have been published in order to ensure some stability for the
scheme [15–17]. Today, several MUSCL schemes have been designed in order to deal with cells with any kind20

of polygonal shape on multidimensional meshes. These multidimensional schemes can be divided into two
groups [18] : monoslope schemes computing a single gradient for each cell [19, 20], and multislope schemes
computing a single directional gradient for every face of each cell [21–23].

All the studies on multidimensional grids mentioned above have been conducted for scalar variables.
For vectorial variables, such as velocity, as far as the authors know, only very few studies have been made.25

In many codes, vectorial reconstructions mainly consist in a componentwise reconstruction. For instance,
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this is the case of ONERA’s software CEDRE, dedicated to multi-physics problems in energetics on general
unstructured meshes [24, 25]. Nevertheless, this kind of process turns out to be frame-dependent and leads
to a loss of accuracy. In the literature, methods developed to solve this problem can be divided into two
categories. The first one, developed by Luttwak and Falcovitz [26–28] has been originally designed for an30

Arbitrary Lagrangian-Eulerian framework. With a scalar conservation law, the variable satisfies a maximum
principle in the form minj∈V(i) Uj ≤ Un+1

i ≤ maxj∈V(i) Uj , where V(i) is some neighborhood of the control
volumeKi. For a vectorial conservation law, the extension of this maximum principle is a maximum principle
componentwise, whatever basis we choose. In other words, the vector Vn+1

i has to lie in the convex hull
of vectors from a certain neighborhood. This convex hull has been called VIP (for Vector Image Polygon35

/ Polyhedron) by Luttwak and Falcovitz and is the main element of their method. They indeed imposed
on their reconstructed vector to lie within this area. Other works extended this method for other contexts,
as Hoch and Labourasse [29] who extended the formalism on finite volume schemes, Velechovský et al. [30]
who adapted it for problems with radial velocity, or Luttwak [28] who defined the much simpler bounding
box concept to deal with many dimensional problems. Luttwak and Falcovitz [27] also used this method to40

define a scalar limitation. The second category has been initially developed by Maire [31, 32] in a monoslope
context. It consists in defining a local basis in which all vectors will be limited componentwise. As the local
basis is frame-independent, the limited componentwise vector is also frame-independent. This method has
been used in many papers, each proposing different local bases [33–38]. All these methods present some
advantages and drawbacks. The VIP method is the most natural extension of the monotonicity criterion in45

the vectorial case. But its major drawback is its CPU cost which makes it unsuitable for industrial CFD
codes. Indeed, the VIP method requires to compute for each control volume a convex hull to determine if a
reconstructed vector satisfies the monotonicity constraint or not. In industrial codes solving equations from
fluid dynamics problems on arbitrary meshes, the computational cost of the VIP area can be really heavy.
From this point of view, projections methods are simpler and have a lower computational cost than VIP50

methods. However, as the projections methods still involve a componentwise limiting procedure, they are
prone to the same drawbacks as the classical componentwise methods (except from the frame dependency).
This means in particular accuracy issues related to the detection of extrema for each component, as it will
be explained in section 2.4.

For all the reasons mentioned above, we propose in this article a new reconstruction method for vectorial55

variables in the context of multislope MUSCL methods. This new method is based on an extension of the
monotonicity constraint of the scalar case to a vectorial framework. In section 2, we recall the classical
scalar multislope method. We also introduce the Limited-κ schemes, defined in order to avoid the use of the
classical slope ratio r. We finish this section with a description of the issues arising with a componentwise
reconstruction. In section 3, we present our strategy for vectorial reconstructions. We extend the Limited-κ-60

schemes introduced in section 2 to a vectorial framework, and we propose some vectorial limiting functions.
Finally, numerical tests are performed in section 4 in order to assess the new vectorial method.

2. Multislope MUSCL scheme for scalar variables

In this section, we describe the multislope MUSCL scheme developed by Le Touze et al. [22], which is the
basis of the vectorial reconstruction method we propose. It has been introduced to deal with the discretiza-65

tion of hyperbolic systems of conservation laws using the finite volume method on general unstructured
meshes.

2.1. Finite volume discretization of hyperbolic conservation laws

We consider a computational domain Ω of dimension d. If, for x ∈ Rd, we note Q = Q(x, t) the vector
of conserved variables, λ = λ(x, t) the velocity vector field, and f the physical flux, then the system reads:70

∂Q

∂t
+∇ · f(Q,λ) = 0. (1)

To get the finite volume scheme, we first discretize Ω in Nc non-overlapping cells denoted by Ki (with |Ki|
their volume), and which may have any kind of polygonal geometry in a 2- or 3-dimensional framework.
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Each of these cells has a barycenter Bi, and two adjacent cells are separated by a common face Sij = Ki∩Kj

(with |Sij | their surface area), whose barycenter is denoted by Mij . Let nij stand for the unit normal vector
of the face Sij pointing outwards Ki, V(i) be the face neighborhood of the cell Ki, and W(i) its vertex75

neighborhood. We will sometimes use the notations V̄(i) and W̄(i) when we want to include Ki in these
neighborhoods. In order to have the semi-discretized form of the scheme, we integrate over each cell Ki, and
skipping the classical details of the finite volume method, we get the semi-discretized finite volume scheme:

∀Ki ∈ Ω,
dQi(t)

dt
= −

∑
j∈V(i)

|Sij |
|Ki|

Φij(Qij(t),Qji(t),nij). (2)

Here, Qi(t) is by definition the mean value of Q(x, t) in the cell Ki, which also approximates the value80

of Q(x, t) at the barycenter Bi with a second-order accuracy. Similarly, Φij is the numerical flux function
approximating the mean value of the physical flux at the face Sij . To achieve a second-order accuracy, a
MUSCL approach has been used, that is replacing Qi(t) and Qj(t) in the numerical flux by approximations
Qij(t) and Qji(t) at the faces barycenters Mij . In this form, we still have to establish a time discretization.
This is classically done by means of explicit Strong Stability Preserving Runge-Kutta (SSPRK) schemes,85

which are convex combinations of forward Euler steps [39]:

dQi(t)

dt
≈ Qn+1

i −Qn
i

∆t
. (3)

In the sections that follow, we will focus on the way variables are reconstructed at the faces centroids
Mij . When dealing with systems of conservation equations, a crucial issue of the reconstruction process
is the choice of the interpolated variables. This means for instance interpolating primitive variables rather
than conserved quantities so as to preserve the positivity of physical variables like pressure or density. In this90

paper, we will especially focus on the way vectorial variables (like velocity for example) are reconstructed.
To do so, we first need to recall the principles of the multislope method applied to scalar variables, which is
the purpose of the next section.

2.2. Summary of the scalar multislope method: reconstruction procedure and properties

95

In order to describe the multislope reconstruction applied to scalar variables, we consider a simplified
version of equation (1), namely a conservation law for a scalar quantity u(x, t) of the form:

∂u(x, t)

∂t
+∇ · (λ(x)u(x, t)) = 0, (4)

According to the finite volume framework described above, this equation is discretized as:

Un+1
i = Un

i −∆t
∑

j∈V(i)

|Sij |
|Ki|

Φij(U
n
ij , U

n
ji). (5)

If we also assume that the velocity field λ is such that ∇ · λ = 0, then we have a scalar advection equation
for which any solution u(x, t) has to respect a maximum principle in the sense that100

∀t > t0, ∀x0 ∈ Ω, min
x∈Ω

u(x, t0) ≤ u(x0, t) ≤ max
x∈Ω

u(x, t0). (6)

This maximum principle should be verified also by the discrete solution, in the sense that

∀tn > t0, ∀Ki ∈ Ω, min
Kj∈Ω

Un
j ≤ Un+1

i ≤ max
Kj∈Ω

Un
j , (7)

so as to ensure the stability of the scheme. To achieve this goal, it all depends on the way the reconstructions
Uij and Uji are defined, in addition to a classical CFL criterion on the time step.
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The multislope reconstruction algorithm for the scalar case has been introduced by Le Touze et al. [22].
We will only summarize here the main aspects of this method, so that an interested reader should refer to105

this article to get more details. All definitions introduced here are also illustrated in figure 1. The principle
of the multislope MUSCL method is as follows: rather than computing a single limited gradient for the whole
cell as in monoslope methods [18–20], dedicated scalar slopes are computed for each face Sij of the cell.
More precisely, two slopes are computed on the axis BiMij : a forward slope p+ij and a backward slope p−ij .
Hence, introducing the well-known slope-limiting function φ [11, 12, 40–42], we can write the reconstruction110

as

Uij = Ui + ∥BiMij∥p+ijφ(rij , η
−
ij , η

+
ij), rij =

p−ij

p+ij
, η+ij =

||BiH
+
ij ||

||BiMij ||
, η−ij =

||BiH
−
ij ||

||BiMij ||
, (8)

where rij is the slope ratio, while η+ij and η−ij are two geometrical parameters. In what follows, we will
assume that the mesh is such that the following property holds:

η+ij ≥ 1, η−ij ≥ 1. (9)

This is a property that most meshes will naturally exhibit, otherwise it can still be enforced when selecting
the neighbors in the reconstruction process. Interpolating U at both a forward point H+

ij and a backward115

point H−
ij on the axis BiMij (see details in [22]), these two slopes can be expressed as:

p+ij =
UH+

ij
− Ui

∥BiH
+
ij∥

, p−ij =
Ui − UH−

ij

∥BiH
−
ij∥

. (10)

Figure 1: Multislope MUSCL scheme from Le Touze et al. [22] for two-dimensional meshes.

In the MUSCL framework, the slope limiting function φ plays an important role, as it ensures both accuracy
and stability of the scheme. For the reconstructions to be second-order accurate in space, the limiting
function has to satisfy120

φ(rij) = 1. (11)

Indeed, this property ensures that, if the variable u is linear in the vicinity of the cell Ki (i.e. u(x) =
u(x0)+∇u|i · (x−x0)), then the reconstructed value Uij at the point Mij will be exact. If the physical flux
is linear and if we use an upwind numerical flux Φij(Uij , Uji) = max(0,λ · nij)Uij +min(0,λ · nij)Uji, then
the method approximates the term ∇·(λu) with a second-order accuracy. Generally, slope limiting functions
are also built as convex combinations of Beam-Warming and Lax-Wendroff schemes [11, 21, 40–44], namely:125

min(1, rij) ≤ φ(rij) ≤ max(1, rij). (12)
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Another property proved by Le Touze et al. [22] is that the scheme satisfies a discrete maximum principle
similar to (7), but localized to the vertex neighborhood of the cell:

∀Ki ∈ Ω, min
Kj∈W̄(i)

Un
j ≤ Un+1

i ≤ max
Kj∈W̄(i)

Un
j , (13)

implying the L∞ stability of the scheme. Without going into details regarding the proof of Le Touze et al.
[22], let us just recall that it results in two sufficient conditions, one is a classical CFL-like condition on the130

time step, the other one is a monotonicity condition imposed to the limiter function, which reads:

0 ≤ φ(rij , η
−
ij , η

+
ij) ≤ max(0,min(η−ijrij , η

+
ij)). (14)

Both conditions (12) and (14) (respectively accounting for second-order and monotonicity) have to be com-
bined, giving rise to the classical ”second-order monotonicity area” for the limiter:

max [0,min(1, rij)] ≤ φ(rij , η
−
ij , η

+
ij) ≤ min

[
max(0,min(η−ijrij , η

+
ij)),max(1, rij)

]
, (15)

whose lower and upper bounds respectively define the Minmod and Superbee limiters. This is illustrated
by the Sweby diagram in figure 3. Note that the monotonicity constraint (14) is written here as a condition135

on the limiter function φ, but it can be expressed under other equivalent forms as well (see next section).
Also note that it has to be distinguished from the maximum principle (13). The monotonicity constraint
is a condition imposed at the reconstruction level only, which happens to be a sufficient condition in order
to get the maximum principle (13), and therefore the L∞-stability of the whole space-time scheme for the
scalar advection equation.140

2.3. Alternative formulations of the multislope reconstruction

In section 3, a new reconstruction method for vectorial variables will be introduced. It is based on an
alternative way of defining reconstructions in the scalar case, which we will describe here. A first alternative
definition of the reconstructions Uij is based on the κ-scheme introduced by van Leer [4, 45]:

Uij = Ui + ∥BiMij∥
(
1 + κ

2
p+ij +

1− κ

2
p−ij

)
, κ ∈ [−1, 1]. (16)

In this form, the reconstruction is linear and we have to introduce a limiting function. When defining limiting145

functions based on κ-schemes, it is usual to define them piecewise by combining the monotonicity constraint
(14) and the κ-scheme [12, 42]. For instance, we can write the Monotonized Central limiter proposed by
van Leer [4] (sometimes called MUSCL limiter), based on the value κ = 01:

