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Abstract

An original Immersed Boundary Method for solving moving body flows is proposed.
This method couples i) a Lagrangian Volume-of-Solid description of the solid object
avoiding conservation issues and ii) a robust implicit volume penalty forcing embed-
ded in a low-Mach number projection method to account for the solid’s impact on the
fluid dynamics. A new composite velocity field is introduced to describe both solid
and fluid domains in a single set of governing equations. The accuracy of the method
has been assessed on several academic cases, involving stationary or moving bodies
and with different mesh resolutions. The predicted forces on the solid are in excellent
agreement with body-fitted reference cases. The system of equations is also proven
to be fully mass conservative. Application of the method on a two-dimensional ver-
tical axis turbine case shows a 30% reduction in computational cost compared to a
body-fitted method.

KEYWORDS:
immersed boundary methods, implicit volume penalty, volume-of-solid, large-eddy simulation

1 INTRODUCTION

Many engineering applications involve fluid-structure interactions (FSI). Such effects can be found in wind turbines, wind-
induced vibrations of tall buildings, aeroelastic response of airplanes and even biological flows like blood flow in the arteries.
In Computational Fluid Dynamics (CFD), for relatively simple geometries of the solid body the usual approach is to generate
a regular Cartesian computational grid, and for more complex geometries, unstructured grids are preferred despite being more
costly to generate. In both grid types, the computational nodes adopt the shape of the solid’s surface, i.e. the fluid-solid interface,
leading to an explicitly meshed surface and these approaches are referred to as body-fitted methods. The main argument that
one can pin against them is the difficult treatment of moving geometries. Small displacements of the solid geometry can be
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treated with the deformation of the grid and relying on the Arbitrary Lagrangian-Eulerian (ALE) method which is widely used
for simulating FSI problems. However, grid deformations due to large displacements would degrade the quality of the mesh
with stretched computational cells, hence a complete regeneration of a new grid at specific intervals is needed to follow the solid
surface. Such procedures are extremely costly and can result in mesh distortions and mesh interpolation errors due to deforming
mesh and re-meshing.

Immersed Boundary methods (IB or IBM) represent an attractive alternative for simulating FSI problems involving complex
geometries and arbitrarily large movements. The term Immersed Boundary Method was first used as a reference to the method
developed by Peskin (1972) to simulate cardiac mechanics and associated blood flow1. The novel feature of that method lies
in the use of a Cartesian grid for the entire simulation without conforming to the heart’s geometry. A dedicated procedure was
formulated to impose the effects of the immersed boundary on the flow. The basic idea of the IBM is to carry out the simulation
on a relatively simple mesh which extends inside of the region where the solid geometry would be and introduces a forcing
term in the fluid’s governing equations to simulate the interaction between the solid and the fluid. Thus, one is able to impose
boundary conditions on surfaces that are not aligned with the grid and to simulate arbitrarily large movements of complex solid
boundaries on a fixed grid. The key point of these methods is the formulation of the forcing term imposed at the immersed
interface so that it does not degrade the precision and the conservation properties of the solver while accurately representing the
fluid-solid interaction.

Since first introduced by Peskin, IBM has been extended to various applications in scientific and engineering fields. Numerous
modifications and refinements have been proposed and a number of variants of this approach now exist focusing on the definition
of the forcing term. The IBM can be split into two main categories, being the continuous approach and the discrete forcing
approach. An overview of the different approaches of IB methods can be found in numerous reviews2,3,4,5,6.

Continuous forcing approaches integrate the forcing term into the continuous Navier-Stokes equations for the whole domain
Ω before the discretization happens. They include the first IBM developed by Peskin1 and other methods like the one described
by Goldstein et al.7. The forcing term is usually based on a constitutive law, like Hook’s law, for elastic deformable immersed
bodies. For rigid bodies, a method similar to Goldstein’s feedback approach can be used as presented by Angot et al.8. These
approaches belong to the class of penalization methods, where the forcing term is based on the Brinkman equation of porous
media. In discrete forcing approaches we introduce the forcing term to the already discretized momentum equation, acting only
in cells near the fluid-solid interface. This is the so-called direct forcing IBM9,10,11,12. The forcing term is computed in a way that
it compensates the difference between the predicted velocity at the immersed boundary and the desired imposed velocity. The
general advantage of continuous forcing is that the formulation is almost independent of the discretization scheme, which makes
its integration easier to a pre-existing Navier-Stokes equations. The use of a forcing term to implicitly reach the target solid
velocity at the interface weakens the precision on the predicted velocity fields. The opposites are true for the discrete forcing
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methods since the forcing term is dependent on the spacial discretization making the implementation not trivial. Although, the
solid velocity and the velocity gradient near the immersed boundary can usually be directly imposed leading to more accurate
flow profiles in the fluid domain, in particular in high Reynolds number flows.

An essential part of the IBM is the procedure used to immerse the object into the computational mesh and the determination of
the position of the nodes with respect to the object’s surface in order to separate the computational cells into ‘fluid cells’ outside
the object, ‘solid cells’ inside the object and ‘interface cells’ partially inside13. For the purpose of handling mobile interfaces
on static meshes, two well-established numerical tools used are the Level-Set technique14 and the Volume-of-Fluid (VOF)
approach15. Usually applied for tracking interfaces between fluids, these techniques may be adapted for solid-fluid interfaces. In
that case, the term Volume-of-Solid (VOS) can be used instead of VOF to indicate the presence of solid-fluid interface. Liu et
al.16 have used the VOS approach to represent the solid coupled with a direct forcing IB method, similar to the works of Ng17. In
their work, the solid surface is represented by Lagrangian points and the cell type (fluid, solid or interface) is determined with a
simple ray-tracing technique. The solid volume fraction field 𝜙𝑠 is then computed on the partially or fully immersed cells through
a Gaussian quadrature integration. This volume fraction is then used to determine the value of the forcing term by correcting
the velocity inside the solid region to a mean value of the predicted fluid velocity and the imposed solid velocity weighted by
(1 − 𝜙𝑠) and 𝜙𝑠, respectively. Another feature of their method is the inclusion of the same forcing term to the pressure Poisson
equation as a source term to impose the solid velocity at the same time as the divergence-free condition. Morente et al.18 have
used a VOF approach coupled with a penalty IBM for the simulation of bubbly flows where spherical bubbles are considered as
moving penalized obstacles interacting with the fluid. From the position of the bubble surface a volume fraction field is defined
separating the two phases and acts as the penalty mask of the forcing term. However, instead of the usual one-fluid penalized
momentum equation model8, a two-fluid Eulerian multi-phase frame is used where the momentum equations of both phases are
coupled to a single equation. The recent work of Kemm et al.19 has also used the VOF method to represent the diffuse interface
between the fluid and solid domains and to provide a reduced system of equations based on the gas phase with the addition of
source terms related to the presence/movement of the solid body.

The IBM presented in this work20 bares similar elements to the aforementioned methods. The solid is represented by a set of
Lagrangian particles containing the information of the solid volume through which a scalar field of the solid volume fraction 𝜙𝑠

can be defined to separate the solid and fluid domains. The method couples i) this Lagrangian Volume-of-Solid (VOS) description
of the body avoiding mass and momentum conservation issues and ii) a robust implicit volume penalty forcing8 embedded in a
low-Mach number projection method to account for the solid’s impact on the fluid dynamics. Incorporating the VOS approach
directly into the governing equations results in extra source terms in the mass and momentum conservation equations. These
terms represent the internal mass effect of a moving object as discussed in Suzuki and Inamuro21. This leads to a trivial yet
accurate computation of the resistive forces exerted on the solid by the fluid through the IB forcing term.
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This work is organized in the following manner. In Section 2 the coupling of a Lagrangian VOS approach with an implicit
formulation of the penalty IBM is presented. To validate the accuracy of the method, flow problems involving stationary or
moving solid geometries are examined in Section 3. In Section 4, the method is applied on a 2D vertical axis turbine case where
the results and the computational performances of the method are compared to a reference body-fitted ALE solution. Finally,
concluding remarks on the method and perspectives are given in Section 5.

2 NUMERICAL METHOD

2.1 Volume-of-solid implicit volume penalty method

To expand on the method’s main components, three tasks can be defined:

• Coupling the VOS approach with an IBM: Incorporating the solid volume fraction field from the VOS approach into
the Navier-Stokes equations allowing to define a composite velocity field, computed as the mean of the solid and fluid
velocities, weighted by their respective volume fractions. Using the composite velocity leads to a new system of equations
capable of describing the evolution of both fluid and solid domains at once. These resemble the pure fluid equations but
additional mass and momentum source terms appear to represent the solid movement.

• Modelling the implicit penalty forcing term: Expressing the penalty term in an implicit manner so that its contribution
can be split in the prediction step and the correction step of a projection scheme. The contribution in the correction stage
serves to impose the solid velocity in the solid region at the same time as the incompressibility constraint is satisfied. This
leads to the challenge of solving a modified pressure Poisson equation.

• Representing the solid body in a Lagrangian manner: Representing the solid object as a set of Lagrangian particles con-
taining an elementary quantity of solid volume. First, the immersed object is displaced by moving the Lagrangian particles
according to the prescribed motion and then projecting the solid volume onto the Eulerian grid creates the local solid
volume fraction field.

Taking into account the techniques used, this method will be referred to as Volume-of-Solid Implicit Volume Penalty method
(VOS-IVP). The method will be explained in detail in the following sections.

2.2 Coupling the VOS approach with an IBM

2.2.1 Immersed Boundary Method for Large-Eddy Simulations

The main advantage of the IBM is that body-conforming meshes are not necessary. Instead, the computational domainΩ includes
both fluid Ω𝑓 and solid Ω𝑠 domains, so Ω = Ω𝑓 ∪ Ω𝑠 (as seen in Figure 1). Thanks to the continuous mesh in the solid region,



TSETOGLOU ET AL 5
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Figure 1 Mesh used with IBM including both fluid and solid domains.

there is no need for re-meshing in the case of a moving immersed object, which makes it an attractive solution for simulating
moving bodies in fluid flow.