φMC(rij , η
−
ij , η

+
ij) = max

[
0,min

(
η+ij ,

1 + rij
2

, η−ij

)]
, (17)

or the Koren limiter [46], based on the value κ = 1/32:

φK(rij , η
−
ij , η

+
ij) = max

[
0,min

(
η+ij ,

2 + rij
3

, η−ij

)]
. (18)

In our alternative formulation of the reconstructions, we will follow another approach. Rather than introduc-150

ing the κ-scheme in a piecewise function, we will replace the scalar κ by a function κij = κ(p+ij , p
−
ij , η

+
ij , η

−
ij)

1A κ-scheme based on the value κ = 0 corresponds to the standard second-order central scheme.
2This limiter provides a third-order accuracy on regular one-dimensional meshes. However, on multi-dimensional or un-

structured meshes, it loses its third-order accuracy as stated in [12].
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with slopes (or their ratio rij) and geometrical parameters as arguments. This function is called the Limited-
κ (LK) function. We also introduce a sensor function σij based on the slopes sign, whose aim is to make
the reconstruction degenerate to a first-order accuracy at extrema:

σij =

{
1 if p+ijp

−
ij > 0

0 if p+ijp
−
ij ≤ 0

. (19)

When using these functions, the Limited κ-scheme (LKS) reads:155

Uij = Ui + ∥BiMij∥σij

(
1 + κij

2
p+ij +

1− κij

2
p−ij

)
. (20)

The link between the LK function and the slope-limiting function is quite obvious, as:

p+ijφ(rij , η
−
ij , η

+
ij) = σij

(
1 + κij

2
p+ij +

1− κij

2
p−ij

)
. (21)

For rij > 0 and rij ̸= 13, it is equivalent to

κij =
2φ(rij , η

−
ij , η

+
ij)− 1− rij

1− rij
= 1− 2

1− φ(rij , η
−
ij , η

+
ij)

1− rij
. (22)

Hence, all classical limiters can be expressed as LK functions. For example, the Monotonized Central limiter
(17) reads in this form:

κMC(rij , η
+
ij , η

−
ij) =

(2η−ij − 1)rij − 1

1− rij
I[0,(2η−

ij−1)−1](rij) +
2η+ij − 1− rij

1− rij
I[2η+

ij−1,∞[(rij), (23)

with IA(rij) an indicator function defined such that160

IA(rij) =
{

1 if rij ∈ A
0 if rij /∈ A

. (24)

From relation (22) and the monotonicity constraint on the limiter (14), it is possible to deduce an interval
for the Limited-κ function such that the reconstruction is limited adequately for the scheme stability. If
∀rij > 0, rij ̸= 1, we introduce

κ−(rij , η
−
ij) = κ−

ij =
2η−ijrij − 1− rij

1− rij
, κ+(rij , η

+
ij) = κ+

ij =
2η+ij − 1− rij

1− rij
, (25)

namely the monotonicity bounding κ-functions, respectively corresponding to φij = η−ijrij and φij = η+ij ,
then the numerical scheme with reconstructions under the LKS form (20) is stable if the LK function satisfies:165

κij ∈ [−1, 1]\
[
min(κ−

ij , κ
+
ij),max(κ−

ij , κ
+
ij)
]
. (26)

Both κ−
ij and κ+

ij blow up when rij is close to 1 (and are undefined when rij = 1). But this does not matter
since in this area any suitable scheme is bounded by the linear second-order schemes obtained with κ = 1
and κ = −1. This is illustrated in figure 3b where all four bounding κ functions are plotted versus the slope

3Note that κij is undefined when rij = 1, but this is not a problem. It only means that all κ-schemes are equivalent in the

linear case p−ij = p+ij , i.e when the limiter function can only take the value φij(1) = 1. When rij is close to 1, the relation (12)

also implies that |1− φij | ≤ |1− rij |, thereby ensuring that κij does not blow up.
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ratio (in log scale). Let us now consider another formulation of the reconstruction. Let U−
ij and U+

ij be the170

linear κ-schemes (16) respectively obtained using κ = −1 and κ = 1: U−
ij

∆
= Ui + ∥BiMij∥p−ij = Ui +

1
η−
ij

(
Ui − UH−

ij

)
U+
ij

∆
= Ui + ∥BiMij∥p+ij = Ui +

1
η+
ij

(
UH+

ij
− Ui

) , (27)

and let U−−
ij and U++

ij be the monotonicity bounds from (14) expressed on Uij : U−−
ij

∆
= Ui +

(
Ui − UH−

ij

)
= 2Ui − UH−

ij

U++
ij

∆
= Ui +

(
UH+

ij
− Ui

)
= UH+

ij

. (28)

Thus the ”second order monotonicity area” can be defined also as the set of all reconstructions Uij being a
convex combination of U−

ij and U+
ij , namely:

Uij − Ui = σij

[
1 + κ

2
(U+

ij − Ui) +
1− κ

2
(U−

ij − Ui)

]
, κ ∈ [−1, 1], (29)

provided that they are bounded by the monotonicity bounds U−−
ij and U++

ij in the following way:175

|Uij − Ui| ≤ min
(
|U−−

ij − Ui|, |U++
ij − Ui|

)
. (30)

Finally, we can sum up all the alternative (but equivalent) formulations of the ”second-order monotonicity
area” as described in figure 2 and illustrated in figure 3. The main advantage of the LKS and “|Uij − Ui|
bounding” formulations is that they do not directly involve the slope ratio rij , which will simplify the
extension to the vectorial case (see section 3).

Figure 2: Alternative but equivalent formulations of the ”second-order monotonicity area” in the scalar case.

2.4. Componentwise reconstructions for vectorial variables180

When dealing with vectorial variables, the straightforward approach is to apply the scalar reconstruc-
tion procedure to each component independently, which we refer to as the componentwise reconstruction.
However, as already noticed in the literature [26, 31] this approach is frame-dependent (see the example
given in Appendix A). In fact, we can precise this behavior of componentwise reconstructions by examining
the slopes. First, notice that whether the vectorial quantities to be reconstructed are defined in a 2D or 3D185

space, the reconstruction procedure can always be tackled in the 2D plane generated by the slope vectors
p−
ij and p+

ij . This is an interesting feature that will be used when designing a vectorial approach in section
3. Now if the slopes are non-vanishing, then we can state the following results (a summary is provided in
table 1 and proofs are given in Appendix B):

1. If slopes are colinear, then we have the only totally frame-independent componentwise reconstruction,190

since it is actually just a scalar problem. By the way, reverting to the scalar case when slopes are
colinear is a natural behavior that we would like to preserve when we design a new vectorial scheme
in section 3.
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0.50.5
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1.51.5
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2.52.5

00

(a) Sweby’s diagram.

-2-2 -1-1 11 22 33

-1-1

-0.5-0.5

0.50.5

11

00

(b) “κ-scheme” diagram.

x

U

-40-40

-20-20

2020

4040

6060

8080

100100

00

22

100100

22

32321010

 = 0.32

(c) “|Uij − Ui| bounding” representation.

Figure 3: Several representations of the ”second-order monotonicity” area for the scalar case (example taken with a value
r = 0.32). This figure is extracted from a Geogebra applet available online [47], and allows to visualize the evolution of the
”second-order stability” area when moving the cursors U

H−
ij
, Ui, UH+

ij
, η−ij et η+ij .

2. If slopes are noncolinear, then we have several cases depending on the scalar product p+
ij · p

−
ij :

(a) Case p+
ij · p

−
ij > 0:195

i. For any basis, there is always at least one component reconstructed at second-order accuracy.
ii. There exists at least one basis in which at least one component is first-order accurate.
iii. There exists at least one basis in which all components are second-order accurate.

(b) Case p+
ij · p

−
ij < 0:

i. For any basis, there is always at least one component reconstructed at first-order accuracy.200

ii. There exists at least one basis in which at least one component is second-order accurate.
iii. There exists at least one basis in which all components are first-order accurate.

(c) Case p+
ij · p

−
ij = 0:

i. For any orthonormal basis B0 with at least one component colinear with one of the vectorial
slope, all components will be reconstructed with a first-order accuracy.205
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Illustration Configuration of the slopes Properties

p+
ij = αp−

ij and p+
ij · p

−
ij > 0 ∀B ∈ Rd, ∀k, (p+

ij)k(p
−
ij)k ≥ 0

p+
ij = αp−

ij and p+
ij · p

−
ij ≤ 0 ∀B ∈ Rd, ∀k, (p+

ij)k(p
−
ij)k ≤ 0

∀B ∈ Rd, ∃k, (p+
ij)k(p

−
ij)k > 0

p+
ij ̸= αp−

ij and p+
ij · p

−
ij > 0 ∃B ∈ Rd, ∃k, (p+

ij)k(p
−
ij)k < 0

∃B ∈ Rd, ∀k, (p+
ij)k(p

−
ij)k ≥ 0

∀B ∈ Rd, ∃k, (p+
ij)k(p

−
ij)k < 0

p+
ij ̸= αp−

ij and p+
ij · p

−
ij < 0 ∃B ∈ Rd, ∃k, (p+

ij)k(p
−
ij)k > 0

∃B ∈ Rd, ∀k, (p+
ij)k(p

−
ij)k ≤ 0

∃B0 ∈ Rd, ∀k, (p+
ij)k(p

−
ij)k = 0

p+
ij ̸= αp−

ij and p+
ij · p

−
ij = 0 ∀B ̸= B0, ∃k, (p+

ij)k(p
−
ij)k > 0

∀B ̸= B0, ∃k, (p+
ij)k(p

−
ij)k < 0

Table 1: Summary of the properties of the componentwise reconstruction. When the product of the forward and backward
slopes for a given component is nonpositive, then the component is reconstructed only with a first-order accuracy.

ii. For all other bases, there is always one component reconstructed with a second-order accuracy,
and one component reconstructed with a first-order accuracy.

These properties illustrate the issue with the componentwise reconstruction. While we expect all com-
ponents to be reconstructed with the same accuracy, the slope limiting function can falsely detect some
extrema for some components. When this happens, the reconstruction degenerates to first-order for that210

particular component, which degrades the overall precision of the scheme. As the accuracy of the solution
depends only on the basis chosen to express the vectors, the method is thus frame-dependent, meaning that
changing the basis changes the solution. This is a problem for the reliability of the simulations of physical
systems, whose governing equations are supposed to exhibit a Galilean invariance, such as the Euler equa-
tions. This can even lead to practical problems in CFD simulations, for example with conservation issues215

when dealing with rotationally periodic boundary conditions (see the numerical test of section 4.2).
As detailed in the introduction, this issue has been studied in the literature, but none of the proposed

solutions is entirely satisfactory. Moreover, the accuracy problem highlighted in this section still occurs
in the projection methods [31–38], as they are not really vectorial, meaning that some vectors can still
be reconstructed with a different order for each component. For all these reasons, we propose in the220

next section a new reconstruction method for vectorial variables, which we want to respect the following
properties: frame-invariance, accuracy preserving, ensuring the stability of the scheme, low computational
cost, reducing to a scalar method when slopes are colinear.

3. A new multislope MUSCL method for vectorial variables

3.1. Strategy for the reconstruction of vectorial variables225

In order to introduce our strategy regarding the reconstruction of vectorial variables, let us consider
the natural extension of the scalar framework used in section 2.2. Starting with the conservation law for a
vectorial quantity v, if we consider a linear physical flux f (v) = λ⊗v, and if we assume a time-independent
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velocity field such that ∇ · λ = 0, then we get the vectorial advection equation:

∂v

∂t
+ (λ · ∇)v = 0, (31)

with (λ · ∇) defined as:230

(λ · ∇) = λx
∂

∂x
+ λy

∂

∂y
+ λz

∂

∂z
. (32)

As in the scalar case, this equation is discretized according to the finite volume framework described in
section 2.1:

Vn+1
i = Vn

i −∆t
∑

j∈V(i)

|Sij |
|Ki|

Φij(V
n
ij ,V

n
ji). (33)

Like in the scalar case there exists a maximum principle on v(x, t) in the sense that each of its components
satisfies a maximum principle whatever the basis considered:

∀t > t0, ∀x0 ∈ Ω, ∀k ∈ {1 · · · d}, min
x∈Ω

vk(x, t0) ≤ vk(x0, t) ≤ max
x∈Ω

vk(x, t0), (34)

where vk is the k-th component of vector v in any given basis. In other words, this means that each vector235

has to be in the convex hull spanned by the vector field at time t0:

∀t > t0, ∀x0 ∈ Ω, v(x0, t) ∈ Conv ({v(x, t0) | x ∈ Ω}) , (35)

which is the vectorial extension of the maximum principle (6) in the scalar case. By extension there also
exists a maximum principle on the L2 norm of the vectors, which reads:

∀t > t0, ∀x0 ∈ Ω, ∥v(x0, t)∥2 ≤ max
x∈Ω

∥v(x, t0)∥2. (36)

Ideally, these properties should be also verified at the discrete level with a good vectorial reconstruction
method. This would mean a discrete maximum principle for Vn+1

i , typically with respect to the vertex-240

neighborhoud W(i) of the local cell Ki, namely:

∀tn > t0, ∀Ki ∈ Ω, Vn+1
i ∈ Conv

({
Vn

j | Kj ∈ W̄(i)
})

, (37)

as well as
∀tn > t0, ∀Ki ∈ Ω, ∥Vn+1

i ∥2 ≤ max
Kj∈W̄(i)

∥Vn
j ∥2. (38)

Like in the scalar case, this would automatically imply the stability of the overall space-time scheme.
However the approach undertaken below is not primarily designed for this purpose. It rather consists in
extending the monotonicity properties of the scalar reconstructions Uij to the vectorial ones Vij , in a way245

that is frame-independent (not operating on individual components but on the whole vector), does not lead
to a loss of accuracy due to false detection of extrema, and which remains compact (i.e localized to the
three-point stencil (H−

ij ,Bi,H
+
ij)) to preserve the computational cost. Even though it turns out that these

extended monotonicity properties are not sufficient conditions to prove any maximum principle for Vn+1
i

(unlike the scalar case), they are still expected to be a solid empirical tool to get the stability in practice.250

Of course, this will then have to be assessed with numerical tests, which will be the purpose of section 4.

Remark 1. With componentwise vectorial reconstructions, we only get a scalar maximum principle on each
individual component, which means that (37) does not hold. Indeed, one cannot guarantee that Vn+1

i will
lie in the convex hull, but only in the frame-dependent bounding box generated by the extremal values of
the components, as illustrated in figure 4. This is enough though to prove the L∞-stability because this255

bounding box is time-invariant. But interestingly, this means that the discrete maximum principle on the
norm (38) does not hold either (see figure 4), which can lead to surprising results in practice (see section
4.1 for an illustration).
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Figure 4: Illustration of the maximum principle in the vectorial case. A maximum principle on each individual component
only results in a frame-dependent box (blue). The natural extension of the scalar maximum principle is the convex hull, i.e
the intersection of all the possible boxes whatever the basis considered (in red). The green box corresponds to a bounding box
in some other random basis. The componentwise maximum principle does not imply the maximum principle on the norm as
Vn+1

i can lie inside a given box but outside the circle defined by the red dashed line.

3.2. Definition of the multislope vectorial reconstructions

In a similar way as in the scalar case, let us define the vectorial multislope reconstruction Vij as:260

Vij = Vi + ∥BiMij∥pij . (39)

Here pij = f
(
p+
ij ,p

−
ij , η

+
ij , η

−
ij

)
is the effective limited slope vector, which is a function of both p−

ij and p+
ij ,

respectively the backward and forward slope vectors, (computed in the same way as their scalar counter-
parts), and of the geometrical parameters η−ij and η+ij . In the scalar case we simply had pij = φ(rij)p

+
ij . But

difficulties arise with this form in the vectorial case, because the slope ratio rij cannot be easily defined
anymore. Here comes the purpose of the LKS formulation introduced in the scalar case (see relation (20) of265

section 2.3). Indeed, the LKS formulation for vectorial variables can be easily expressed as:

pij =
Vij −Vi

∥BiMij∥
= σij

(
1 + κij

2
p+
ij +

1− κij

2
p−
ij

)
, (40)

with κij = κ
(
p+
ij ,p

−
ij , η

+
ij , η

−
ij

)
∈ [−1, 1] a vectorial limited-κ (VLK) function. Besides, σij is a sensor

function accounting for vectorial extrema, which can be defined based on the scalar analysis of section 2.4
as:

σij =

{
1 if p+

ij · p
−
ij > 0

0 if p+
ij · p

−
ij ≤ 0

. (41)

This definition of σij leads to a natural geometrical interpretation of extrema when variables are vectors. If270

we consider the three vectors (VH−
ij
,Vi,VH+

ij
) from the local three-point stencil (H−

ij ,Bi,H
+
ij), then Vi is

an extremum if the angle between the two vectorial slopes is greater than π/2 (see Figure 5). As κij has
a unique value for all components, the method is frame-invariant and potentially second-order accurate for
all components. Now, we have to determine κij depending on the slopes p+

ij and p−
ij , in a way that extends

the monotonicty properties of the scalar case.275

To start with, and like in the scalar case (see relation (27)), let V−
ij and V+

ij be the linear κ-schemes
respectively obtained using κ = −1 and κ = 1: V−

ij
∆
= Vi + ∥BiMij∥p−

ij = Vi +
1
η−
ij

(
Vi −VH−

ij

)
V+

ij
∆
= Vi + ∥BiMij∥p+

ij = Vi +
1
η+
ij

(
VH+

ij
−Vi

) , (42)
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and let V−−
ij and V++

ij be the monotonicity bounds similar to relation (28): V−−
ij

∆
= Vi +

(
Vi −VH−

ij

)
= 2Vi −VH−

ij

V++
ij

∆
= Vi +

(
VH+

ij
−Vi

)
= VH+

ij

. (43)

Using these vectors, we can extend the ”Uij − Ui bounding” formulation of the ”scalar second-order mono-
tonicity area” (see relations (29) and (30), or figure 2). The ”vectorial second-order monotonicity area” is280

thus defined as the set of all the reconstructions Vij that are a convex combination of V−
ij and V+

ij , provided

that they are bounded by the monotonicity bounds V−−
ij and V++

ij in the following sense:

Vij −Vi = σij

[
1 + κ

2
(V+

ij −Vi) +
1− κ

2
(V−

ij −Vi)

]
, κ ∈ [−1, 1],

∥ Vij −Vi∥ ≤ min
(
∥ V−−

ij −Vi∥ , ∥ V++
ij −Vi∥

)
.

(44)

Note that the bounding property hence operates on the norm of the effective slope, which can be expressed
also as:285

∥pij∥ ≤ σij min
(
η−ij∥p

−
ij∥, η

+
ij∥p

+
ij∥
)
. (45)

Now it may be useful to provide some geometrical interpretation (see figure 5). First of all, let us recall
that whether we deal with a 2D or 3D vector field v, the reconstruction problem can be handled in the 2D
plane generated by the vector slopes p+

ij and p−
ij (unless they are colinear in which case we revert to the

scalar case). Then, in the case σij = 1 (i.e when the angle θij = (p+
ij ,p

−
ij) < π/2), the set of all admissible

reconstructions Vij is geometrically defined in this plane by the segment linking V−
ij and V+

ij , potentially290

restricted to its part contained in the smallest of the two circles C− and C+, i.e the circles of center Vi and
radii ∥V−−

ij −Vi∥ and ∥V++
ij −Vi∥ respectively. When σij = 0, no reconstruction is admissible and we just

get Vij = Vi. Now the final step is to propose VLK functions that fit in with this ”vectorial second-order
monotonicity area”. But before that, we need to translate it in terms of the admissible interval for the
values of κij , because this is what will provide the more efficient implementation of VLK functions. This is295

the aim of the following section.

-5-5 55 1010 1515 2020 2525 3030 3535

55

1010

1515

2020

00

2.12.1

1.51.5

Figure 5: Representation of the ”vectorial second-order monotonicity area” (figure extracted from a Geogebra applet available
online [48]).
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3.3. Admissible interval for κ

In this section, we will assume that p+
ij ·p

−
ij > 0, otherwise we have a local extrema and the reconstruction

is just set to Vij = Vi. We also assume that p+
ij ̸= p−

ij , otherwise the reconstruction is trivial as pij =

p+
ij = p−

ij and we just get Vij = Vi + ∥BiMij∥pij . Let us now associate vectors to points in the slopes300

plane and proceed to some geometrical calculations in this plane, mapping the values taken by κij with the
line generated by V−

ij and V+
ij . Indeed, the values κij = −1 and κij = 1 are respectively associated with the

points V−
ij and V+

ij , and we seek the values of κij corresponding to the intersection points of the line with

the circles C− and C+. Provided that η−ij ≥ 1 and η+ij ≥ 14, two intersection points (coincident if η−ij = 1 or

η+ij = 1) do exist for both circles C− and C+, which correspond to values of κij that we note respectively305

κ−
A, κ

−
B and κ+

A, κ
+
B (see figure 5).

Computing κ−
A and κ−

B

To obtain κ−
A and κ−

B , we need to solve for κ the equation

∥Vij(κ)−Vi∥ = ∥V−−
ij −Vi∥, (46)

with

Vij(κ) = Vi + ∥BiMij∥
(
1− κ

2
p−
ij +

1 + κ

2
p+
ij

)
, (47)

which can be recast as310 ∥∥∥∥1 + κ

2
p+
ij +

1− κ

2
p−
ij

∥∥∥∥ =
∥∥η−ijp−

ij

∥∥ . (48)

Recalling that θij is the angle between the slope vectors p+
ij and p−

ij , and introducing Rij as the ratio of
their length:

Rij =

∥∥p−
ij

∥∥∥∥p+
ij

∥∥ , (49)

then by squaring (48), and using the fact that ∥a∥2 = a · a as well as p+
ij · p

−
ij = ∥p+

ij∥∥p
−
ij∥ cos θij , we can

write (
1 + κ

2

)2

+

(
1− κ

2

)2

R2
ij + 2

(
1 + κ

2

)(
1− κ

2

)
Rij cos θij =

(
η−ijRij

)2
. (50)

This second-order polynomial equation can be written under the form aκ2 + bκ+ c = 0, with:315 
a = 1 +R2

ij − 2Rij cos(θij) = L2
ij

b = 2(1−R2
ij)

c = 1 +R2
ij + 2Rij cos(θij)−

(
2η−ijRij

)2 , (51)

and

Lij =
√
1 +R2

ij − 2Rij cos θij =
∥V+

ij −V−
ij∥

∥V+
ij −Vi∥

=
∥p+

ij − p−
ij∥

∥p+
ij∥

≥ 0, (52)

i.e the length of the segment [V−
ij ,V

+
ij ], normalized by that of segment [Vi,V

+
ij ]. We can then write the

discriminant of (50) as

∆ = 16R2
ij

[(
η−ijLij

)2 − sin2 θij

]
= 16(RijLij)

2
(
η−ij

2 − sin2 αij

)
, (53)

4These conditions are naturally exhibited by almost all meshes used in practice, otherwise they can still be enforced when
selecting the neighbors in the multislope geometrical algorithm.
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where the angle αij has been introduced thanks to the law of sines (see figure 5):

∥p+
ij − p−

ij∥
sin θij

=
∥p+

ij∥
sinαij

. (54)

We get that ∆ is non-negative for any η−ij ≥ 1, which leads to the following real roots of the polynomial:320

κ−
A =

R2
ij − 1 + 2RijLij

(
η−ij

2 − sin2 αij

)1/2
L2
ij

, κ−
B =

R2
ij − 1− 2RijLij

(
η−ij

2 − sin2 αij

)1/2
L2
ij

. (55)

We have ∆ = 0 only when η−ij = 1 and αij = π/2, i.e when the line (V−
ij ,V

+
ij) is tangent to the circle C− in

V−
ij = V−−

ij , implying that κ−
A = κ−

B = −1. When ∆ > 0, we have κ−
B < −1 < κ−

A, meaning that only κ−
A is

able to impose a restriction of the admissible interval [−1, 1]. Such a restriction happens when κ−
A < 1, i.e

when η−ijRij < 1.