Let us introduce the scalar field of the local solid volume fraction 𝜙𝑠(𝒙, 𝑡) as the fraction of the volume occupied by the solid
in a computational cell 𝑉𝑠,𝑖 over the total cell volume 𝑉𝑖 at time 𝑡, defined as:

𝜙𝑠,𝑖(𝑡) =
𝑉𝑠,𝑖(𝑡)
𝑉𝑖

, (1)

where it takes the following values:

𝜙𝑠 =

⎧

⎪

⎨

⎪

⎩

1 in Ω𝑠 ,

0 in Ω𝑓 .
(2)

Equivalently we can define the local fluid volume fraction as 𝜙𝑓 = 1 − 𝜙𝑠.
This study is carried out with Large-Eddy simulations (LES) in which the smallest vortical structures are not resolved but

modelled. Hence the physical quantities pass through a filtering operation. The filtering operator, which consists of projecting
a field on the LES grid, is expressed as ∙̃. Usually the LES Navier-Stokes equations are expressed in the case of a single fluid
or phase occupying the whole computational domain. In our case, the domain is occupied by a fluid phase and a solid phase.
Thus, the flow equations that describe the evolution of the fluid quantities in a control volume need to be modified to be applied
to the fraction of the control volume occupied by the fluid. This can be achieved by using the finite volume integration with a
phase indicator. For example, the transport of the physical property Ψ of a phase 𝑘, with the local volume fraction as a phase
indicator, and advection velocity �̃�𝑘, and assuming that the phase indicator is transported at the same speed, can be written as:

∫
𝑉𝑘

𝜕
𝜕𝑡

(

Ψ̃𝑘

)

d𝑉𝑘 + ∫
𝑉𝑘

∇ ⋅
(

Ψ̃𝑘�̃�𝑘
)

d𝑉𝑘 = 0 , (3)
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⇐⇐⇒ ∫
𝑉

𝜕
𝜕𝑡

(

𝜙𝑘Ψ̃𝑘

)

d𝑉 + ∫
𝑉

∇ ⋅
(

𝜙𝑘Ψ̃𝑘�̃�𝑘
)

d𝑉 = 0 . (4)

In our context, this manipulation introduces the local fluid volume fraction 𝜙𝑓 in front of the fluid quantities while integrating
in the whole domain (like in the case of one-phase problems). The modified LES flow equations for the fluid phase with a
constant density and with the addition of the IBM term, read as:

𝜕
𝜕𝑡

(

𝜙𝑓
)

+ ∇ ⋅
(

𝜙𝑓 �̃�𝑓
)

= 0 , (5)

𝜕
𝜕𝑡
(𝜙𝑓 �̃�𝑓 ) + ∇ ⋅ (𝜙𝑓 �̃�𝑓 ⊗ �̃�𝑓 ) = −1

𝜌
∇𝑃 + 1

𝜌
∇ ⋅

(

𝜙𝑓 �̃�𝑓
)

+ 𝐟IB . (6)

where �̃�𝑓 is the fluid velocity, 𝑃 the pressure and 𝜌 the constant fluid density. The viscous stress tensor can be expressed as:

�̃�𝑓 = 𝜇eff

(

∇�̃�𝑓 + ∇�̃�𝑇𝑓 − 2
3
(∇ ⋅ �̃�𝑓 )

)

, (7)

where  is the identity tensor and 𝜇eff the effective fluid dynamic viscosity evaluated as the sum of the molecular and turbulent
viscosities. The turbulent contribution in this study was obtained from the Dynamic Smagorinsky model22,23,24. The last term
in Equation 7 is equal to zero due to the incompressibility constraint ∇ ⋅ �̃�𝑓 = 0.

Finally, the term 𝐟IB represents any additional volumetric momentum sources such as the forcing term of the IBM, the ex-
pression of which will be explored in section 2.3.1. Note that the LES-filtering notation will be dropped for the rest of this
work.

The original VOS-IVP method was coupled with the incompressible solver of the YALES2 library25 which solves the low-
Mach number Navier-Stokes equations for turbulent flows on unstructured grids using a projection method for pressure-velocity
coupling26. A central 4th-order numerical scheme is used for spatial discretization and a 4th-order Runge-Kutta like scheme
for the time integration. The Poisson equation is solved with a Deflated Preconditioned Conjugate Gradient (DPCG) solver27.
Concerning parallelization, YALES2 is based on a multi-level domain decomposition and can utilize both MPI and coarse-grain
OpenMP paradigms25. In this work, full MPI was used for the simulations as it was the most efficient. The domain decomposition
relies on the graph coloring library METIS, while YALES2 manages the computational load balancing. For increased efficiency,
cache-blocking is ensured by splitting the grid of each MPI rank into cell groups of a few thousand elements.

2.2.2 Governing equations

In the previous section the flow equations were presented for the evolution of the fluid physical quantities such as the fluid velocity
𝒖𝑓 . We can also define a vector field 𝒖𝑠 containing information about the local solid velocity. This allows the introduction of a
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new composite velocity field computed as the addition of the fluid and solid velocities weighted by the fluid and solid volume
fraction, respectively, as follows:

𝒖 = 𝜙𝑓𝒖𝑓 + 𝜙𝑠𝒖𝑠 . (8)

Using the relation in Equation 8 and the fact that 𝜙𝑠 + 𝜙𝑓 = 1, we can rearrange the Navier-Stokes equations so that they
describe the evolution of the composite velocity 𝒖. The composite velocity allows to describe the evolution of both the fluid and
the solid quantities on the Eulerian mesh via a single momentum conservation equation and improves numerical stability of the
solver, since it does not need specific treatment at the interface between the two phases. For a sharp representation of the solid
volume fraction the convective cross terms that include the product 𝜙𝑠𝜙𝑓 (𝒖𝑠 − 𝒖𝑓 ) can be neglected since 𝜙𝑠𝜙𝑓 = 0 away from
the solid/fluid interface and 𝒖𝑓 ≈ 𝒖𝑠 ≈ 𝒖 at the interface (shown in Appendix A). This gives rise to a new conservative system
of equations for both the fluid and the solid domains at once:

∇ ⋅ 𝒖 = 𝜕
𝜕𝑡

(

𝜙𝑠
)

+ ∇ ⋅
(

𝜙𝑠𝒖𝑠
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Q𝑠

, (9)

𝜕𝒖
𝜕𝑡

+ ∇ ⋅ (𝒖⊗ 𝒖) = −1
𝜌
∇𝑃 + 1

𝜌
∇ ⋅ 𝝉 + 𝜕

𝜕𝑡
(

𝜙𝑠𝒖𝑠
)

+ ∇ ⋅
(

𝜙𝑠𝒖𝑠 ⊗ 𝒖𝑠
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
P𝑠

+𝐟IB . (10)

Detailed derivation of Equation 9 and Equation 10 is shown in Appendix A. These equations are similar to the pure fluid
equations except for the additional source terms on the right-hand side representing the solid movement and/or deformation. The
mass source, noted as Q𝑠, represents the change of solid volume in space and time, and the momentum source P𝑠 represents
the solid acceleration projected onto the Eulerian non-conforming grid. In the context of the usual one-fluid immersed boundary
model, the term P𝑠 would be equivalent to the momentum needed to move the fluid found at the interior of the immersed body
according to the solid movement and will be further discussed in section 2.3.3.

2.2.3 Discretized mass and momentum source terms

In the VOS-IVP method, the incompressible Navier-Stokes equations can be semi-discretized as follows:

∇ ⋅ 𝒖𝑛+1 = Q𝑛+1 , (11)

𝒖𝑛+1 − 𝒖𝑛
Δ𝑡

= −∇ ⋅ (𝒖𝑛 ⊗ 𝒖𝑛) − 1
𝜌
∇𝑃 𝑛+1∕2 + 1

𝜌
∇ ⋅ 𝝉𝑛 + P𝑛+1

𝑠 + 𝐟𝑛+1IB , (12)

where 𝑛 denotes the iteration of the previous time-step and 𝑛 + 1 the current time-step.
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The scalar quantities in the YALES2 solver are advanced from time-step 𝑛 − 1∕2 to 𝑛 + 1∕2 or from 𝑛 + 1∕2 to 𝑛 + 3∕2.
The same happens to the solid particles, so after the re-localisation of the particles on the Eulerian mesh, the new solid volume
fraction 𝜙𝑛+3∕2

𝑠 is computed according to the prescribed motion. Then it is computed at the time-step 𝑛 + 1 by:

𝜙𝑛+1
𝑠 = 1

2
[

𝜙𝑛+1∕2
𝑠 + 𝜙𝑛+3∕2

𝑠

]

. (13)

The new solid velocity field is computed directly at 𝑛 + 1. This way, we can express the VOS mass and momentum sources
at the time-step 𝑛 + 1 as:

Q𝑛+1
𝑠 = ∇ ⋅ 𝒖𝑛+1 =

[

𝜙𝑛+3∕2
𝑠 − 𝜙𝑛+1∕2

𝑠

Δ𝑡

]

+ ∇ ⋅
(

𝜙𝑛+1
𝑠 𝒖𝑛+1𝑠

)

, (14)

P𝑛+1
𝑠 =

[

𝜙𝑛+3∕2
𝑠 𝒖𝑛+1𝑠 − 𝜙𝑛+1∕2

𝑠 𝒖𝑛𝑠
Δ𝑡

]

+ ∇ ⋅
(

𝜙𝑛+1
𝑠 𝒖𝑛+1𝑠 𝒖𝑛+1𝑠

)

. (15)

2.3 Modelling the penalty forcing term

2.3.1 Implicit volume penalisation and modified pressure Poisson equation

This new method utilises a volume penalty approach for the IB forcing term appearing in Equation 10. The penalty term guar-
anties that the composite velocity 𝒖 remains equal to the imposed solid velocity inside the solid region through a simple Dirichlet
type boundary condition. At this time, no wall-law model has been implemented. The penalty forcing term reads:

𝐟IB =
𝜒𝑠

𝜂
(

𝒖𝑠 − 𝒖
)

. (16)

The penalty mask is an Heaviside function of the solid fraction at each new time-step:

𝜒𝑠 =

⎧

⎪

⎨

⎪

⎩

1 if 𝜙𝑠 > 0.5 ,

0 else.
(17)

The penalty parameter is set as a function of the time-step:

𝜂 = 𝛼Δ𝑡 , (18)

where 0 < 𝛼 ≤ 1 is called the penalisation time-step ratio.
Usually this penalty forcing term is applied solely on the intermediate velocity 𝒖∗ when a projection method is used26, and

the final velocity at time-step 𝑛+1 is then modified by the correction step with the new pressure field, so the boundary condition
and the continuity constraint are not satisfied at the same time. In the present method, as the method’s name suggest, the penalty
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term is expressed implicitly using the final unknown velocity field. This allows the forcing term to split into a contribution in
the prediction step, 𝐟∗, and a contribution in the correction step, 𝐟 corr , as shown below:

𝐟𝑛+1IB =
𝜒𝑠

𝜂
(

𝒖𝑛+1𝑠 − 𝒖𝑛+1
)

=
𝜒𝑠

𝜂
(

𝒖𝑛+1𝑠 − 𝒖∗
)

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
𝐟∗

+
𝜒𝑠

𝜂
(

𝒖∗ − 𝒖𝑛+1
)

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
𝐟 corr

. (19)

The YALES2 solver relies on a modified projection method based on the Helmholtz-Hodge decomposition26 to advance the
Navier-Stokes equations in time. Including the previous pressure gradient term in the computation of the intermediate velocity
field 𝒖∗ leads to a smaller error term in the prediction step making the correction step less computationally demanding28. The
intermediate velocity field is computed taking into account the prediction penalty force 𝐟∗:

𝒖∗ − 𝒖𝑛
Δ𝑡

= −∇ ⋅ (𝒖∗ ⊗ 𝒖𝑛) − 1
𝜌
∇𝑃 𝑛−1∕2 + 1

𝜌
∇ ⋅ 𝝉𝑛 + P𝑛+1

𝑠 +
𝜒𝑠

𝜂
(

𝒖𝑛+1𝑠 − 𝒖∗
) (20)

⇐⇐⇒ 𝒖∗ = 𝛾𝑠
−1 (𝒖𝑛 − Δ𝑡

(

∇ ⋅ (𝒖∗ ⊗ 𝒖𝑛) + 𝜌−1∇𝑃 𝑛−1∕2 − 𝜌−1∇ ⋅ 𝝉𝑛 − P𝑛+1
𝑠

))

+ (1 − 𝛾𝑠
−1) 𝒖𝑛+1𝑠 , (21)

where the factor 𝛾𝑠 =
(

1 + 𝜒𝑠Δ𝑡∕𝜂
) is named the penalty density factor, with values of 𝛾𝑠 = 1 in the fluid and 𝛾𝑠 > 1 inside the

solid.
Before the correction step, the old pressure gradient needs to be subtracted leading to the new intermediate velocity 𝒖∗∗:

𝒖∗∗ = 𝒖∗ −
(

− Δ𝑡
𝛾𝑠𝜌

∇𝑃 𝑛−1∕2
)

. (22)

To find the irrotational part of the velocity field we correct the intermediate velocity with the addition of the new pressure
term. The correction penalty term is also added:

𝒖𝑛+1 − 𝒖∗∗
Δ𝑡

= −1
𝜌
∇𝑃 𝑛+1∕2 +

𝜒𝑠

𝜂
(

𝒖∗∗ − 𝒖𝑛+1
)

. (23)

By factorisation we can rearrange the previous equation to make the penalty density factor 𝛾𝑠 appear:

𝒖𝑛+1 − 𝒖∗∗
Δ𝑡

= − 1
𝛾𝑠𝜌

∇𝑃 𝑛+1∕2 . (24)

The new pressure term however needs to be computed first. To achieve this, the operator of divergence is applied to Equation 24
giving rise to a modified pressure Poisson equation:
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∇ ⋅
(

1
𝛾𝑠𝜌

∇𝑃 𝑛+1∕2
)

= ∇ ⋅ 𝒖∗∗
Δ𝑡

− ∇ ⋅ 𝒖𝑛+1
Δ𝑡

. (25)

Thanks to Equation 25 we manage to penalise the final velocity while satisfying the continuity constraint. We can also observe
the appearance of the solid mass source term thanks to Equation 9, where ∇ ⋅ 𝒖𝑛+1 = Q𝑛+1

𝑠 . This guarantees a null divergence
for the fluid velocity, ∇ ⋅ 𝒖𝑛+1𝑓 = 0.

It is also interesting to note that 𝛾𝑠 acts as a modifier for the density, resulting in a higher effective density value inside the
solid domain. In contrast to the variable density algorithms used in reactive or two-phase flows for instance, the modified density
𝛾𝑠𝜌 originates entirely from the penalty method, where only the fluid density 𝜌 is defined. The implied solid density is directly
proportional to the chosen penalisation time-step ratio 𝛼 = 𝜂∕Δ𝑡.

2.3.2 Discretized pressure Poisson equation

In order to update the pressure to correct the predicted velocity, a Poisson equation needs to be solved. In this method, taking
into account the implicit penalty term and the added mass sources, the modified PPE of Equation 25 is obtained. The discretized
form in time and space of this equation when integrated over the domain gives a linear system of the form 𝐴𝑝 = 𝐵 as follows:

∑

𝑘∈𝑖

1
𝛾𝑖𝑘𝜌

𝑃𝑘 − 𝑃𝑖

𝚫𝒙𝒊𝒌
𝐝𝑨𝒊𝒌

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐴𝑝

= 1
Δ𝑡

∑

𝑘∈𝑖

𝒖∗∗𝑖𝑘 ⋅ 𝐝𝑨𝒊𝒌 −
1
Δ𝑡

∑

𝑘∈𝑖

(

𝜙𝑠𝒖𝑠
)𝑛+1
𝑖𝑘 ⋅ 𝐝𝑨𝒊𝒌 +

1
Δ𝑡2

(

𝜙
𝑛+ 3

2
𝑠,𝑖 − 𝜙

𝑛+ 1
2

𝑠,𝑖

)

d𝑉𝑖

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐵

, (26)

where 𝑖𝑘 indicates the pair index between two nodes 𝑖 and 𝑘, 𝑖 is the set of nodes connected to node 𝑖, d𝑉𝑖 is the volume of
the control volume around the node 𝑖, 𝒅𝑨𝒊𝒌 is the surface of contact of the control volumes defined by 𝑖 and 𝑘. A schematic
representation of the pair-based discretization of YALES2 can be viewed in Figure 2.

The penalty density factor of the pair 𝑖𝑘 is computed as:

1
𝛾𝑖𝑘

= 1
2

[

1
𝛾𝑖

+ 1
𝛾𝑘

]

. (27)

2.3.3 Estimation of the resistive force acting on the body

In the usual IBM framework, the resistive force 𝑭 acting on the solid body from the fluid can be computed as the negative sum
of the applied forcing terms. This is true in the case of stationary bodies. In the case of a mobile body, the sum of the forcing
terms is equal to the total force 𝑭 tot experienced by the solid’s immersed surface; this includes the forces from the external fluid,
𝑭 , and the internal fluid, 𝑭 in, as explained by Suzuki et al.21. So, to compute the resistive force the following expression is used
taking into account the internal force needed to move the fluid inside of the solid domain:
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Figure 2 Finite-volume pair-based discretization in YALES2, using node-centered control volumes 𝑉𝑖.

𝑭 = −∫
Ω

𝜌 𝐟IB d𝑉

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
𝑭 tot

+∫
Ω𝑠

𝜌d𝒖
d𝑡

d𝑉

⏟⏞⏞⏞⏟⏞⏞⏞⏟
𝑭 in

. (28)

In the VOS-IVP method, as seen in Equation 10, we have the additional forcing term P𝑠 acting alongside the IB forcing term.
In other words the total force is:

𝑭 tot = −∫
Ω

𝜌
(

𝐟IB + P𝑠
)

d𝑉 . (29)

Furthermore, the term P𝑠 represents the force supplied to the fluid of the solid domain Ω𝑠 so that it follows the prescribed
motion of the solid body and is equivalent to the internal force:

𝑭 in = ∫
Ω

𝜌P𝑠 d𝑉 = ∫
Ω𝑠

𝜌d𝒖
d𝑡

d𝑉 . (30)

By substituting the expressions of the total and internal forces from Equation 29 and Equation 30, respectively, into the
Equation 28, it is shown that the resistive force can be computed by simply integrating the IB forcing term over the volume of
the computational domain:

𝑭 = −∫
Ω

𝜌 𝐟IB d𝑉 . (31)

2.4 Representation of the solid body as a set of particles

2.4.1 Lagrangian framework

For the representation of the immersed body in the method developed in this work, a discretized volume mesh of the solid ge-
ometry is needed in the pre-processing stage, which for simplicity is called ‘solid mesh’. This is an unstructured mesh consisting
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Figure 3 Pre-processing stage for solid body representation where a solid mesh is created and a Lagrangian particle is placed
at each element storing the information of the elementary volume and the size of the element it represents.

of triangles in 2D and tetrahedra in 3D with a desired cell size. A set of Lagrangian particles is created by placing a particle at
the centre of each cell E𝑠. In each particle 𝑝, the following data is stored:

• the volume V𝑝 of the cell E𝑠 they are placed in,

• the metric 𝑠 (indicator of the local element size) of the cell E𝑠 they are placed in,

• the coordinates of the nodes, 𝐱𝑛, at the 𝑁 vertices of the cell,

• and the coordinates of the barycentre 𝐱𝑝 of the cell where the particle is placed computed as:

𝐱𝑝 =
1
𝑁

𝑁
∑

𝑛=1
𝐱𝑛 . (32)

Figure 3 shows an example of a discretized 2D cylinder, coloured by the metric, where the solid mesh on the left is replaced
by the Lagrangian particles on the right.

This set of Lagrangian particles is then imported to the simulations in order to represent the solid volume and the solid
movement in the Eulerian computational domain. After applying a Lagrangian displacement of the particles, two new fields are
computed on the Eulerian mesh. First, the volume contained by the particles is projected on the Eulerian mesh registering the
local solid volume contained in each control volume. By dividing this quantity by the total volume of the cell, the local solid
volume fraction field can be computed. Last, the solid velocity field is computed according to the prescribed motion of the solid
and the solid volume fraction.

2.4.2 Lagrangian movement of solid particles

When the particles are imported at the beginning of the simulation their initial position 𝐱0𝑝 is saved. Based on this initial position
a set of transformations can be prescribed to the solid particles under the assumption of a rigid solid body. The current solid
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movement types are: rotation, translation and oscillation. These operations can be applied at the same time by simply adding
them. However, the rotation operation is always first.

1. Rotation: In the case of a prescribed rotary motion, the inputs required are the rotation axis 𝒓 = ( 𝑟1 𝑟2 𝑟3 ) as a unit vector,
the coordinates of the rotation centre 𝐱R and the rotational speed 𝜔 [rad.s−1]. This way a rotation matrix 𝑹 can be defined
as:

𝑹 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑟1𝑟1(1 − 𝑐) + 𝑐 𝑟1𝑟2(1 − 𝑐) − 𝑟3𝑠 𝑟1𝑟3(1 − 𝑐) + 𝑟2𝑠

𝑟2𝑟1(1 − 𝑐) + 𝑟3𝑠 𝑟2𝑟2(1 − 𝑐) + 𝑐 𝑟2𝑟3(1 − 𝑐) − 𝑟1𝑠

𝑟3𝑟1(1 − 𝑐) − 𝑟2𝑠 𝑟3𝑟2(1 − 𝑐) + 𝑟1𝑠 𝑟3𝑟3(1 − 𝑐) + 𝑐

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (33)

where 𝑡 [s] is the current physical time, 𝑐 = cos(𝜔𝑡) and 𝑠 = sin(𝜔𝑡).