Computing κ+
A and κ+

B325

To obtain κ+
A and κ+

B , we need to solve for κ the equation

∥Vij(κ)−Vi∥ = ∥V++
ij −Vi∥ (56)

with Vij(κ) given by (47). As for κ−
A and κ−

B above, we can write (56) as:(
1 + κ

2

)2

+

(
1− κ

2

)2

R2
ij + 2

(
1 + κ

2

)(
1− κ

2

)
Rij cos θij =

(
η+ij
)2

, (57)

which is once again a second-order polynomial equation that can be written under the form aκ2+bκ+c = 0,
with: 

a = 1 +R2
ij − 2Rij cos(θij) = L2

ij

b = 2(1−R2
ij)

c = 1 +R2
ij + 2Rij cos(θij)−

(
2η+ij

)2 . (58)

We can write its discriminant as:330

∆ = 16
[(
η+ijLij

)2 − (Rij sin θij)
2
]
= 16L2

ij

(
η+ij

2 − sin2 βij

)
, (59)

after introducing the angle βij through the law of sines. As ∆ is non-negative for any η+ij ≥ 1, we obtain
the following real roots of the polynomial:

κ+
A =

R2
ij − 1 + 2Lij

(
η+ij

2 − sin2 βij

)1/2
L2
ij

, κ+
B =

R2
ij − 1− 2Lij

(
η+ij

2 − sin2 βij

)1/2
L2
ij

. (60)

We have ∆ = 0 only when η+ij = 1 and βij = π/2, i.e when the line (V−
ij ,V

+
ij) is tangent to the circle C+ in

V+
ij = V++

ij , implying that κ+
A = κ+

B = 1. When ∆ > 0, we have κ+
B < 1 < κ+

A, meaning that only κ+
B is able

to impose a restriction of the admissible interval [−1, 1]. Such a restriction only happens when κ+
B > −1, i.e335

when Rij > η+ij .

Summary

To summarize, any VLK function κij = κ(p+
ij ,p

−
ij , η

+
ij , η

−
ij) has to satisfy:

max
(
−1, κ+

B(Rij , θij , η
+
ij)
)
≤ κij ≤ min

(
1, κ−

A(Rij , θij , η
−
ij)
)
. (61)
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In other words, the admissible interval Iκ is defined as:

Iκ =
[
max

(
−1, κ+

B(Rij , θij , η
+
ij)
)
,min

(
1, κ−

A(Rij , θij , η
−
ij)
)]
, (62)

with340

κ−
A =

R2
ij − 1 + 2Rij

(
(η−ijLij)

2 − sin2 θij
)1/2

L2
ij

, κ+
B =

R2
ij − 1− 2

(
(η+ijLij)

2 − sin2 θij
)1/2

L2
ij

. (63)

Note that when slopes are colinear with θij = 0, the bounding functions κ−
A and κ+

B reduce to the scalar
functions κ− and κ+ defined by (25) (see details in Appendix C.4). This means that the vectorial framework
described above does reduce to the classical multislope scalar framework when slopes are colinear, which
fulfills one of the initial objectives. Let us also stress that the method described above can be implemented
very easily, and with a very limited additional cost versus a componentwise approach. Indeed, we only deal345

with the slopes vectors in the usual compact stencil, without needing to compute a convex hull or any similar
heavy geometric object.

3.4. Definition of VLK functions

We introduce in this section some VLK functions derived from classical scalar LK functions, namely
Monotonized Central, Minmod and Superbee. These VLK functions are illustrated on the example given in350

Figure 6, and also plotted in figures 7 and 8 with Rij as the x-variable, for different values of θij , η
+
ij and η−ij .

It is also worth mentioning that it is possible to express VLK functions in a ”limiter function” formalism,
which provides additional understanding regarding the connection with the scalar case (see Appendix C).

Figure 6: Representation of the Monotonized Central (κ0 = 0), Minmod and Superbee VLK functions in terms of the effective
slope pij(κij).

3.4.1. Monotonized Central VLK

The Monotonized Central VLK function is defined such that κij = κ0 as long as that there is no local355

extremum (σij = 1) and κ0 belongs to the admissible interval Iκ defined by relation (62). Otherwise, we
retain the bound of Iκ which is the closest to κ0. When σij = 1, we can therefore write:

κMC
ij (Rij , θij , η

+
ij , η

−
ij) = max

(
κ+
B ,min

(
κ0, κ

−
A

))
=


κ0 if κ0 ∈ Iκ
κ+
B if κ0 < κ+

B

κ−
A if κ0 > κ−

A

. (64)

If σij = 0, no reconstruction is admissible and we just take Vij = Vi. A Monotonized Central function is
usually based on the Fromm scheme such that κ0 = 0, but it is possible to use any value κ0 ∈ [−1, 1]. For
example, a Koren VLK function could be built using κ0 = 1/3.360
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3.4.2. Minmod VLK

By extension of the scalar Minmod limiter, we define the Minmod VLK function as the one which brings
about the smallest effective slope ∥pij∥, provided that κij belongs to the admissible interval (62). In the
scalar case, the smallest effective slope is always either the forward slope p+ij , or the backward slope p−ij ,
but this is no longer true in the vectorial case. In the vectorial case indeed, the smallest effective slope is365

defined by the altitude of triangle (V−
ij ,Vi,V

+
ij) from Vi, under the condition that it intersects the segment[

V−
ij ,V

+
ij

]
, i.e if there is no obtuse angle in V−

ij or V
+
ij . Otherwise the effective slope is equal to the backward

slope (respectively to the forward slope) if the obtuse angle is in V−
ij (respectively in V+

ij). For σij = 1, this
Minmod VLK function then reads:

κMin
ij (Rij , θij) = max

(
−1,min

(
κH
ij , 1

))
, (65)

with κH
ij the value of κ corresponding to the intersection point of the altitude fromVi with the line

(
V−

ij ,V
+
ij

)
,370

which is given by:

κH
ij = 1− 2

1−Rij cos θij
L2
ij

= 1− 2

1 +
Rij − cos θij

R−1
ij − cos θij

. (66)

Note that like in the scalar case, the geometrical parameters η−ij and η+ij are not involved in the definition of
the Minmod VLK function. Since we consider the smallest slope, the monotonicity constraint in which the
geometrical paramaters η+ij and η−ij appear is not relevant anymore.

3.4.3. Superbee VLK375

Equivalently to its scalar definition, we can define the Superbee VLK function as the one giving the
highest effective slope ∥pij∥, provided that κij belongs to the admissible interval (62). As we have the
following inequalities:

κ−
A < 1 if Rij <

1

η−ij
< 1, κ+

B > −1 if Rij > η+ij > 1, (67)

then we have to distinguish four cases to write this limiting function, which reads:

κSup
ij (Rij , θij , η

+
ij , η

−
ij) =


κ−
A if 0 ≤ Rij < 1/η−ij
1 if 1/η−ij ≤ Rij < 1

−1 if 1 < Rij ≤ η+ij
κ+
B if Rij > η+ij

. (68)

However the Superbee VLK function is not entirely defined as this, because we still have to define a value380

κSup
ij for Rij = 1, knowing that both κSup

ij = 1 and κSup
ij = −1 are possible choices. In the scalar case, all

κ-schemes are equivalent when rij = 1, but this is no more true in the vectorial case when Rij = 1 (except
of course when θij = 0, i.e when we recover the scalar case). The ambiguity could be resolved by making
an arbitrary choice between both possibilities. Nevertheless, this limited reconstruction does not seem to
be a very good idea as it is likely to result in bad convergence properties for the overall scheme, due to385

the Superbee VLK function switching between two very different solutions. The vectorial extension of the
Superbee limiter is thus possible, but does not seem really judicious.

4. Numerical results

In this section, several test-cases are provided to assess the new vectorial reconstruction method. Different
methods are tested for each case, which are referred to with acronyms throughout the section. Hence, CW390

stands for a Component-Wise reconstruction, while VLKS stands for the new Vectorial Limited Kappa
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Figure 7: Plot of κij(Rij , θij , η
+
ij , η

−
ij) for the Monotonized Central (κ0 = 0), Minmod and Superbee VLK functions, with

η−ij = η+ij = 2 (cartesian mesh) and several values of θij .

Scheme. Regarding the limiting function, MC, Sup andMin respectively stand for the Monotonized Central
(with κ0 = 0), Superbee and Minmod limiting functions (either in scalar or in vector forms). Furthermore
we will denote by NL a non-limited scheme using κ0 = 0 as parameter, which basically corresponds to
the Fromm scheme, and by O1 a scheme with a first-order reconstruction. Unless stated otherwise, the395

time discretization is performed with the low-storage fourth-order Strong Stability Preserving Runge-Kutta
method described in [49] and usually noted as SSPRK(10,4), with a Courant number CFL = 2. For the
physical benchmarks of sections 4.2 to 4.5, the computations are performed with the CFD platform CEDRE
[24], which solves the compressible Euler or Navier-Stokes equations. The HLLC approximate Riemann
solver is then used together with the multislope MUSCL method, with the scalar variables like pressure,400

temperature or density reconstructed with a classical scalar limiter (MC or van Leer).

4.1. Rotation test cases

In order to test the accuracy, robustness and performance of the vectorial reconstruction methods, let us
consider the rotation of several 2D or 3D vector fields v by a velocity field λ, as decribed by the vectorial
advection equation (31). For each case, the eight vectorial reconstruction methods listed in the introduction405

of the section are compared. Each 2D simulation is run for a duration tf = 10ms corresponding to ten
revolutions of the vector field, while the 3D simulations are run for a duration tf = 1ms corresponding to
one revolution only. In order to evaluate the spatial accuracy, we consider triangular (in 2D) or tetrahedral
(in 3D) unstructured meshes of increasing refinement. Each refinement is characterized through the size h
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Figure 8: Plot of κij(Rij , θij , η
+
ij , η

−
ij) for the Monotonized Central (κ0 = 0), Minmod and Superbee VLK functions, with

η−ij = 1.5 et η+ij = 6 (unstructured mesh) and several values of θij .

defined by:410

h ≈
(
|Ω|
N

)1/d

, (69)

with N the number of cells in the mesh, d the dimension of the space and |Ω| the measure of the domain (area
or volume). Six different mesh refinements are considered for the 2D cases, namely h = 5, 10, 15, 20, 25, 30
mm, while for the 3D case we only consider four different meshes with h = 10, 20, 40, 80 mm. To assess the
spatial accuracy of each approach, we define the error in L1 norm as follows:

ϵ1 =
∑
Ki

|Ki|∥Vi(tf )−Vi(t0)∥2, (70)

while the error in L∞ norm is defined as415

ϵ∞ = max
Ki

∥Vi(tf )−Vi(t0)∥2. (71)

In these definitions, Vi(tf ) is the discrete solution at the center of each cell Ki at the final time, and
Vi(t0) is the initial solution and also the expected exact solution. The L1 norm is interesting for both
discontinuous and smooth cases, as it stands for the global diffusive error of the scheme, while the L∞ norm
is only relevant for smooth cases since it represents the loss of amplitude of the convected function. In the
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asymptotic limit h → 0, the error satisfies ϵn = Cnh
αn (with Cn a constant depending on the norm Ln),420

therefore the effective order of the scheme αn can be approximated by computing the linear regression of
log(ϵn) = αn log h+ logCn.

4.1.1. Smooth annular vector field (2D)

For this test-case and all the 2D cases, we consider a circular computational domain Ω with a radius
R0 = 1 and a divergence-free velocity field λ(x, y) = 103 × 2π(−y x)t. Each face at the boundary has a425

normal vector orthogonal to the velocity vector, hence their scalar product and the numerical flux vanish.
Let us consider a smooth annular vector field v0(x, y) whose direction is radial and with a norm given by:

∥v0∥ = V0 ×


0 if 0 < R ≤ 0.1

sin2
(
5π
2 R− π

4

)
if 0.1 < R ≤ 0.3

1 if 0.3 < R ≤ 0.6
sin2

(
− 5π

2 R+ 2π
)

if 0.6 < R ≤ 0.8
0 if 0.8 < R ≤ 1

, (72)

with R =
√
x2 + y2 and V0 = 5000. Figure 9a shows the time evolution of ∥V∥∞ = maxKi∈Ω ∥Vi∥ obtained

with all schemes on the coarsest mesh, figure 10 displays the error in both L1 and L∞ norms versus the
mesh size for the different methods, while figure 11 shows the contour plot of the vector norm at the final430

time tf for the mesh h = 30 mm obtained with each method (except for the overly diffusive O1 and the
unstable VLKS-Sup methods that we have skipped). We see that the accuracy of VLKS and CW methods
is very comparable when using MC and Min limiters, and that both MC schemes show an accuracy similar
to that of NL. This is expected on such a smooth case where limitation is not really required, since the
NL scheme is based on the same second-order linear scheme as MC (with κ0 = 0). It also appears that435

CW-Sup exhibits the lowest accuracy among the stable second-order schemes, which is an expected result
due to its well-known squaring effect on smooth solutions, while VLKS-Sup is clearly unstable (the error
increases when the mesh is refined). Moreover, figure 12 shows the same final solutions as figure 11, but
with a π/4 rotation of the initial vector field. This mimics a rotation of the reference frame, to which a
frame-independent vectorial method should be insensitive due to the radial symmetry of the vector field.440

What we see is that all CW methods break the radial symmetry of the solution, which also means that
they turn out to be frame dependent. Indeed, four spots of increased value of the norm are created, whose
location at the final time depends on the orientation of the reference frame. On the other hand, symmetry
and frame-independency are verified by the VLKS schemes. Finally, normalized CPU costs are provided
in table 2. Note that these costs sould be compared only between the different methods on a given mesh.445

The comparison between different meshes is not relevant as each set of simulations for a given mesh may
have run on a different machine. It appears that VLKS methods are slightly more expensive than their CW
counterparts, with an increase of the CPU cost between 10 and 15 %. This is very reasonable for a real
vectorial reconstruction method, especially when we consider that on these simple rotation cases, the cost
of the reconstruction procedure represents most of the CPU time consumption. This should be much less450

significant when applied to a real system of PDE with physical models.