Thus, at each time-step the new coordinates of any particle 𝑝 can be computed as:

𝐱𝑝 = 𝑹(𝐱0𝑝 − 𝐱R) + 𝐱R , (34)

or in more detail:

𝐱𝑝 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑅11(x0𝑝,1 − xR1 ) + 𝑅12(x0𝑝,2 − xR2 ) + 𝑅13(x0𝑝,3 − xR3 )

𝑅21(x0𝑝,1 − xR1 ) + 𝑅22(x0𝑝,2 − xR2 ) + 𝑅23(x0𝑝,3 − xR3 )

𝑅31(x0𝑝,1 − xR1 ) + 𝑅32(x0𝑝,2 − xR2 ) + 𝑅33(x0𝑝,3 − xR3 )

⎞

⎟

⎟

⎟

⎟

⎟

⎠

+

⎛

⎜

⎜

⎜

⎜

⎜

⎝

xR1

xR2

xR3

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (35)

2. Translation: For a simple translation of the solid body at a constant speed the required inputs are the direction unit vector
𝒓𝑡 and the constant movement speed v [m.s−1]. The new coordinates of a particle 𝑝 at time 𝑡 are computed as:

𝐱𝑝 = 𝐱0𝑝 + (v𝑡)𝒓𝑡 . (36)

3. Oscillation: For an oscillating solid body the required inputs are the oscillation axis as the unit vector 𝒓𝑜, the oscillating
amplitude A𝑜 and the oscillating frequency f𝑜. The oscillation follows a sinusoidal evolution. The new coordinates of a
particle 𝑝 at time 𝑡 are computed as:

𝐱𝑝 = 𝐱0𝑝 + A𝑜 sin
(

2𝜋f𝑜𝑡
)

𝒓𝑜 . (37)

2.4.3 Projection of Lagrangian solid volume to Eulerian VOS field

During the computation stage, before the advection of the velocity at each iteration, the particles are relocated on the Eulerian
mesh according to the prescribed solid motion. Then the volume carried by the particles is projected onto the Eulerian mesh
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Figure 4 Pre-processing stage for solid body representation: (a) a solid mesh is created, (b) a Lagrangian particle is placed at
each element and stores the information of the elementary volume and (c) the volume of the particles are interpolated onto the
Eulerian mesh resulting in the computation of the solid volume fraction field 𝜙𝑠.
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Figure 5 2D representation of six elements around the node 𝑖 (red). The control volume of the node 𝑖 is delimited by the red
lines. A solid particle 𝑝 is located in the green coloured element. The interpolation weight of the particle 𝑝 at the node 𝑖 is
marked as 𝑊𝑖,𝑝 and can be computed using the surface vectors 𝑺1′ ,𝑺2′ ,𝑺3′ , situated opposite of the element nodes 𝑖1′ , 𝑖2′ , 𝑖3′ ,
and the distance of the particle position 𝑥𝑝 from the centres of the element edges 𝒙1′ ,𝒙2′ ,𝒙3′ as expressed in Equation 39. The
local solid and fluid mesh sizes, 𝑠 and 𝑓 respectively, are also indicated.

resulting in the computation of the local quantity of solid volume, and by extension, the local solid and fluid fractions 𝜙𝑠 and
𝜙𝑓 , respectively, as illustrated by Figure 4. The solid volume 𝑉𝑠,𝑖 at grid node 𝑖 is given by:

𝑉𝑠,𝑖 =
∑

𝑝∣𝒙𝑝∈𝐸𝑖

V𝑝𝑊𝑖,𝑝 . (38)

The subscript 𝑝 denotes the properties of the 𝑝𝑡ℎ particle, 𝐸𝑖 is the set of elements adjacent to the grid node 𝑖, and 𝑊𝑖,𝑝 is
the weight of the linear interpolation used. In our work, only triangular or tetrahedral elements are used in 2D and 3D cases,
respectively, so the linear interpolation weights can be computed as:

𝑊𝑖,𝑝 =
|

|

|

𝒙𝑝 − 𝒙𝑓𝑖
|

|

|

⋅ 𝑺𝑓𝑖

∑

𝑖′∈ (𝐸𝑝)
|

|

|

𝒙𝑝 − 𝒙𝑓𝑖′
|

|

|

⋅ 𝑺𝑓𝑖′
, (39)
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where 𝐸𝑝 is the element containing particle 𝑝, and  (𝐸) is the set of nodes 𝑖′ of the element 𝐸 and 𝑺𝑓𝑖′ the vector area of the
face 𝑓𝑖′ opposite to the node 𝑖, as shown in Figure 5. By taking the ratio of the local solid volume over the total cell volume we
can compute the local solid volume fraction 𝜙𝑠 as shown in Equation 1.

The benefits of the VOS representation of the immersed body is twofold. First, the penalty mask used, 𝜒𝑠, is easily defined by a
sharp Heaviside function of the solid volume fraction. Second, the rigid body movement is imposed on the Lagrangian particles
and at each iteration the volume fraction is recomputed, hence the total volume of the solid in the Eulerian mesh is inherently
conserved in time. Also, the added operations to represent the movement of the solid consist of Lagrangian displacement of the
particles and their relocalisation on the processors in a parallel computing configuration. In terms of computational cost, these
operations are less costly when compared to fully Eulerian approaches previously tested in YALES2 such as constructing a
Level-Set function from a triangulated surface to represent the immersed surface and then displacing it. The last method would
also need specific additional treatment to conserve the volume of the immersed solid.

2.4.4 Solid velocity field

In contrast to the Lagrangian displacement of the solid particles, the solid velocity field is computed directly onto the Eulerian
mesh of the computational domain based on the solid volume fraction field at the current time-step and the prescribed motion
of the rigid solid. As explained for the operations for displacing the particles, two or more types of movement may occur at the
same time, and the final velocity of the solid object is a combination of the velocities prescribed by each of the movements. The
velocity of a solid body 𝑘 can be computed in space and time as:

𝒖𝑠,𝑘 = 𝜔𝑘𝒓𝑘 × (𝒙 − 𝐱R𝑘 ) + v𝑘𝒓𝑡,𝑘 + A𝑜,𝑘2𝜋f𝑜,𝑘 cos
(

2𝜋f𝑜,𝑘𝑡
)

𝒓𝑜,𝑘 , (40)

where the subscript ‘𝑘’ has been added to all the quantities associated to the displacement operations acting on the specific solid
𝑘.

In many applications it is possible to have multiple immersed bodies in the same simulation undergoing different displacement
operations. In some cases, such as in gearboxes, the surfaces of two or more solids can come very close to each other. Depending
on the size of the computational cells, there may be multiple solids present in a cell with different solid velocities. To solve
this issue, we define the mean solid velocity field at each position in space (i.e. in each node) as the sum of the different solid
velocities weighted by the local solid volume fraction of the solids:

𝒖𝑠 =
∑

𝑘 𝜙𝑠,𝑘𝒖𝑠,𝑘
∑

𝑘 𝜙𝑠,𝑘
. (41)
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Figure 6 Solid volume fraction field and the maximum value for four different ratios of the solid mesh metric 𝑠 to the fluid
mesh metric 𝑓 .

This mean solid velocity is used in the definition of the composite velocity shown in Equation 8 as it takes into account the
existence of multiple solids in the same computational cell. This formulation also allows to set the solid velocity to zero in the
fluid domain where 𝜙𝑠 = 0.

2.5 Restrictions on the solid cell size

The choice for the characteristic cell size of the solid mesh 𝑠 needs to be taken into consideration depending on the Eulerian
fluid mesh cell size 𝑓 . From Figure 5 it can be understood that if 𝑠 is larger than 𝑓 , the solid particles will have more
distance between them. This brings the risk of having some elements of the Eulerian mesh with no particles at all and some
elements containing particles with a volume larger than the computational cell volume. In this case, the solid volume fraction
field suffers from discontinuities in the form of ‘holes’ inside the solid region, with 𝜙𝑠 < 1, accompanied by spots where the
solid volume fraction overshoots, with 𝜙𝑠 > 1. This is demonstrated in Figure 6 where four different ratios of 𝑠∕𝑓 where
tested. The fluid metric remained unchanged, 𝑓 = 2.5, while the solid metric varied from 𝑠 = 5.5 to 𝑠 = 0.7. For ratios
larger than 1 the discontinuities are clearly visible and the overshoots may even reach values of 𝜙𝑠 = 1.93, which would not
be acceptable from a physical point of view. For ratios smaller than 1, the peaks and troughs are greatly diminished and the
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Figure 7 2D schematic of the difference between a continuous surface and its discretized shape. The total volume of the dis-
cretized solid, with solid mesh size of 𝑠 = 𝐷∕40, is equal to 𝑉𝑠. The theoretical volume of a perfect 2D cylinder is equal to
𝑉𝑐𝑦𝑙 = 𝜋𝐷2∕4. A part of 𝑉𝑐𝑦𝑙, 0.16%, is lost due to discretization errors.

maximum value of 𝜙𝑠 is closer to the target value of unity inside the solid region. Thus the criterion for the solid mesh cell size
that needs to be satisfied is the following:

𝑠∕𝑓 ≤ 1 . (42)

3 VALIDATION

In this section, several benchmark flow problems are solved using the VOS-IVP method to demonstrate its ability to obtain
accurate results for different configurations. We examine the cases of flows around a cylinder of diameter 𝐷 or an airfoil of chord
𝑐. The main quantities to compare between the numerical results with the reference data are the drag and lift coefficients (𝐶𝐷

and 𝐶𝐿) and the Strouhal number (𝑆𝑡) defined as:

𝐶𝐷 =
2𝐹𝑥

𝜌𝑆𝑈 2
∞
, 𝐶𝐿 =

2𝐹𝑦

𝜌𝑆𝑈 2
∞
, 𝑆𝑡 =

𝑓𝑠𝐷
𝑈∞

. (43)

𝐹𝑥 and 𝐹𝑦 are the stream-wise and cross-flow total forces, respectively. 𝑈∞ is the free-stream velocity, 𝜌 is the fluid density,
𝑆 is the cross-sectional area of the body and 𝑓𝑠 the vortex shedding frequency in unsteady flows. Numerically, we will be
interested in the mean value (⟨∙⟩) and the mean fluctuation (∙′) of the variables. The shedding frequency 𝑓𝑠 is computed through
a Fast-Fourier Transform (FFT) analysis as the fundamental frequency of the lift’s mean fluctuation.

3.1 Solid volume conservation
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Table 1 Mean and r.m.s. values of the relative error in solid volume of a curved solid geometry for two coarse meshes.

𝑓 ⟨𝜀𝑠⟩ [%] 𝜀′𝑠 [%]

𝐷∕5 0.16 2.11 ⋅ 10−14

𝐷∕10 0.16 1.38 ⋅ 10−14

To demonstrate that the Lagrangian particles conserve the solid mass independently of the fluid mesh resolution and the
movement of the solid, we solved the flow past a 2D cylinder of diameter𝐷 and volume 𝑉𝑐𝑦𝑙, oscillating with amplitude 𝑦max = 𝐷

and frequency 𝑓 = 2.2Hz.
First, the theoretical value of the cylinder volume (equivalent to a circular surface in 2D) is computed as 𝑉𝑐𝑦𝑙 =

𝜋𝐷2

4
. The

volume 𝑉𝑠,𝑝 of the discretized solid mesh of 𝑠 = 𝐷∕40 can be computed as the sum of the volume information of each particle
𝑉𝑠,𝑝 =

∑

𝑝 𝑉𝑝 = 0.9984𝑉𝑐𝑦𝑙. It slightly underestimates the theoretical value by 0.16% due to curvature discretization errors as
demonstrated in the schematic of Figure 7.

During the simulation, as the solid is represented through a VOS approach, by integrating the solid volume fraction over the
domain one should obtain the total volume of the immersed object 𝑉𝑠 = ∫Ω 𝜙𝑠(𝑡) d𝑉 . The error of the computed solid volume
relative to the theoretical one can be computed as:

𝜀𝑠(𝑡) =
|𝑉𝑐𝑦𝑙 − 𝑉𝑠|

𝑉𝑐𝑦𝑙
. (44)

For the fluid mesh, two coarse grids were tested with 𝑓 = 𝐷∕5 and 𝑓 = 𝐷∕10. Table 1 shows the mean and the r.m.s.
values of the relative error after four oscillations of the cylinder. The mean value remains constant for both grids giving the same
0.16% error as the one of the discretized solid mesh with respect to the theoretical value. This affirms the conservative nature of
the solid volume fraction field, where ∫Ω 𝜙𝑠(𝑡) = 𝑉𝑠. The r.m.s. value decreases with finer meshes thanks to lower interpolation
errors. Despite that, both values are essentially near machine precision at an order of magnitude of 10−14 %.

The same oscillatory movement was imposed on a 2D square, i.e. a shape with no curves, of sides equal to the cylinder
diameter 𝐷 on the grid of cell-size 𝑓 = 𝐷∕5. The 2D volume of the square is equal to 𝑉𝑠𝑞𝑢𝑎𝑟𝑒 = 𝐷2. When projected, the
mean and r.m.s. values of the volume relative error are 2.7×10−14 % and 5.9×10−14 %, respectively. Both values are essentially
zero, further proving the fact that in the case of the cylinder, the errors originated from the discretization of the curves in the
solid mesh.

This study shows that the whole discretized solid volume 𝑉𝑠, held by the Lagrangian particles, is successfully projected onto
the Eulerian mesh. This remains unchanged irrespective of the movement of the solid and the resolution of the fluid mesh
used. The 0.16% difference from the theoretical value observed for the cylinder case does not come from our volume projection
algorithm described in Section 2.4.1, but from the initial discretized solid mesh used to create the Lagrangian particles in the
pre-processing stage as described in Section 2.4.3.
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Figure 8 Sketch of the domain for the case of the stationary 2D cylinder.

3.2 Laminar flow around a stationary cylinder

3.2.1 Flow at Reynolds number of 100

A well-researched benchmark problem for many years, the laminar unsteady flow past a two-dimensional stationary cylinder of
diameter 𝐷 is studied. The results of this problem are known to be sensitive to the size of the computational domain, particularly
for relatively small values of Reynolds number. The computational domain, shown in Figure 8, extends 15𝐷 upstream of the solid
and 50𝐷 downstream. The top and bottom boundaries of the domain are placed 15𝐷 from the centre of the solid, sufficiently far
to limit blockage effects, with slip-wall boundary conditions. The inlet velocity 𝑈∞ is kept constant and the Reynolds number,
computed as 𝑅𝑒 = 𝑈∞𝐷∕𝜈, is imposed by changing the value of the kinematic viscosity 𝜈. The cylinder is placed in a refined
zone of dimensions [−2𝐷, 10𝐷] × [−2.5𝐷, 2.5𝐷] where the grid-spacing Δ𝑥 corresponds to 𝐷∕Δ𝑥 = 50. The downstream
length of the refinement zone covers a sufficient portion of the wake to assure that all the attached vortical structures to the
cylinder are well-resolved, because according to Kang et al.29, for incompressible flow with a discrete wake, it is proven that
the total force on the body is solely determined by the body-connected vortical structures. The mesh is composed of 3.73 × 105

elements. The time-step of the simulations is determined by the CFL condition CFL = 0.9. The penalisation time-step ratio is
𝛼 = 1. The simulated physical time covers 1000 non-dimensional periods (𝑡∗ = 𝑡𝑈∞∕𝐷) and all simulations run on 20 CPU
cores. The VOS-IVP method is validated for 𝑅𝑒 = 100 against body-fitted (BF) simulations, also carried out with YALES2,
and reference data obtained from numerical simulations from the literature30,31,32.

In Figure 9 the time series of the drag and lift coefficients are shown and the numerical results of the VOS-IVP appear to be
smooth. The frequency of the drag coefficient fluctuation is double the one of the lift fluctuation due to the contribution of the
alternating upper and lower vortices to the drag force.
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Figure 9 Time-series of the drag and lift coefficient predicted with the VOS-IVP method in the case of of 𝑅𝑒 = 100.

Table 2 Mean drag coefficient ⟨𝐶𝐷⟩, mean lift fluctuation 𝐶 ′
𝐿, Strouhal number 𝑆𝑡, wake closure length 𝐿𝑐 and time-step Δ𝑡 for

the case of 𝑅𝑒 = 100.

Cases ⟨𝐶𝐷⟩ [−] 𝐶 ′
𝐿 [−] 𝑆𝑡 [−] 𝐿𝑐 [−] Δ𝑡 × 10−4 [𝑠]

Qu et al.30 1.317 0.222 0.165 1.41 −
Park et al.31 1.330 0.235 0.165 1.42 −
Kravchenko et al.32 1.320 0.222 0.164 1.45 −
Body-fitted (BF) 1.335 0.237 0.167 1.38 1.012
VOS-IVP 1.300 0.215 0.171 1.32 1.072

(a)

(b)
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Figure 10 On the left figure, time-averaged dynamic pressure fields of the (a) body-fitted method and (b) the VOS-IVP method
for 𝑅𝑒 = 100. On the right figure, (c) time-averaged mean composite velocity field of the VOS-IVP method and streamlines
near the cylinder.
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Figure 11 Local volumetric penalty forces applied in the solid region. A closer view near the fluid-solid interface is also provided
with the grid visible.

Table 2 shows that the mean drag coefficient, the mean fluctuation of lift coefficient, and the Strouhal number match very
well with the body-fitted case and the reference data. The wake closure length, i.e. the distance along the wake centre line from
the cylinder to the point of zero velocity, is very close to the body-fitted case, but overall underestimated in our simulations
compared to the literature. This can be seen in Figure 10 where the time-averaged fields of the pressure are shown for the body-
fitted method and the VOS-IVP method. The fields match very well with slight variations near the cylinder. The two zones
of low pressure at the upper and lower parts of the cylinder appear smaller in the VOS-IVP results. This shows that the fluid
does not decelerate as much when passing the cylinder as in the body-fitted case. The difference stems from the sharp penalty
mask used. As seen in Figure 11, the first points where a volumetric forcing term is applied are well within the solid region.
Effectively, the cross-sectional surface of the body seen by the fluid is smaller than the real one. This fact also explains the
lower values in the aerodynamic quantities for the present method. Another factor for the lower drag coefficient prediction is the
penetration of the solid region by some fluid. This is evident from the streamlines based on the mean values of the composite
velocity field in Figure 10 (c), whose value is non-zero inside the solid. Liu et al.16 and Wu & Shu33 have managed to resolve
the streamline penetration problem by calculating the IBM forcing contribution via iterative processes. In the former work, the
force is added as an unknown source term to the Pressure Poisson Equation. In the latter, the force is determined in such a way
that the velocity at the immersed boundary point interpolated from the velocity field satisfies the non-slip boundary condition.
In the current work, such iterative methods were not considered to avoid extra computational costs. The effect of the presented
implicit volume penalty method and the influence of its parameters to the better solid velocity imposition inside the immersed
body can be found in the following two sections.

The velocity profiles in Figure 12 show the mean and r.m.s. values of the stream-wise and cross-flow velocity components at
three different positions (𝑥 = [1𝐷, 2𝐷, 5𝐷]) for the body-fitted and the VOS-IVP methods. The profiles match very well between
the two methods but we can still notice marginally higher velocity values in both directions for the VOS-IVP method, further
supporting the previous observations from the mean pressure fields. Figure 13 shows the mean stream-wise velocity along the
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centre line of the wake. There is a noticeable difference in the region between 𝑥 = 1𝐷 and 𝑥 = 3𝐷 where the wake recovery is
slightly faster in the VOS-IVP method. The wake closure length 𝐿𝑐 was determined as the point of vanishing ⟨𝒖⟩, where there is
a change from negative to positive values, along the wake centre line downstream of the solid’s surface. The VOS-IVP measures
the wake closure at 𝐿𝑐 = 1.32𝐷 downstream of the object, 4% shorter compared than the body-fitted case.

Figure 12 Vertical profiles of the mean (top) and r.ms. (bottom) velocity components in stream-wise (black) and cross-flow (red)
directions at three different positions, 𝑥 = [1𝐷, 2𝐷, 5𝐷], for 𝑅𝑒 = 100. Dashed lines: body-fitted case; solid lines: VOS-IVP.

3.2.2 Mesh dependency study and influence of the implicit penalty term

A mesh dependency study is conducted on the case of section 3.2.1 by coarsening the computational grid. Three mesh sizes
were tested: 𝐷∕Δ𝑥 = [10, 25, 50]. The purpose of this study is to examine the influence of the mesh size to i) the aerodynamic
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Figure 13 Mean stream-wise velocity normalised by the free flow velocity along the centre line of the wake, for 𝑅𝑒 = 100.
Dashed line: body-fitted case; solid line: VOS-IVP.
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Figure 14 Comparison between the application and effectiveness of the usual volume penalty method and the implicit formu-
lation for different grid sizes at the region of the immersed solid. The top figure shows the profile of the mean stream-wise
component of the penalty force along an horizontal line passing by the cylinder centre. The bottom figure shows the mean stream-
wise component of the composite velocity along the same line. Bold lines: IVP; dashed lines: VP. Blue colour: 𝐷∕Δ𝑥 = 10;
red colour: 𝐷∕Δ𝑥 = 25; black colour: 𝐷∕Δ𝑥 = 50.
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Table 3 Mean drag coefficient ⟨𝐶𝐷⟩, mean lift fluctuation 𝐶 ′
𝐿 and Strouhal number 𝑆𝑡 for different mesh sizes in the case of

𝑅𝑒 = 100.

Mesh ⟨𝐶𝐷⟩ [−] 𝐶 ′
𝐿 [−] 𝑆𝑡 [−]

𝐷∕Δ𝑥 = 10 1.314 0.217 0.178
𝐷∕Δ𝑥 = 25 1.297 0.221 0.177
𝐷∕Δ𝑥 = 50 1.300 0.215 0.171

coefficients, ii) the penalty force distribution inside the solid and iii) the velocity profile inside the solid when using the VOS-IVP
method.

Table 3 shows the mean drag coefficient, the r.m.s. of the lift coefficient and the Strouhal number for different mesh sizes. The
aerodynamic coefficients do not show any particular trends when changing the mesh size, their values remain unchanged. This
can be attributed to the relatively simple form of the bluff body. In the case of the Strouhal number, its value decreases with a
smaller grid spacing approaching the values found in literature (Table 2).

The mesh size influences strongly the accurate imposition of the prescribed solid velocity 𝒖𝑠 = 0 inside the solid volume due
to the change in distribution of the penalty force which serves to bring the fluid at rest. The top of Figure 14 shows the profile
of the mean stream-wise component of the penalty force ⟨𝐟IB,𝑥⟩ along a horizontal line passing by the cylinder centre (𝑦 = 0).
As a reminder, the free stream flows from left to right. For the finest grid, the peak force value is inside the solid volume near
the left solid-fluid interface at 𝑥∕𝐷 = −0.5. As the grid coarsens, the peak force value weakens in magnitude and is applied
further inside the solid region. The profile also loses its initial sharpness but further inside the solid, 𝑥∕𝐷 > −0.2, all the
profiles converge towards the same values. The direct impact of the change in force distribution with the different mesh sizes
can be seen at the bottom of Figure 14, which shows the profile of the mean stream-wise component of the composite velocity.
It is evident that with coarser grids, the solid velocity is not well imposed. The penalty force is not sufficient to decelerate the
fluid fast enough and fairly high positive values of ⟨𝒖𝑥⟩ persist inside the solid. With refining the mesh, the velocity values drop
significantly approaching the target value.