4.1.2. Sinusoidal vector field (2D)

We now consider a sinusoidal vector field that mimics a vortical flow which reads:

v0(x, y) = V0

(
sin(2πx) + sin(2πy)
sin(2πx)− sin(2πy)

)
, (73)

with V0 = 5000. Figure 9b shows the time evolution of ∥V∥∞ obtained with all schemes on the coarsest mesh,
which illustrates a behavior previously exposed regarding the CW approach and the maximum principle. As455

explained in section 3.1, the CW approach does not imply a maximum principle on the vector magnitude but
only a maximum principle on each component individually. This means that the magnitude can increase but
only to the point that it reaches the maximum allowable value characterized by the corner of the ”bounding
box” represented in a schematic way in figure 4. Considering the definition (73) of the initial vector field,
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Method h = 0.005 h = 0.01 h = 0.015 h = 0.02 h = 0.025 h = 0.03
O1 14.17 10.08 8.50 6.61 5.50 4.84

CW-Min 22.88 16.62 14.54 11.76 9.42 8.29
CW-MC 20.46 16.40 14.66 11.72 9.50 8.27
CW-Sup 20.50 16.82 14.72 11.65 9.50 8.27

VLKS-Min 21.57 17.70 16.05 12.97 10.83 9.60
VLKS-MC 22.55 17.66 15.93 13.03 10.78 9.53
VLKS-Sup 22.20 18.31 16.66 13.67 11.36 10.05

NL 20.98 16.41 14.65 11.65 9.48 8.29

Table 2: CPU cost (µs/iteration/mesh cell) for the case of the smooth vector field (annular).
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(b) Sinusoidal case
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(c) Discontinuous case

Figure 9: Time evolution of ∥V∥∞ on the mesh h = 30 mm for the 2D cases.
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Figure 10: Errors in L1 and L∞ norms for the smooth case (annular). Data for the last points of the VLKS-Sup method is
out of scale as the computation is unstable (the error increases as the mesh is refined).

this maximum value can be computed as Vmax =
√
v2x,max + v2y,max ≈ 14, 142, which is almost exactly the460

maximum value reached here with the CW-Sup scheme. Figure 13 displays the error in both L1 and L∞

norms versus the mesh size for the different methods, while figure 14 shows the contour plot of the vector
norm at the final time tf for the mesh h = 30 mm obtained with each method (except again for O1 and
VLKS-Sup). The behavior of the different schemes regarding accuracy is similar on this case to what was
observed on the smooth annular case. The normalized CPU costs are also similar to those provided in table465

2 for the smooth annular vector field and are thus not provided here.
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(a) VLKS Min (b) VLKS MC (c) Fromm

(d) CW Min (e) CW MC (f) CW Sup

Figure 11: Comparison of the final vector fields for the smooth case (annular). Mesh h = 30 mm.

(a) VLKS Min (b) VLKS MC (c) Fromm

(d) CW Min (e) CW MC (f) CW Sup

Figure 12: Comparison of the final vector fields for the rotated smooth case (annular). Mesh h = 30 mm.

4.1.3. Sinusoidal vector field (3D)

For the 3D test-case, we consider a cylindrical domain with the divergence-free velocity field

λ(x, y, z) = 103

 −2πy
2πx
2

 . (74)
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Figure 13: Errors in L1 and L∞ norms for the sinusoidal case. Data for the VLKS-Sup method is out of scale as the computation
is unstable (the error increases as the mesh is refined).

The circular domain of the 2D cases is here extruded in the z direction, and periodic boundaries are set at the
top and bottom sides of the cylinder. Similarly, the velocity field is an extension of the one previously used470

for 2D cases, with a constant z-component such that the streamlines follow a spiral shape. The following
3D vector field is considered:

v0(x, y, z) = V0

 sinx+ sin y
sinx− sin y

R sin z

 , (75)

with x = 2πx/Lx, y = 2πy/Ly, z = 2πz/Lz, R =
√

x2 + y2, V0 = 5000 and the wavelengths set to
Lx = Ly = 1 and Lz = 2. We only compute one revolution of the vector field (vs. ten revolutions in the
2D case) due to the high cost of the 3D meshes, and only provide the error plots for the different methods475

in figure 15. Regarding both accuracy and CPU costs, the results for this case are again similar to those of
the smooth annular vector field, demonstrating that VLKS behaves in a similar way on 3D meshes.

4.1.4. Discontinuous vector field (2D)

For this discontinuous case, we split the circular domain in four sectors in which the initial vector field
v0(x, y) is set constant with only one component nonvanishing and equal to V0 = 5000. This discontinuous480

vector field reads:

v0(x, y) = V0


( 1 0)

t
if y < 0 and x ≥ 0,

(−1 0)
t

if y < 0 and x < 0,

( 0 1)
t

if y ≥ 0 and x ≥ 0,

( 0 −1)
t

if y ≥ 0 and x < 0.

(76)

Figure 9c shows the time evolution of ∥V∥∞ obtained with all schemes on the coarsest mesh, figure 16
displays the error in L1 norm versus the mesh size for the different methods, while figure 17 shows the
contour plot of the vector norm at the final time tf for the mesh h = 10 mm, obtained with each method.
CW-Sup is here the most accurate of all methods, which is not surprising. As the CW approach deals485

with each vector component as a scalar, we naturally get the well-established good behavior of the classical
Superbee when it comes to transport scalar discontinuities. On the other hand, VLKS-Sup is unstable
once again and therefore not even suitable for the transport of discontinuous solutions, whereas VLKS and
CW show similar results when equipped with both MC and Min limiting functions, thereby preserving the
scheme stability.490

4.1.5. Conclusions from the rotation cases

Let us now sum up the main conclusions from the rotation cases described above. Whether it be with the
CW or the VLKS approach, we have the expected result that the Monotonized Central versions are the most
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(a) VLKS Min (b) VLKS MC (c) Fromm

(d) CW Min (e) CW MC (f) CW Sup

Figure 14: Comparison of the final vector fields for the sinusoidal case. Mesh h = 30 mm.
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Figure 15: Errors in L1 and L∞ norms for the sinusoidal case (3D).

accurate, while Minmod are the most dissipative and Superbee is only good at capturing discontinuities.
Actually, CW-Sup is the most accurate when it only comes to capture discontinuities, while VLKS-Sup is495

mostly unstable, even for smooth cases. It seems that selecting always the maximum vector slope leads to
a very poor stability behavior of the VLKS-Sup scheme, despite the limiting procedure described in section
3.4.3. As expected, the second-order non limited Fromm scheme shows a good accuracy for smooth solutions
for which limiting is not required. However it triggers more or less severe overshoots when discontinuities or
stiff variations are involded. On smooth solutions, the order of accuracy of the VLKS schemes (apart from500

VLKS-Sup) is very comparable with their CW counterparts (sometimes better, see e.g the L∞ error on the
sinusoidal and 3D case for VLKS-MC vs. CW-MC). This means a lesser diffusion of the amplitude of the
solutions, which can have an importance for the simulations involving physics (see e.g. the CFD cases of
sections 4.3 and 4.4). Besides, the overall quality of the solution seems better. Indeed, the CW approach
tends to break the symmetry of the solution as can be seen for instance in figure 11, and in top of that in505

a way that is frame-dependent (compare figures 11 and 12 which show the same computation on the same
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Figure 16: Error in L1 norm for the discontinuous case.

(a) VLKS Min (b) VLKS MC (c) VLKS Sup

(d) CW Min (e) CW MC (f) CW Sup

(g) Fromm (h) O1

Figure 17: Comparison of the final vector fields for the discontinuous case. Mesh h = 10 mm.
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Figure 18: View of the geometry, mesh and boundary condi-
tions for the turbomachinery test-case (initial position). The
second position is obtained by applying a 90◦rotation around
the axis defined by the origin and the vector (1, 1, 1).
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Figure 19: Volume integral of the enstrophy over time for the
four tested methods on each geometry (initial and rotated).

mesh, but with a rotation of the reference frame). The results obtained with the VLKS-MC scheme are
very close to that of the Fromm scheme for smooth solutions, while they are better for discontinuities. We
still notice small overshoots of the vector magnitude (the method exhibits no maximum principle on the
vector magnitude) but they remain very limited and are not amplified. Anyhow they are not higher than510

the overshoots on the magnitude also exhibited by CW methods.
To conclude, these rotation test cases show that the new VLKS approach exhibits a good second-

order accuracy, similar or sometimes slightly better than CW, especially regarding the preservation of the
amplitude of solutions. In the meantime, it avoids some defects of CW, such as the frame-dependency and
the tendency to break the radial symmetry, with a very limited extra CPU cost. Especially, the VLKS-MC515

method seems the best VLKS option, so it will be primarily used for the numerical tests of the next sections
dedicated to physical cases.

4.2. Turbomachinery test-case with rotationally periodic boundary conditions

We consider a test-case representative of turbomachinery engineering applications in CFD, whose objec-
tive is twofold. First, we want to illustrate the non-frame-invariant behavior of the componentwise vectorial520

approach when using non-linear second-order limiters. And secondly, we want to illustrate that when using
rotationally periodic boundary conditions, which is classical in such applications, this non-frame-invariant
feature can turn into a conservation issue. The vectorial approach proposed in this paper is shown to be
frame-invariant and therefore naturally avoids the conservation issue.

The case we consider is very simplified in order to focus on the point we want to make, so it does not525

represent any real engineering application. The 3D geometry is represented in figure 18 with the boundary
conditions and the associated structured mesh, made up with approximately 4, 000 cells and 12, 000 faces.
It consists of a cavity rotating with an angular velocity ω = 50 rad/s around the x-axis, initially filled with
air at rest under atmospheric conditions. The air injected through the inlet with a velocity of 300 m/s
(normal to the boundary) is then driven into a rotational motion due to the rotating reference frame, so530

that it crosses the periodic boundaries before exhausting through the outlet. The rotational periodicity
is defined by the x-axis and a 28◦angle, while the other boundary conditions are adiabatic walls. Time
integration is performed with a RK2 scheme and a time step driven by a maximum CFL value of 0.4, for a
total computation time of 2 ms.

In order to assess the frame invariance of these different methods, we will also consider an alternative535

geometry with a different orientation in space. It is obtained by applying to the first geometry represented
in figure 18 a 90◦rotation around the axis passing through the origin and whose direction is given by the
vector (1, 1, 1). In what follows, INI will refer to the initial geometry represented in figure 18, while ROT
will refer to the rotated geometry. In order to provide a quantitative assessment of the frame invariance,
any integral quantity based on the velocity vector field can be used. We choose the volume integral of the540
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enstrophy, defined as:

E(t) = 1

2

∫
Ω

ρ(x, t)∥∇ ×V(x, t)∥2dx, (77)

where ρ(x, t) and V(x, t) are the fluid density and velocity vector at a given point x at time t, and with
∇× the rotational operator. For each vectorial reconstruction method, we plot in figure 19 the enstrophy
evolution over time obtained on both the initial and rotated geometries. It is clear that for the componentwise
second-order method, the enstrophy plots are gradually diverging. This is a direct consequence of the method545

being not frame-invariant due to the non-linearity of the scalar limiter used for each component. On the
other hand, all the other methods are indeed frame-invariant.