Let us now examine the influence of the implicit penalty term of the IVP compared to the forcing of the usual volume penalty
method (VP). The same simulations were carried out but with the correction contribution of the penalty force deactivated.
Their respective velocity profiles can also be seen in Figure 14. It is evident that the simple penalty method is not as effective
as the implicit penalty method developed in this work and for the same mesh size the positive velocity values are higher. For
𝐷∕Δ𝑥 = 10, the velocity fails to reach the 0 value. It is interesting to look at the penalty force profiles for 𝐷∕Δ𝑥 = 50. The
VP method gives a sharper profile and the force is applied closer to the solid surface, but this influences only the intermediate
velocity field 𝒖∗. In the correction step the velocity will be modified due to the new pressure gradient in order to satisfy only
the incompressibility constraint. This results in smoothing the velocity gradient at the solid surface and thus the higher velocity
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values. On the contrary, in the IVP method the penalty force comprises a contribution in the prediction step and in the correction
step. The correction contribution counteracts with the pressure gradient and results in a smoother penalty force profile. However,
the boundary condition of the velocity is imposed in the immersed volume at the same time as the incompressibility constraint,
resulting in velocity values closer to the imposed solid velocity.

Figure 15 shows, for both VP and IVP methods, the evolution of the mean stream-wise velocity value at the first node inside the
solid domain for the different mesh sizes. There appears to be a linear relationship between them for both methods: ⟨𝒖𝑥⟩ ∝ Δ𝑥.
Here again, the error committed by the IVP approach is lower than the VP approach.
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Figure 15 Evolution of the mean stream-wise velocity value at the first node inside the solid domain for the different mesh sizes.
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Figure 16 Evolution of maximum velocity error inside the solid with the penalisation time-step ratio for different CFL values.
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3.2.3 Influence of time-step and penalty parameter

A parametric study has been conducted to evaluate the influence of the time-step Δ𝑡 and the penalty parameter 𝜂 on the force
estimation and the imposition of the solid velocity inside the immersed body. Using the same computational domain as before,
with 𝐷∕Δ𝑥 = 50 at the immersed solid, and keeping the same Reynolds number of 𝑅𝑒 = 100, 200 non-dimensional periods
were simulated. The time-step was determined by the CFL condition and the penalty parameter by the penalisation time-step
ratio 𝛼 = 𝜂∕Δ𝑡. Four values of each parameter were tested: CFL = [0.09, 0.18, 0.45, 0.9] and 𝛼 = [0.1, 0.2, 0.5, 1]. The main
tools of comparison are the relative error of the mean drag coefficient compared to the previously mentioned body-fitted case
and the 𝐿∞ norm of the velocity magnitude in the region where the penalty term is applied. These quantities are computed as:

𝜀
⟨𝐶𝐷⟩

=
|

|

⟨𝐶𝐷⟩VOS−IVP − ⟨𝐶𝐷⟩BF
|

|

⟨𝐶𝐷⟩BF
, (45)

𝜖∞ = max
(

𝜒𝑠𝜙𝑠||𝒖||2
)

. (46)

Figure 16 shows the maximum velocity error in the solid region depending on the CFL and 𝛼. The error diminishes with
smaller time-step values and with smaller penalty parameter values. Furthermore, with smaller time-steps, the order of conver-
gence of 𝜖∞ with respect to 𝜂 increases from 𝑂(𝜂1∕2) to almost 𝑂(𝜂1). This result agrees with the findings of Angot et al.8 who
have rigorously shown using asymptotic analysis that the solution of the penalized velocity converges to the exact Navier-Stokes
equations at the immersed boundaries as 𝜂 → 0 with a global error of 𝑂(𝜂3∕4).

When examining the value of 𝜀
⟨𝐶𝐷⟩

for the different combinations of CFL and 𝛼 values, there is small variation in the error
with the minimum and maximum values of 2.6% and 3.6%, respectively, and no clear tendency can be observed. With higher
time-steps, a value of 𝛼 = 1 gives a closer estimation to the body-fitted result. But for the smaller values of Δ𝑡, smaller values of
𝛼 are preferred. From a computational point of view, decreasing the value of 𝛼 with a constant CFL doesn’t have an important
influence on the computational cost in the case of stationary solids. However, reducing the CFL limit and forcing smaller time-
steps the computational cost increases considerably. The average cost for CFL = 0.9 was 20 hCPU while for CFL = 0.09 the
average cost was 80 hCPU. This overcost is due to more calls to the pressure Poisson equation solving even if each solve is
less costly at smaller CFL number. Hence, there’s a compromise to be made between the accurate velocity imposition and the
computational cost.
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Figure 17 Sketch of the domain for the case of the in-line oscillating cylinder in a quiescent fluid.

3.3 Oscillating cylinder in a quiescent fluid

To validate the present method for a moving solid body problem, the case of an oscillating cylinder in a fluid at rest was examined.
This case involves the simple harmonic motion in the x-direction of a 2D cylinder with diameter 𝐷 = 1m placed at the centre
of a square domain as shown in Figure 17, where periodic boundary conditions were applied. The cylinder oscillation leads to
the development of boundary layers on the upper and lower sides, which separate from the body generating two counter-rotating
vortices. When the cylinder starts to move in the opposite direction the vortex generation stops and the body splits the previously
created vortex pair. The periodic motion of the cylinder is described by the following equations:

𝑥c(𝑡) = −𝐴 sin(2𝜋𝑓𝑡) , (47)

𝑢c(𝑡) = −2𝜋𝑓𝐴 cos(2𝜋𝑓𝑡) , (48)

𝑣c(𝑡) = 0 . (49)

where 𝑥c, 𝑢c and 𝑣c are the position, the horizontal velocity and the vertical velocity of the cylinder centre, respectively. The
frequency of the oscillation is expressed as 𝑓 and the amplitude of oscillation 𝐴. The maximum velocity of the oscillation is

Table 4 Mean fluctuation of the in-line force over 20 periods, relative error of the in-line force compared to the body-fitted case
and fundamental frequency of the predicted force for all the simulations.

Case 𝐹 ′
𝑥[𝑁] 𝜀(𝐹 ′

𝑥)[%] 𝑓fund[Hz]

VOS-IVP, 𝐷∕Δ𝑥 = 10 1.24 8.77 0.200 ± 0.005
VOS-IVP, 𝐷∕Δ𝑥 = 25 1.07 6.14 0.200 ± 0.005
VOS-IVP, 𝐷∕Δ𝑥 = 50 1.08 5.26 0.200 ± 0.005
VOS-IVP, 𝐷∕Δ𝑥 = 100 1.11 2.63 0.200 ± 0.005
BF, 𝐷∕Δ𝑥 = 100 1.14 − 0.200 ± 0.005
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Figure 18 In-line force acting on the body during one oscillation period.
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Figure 19 In-line force acting on the body (orange) and solid momentum source (black) over one period for 𝐷∕Δ𝑥 = 25.

defined as 𝑈max = 2𝜋𝑓𝐴. The Reynolds number characterising this flow problem is calculated from this velocity value and the
cylinder diameter. Another useful non-dimensional quantity is the Keulegan-Carpenter (KC) number, describing the relative
importance of the drag forces over the inertia forces for a bluff body in an oscillatory flow, defined as:

𝐾𝐶 =
𝑈max

𝑓𝐷
. (50)

To compare our results with the experimental data we match the two key numbers to the values of 𝑅𝑒 = 100 and 𝐾𝐶 = 5. The
maximum velocity is set to 𝑈max = 1 m∕s with the frequency of oscillation set to 𝑓 = 0.2 Hz and the amplitude to 𝐴 = 5∕2𝜋 m.
The simulations ran for 𝑇 = 200 𝑠 (corresponding to 40 oscillation periods) with a time-step of Δ𝑡 = 0.0025 𝑠. The present
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method was tested on four unstructured meshes where 𝐷∕Δ𝑥 = [10, 25, 50, 100], Δ𝑥 being the grid-spacing near the solid body,
and the body-fitted case was conducted on a mesh of 𝐷∕Δ𝑥 = 100. The penalisation time-step ratio was set to 𝛼 = 1.

Our computational results are compared to the experimental data of Dutsch et al.34 and resolved body-fitted simulations
with imposed moving reference frame. As shown in Table 4, the mean fluctuation of the in-line force is very well predicted
with the present method even for the coarser grid resolution. Its relative error compared to the body-fitted case remains under
9%. Similarly the fundamental frequency of the force’s fluctuation is well predicted for all the grid resolutions and its value is
𝑓fund = 0.2 Hz, matching the frequency of the body’s periodic motion. Figure 18 shows the evolution of the in-line force over
one oscillation period compared to the results of Dutsch et al.34 and the body-fitted simulation. The predicted force is in excellent
agreement with the reference data for a grid resolution of 𝐷∕Δ𝑥 = 25 or higher. It is important to note, however, that due to the
sharp penalisation mask used in the present method, high frequency (HF) noise is observed on the predicted forces for the case
of a moving immersed body, a known problem with IB methods as reported in literature35,2. These HF oscillations originate
from the solid momentum source term P , as seen in Figure 19. The local value of the source term at the solid-fluid interface
spikes when that interface traverses a grid node and changes from a solid node to a fluid one and vice versa. In fact, this change
leads to sharp variations of the time-derivative of 𝜙𝑠𝒖𝑠 in Equation 15, which is the main contributor of the HF oscillations. That
is why at the phase angles of 90◦ and 270◦ where the solid slows down approaching the maximum displacement, the HF noise
disappears. Figure 20 shows the frequency spectra of the in-line force for all simulations carried out. One can see that with the
reduction of grid-spacing, the HF noise rapidly decreases in strength and starts at a higher frequency.

In Figure 21 the velocity profiles along the y-direction at three different locations, those being 𝑥 = [−0.6𝐷, 0.0𝐷, 0.6𝐷], for
the phase-angle of 180◦ are shown compared to the reference data. At that phase, the cylinder passes from its initial position
with a positive velocity in the x-direction. The present method reproduces well the velocity field around the solid since both the
x-component and y-component of the velocity are in very good agreement with the experimental data. The velocity profile at
𝑥 = 0 shows the smooth transition from the velocity of the fluid to the correct solid velocity inside the body (−0.5 < 𝑦∕𝐷 < 0.5)
imposed thanks to solid momentum source term P . We can also observe that with a grid-spacing of 𝐷∕Δ𝑥 = 25 or higher, the
profiles are identical to those of the body-fitted simulation.

4 APPLICATION TO A VERTICAL AXIS TURBINE (VAT) UNDER LAMINAR FLOW

A more complex case to test the capabilities of the VOS-IVP method is the study of the unsteady incompressible fluid flow
through a vertical axis turbine. More specifically, a two-dimensional study is conducted on a three-bladed Darrieus type turbine
subjected to laminar flow. The results of the VOS-IVP method, as well as the computational performances, are compared to
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Figure 20 Frequency spectra of the in-line force.

body-fitted simulations using the ALE method on YALES2 and other numerical studies found in the literature using either
rotating sliding body-fitted meshes36,37 or direct IBM forcing38.