Now we want to highlight the fact that the non-invariance issue may turn into a conservation issue
when dealing with rotationally periodic boundary conditions. Indeed, in such cases the fluxes through the
periodic boundaries are computed twice, once for each boundary. And for the simulation to be conservative,550

we need that the numerical flux computed through one boundary be the exact opposite of the flux computed
through the other boundary. To achieve this, an exchange of information is required (potentially through
MPI communications for instance) so that each boundary knows the ”left” and ”right” velocity vectors to be
used in the Riemann solver. More specifically, the usual procedure for that in a cell-centered finite volume
code is as follows: exchange the physical quantities (including the velocity vectors Vi and Vj) at the cell555

centers adjacent to the boundary faces, apply the rotation to vectors to account for the periodicity, perform
the MUSCL interpolations of the variables (including the velocity vectors Vij and Vji), and finally compute
the numerical flux. If the MUSCL interpolation of vectors is not frame-independent, then in the general
case we won’t have the equality of the scalar product Vij · nij , which directly implies that we cannot have
the conservation of the flux. To illustrate this issue, figure 20 shows the temporal evolution of the energy560

flux integrated over the surface area of both periodic boundaries, as well as their sum, for all the considered
methods on the initial geometry. Once again, only the second-order componentwise method is found to be
non frame-invariant and therefore not conservative through the periodic boundaries. The conservation error
fluctuates throughout the computation but can rise up to the same order of magnitude as the value of the
flux itself. For all the other methods, the conservation error is almost zero (of the order of machine epsilon).565

To conclude, let us mention that it remains sometimes possible to apply a patch to correct the compo-
nentwise approach. Indeed, degenerating to first-order or using a linear second-order scheme will enforce
the flux conservation at the periodic boundaries, but then at the expense of a potential loss of accuracy or
robustness. Sometimes it is also possible to apply specific exchanges through rotationnally periodic bound-
aries. If we take the vectors Vij and Vji interpolated on one boundary and send them to override the570

ones interpolated on the other boundary (choosing arbritarily one boundary over the other), then we force
the conservation (but not the frame-independence). However this kind of patch is not always possible to
implement in a code. It depends on its architecture, and more specifically whether it is possible or not to
perform MPI communications between MUSCL reconstructions and the flux calculation. In such a case, the
only way to solve the problem properly is to have a real, frame-independent vectorial interpolation method,575

like the one proposed in this paper.

4.3. Taylor-Green vortex

Let us now consider the case of the Taylor-Green vortex [50]. This is a classical test-case in the CFD
community to assess the accuracy and performance of high-order methods. It has been considered for
instance in all the editions of the International Workshop on High-Order CFD Methods [51, 52]. It consists580

of the direct numerical simulation of a viscous flow within a periodic cube of size Ω = [−πL, πL]
3
, with L =

1× 10−3 m. The initial solution of velocity and pressure is given by:
u = V0 sin

(
x
L

)
cos
(
y
L

)
cos
(
z
L

)
v = −V0 cos

(
x
L

)
sin
(
y
L

)
cos
(
z
L

)
w = 0

p = p0 +
ρ0V

2
0
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[
cos
(
2x
L

)
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(
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L

)] [
cos
(
2z
L

)
+ 2
] , (78)
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(a) First-order (O1).
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(b) Componentwise (CW).
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(c) Non-limited Fromm scheme (NL).
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(d) Vectorial limited κ-scheme (VLKS).

Figure 20: Total energy flux through the periodic boundaries over time (initial geometry) for the different methods.

with p0 = 1× 105 Pa, ρ0 = 1.1626 kgm−3 and V0 = 34.7m s−1. The physical properties are similar to those
described in [51], and correspond to a temperature T0 = 300K, a Reynolds number Re = 1600, a Mach
number M0 = 0.1 and a Prandtl number Pr = 0.71. This flow then transitions to turbulence, with the585

creation of small scales, followed by a decay phase similar to decaying homogeneous turbulence (yet here
non isotropic), as shown in figure 21.

Figure 21: Z-vorticity field obtained with the VLKS method on the mesh 2563, at times t = 0 on the left (two iso-surfaces)
and t = 8 on the right.

The objective here is to focus on the accuracy of the vectorial reconstruction. As the initial velocity field
is smooth (no shock or strong shear layer involved), this means that linear second-order reconstructions for
the velocity are likely to show a good stability and therefore be more accurate than any limited second-order590

method. However, since in real more complicated cases, limited reconstruction methods are necessary to
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avoid unphysical oscillations, it is interesting to compare them in terms of accuracy on such an academic test-
case. The aim is to highlight and quantify the loss of accuracy with componentwise vectorial reconstructions,
compared with the VLK reconstruction introduced in section 3. As we face here a low Mach number flow,
a modified version of the HLLC approximate Riemann solver is used in order to reduce the numerical595

dissipation in the low-Mach regime (see [53] for more details). We also consider three different cartesian
grids of increasing refinement, namely with 643, 1283 and 2563 cells.

The results obtained with the different methods on each grid are presented in figure 22 in terms of the
temporal evolution of the integrated kinetic energy Ek, the kinetic energy dissipation rate ϵ = −dEk

dt and
the integrated enstrophy E . These quantities are also non-dimensionnalized as follows:600

Ek =
Ek

ρ0V 2
0

,
dEk

dt
=

dEk

dt

L

ρ0V 3
0

, E = E
(

L

V0

)2

, (79)

and plotted against a non-dimensionnalized time t = t
tc
, where tc = L

V0
is the convective time. This way

they can be compared with reference data obtained with a spectral code. The CPU costs of each simulation
are also indicated in table 3 for reference. All simulations were performed on a cluster equipped with 48-core
Cascade Lake nodes, respectively using 144, 960 and 2448 cores for grids 643, 1283 and 2563. The increase in
CPU cost with the VLKS method over a CPC method is very decent, ranging from 1% up to 9% depending605

on the grid refinement. With an optimized implementation, the effective cost of the VLKS method may
indeed vary with the mesh resolution. With finer grids, the discrete solution is smoother overall, which
means that there are fewer reconstructions that do require the full execution of the algorithm (i.e including
the computation of κ−

A or κ+
B to enforce the monotonicity).
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Figure 22: Temporal evolution of the integrated kinetic energy (left), kinetic energy dissipation rate (middle) and enstrophy
(right), obtained with the different vectorial reconstruction methods on grids 643 (dashed lines), 1283 (dotted lines) and 2563

(solid lines).

CW VLKS NL
mesh 643 56.40 61.66 56.20
mesh 1283 89.83 90.81 87.19
mesh 2563 83.72 86.08 83.56

Table 3: Taylor-Green vortex: CPU cost (µs/iteration/mesh cell).

The results shown in figure 22 demonstrate the gain of accuracy with the new VLKS method over a610

componentwise method. Indeed, the VLKS results are significantly closer to that obtained with the linear
second-order scheme than they are to the results obtained with the componentwise method. This is especially
noticeable during the time range of maximum decrease of the kinetic energy, i.e roughly between t = 7 and
t = 12. Of course, the gain is not comparable with a switch to high-order methods, but it is still far from
being negligible.615
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4.4. Advection of a 2D vortex

Let us now consider the advection of a vortex by an inviscid flow within a 2D periodic domain Ω =
[−L,L]

2
, with L = 1× 10−2 m. This case is described by the 2D compressible Euler equations for an ideal

gas (γ = 1.4 and physical properties similar to that of air under standard conditions). The initial solution
is uniform in temperature with T0 = 300K, while Gaussian velocity and pressure fields are prescribed:620 

u = u0 − Vc
y

σ

√
e−(

r
σ )

2

v = v0 + Vc
x

σ

√
e−(

r
σ )

2

p = p0

(
1− a0e

−( r
σ )

2) . (80)

Here u0 = 50m s−1, v0 = 20m s−1 and p0 = 1 × 105 Pa are the velocity components and pressure far from
the vortex, Vc =

ϵ
σ is the characteristic velocity of the vortex, with ϵ = 5×10−3 m2 s−1 its intensity and σ =

1× 10−3 m the standard deviation of the Gaussian. Moreover, r =
√
x2 + y2 is the radius from the origin,

a0 = 1
2

(
Vc

cT

)2
stands for the maximum relative depression inside the vortex, corresponding to a maximum

absolute depression of P0 − Pmin = aP0 ≈ 14.04Pa, while cT =
√

R
W T0 is the isothermal speed of sound,625

with R the ideal gas constant and W ≈ 28.01 gmol−1 the molar weight of air.
As in the previous test-case, the focus here is on the accuracy of the vectorial reconstruction and its impact

on the quality of the solution. We use an unstructured mesh made up with approximately 26, 000 triangular
cells, which leads to an effective time step ∆t ≈ 3 × 10−7 s throughout the computation (corresponding to
CFL = 2 with the SSPRK(10,4) method). Figure 23 shows the pressure field obtained with the different630

methods at time t = 2ms, i.e after one full revolution of the vortex (5 and 2 revolutions in the x and y
directions respectively), such that the exact solution at that time is given by the initial solution. The CPU
cost of each method is also indicated in table 4. We can notice that the solution obtained with the CW
method is polluted with first-order dispersive errors of acoustic nature, due to the false detection of extrema
in the velocity components inherent to this approach. On the other hand, the solution obtained with the635

VLKS method is very close to the solution obtained with a linear (non-limited) second-order cheme for the
velocity, which is here the closest to the exact solution. These results show that the new VLKS method
entails a significant improvement in the description of acoustics over a classical componentwise approach.
This is an important feature for the simulation of acoustics in real industrical applications, when non linear
phenomena are also involved, requiring the use of limited reconstructions for stability. Now we have yet to640

assess the robustness of the VLKS method on such challenging cases that do require limiting the velocity
reconstruction, and this is the purpose of the next section.

Figure 23: 3D view of the pressure field in the x-y plane for the 2D vortex advection case (pressure is shown on the z-axis) at
time t = 2ms. From left to right: CW, VLKS, NL and exact solution.
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CW VLKS NL
30.48 30.00 27.33

Table 4: Advection of a 2D vortex: CPU cost (µs/iteration/mesh cell).

4.5. Liquid implosion (multi-dimensional shock tube)

In order to assess the robustness of the vectorial reconstruction methods, we finally consider a liquid
implosion test case which can be seen as a multi-dimensional generalization of a classical 1D shock tube,645

as described for example in [54]. The 2D computational domain is a square of size Ω = [−1, 1]
2
with solid

walls as boundary conditions. A cartesian grid made up with 200 × 200 cells is projected on the domain,
which is then rotated of an angle θ = π/4 so that the mesh is not aligned with the reference frame (see
figure 24). We consider the compressible barotropic Euler equations for a single-species fluid made up with
liquid water. The radially symmetrical initial solution, represented in figure 24, is given by (in SI units):650

if r ≤ 0.6 then

 ρ = 1000
p = 105

vr = 0
, if r > 0.6 then

 ρ = 1499.95
p = 109

vr = 0
, (81)

with r =
√
x2 + y2 the radial coordinate and vr the radial velocity. The following barotropic equation of

state is used to close the system:
p = p0 + c20 (ρ− ρ0) , (82)

where c0 = (β0ρ0)
−1/2

is the constant sound speed of the liquid and β0 = 5 × 10−10 is the isothermal
compressibility at the reference state ρ0 = 1000, p0 = 105.

Figure 24: Pressure field for the liquid implosion test-case at t = 0 with the white line used to extract 1D profiles. On the
right-hand-side: zoom on the 200× 200 cartesian grid rotated with respect to the reference frame.

As explained in [54], the solution of the 2D problem can be obtained by solving the 1D Euler equations in655

radial coordinates, as long as the expansion and shock waves do not reach the boundaries of the square box,
which breaks the radial symmetry. Therefore we set the computation time to tf = 100 µs, early enough for
the radial symmetry to still hold. This way we can extract 1D profiles at this time for the pressure, density
and radial velocity and compare it with the exact solution, which can be obtained by solving numerically
the 1D Euler equations in radial coordinates with a very fine mesh. A second-order explicit RK2 method is660

used here with a constant time step ∆t = 2× 10−6 s.
It appears from figures 25 and 26 that with the non-limited approach, the lack of monotonicity of the

velocity reconstruction entails strong undershoots and overshoots on the pressure, which can even lead to
a failure of the computation for a negative pressure. When using either the componentwise or the VLKS
method, the solution is completely free of these undershoots and overshoots on the pressure when the most665

diffusive limiter (Minmod) is used. When using a less diffusive limiter such as the Monotonized Central,
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Figure 25: Comparison of several vectorial reconstruction methods for the liquid implosion test-case. Pressure, density and
velocity profiles along the line of interest (0.3 < x < 0.8, y = 0) at the final time t = 100 µs.
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Figure 26: Minimum (first row) and maximum (second row) values over time of pressure, density and radial velocity for several
vectorial reconstruction methods on the liquid implosion test-case.

both the componentwise and the VLKS methods exhibit some overshoots and undershoots on the pressure,
although they are much weaker than with the linear reconstruction. This indicates that for such CFD cases,
involving very strong discontinuities, with shocks and stiff equations of state, it may be necessary to use
limiter functions that prioritize robustness over accuracy, such as Minmod rather than Monotonized Central670

(whether in scalar or vector form). The important conclusion is that, when using limiter functions with
equivalent accuracy properties, the new VLKS method seems to exhibit similar robustness properties than
the classical scalar componentwise approach, even on such a challenging test-case for robustness, for which
a linear velocity reconstruction basically fails.