4.1 Case description

The case setup in this work is the same as the one defined in Ferrer et al.36. The turbine consists of three NACA 0015 airfoils
of chord length 𝑐 = 1 m as blades. They are placed at a radius of 𝑅 = 2𝑐 from the rotation centre and the radius connects to
the airfoil at the quarter-length (𝑐∕4) of the chord. The blades are equally spaced from each other in the radial direction (at 120◦

angles).
The operating conditions are presented in Table 5. The free-stream velocity is set to 𝑈∞ = 0.5m∕s and the prescribed

rotational speed of the blades is 𝜔 = 0.5 rad∕s. Hence, the tip-speed ratio, computed as 𝜆 = 𝜔𝑅∕𝑈∞, is 2. The chord-based
Reynolds number is 𝑅𝑒𝑐 = 100. The computational domain is shown in Figure 22. It extends 5𝑅 upstream from the rotor centre,
12.5𝑅 downstream and 5𝑅 in each cross-flow direction. The domain is divided into 3 regions of different element sizes. The
element size at the blades and the interior of the rotor is Δ𝑥 = 0.01𝑐, while in the near wake region Δ𝑥 = 0.02𝑐 and for the rest
Δ𝑥 = 𝑐. The mesh contains 0.44 × 106 elements. The simulations are driven by a CFL condition, CFL = 0.9. The penalty time-
step ratio is 𝛼 = 0.1 for a better solid velocity imposition. Each blade is represented by 15 × 103 Lagrangian particles, as shown
in Figure 23. The particles are obtained from a 2D solid mesh of the NACA 0015 airfoil with a cell-size of 𝑠 = 0.004𝑐. The
physical time simulated covers 10 rotor revolutions 𝜏 (𝑇max = 10𝜏). The body-fitted simulation follows the same setup.
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Figure 21 Velocity profiles at different locations when the phase angle is 180◦. Solid lines represent VOS-IVP results, dashed
lines BF results and symbols experimental data34. Blue shades correspond to 𝑥 = −0.6𝐷, red shades to 𝑥 = 0.0𝐷 and black
shades to 𝑥 = 0.6𝐷.

Table 5 Operating conditions of VAT simulation.

Blade profile NACA 0015
Nblades 3
Blade chord 𝑐 [m] 1
Rotor radius 𝑅 2𝑐
Free-stram velocity 𝑈∞ [m.s−1] 0.5
Chord-based Reynolds 𝑅𝑒𝑐 100
Rotation speed 𝜔 [rad.s−1] 0.5
TSR 𝜆 = 𝜔𝑅∕𝑈∞ 2

A 2D graphic presenting the rotor movement can be seen in Figure 24. The rotor moves in the counter clock-wise direction
around the z-axis at the rotational speed 𝜔. The angle swept by the blades in time 𝑡 is 𝜃 = 𝜔𝑡. The rotation matrix defining the
rotor motion is computed as:
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Figure 22 Dimensions of the computational domain relative to the rotor radius. The mesh is coloured by the value of the solid
volume fraction at the nodes making the blades visible.

Figure 23 Solid particle set of a NACA 0015 airfoil profile. The particles are coloured by their solid mesh size compared to the
airfoil chord.
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Thus, the position of a blade 𝑏 at a given instant is computed as:

𝑿𝑏 = 𝑹𝑿0
𝑏 , (52)

where 𝑿𝑏 and 𝑿0
𝑏 are the current and initial positions, respectively, of the blade.
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Figure 24 A 2D schematic of the turbine geometry and the main parameters for the rotor movement and the computation of the
forces.

As discussed in section 2.3.3, the resistive force on a blade is computed as the negative sum of the penalty forces in the volume
𝑉𝑏 occupied by the blade:

𝑭 = −∫
𝑉𝑏

𝜌 𝐟IB d𝑉 , (53)

where the components of the force follow the x and y directions, i.e. 𝑭 = (𝐹𝑥, 𝐹𝑦), and 𝜌 is the fluid density. Due to the
assumption of a two-dimensional flow, the turbine is considered infinitely long and the force in the z direction is ignored.

However, the quantities of interest are the torque, 𝐹𝑇 , and the normal forces, 𝐹𝑁 , acting on the blades, i.e. the resistive forces
in the parallel and perpendicular directions with respect to the blade movement. These can be computed directly from the force
estimation in Equation 53 and the position angle 𝜃 of the blades. This leads to the expression:
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The torque and normal coefficients can then be calculated as:

𝐶𝑇 =
2𝐹𝑇

𝜌𝑐𝑈 2
∞

, 𝐶𝑁 =
2𝐹𝑁

𝜌𝑐𝑈 2
∞
. (55)

From the torque, one can also compute the power coefficient of the VAT, 𝐶𝑃 , as the ratio between the power generated by a
turbine blade and the available power in the fluid:
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Figure 25 Streamwise velocity magnitude at 𝜃 = 720◦.

𝐶𝑃 =
2𝜔𝑅𝐹𝑇

𝜌𝐴𝑈 3
∞

(56)

where 𝐴 = 2𝑅𝐻 is the turbine’s projected area, with 𝐻 = 1 due to the 2D assumption.

4.2 Results

For this section, the results presented concern the last two revolutions of the simulation, (8𝜏 − 10𝜏). Figure 25 shows the
streamwise velocity magnitude field when the turbine is at 𝜃 = 720◦, i.e. the end of the tenth revolution. The velocity contours
bear very close resemblance to the ones found by Ramirez et al.37 and Ouro and Stoesser38. One can notice classical features
of vertical axis turbines such as the high velocity wakes behind the lower part of the turbine and the velocity deficit at the
largest part of the wake. Furthermore, one can observe the vastly different near-field aerodynamics around the blades at different
angles 𝜃. Upstroke (270◦ < 𝜃 < 90◦), the airfoils encounter much lower velocity values compared to the downstroke region
(90◦ < 𝜃 < 270◦). Finally, the velocity field is smooth, even near the moving immersed boundaries.

Figure 26 shows the time-history of the coefficients of the torque, the normal force and the power from the blade whose initial
position was at 𝜃 = 0◦, during the last two revolutions. The VOS-IVP coefficient predictions are compared against the ALE
results and the results of Ramirez et al.37. Concerning the torque coefficient 𝐶𝑇 , the VOS-IVP and ALE predictions are in very
good agreement. Although, both methods give higher torque values than the ones found in Ramirez et al.37, especially during
the upstroke movement. The normal force coefficient 𝐶𝑁 , appears to follow better the values found in Ramirez et al.37. It also
follows the same trend as the ALE approach but presents a continuous underestimation. Finally, the power coefficient 𝐶𝑃 is also
shown between the two YALES2 methods. The power coefficient value is systematically higher in the VOS-IVP method than
the ALE approach.



TSETOGLOU ET AL 35

0 90 180 270 360 450 540 630 720

θ [deg]

−5

−4

−3

−2

−1

0

1

C
T

[−
]

VOS− IVP

ALE

Ramirez et al. (2015)

0 90 180 270 360 450 540 630 720

θ [deg]

−10

−5

0

5

C
N

[−
]

0 90 180 270 360 450 540 630 720

θ [deg]

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

C
P

[−
]

Figure 26 Aerodynamic coefficients of the turbine under laminar flow between the present and blade resolved reference data37:
Torque coefficient 𝐶𝑇 (top), normal coefficient 𝐶𝑁 (middle) and power coefficient 𝐶𝑃 (bottom).

Usually, the important quantity in VAT studies is the torque, thanks to which the turbine power can be found. The time-average
values of the torque and power coefficients are computed as:

⟨𝐶𝑖⟩ =
1
2𝜏

10𝜏

∫
8𝜏

𝐶𝑖 d𝑡 , where 𝑖 = (𝑇 , 𝑃 ) . (57)

The average torque coefficient ⟨𝐶𝑇 ⟩ predicted by the VOS-IVP method is −0.814, while the ALE approach gives −0.776,
showing a 5% difference with respect to the body-fitted case. The average power coefficients ⟨𝐶𝑃 ⟩ take the values 0.407 and
0.368 for the VOS-IVP and ALE cases, respectively. This results in a 10% difference between the two methods.

Overall, the predicted aerodynamic quantities show very good agreement with the body-fitted method, despite the fact that
the VOS-IVP time-series suffer from high frequency noise, as this artefact was established in section 3.3.

4.3 Computational performance

The numerical details concerning the computational performance of both YALES2 simulations are presented in Table 6. In both
cases, the simulations are driven by CFL = 0.9 and the cell-size at the airfoil surfaces is Δ𝑥 = 0.01𝑐, but the time-step is higher
in the VOS-IVP method. This results in fewer iterations to cover 10 rotor revolutions compared to the body-fitted case. A possible
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Figure 27 Non-dimensional vorticity fields around the blades at positions 𝜃 = [0◦, 120◦, 240◦] for the VOS-IVP case on the left
and the ALE case on the right.

explanation of this difference is the fact that in the body-fitted method we observe slightly higher velocities at the leading edge
of the airfoils, with stronger local vortices as shown in Figure 27, leading to bigger restrictions in the global time-step.

To quantify the computational cost of the simulations we need to multiply the total time of the simulation, WCT, by the
number of CPU cores used, Ncores = 32. The computational cost in CPU hours per one rotor revolution in the VOS-IVP case
is 5.82 hCPU∕revolution and in the ALE case it reaches 8.50 hCPU∕revolution. We achieve a speed-up factor of 1.46 with our
method compared to the body-fitted simulation. This means that the VOS-IVP method costed 30% less than the ALE method.

Table 7 shows in more detail the reduced computational times (RCT) of the different processes used in both approaches. The
three most costly processes in VOS-IVP are the pressure correction stage, 51% of the cost, the update of the data/variables on
the grid nodes, 23%, and the relocation of the solid particles according to the prescribed rotor motion, 22%. For the ALE case
the three most costly processes are the velocity advection, 40%, the mesh adaptation, 37%, and the pressure correction, 11%.

The pressure correction step included the process of solving the elliptic pressure Poisson differential equation (PPE). In both
cases, the Deflated PCG algorithm was used with a convergence criterion of 10−7, i.e. a diminution of the infinity-norm residual
of seven orders of magnitude. However, in the VOS-IVP case, due to the implicit penalty term, we have a variable coefficient in
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Table 6 Computational performances of VAT simulations.

VOS-IVP ALE

Δ𝑡 [ms] 4.92 3.48
Niterations 27.1 × 103 32.8 × 103

WCT [s] 6.55 × 103 9.56 × 103

Ncores 32 32
hCPU 58.2 85.0
hCPU∕revolution 5.82 8.50
speed − up 1.46 1.00

Table 7 Reduced computational times of VAT simulations.

RCT [μs∕iter∕nodes] VOS-IVP ALE

Total 35.1 37.5
Update of grid variables 8 3.1
Advection 1.3 15.1
Pressure correction 18 4.3
Post-processing 3.3 0.7
VOS-IVP pre-processing 1.7 −
Relocate solid particles 7.8 −
Mesh adaptation − 13.9

front of the density, known as the penalty density factor, as explained in section 2.3.2. This increases the computational effort
needed to solve the PPE, explaining the 18 μs∕iter∕nodes RCT compared to the 4.3 μs∕iter∕nodes RCT in the ALE case. The
data update on the grid costs more in the VOS-IVP method due to the increased number of variables that need to be stored for
the penalty parameters and the computation of the mass and momentum source terms, as shown in section 2.2.3. Comparing the
advection step, the ALE seems to cost more due to the treatment of the moving mesh nodes. The last differences between the
methods are the cost of the particle relocation present in the VOS-IVP case, 7.8 μs∕iter∕nodes, and the mesh adaptation cost in
the ALE case, 13.9 μs∕iter∕nodes.

To conclude, in this two-dimensional flow around a moving complex geometry, the costs associated with the VOS-IVP
processes (PPE and solid particle relocation) seem to be smaller than the costs of the ALE processes (mesh adaptation
and mesh movement). The results show a great speed-up when using our method. This is particularly promising for future
three-dimensional studies where the mesh adaptation cost in the ALE method increases exponentially.

5 CONCLUSION AND PERSPECTIVES

In this work, a new immersed boundary method for solving moving body flows has been proposed. The Volume-of-Solid Implicit
Volume Penalty method shows very promising results. The conservative properties of the equations prove to be independent
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of the fluid mesh resolution thanks to the use of a Lagrangian solid volume fraction field. The benefits of using an implicit
formulation for the penalty term are also shown by the faster imposition of the target solid velocity inside the immersed volume.
The method was validated on flow problems involving both stationary and moving solids. The predicted forces acting on the
solids are in excellent agreement with the reference values, with the relative errors always remaining under 10%. The fluid flow
behaviour near the immersed solid is reproduced very well even for very coarse grids. The computational performance of the
method was particularly examined on a vertical axis turbine flow problem and compared against a body-fitted simulation. For
the same physical time simulated, our method achieves a speed-up factor of 1.46, reducing the total computational cost by 30%.

The aforementioned results of using the VOS-IVP method make it an attractive option for solving incompressible flow
problems with moving solid geometries. There are opportunities for further improvement by eliminating the high-frequency
oscillations in the force signals. One can also extend the method for high Reynolds number turbulent flows by incorporating
wall-models in the penalty term.
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APPENDIX

A DERIVATION OF THE VOS-IVP GOVERNING EQUATIONS

In section 2.2.1 the initial mass and momentum conservation equations were shown for the fluid phase and in section 2.2.2 the
final equations of the VOS-IVP method, describing both fluid and solid phases through the use of the composite velocity, were
shown. In this section the process of passing from the former set of equations to the latter shall be shown step by step.

The two relations used to derive the final set of equations are:

𝜙𝑠 + 𝜙𝑓 = 1 , (A1)

𝒖 = 𝜙𝑠𝒖𝑠 + 𝜙𝑓𝒖𝑓 , (A2)

where, 𝜙𝑠 and 𝜙𝑓 are the solid and fluid volume fractions, respectively, 𝒖𝑠 and 𝒖𝑓 are the solid and fluid velocities, respectively,
and 𝒖 is the composite velocity.

• Mass conservation equation

The mass conservation equation was derived by simple substitutions of the fluid quantities:

𝜕
𝜕𝑡

(

𝜙𝑓
)

+ ∇ ⋅
(

𝜙𝑓𝒖𝑓
)

= 0

⇒
𝜕
𝜕𝑡

(

1 − 𝜙𝑠
)

+ ∇ ⋅
(

𝒖 − 𝜙𝑠𝒖𝑠
)

= 0

⇒ ∇ ⋅ 𝒖 = 𝜕
𝜕𝑡

(

𝜙𝑠
)

+ ∇ ⋅
(

𝜙𝑠𝒖𝑠
)

.

(A3)

• Momentum conservation equation

The initial fluid momentum equation is:

𝜕
𝜕𝑡

(𝜙𝑓𝒖𝑓 )
⏟⏟⏟

I

+∇ ⋅ (𝜙𝑓𝒖𝑓 ⊗ 𝒖𝑓 )
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

II

= −1
𝜌
∇𝑃 + 1

𝜌
∇ ⋅

(

𝜙𝑓𝝉𝑓
)

⏟⏟⏟
III

+𝐟IB . (A4)

Let us examine term by term how the composite velocity appears. The time derivative term changes as follows:

I ∶ 𝜕
𝜕𝑡
(𝜙𝑓𝒖𝑓 ) =

𝜕𝒖
𝜕𝑡

− 𝜕
𝜕𝑡

(

𝜙𝑠𝒖𝑠
)

. (A5)

For the convective term, the following operations take place:
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II ∶ 𝜙𝑓𝒖𝑓 ⊗ 𝒖𝑓 = 𝒖⊗ 𝒖𝑓 − 𝜙𝑠𝒖𝑠 ⊗ 𝒖𝑓

= 𝒖⊗ (𝜙𝑓 + 𝜙𝑠)𝒖𝑓 − 𝜙𝑠𝒖𝑠 ⊗ 𝒖𝑓

= 𝒖⊗𝜙𝑓𝒖𝑓 + 𝒖⊗𝜙𝑠𝒖𝑓 − 𝜙𝑠𝒖𝑠 ⊗ 𝒖𝑓

= 𝒖⊗ 𝒖 − 𝒖⊗𝜙𝑠𝒖𝑠 + 𝒖⊗𝜙𝑠𝒖𝑓 − 𝜙𝑠𝒖𝑠 ⊗ 𝒖𝑓

= 𝒖⊗ 𝒖 − 𝜙𝑠
(

𝒖⊗ 𝒖𝑠 − 𝒖⊗ 𝒖𝑓 + 𝒖𝑠 ⊗ 𝒖𝑓
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
IV

.

(A6)

Developing further the term IV we get:

IV ∶ 𝒖⊗ 𝒖𝑠 − 𝒖⊗ 𝒖𝑓 + 𝒖𝑠 ⊗ 𝒖𝑓

= 𝜙𝑓𝒖𝑓 ⊗ 𝒖𝑠 + 𝜙𝑠𝒖𝑠 ⊗ 𝒖𝑠 − 𝒖⊗ 𝒖𝑓 + 𝒖𝑠 ⊗ 𝒖𝑓

= 𝜙𝑓𝒖𝑓 ⊗ 𝒖𝑠 + 𝜙𝑠𝒖𝑠 ⊗ 𝒖𝑠 − 𝜙𝑓𝒖𝑓 ⊗ 𝒖𝑓 − 𝜙𝑠𝒖𝑠 ⊗ 𝒖𝑓 + 𝒖𝑠 ⊗ 𝒖𝑓

= 𝜙𝑓𝒖𝑓 ⊗ 𝒖𝑠 + 𝜙𝑠𝒖𝑠 ⊗ 𝒖𝑠 − 𝜙𝑓𝒖𝑓 ⊗ 𝒖𝑓 − (1 − 𝜙𝑓 )𝒖𝑠 ⊗ 𝒖𝑓 + 𝒖𝑠 ⊗ 𝒖𝑓

= 2𝜙𝑓𝒖𝑓 ⊗ 𝒖𝑠 + (1 − 𝜙𝑓 )𝒖𝑠 ⊗ 𝒖𝑠 − 𝜙𝑓𝒖𝑓 ⊗ 𝒖𝑓

= 𝒖𝑠 ⊗ 𝒖𝑠 + 𝜙𝑓
(

2𝒖𝑓 ⊗ 𝒖𝑠 − 𝒖𝑠 ⊗ 𝒖𝑠 − 𝒖𝑓 ⊗ 𝒖𝑓
)

= 𝒖𝑠 ⊗ 𝒖𝑠 − 𝜙𝑓
(

𝒖𝑠 − 𝒖𝑓
)

⊗
(

𝒖𝑠 − 𝒖𝑓
)

.

(A7)

Injecting this formula back to term II gives:

II ∶ 𝜙𝑓𝒖𝑓 ⊗ 𝒖𝑓 = 𝒖⊗ 𝒖 − 𝜙𝑠𝒖𝑠 ⊗ 𝒖𝑠 + 𝜙𝑠𝜙𝑓
(

𝒖𝑠 − 𝒖𝑓
)

⊗
(

𝒖𝑠 − 𝒖𝑓
)

. (A8)

The last term can be neglected for a sharp representation of the solid volume fraction. The product 𝜙𝑠𝜙𝑓 (𝒖𝑠 − 𝒖𝑓 ) can
be neglected since 𝜙𝑠𝜙𝑓 = 0 away from the solid/fluid interface and 𝒖𝑓 ≈ 𝒖𝑠 ≈ 𝒖 at the interface. Hence, the convective
term in the momentum equation can be expressed as:

∇ ⋅ (𝜙𝑓𝒖𝑓 ⊗ 𝒖𝑓 ) = ∇ ⋅ (𝒖⊗ 𝒖) − ∇ ⋅ (𝜙𝑠𝒖𝑠 ⊗ 𝒖𝑠) . (A9)

For the diffusive term we first define a composite dynamic viscosity in the same manner as the composite velocity:

𝜇 = 𝜙𝑓𝜇𝑓 + 𝜙𝑠𝜇𝑠 , (A10)
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but we set the solid viscosity to zero to avoid shear flows inside the solid domain and so that only the pressure term would
counteract the forcing terms of the VOS-IVP method. So, the composite viscosity 𝜇 used in the solver is equal to 𝜙𝑓𝜇𝑓 .

Term III can be re-arranged in the following manner:

III ∶ 𝜙𝑓𝝉𝑓 = 𝜇
(

∇(𝜙𝑓𝒖𝑓 ) + ∇(𝜙𝑓𝒖𝑓 )𝑇
)

= 𝜇
(

∇(𝒖 − 𝜙𝑠𝒖𝑠) + ∇(𝒖 − 𝜙𝑠𝒖𝑠)𝑇
)

,
(A11)

where since the viscosity is a multiple of the fluid volume fraction, the cross terms including the product 𝜇𝜙𝑠 can be
neglected. Thus, a new viscous stress tensor 𝝉 can be computed from the composite fields, where:

III ∶ 𝜙𝑓𝝉𝑓 = 𝜇
(

∇𝒖 + ∇𝒖𝑇
)

= 𝝉 . (A12)

Finally, replacing all the terms containing the fluid velocity with those containing the composite velocity gives the final
form of the momentum conservation equation describing both phases at once:

𝜕𝒖
𝜕𝑡

+ ∇ ⋅ (𝒖⊗ 𝒖) = −1
𝜌
∇𝑃 + 1

𝜌
∇ ⋅ 𝝉 + 𝜕

𝜕𝑡
(

𝜙𝑠𝒖𝑠
)

+ ∇ ⋅
(

𝜙𝑠𝒖𝑠 ⊗ 𝒖𝑠
)

+ 𝐟IB . (A13)
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