5. Conclusion675

In this paper, we dealt with the reconstruction of vectorial variables in the context of finite volume
multislope MUSCL methods. Until now this kind of variables were usually reconstructed unsing a compo-
nentwise (CW) framework, in which each vector component is treated as a scalar variable. This approach
had some drawbacks since it was known to be frame-dependent and potentially leading to a loss of accuracy
due to false detection of extrema. To address these issues, we first introduced in this paper an alternative680

formulation for the scalar case. This enabled us afterwards to introduce a new reconstruction procedure
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for vectorial variables, the Vectorial Limited Kappa Scheme (VLKS) together with three Vectorial Limited
Kappa (VLK) functions, namely Monotonized Central (MC), Minmod and Superbee, each one derived from
their scalar counterparts. Each of these VLK functions has been tested on several numerical test-cases to
assess different aspects of the limiting procedure. From these results, it comes out that the VLKS method685

exhibits the best behavior in terms of accuracy and robustness, while being frame-independant and with a
very limited extra CPU cost compared to CW methods (not higher than 5 % on real CFD cases). More pre-
cisely, the VLKS-MC method shows a precision quite similar to a second-order linear (non-limited) method
when smooth velocity gradients are involved, while exhibiting a robustness similar to CW methods for steep
velocity gradients that can make non-limited methods unstable. This procedure is also quite simple to690

implement in a CFD code that already uses a second-order MUSCL framework, therefore we believe that it
is a promising alternative to componentwise limiting functions in such codes.

Regarding perspectives, it would be interesting to perform additional numerical tests and benchmarks in
order to provide a thorough assessment of vectorial reconstruction methods. One example would be a linear
case with a vector field transported by a velocity field that is not divergence free, in order to see how the695

method handles the creation of physically admissible new extrema. Other interesting tests would be classical
CFD benchmarks where the accuracy and robustness of the velocity reconstruction plays an important role,
including for instance shock and rarefaction waves, or viscous and boundary layer effects. From a theoretical
point of view, future work could be devoted to develop a vectorial reconstruction method for which one can
prove the maximum principle on the vectorial advection equation (in the sense of the convex hull condition700

(37)), while still being frame-independant and providing optimal second-order accuracy.
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Appendix A. Illustration of the frame-dependence of componentwise vectorial reconstructions

The issue with componentwise vectorial reconstructions, described in section 2.4, is illustrated here with
an example. Let us consider three square cells K1, K2, K3 in a 2D cartesian mesh with a lenght equal to 1
(see Figure A.27), in which three vectors are defined using the basis B = {ex, ey}:

V1 =

(
0
1

)
, V2 =

(
1
1

)
, V3 =

(
0
2

)
. (A.1)

The reconstruction V2+1/2 on the face delimiting K2 and K3 is computed with a componentwise approach,865

with the following slopes and their ratio:

p+x = −1, p−x = 1, rx = −1, p+y = 1, p−y = 0, ry = 0. (A.2)

As the slope limiting function vanishes when the slope ratio r ≤ 0, then the reconstruction degenerates to
first-order for both components, which gives

V2+1/2 =

(
V2,x +

φ(rx)p
+
x

2

V2,y +
φ(ry)p

+
y

2

)
= V2 =

(
1
1

)
. (A.3)

Let us now consider the basis B′, obtained by a rotation of an angle π/3 of the basis B, that is with a
rotation matrix R−π

3
that reads:870

R−π
3
=

(
cos
(
−π

3

)
− sin

(
−π

3

)
sin
(
−π

3

)
cos
(
−π

3

) ) . (A.4)

In this new basis, vectors are thus determined by V′
i = R−π

3
Vi for i = 1, 2, 3, which gives:

V′
1 =

( √
3
2
1
2

)
, V′

2 =

(
1+

√
3

2
1−

√
3

2

)
, V′

3 =

( √
3
1

)
, (A.5)

as well as:

p′+x =

√
3− 1

2
, p′−x =

1

2
, r′x =

1√
3− 1

, p′+y =
1 +

√
3

2
, p′−y = −

√
3

2
, r′y = −

√
3

1 +
√
3
. (A.6)

Thus we have a first-order reconstruction for the y component as r′y < 0, but a second-order reconstruction
for the x component as r′x > 0. More precisely, we get:

V′
2+1/2 =

(
V′

2,x + 1
2φ(r

′
x)p

′+
x

V′
2,y +

1
2φ(r

′
y)p

′+
y

)
= V′

2 +

( √
3−1
4 φ

(
1√
3−1

)
0

)
= V′

2 + p′xex, (A.7)

with p′x > 0 for any limiting function φ satisfying (14). Theoretically, a frame-invariant method should give875

identical reconstructed vectors whatever basis chosen, so we should have:

V′
2+1/2 = R−π

3
V2+1/2. (A.8)

This is not the case in the present example, as we have:

V′
2+1/2 = V′

2 + p′xex = R−π
3
V2 + p′xex = R−π

3
V2+1/2 + p′xex ̸= R−π

3
V2+1/2. (A.9)

This illustrates the frame-dependence of the componentwise reconstruction.
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Figure A.27: Illustration of the frame-dependence of componentwise vectorial reconstructions.

Appendix B. Proofs of section 2.4880

As already mentioned in section 2.4, let us begin by noticing that, whether the vectorial quantities to be
reconstructed are initially defined in a 2D or 3D space, the reconstruction procedure can always be tackled
in the 2D plane generated by the slope vectors p−

ij and p+
ij . So in any case it is possible to work with 2D

slope vectors p−
ij and p+

ij , which are potentially a projection in this plane. By extension, it is also possible
to consider 3D vectors with two components in this plane and a third vanishing component, which will be885

useful for the proofs below. For the sake of conciseness, we also drop below the indices ij for the slopes.

Theorem 1. If slopes are colinear, then we have the only totally frame-independent componentwise recon-
struction.

Proof. As slopes are colinear, there exists a scalar α such that p− = αp+, so any component k is re-
constructed with a limiter function φ(p−k /p

+
k ) = φ(α). And since α is frame-invariant, the slope limiting890

function, as well as the reconstruction, are also frame-invariant.

Theorem 2. If slopes are noncolinear and p+ · p− > 0, then for any basis, there is always at least one
component reconstructed at second-order accuracy.

Proof. If we develop the scalar product, we get
∑d

k=1 p
+
k p

−
k . For this sum to be positive, we need to have at

least one product p+k p
−
k positive, which means that at least one component has a ratio rk > 0 and therefore895

a non-vanishing limiter.

Theorem 3. If slopes are noncolinear and p+ ·p− > 0, then there exists at least one basis in which at least
one component is first-order accurate.

Proof. Let us consider for example the 3D basis B = {e1, e2, e3} with:

e1 =
p+ + p−

∥p+ + p−∥
, e2 =

p+ ∧ p−

∥p+ ∧ p−∥
, e3 =

e1 ∧ e2
∥e1 ∧ e2∥

, (B.1)

such that the second component of the slopes vanishes in this basis. Then we get for the third component900

of the slopes:

(p+3 )
B = p+ · e3 =

∥p+∥2∥p−∥2 − (p+ · p−)2

∥e1 ∧ e2∥
= −p− · e3 = −(p−3 )

B, (B.2)

which means that r3 = −1 for the slopes ratio and therefore the limiter vanishes. Thus, a componentwise
reconstruction will have at least one component reconstructed at first-order in this basis.

Theorem 4. If slopes are noncolinear and p+ · p− > 0, then there exists at least one basis in which all
components are second-order accurate.905
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Proof. Let us consider for example the basis B = {e1, e2, e3} with

e1 =
p− − ϵp+

∥p− − ϵp+∥
, e2 =

p+ ∧ p−

∥p+ ∧ p−∥
,

e3 =
e1 ∧ e2
∥e1 ∧ e2∥

=
∥p−∥2p+ + ϵ∥p+∥2p− − (p+ · p−)(p− + ϵp+)

∥p− − ϵp+∥∥p+ ∧ p−∥
,

(B.3)

and ϵ a positive scalar. The second component of the slopes vanishing in this basis, let us compute the first
and third components of both slopes. For the first component we get

p+ · e1 =
(p+ · p−)− ϵ∥p+∥2

∥p− − ϵp+∥
, p− · e1 =

∥p−∥2 − ϵ(p+ · p−)

∥p− − ϵp+∥
. (B.4)

For any ϵ such that

0 < ϵ ≤ min

(
∥p−∥2

p+ · p− ,
p+ · p−

∥p+∥2

)
, (B.5)

then the first component of both slopes is positive, so is their ratio, and therefore the first component is910

reconstructed with a second-order accuracy. Now for the third component, we have

p− · e3 = ϵ
∥p−∥2∥p+∥2 − (p+ · p−)2

∥p− − ϵp+∥∥p+ ∧ p−∥
= ϵ(p+ · e3). (B.6)

Hence we get r3 = ϵ for the slope ratio, the limiting function is non-vanishing, and the third component is
also reconstructed with a second-order accuracy.

Theorem 5. If slopes are noncolinear and p+ · p− < 0, then for any basis, there is always at least one
component reconstructed at first-order accuracy.915

Proof. For the scalar product
∑d

k=1 p
+
k p

−
k to be negative, we need to have at least one product p+k p

−
k

negative. The limiting function therefore vanishes for this component, which leads to a first-order accurate
reconstruction.

Theorem 6. If slopes are noncolinear and p+ ·p− < 0, then there exists at least one basis in which at least
one component is second-order accurate.920

Proof. Let us consider for example the basis B = {e1, e2, e3} with:

e1 =
p+ − p−

∥p+ − p−∥
, e2 =

p+ ∧ p−

∥p+ ∧ p−∥
, e3 =

e1 ∧ e2
∥e1 ∧ e2∥

, (B.7)

such that the second component of the slopes vanishes in this basis. Then we get for the third component
of the slopes:

p− · e3 =
(p+ · p−)− ∥p+∥2∥p−∥2

∥p+ − p−∥∥p+ ∧ p−∥
= p+ · e3, (B.8)

which means that r3 = 1 for the slopes ratio, the limiter returns φ(1) = 1 and therefore the reconstruction
is second-order accurate for this component.925

Theorem 7. If slopes are noncolinear and p+ · p− < 0, then there exists at least one basis in which all
components are first-order accurate.

Proof. Let us consider for example the basis B = {e1, e2, e3} with

e1 =
p− + ϵp+

∥p− + ϵp+∥
, e2 =

p+ ∧ p−

∥p+ ∧ p−∥
,

e3 =
e1 ∧ e2
∥e1 ∧ e2∥

=
(p+ · p−)(ϵp+ − p−) + ∥p−∥2p+ − ϵ∥p+∥2p−

∥p− − ϵp+∥∥p+ ∧ p−∥
,

(B.9)
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and ϵ a positive scalar. The second component of the slopes vanishing in this basis, let us compute the first
and third components of both slopes. For the first component we get930

p+ · e1 =
(p+ · p−) + ϵ∥p+∥2

∥p− + ϵp+∥
, p− · e1 =

∥p−∥2 + ϵ(p+ · p−)

∥p− + ϵp+∥
. (B.10)

For any ϵ such that

0 < ϵ ≤ min

(
− ∥p−∥2

p+ · p− ,−p+ · p−

∥p∥2

)
, or ϵ ≥ max

(
− ∥p−∥2

p+ · p− ,−p+ · p−

∥p∥2

)
> 0, (B.11)

then the first components of both slopes p+ and p− have opposite signs. Their ratio is therefore negative
and the first component is reconstructed with a first-order accuracy. Then we get for the third component
of the slopes:

p− · e3 = ϵ
(p+ · p−)2 − ∥p−∥2∥p+∥2

∥p− − ϵp+∥∥p+ ∧ p−∥
= −ϵ(p+ · e3). (B.12)

Hence the slope ratio r3 is negative, the limiting function vanishes, and the third component is also recon-935

structed with a first-order accuracy.

Theorem 8. If slopes are noncolinear and p+ · p− = 0, then for all orthonormal basis B0 with at least one
component colinear with one of the vectorial slopes, all components will be reconstructed with a first-order
accuracy.

Proof. Let say that p+ is colinear with the component e1 of B0 = {e1, e2, e3}. Then the components of p+
940

corresponding to e2 and e3 vanish, leading to a first-order reconstruction for these two components. When
the other slope p− is projected on e1, then we get 0 for this slope on this component, leading to a first-order
accurate reconstruction too.

Theorem 9. If slopes are noncolinear and p+ · p− = 0, for any basis different from B0 as defined in
the precedent theorem, there is always one component reconstructed with a second-order accuracy and one945

component reconstructed with a first-order accuracy.

Proof. We prove it by contradiction. Let us suppose that there exists a basis B = {e′1, e′2, e′3} such that all
components are reconstructed with a second order accuracy, that is to say

∀i ∈ {1, 2, 3}, < p+ · e′i >< p− · e′i > > 0. (B.13)

Then there is a contradiction with the fact that the scalar product has to be zero, as we have :

p+ · p− =

3∑
i=1

< p+ · e′i >< p− · e′i >= 0. (B.14)

Hence, there is always at least one component nonpositive, and it is impossible to get all components recon-950

structed with a second-order accuracy. Let us say now that there is an orthonormal basis B = {e′1, e′2, e′3},
different from B0 as defined in the previous theorem, and such that the slope ratio is nonpositive for all
components. Then, the scalar product in this basis writes:

p+ · p− =

3∑
i=1

< p+ · e′i >< p− · e′i > . (B.15)

As this scalar product is zero, and because the slope ratio in this basis is nonpositive for each component,
it follows:955

∀i ∈ {1, 2, 3}, < p+ · e′i >= 0 or < p− · e′i >= 0. (B.16)
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As the basis B is orthonormal, we can’t have a situation such that all components are zero for the same
slope, so there exists at least one component e′i and one component e′j such that

e′i · p+ = 0, and e′j · p− = 0 (B.17)

As e′i is orthogonal with p+, it belongs to the plane spanned by the basis {p−,p+ ∧ p−}. So there exists
two scalar α and β such that :

e′i = αp− + βp+ ∧ p−. (B.18)

With similar ideas, there exists α̃ and β̃ such that :960

e′j = α̃p+ + β̃p+ ∧ p−. (B.19)

As these two vectors are orthonormal, their scalar product has to be zero:

e′i · e′j = ββ̃p+ ∧ p− = 0, (B.20)

meaning that β = 0 or β̃ = 0. However, it means that at least one of the component of the basis B is
colinear with one of the two slopes, wich is a contradiction with its definition. Hence, there is no basis
different from B0 as defined in the previous theorem such that all components are reconstructed with a
first-order accuracy.965

Appendix C. Limiter function formalism for vectorial reconstructions

Appendix C.1. Introducing vectorial limiter functions as complex numbers

As explained in section 3.2, the effective slope pij is a convex combination of the forward and backward
slopes p+

ij and p−
ij (see relation (40)). Except in the trivial case of colinear slopes, this implies that pij

belongs to Pij = P(p+
ij ,p

−
ij), the 2-dimensional plane generated by the slope vectors, wether Vi is defined in970

a 2- or 3-dimensional space. It is thus possible to identify this 2-dimensional plane with the complex plane.
To do this, we introduce the function F which associates a vector V in the plane Pij with its corresponding

point of affix Ṽ in the complex plane:

F : V ∈ Pij → Ṽ ∈ C. (C.1)

Hence, if we introduce
p̃ij = F (pij), p̃+ij = F (p+

ij), p̃−ij = F (p−
ij), (C.2)

it is possible to write the effective slope in its complex form:975

p̃ij =
1 + κij

2
p̃+ij +

1− κij

2
p̃−ij = p̃+ijφ̃ij , (C.3)

with

φ̃ij = φ̃(r̃ij) =
1 + κij

2
+

1− κij

2
r̃−ij , r̃ij =

p̃−ij

p̃+ij
. (C.4)

Hence the slopes ratio does have a definition in the vectorial case. It is the complex number r̃ij that
describes the similarity transformation between the complex slopes p̃+ij and p̃−ij . In the same way, φ̃ij defines

the similarity transformation between p̃+ij and the effective slope p̃ij . This is illustrated in figure C.28 with

p̃+ij placed on the real axis of the complex plane by convention. We also introduce the following notations980

to stand for the modulus and argument of r̃ij and φ̃ij :

Rij
∆
= |r̃ij | ; θij

∆
= arg(r̃ij)

Φij
∆
= |φ̃ij | ; ϕij

∆
= arg(φ̃ij)

. (C.5)
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Figure C.28: A vectorial limiter function represented in the complex plane.

These complex notations being introduced, it is now possible to translate the bounding of ∥Vij − Vi∥
described by (44) as a bounding on |Ṽij − Ṽi|, and then as a condition on the modulus Φij :

Φij ≤ σij min
[
max(1, Rij),min

(
η−ijRij , η

+
ij

)]
, (C.6)

i.e a condition similar to the one established for the scalar case (15). From the second-order condition in
(44), it is also possible to define a minimum bound on Φij , which is actually the modulus ΦMin

ij of the985

vectorial Minmod limiter (cf relation (C.14) below), exactly as the scalar Minmod limiter represents the
lower bound of φ in the scalar case (cf relation (15)). The vectorial ”second-order monotonicity area” is
thus defined in terms of the modulus of the limiter function by

ΦMin
ij ≤ Φij ≤ σij min

[
max(1, Rij),min

(
η−ijRij , η

+
ij

)]
. (C.7)

As it stands, the bounding on Φij is not yet equivalent to the vectorial ”second-order monotonicity area”

defined in (44), we still have to add some constraint on the argument ϕij . Actually, since the point Ṽij has990

to lie on the line (Ṽ −
ij , Ṽ

+
ij ) due to the second-order condition, then ϕij is geometrically linked to Φij and we

just need to express this relation. After a few lines of calculation with the areas of triangles (Ṽi, Ṽ
−
ij , Ṽ

+
ij ),

(Ṽi, Ṽ
−
ij , Ṽij) and (Ṽi, Ṽ

+
ij , Ṽij), it comes the following relation (for 0 < ϕij ≤ θij <

π
2 ):

Φij(ϕij , Rij , θij) =
Rij sin θij

Rij sin(θij − ϕij) + sinϕij
. (C.8)

From this relation, we can now express ϕij as a function of Φij , Rij and θij . Using the relation sin(a− b) =
sin a cos b − sin b cos a, we can show that sinϕij is the solution of a second-order polynomial equation,995

describing the intersection of the circle of radius Φij with the line (Ṽ −
ij , Ṽ

+
ij ). We can also show that its

discriminant is non-negative, and thus we have two real solutions (potentially equal), reading:

sinϕij = Rij sin θij
1−Rij cos θij ±

[
(ΦijLij)

2 − (Rij sin θij)
2
]1/2

ΦijL2
ij

, (C.9)

with Lij given by (52). Finally, solutions for the argument ϕij are:
ϕij(Φij , Rij , θij) = arcsin

(
Rij sin θij

1−Rij cos θij ±
[
(ΦijLij)

2 − (Rij sin θij)
2
]1/2

ΦijL2
ij

)
0 ≤ ϕij ≤ θij ≤

π

2

. (C.10)
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Thus, any complex limiter φ̃ij satisfying (C.7) for its modulus Φij , and whose argument ϕij is given by
relation (C.10), belongs to the vectorial ”second-order monotonicity area”.1000

Appendix C.2. Connection with the VLK formulation

As in the scalar case, there is a strict equivalence between the vectorial limiter formulation and the VLK
formulation introduced in section 3. Indeed, the coefficient κij can be written as a function of r̃ij and φ̃ij ,
which reads:

κij(r̃ij , φ̃ij) = κij(Rij , θij ,Φij , ϕij) = 1− 2

(
1 + Φ2

ij − 2Φij cosϕij

1 +R2
ij − 2Rij cos θij

)1/2

= 1− 2
Fij

Lij
, (C.11)

with1005

Fij =
√
1 + Φ2

ij − 2Φij cosϕij =
∥V+

ij −Vij∥
∥V+

ij −Vi∥
=

∥p+
ij − pij∥
∥p+

ij∥
, (C.12)

representing the length of the segment [Vij ,V
+
ij ] normalised by that of [Vi,V

+
ij ]. For 0 < ϕij ≤ θij <

π
2 , we

can also write:

κij(Rij , θij ,Φij , ϕij) = 1− 2 sinϕij

Rij sin(θij − ϕij) + sinϕij
. (C.13)

These formulas are the vectorial equivalent of relation (22), giving κij as a function of rij and φij in the
scalar case.

Appendix C.3. Vectorial limiter functions1010

According to the framework described above, it is possible to express the VLK functions introduced in
section 3.4 in the form of vectorial (complex) limiter functions. But in general this does not provide a more
practical framework for implementation than VLK functions, because the corresponding formulas for Φij

and ϕij can be quite heavy. Let’s still do the exercise here for the vectorial Minmod limiter, whose expression
is quite simple. If we write φ̃Min

ij and φ̃H
ij the points in the complex plane which respectively stand for the1015

vectorial Minmod limiter and the intersection between the altitude from Ṽi and the line
(
Ṽ −
ij , Ṽ

+
ij

)
, then we

get:

ϕMin
ij (r̃ij) = max

[
0,min(ϕH

ij , θij)
]
, ΦMin

ij (r̃ij) =

{
ΦH

ij if max(αij , βij) ≤ π
2

min(1, Rij) else
, (C.14)

where ΦH
ij and ϕH

ij are the modulus and argument of φ̃H
ij , that read:

ΦH
ij =

Rij sin θij
Lij

, ϕH
ij = arccosΦH

ij . (C.15)

Note that the vectorial Minmod limiter reduces to the scalar Minmod limiter when slopes are colinear and
in the same direction. Indeed, we get in that case max(αij , βij) = π and thus ΦMin

ij = min (Rij , 1), which is1020

the scalar Minmod limiter.

Appendix C.4. Reducing to the scalar case

Actually, we can show that the whole vectorial framework introduced in this paper reduces to the classical
multislope scalar method when the slopes vectors are colinear. If they are in the same direction, i.e if θij = 0
(no local extremum), then we have Rij = rij > 0 and ϕij = 0, as well as:1025

L2
ij = 1 +R2

ij − 2Rij = (1−Rij)
2 = (1− rij)

2, (C.16)
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and:

κij = 1− 2

[
(1− Φij)

2

(1−Rij)2

]1/2
= 1− 2

1− φij

1− rij
, (C.17)

which is the formula (22) established for the scalar case. Now if the triangle (Ṽ −
ij , Ṽi, Ṽ

+
ij ) is flat in Ṽ −

ij , i.e

when αij = π and βij = 0, it comes ∥p−
ij∥ < ∥p+

ij∥, hence rij < 1 and we get Lij = 1 − rij . Regarding the
bounding values for κij derived in section 3.3, it comes:

κ−
A =

R2
ij − 1 + 2Rijη

−
ijLij

L2
ij

=
2η−ijrij − 1− rij

1− rij
= κ−(rij , η

−
ij)

κ−
B =

R2
ij − 1− 2Rijη

−
ijLij

L2
ij

=
−2η−ijrij − 1− rij

1− rij

κ+
A =

R2
ij − 1 + 2η+ijLij

L2
ij

=
2η+ij − 1− rij

1− rij
= κ+(rij , η

−
ij)

κ+
B =

R2
ij − 1− 2η+ijLij

L2
ij

=
−2η+ij − 1− rij

1− rij

(C.18)

On the other hand, if the triangle (Ṽ −
ij , Ṽi, Ṽ

+
ij ) is flat in Ṽ +

ij , i.e when αij = 0 and βij = π, it comes1030

∥p−
ij∥ > ∥p+

ij∥, hence rij > 1 and we get Lij = rij − 1. The bounding values for κij then read:

κ−
A =

R2
ij − 1 + 2Rijη

−
ijLij

L2
ij

=
−2η−ijrij − 1− rij

1− rij

κ−
B =

R2
ij − 1− 2Rijη

−
ijLij

L2
ij

=
2η−ijrij − 1− rij

1− rij
= κ−(rij , η

−
ij)

κ+
A =

R2
ij − 1 + 2η+ijLij

L2
ij

=
−2η+ij − 1− rij

1− rij

κ+
B =

R2
ij − 1− 2η+ijLij

L2
ij

=
2η+ij − 1− rij

1− rij
= κ+(rij , η

−
ij)

(C.19)

We get back the relations (25) obtained in the scalar case for κ−(rij , η
−
ij) and κ+(rij , η

+
ij). More precisely

κ−
A and κ+

A, correspond respectively to κ− and κ+ when rij < 1, and κ−
B and κ+

B correspond respectively to
κ− and κ+ when rij > 1. In the case ∥p−

ij∥ = ∥p+
ij∥, i.e when rij = Rij = 1, then we have Lij = 0 and the

bounding values for κij are not defined, which means that all reconstructions are equivalent. Finally, if the1035

slopes p−
ij and p+

ij are colinear but in opposite directions, i.e when θij = π, then we have a local extremum
with rij = −Rij < 0. In this case, we get σij = 0 and the reconstruction is first-order accurate, exactly like
in the scalar case.
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